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Abstract

Occupant  behavior  in  buildings  is  a  leading  factor  influencing  energy  use  in  buildings.  Low-cost

behavioral solutions have demonstrated significant potential energy savings. Estimating the behavioral

savings potential is important for a more effective design of behavior change interventions, which in turn

will support more effective energy-efficiency policies. This study introduces a simulation approach to

estimate the energy savings potential of occupant behavior measures. First it defines five typical occupant

behavior measures in office buildings, then simulates and analyzes their individual and integrated impact

on energy use in buildings. The energy performance of the five behavior measures was evaluated using

EnergyPlus simulation for a real office building across four typical U.S. climates and two vintages. The

Occupancy Simulator was used to simulate the occupant movement in each zone with inputs from the site

survey of the case building. Based on the simulation results, the occupant behavior measures can achieve

overall site energy savings as high as 22.9% for individual measures and up to 41.0% for integrated

measures. Although energy savings of behavior measures would vary depending upon many factors, the

presented simulation approach is robust and can be adopted for other studies aiming to quantify occupant

behavior impact on building performance.
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1. Introduction

Occupant behavior in buildings refers to occupants’ comfort preference, presence and movement, and

interactions with building systems that have an impact on building performance (thermal, visual, acoustic,

and indoor air quality or IAQ). The interactions include adjusting thermostat settings, opening or closing

windows, dimming or turning on/off lights, pulling up or down window blinds, switching on or off plug

loads, and consuming domestic hot water [1]. People spend most of their time in buildings; energy-related

occupant behavior in buildings is one of the six influencing factors of building performance [2][3], which

include climate, building envelope, building equipment, operation and maintenance, occupant behavior,

and indoor environment conditions. Daily interactions between building systems and occupants drive total

energy use. Occupants’ expectations of desired comfort and satisfaction within their indoor environment

drive the occupant to perform various actions to satisfy their physical and non-physical needs. These

actions not only affect the built environment (e.g., indoor temperature, humidity level, lighting, CO2, etc.)

and the energy use  [4][5], but also affect the energy-saving potentials of energy conservation measures

(ECMs)  [6].  Indirectly,  this  has economic, physiological,  and psychological impacts on the occupant.

Clearly understanding and accurately modeling occupant behavior in buildings is crucial to reducing the

gap between design and actual building energy performance, especially for low-energy buildings relying

more on passive design features, occupancy controlled technologies, and occupant engagement [7][8].

Developing and adopting new technologies can improve the energy efficiency of equipment in buildings.

However, technologies alone do not necessarily guarantee low energy use in buildings because (1) the

interaction  between  humans  and  new energy  technologies  makes  their  adoption  challenging,  (2)  the

rebound effect,  where the increased efficiency of a technology results  in  its  increased use and,  thus,

increased energy consumption reduces the savings attributable to energy-efficiency measures [9][10][11],

(3)  the  energy  savings  will  be  largely  reduced  if  technologies  are  not  designed,  implemented  or

maintained appropriately [12]. Meanwhile, technical measures are generally an expensive way to reduce

energy consumption, which usually requires an initial investment  [13]. In the future, the energy saving

potentials from technology development will gradually encounter bottleneck due to theoretical energy

efficiency limits [14]. Therefore, more options should be considered regarding energy conservation.

Low-cost  behavioral  solutions  demonstrated  significant  potential  energy savings  in  multiple  industry

areas such as buildings [15], transportation [9][16], and even food processing [17]. Energy savings in the

building stocks are the main focus of this  study. A recent study by McKinsey quantified the savings

potential of behavioral interventions at 16%-20% for total U.S. residential energy use [18]. Meier, et al.

[19] analyzed  that  reasonable  changes  in  operators’ behaviors  can  save  5%-30% of  building  energy

consumption theoretically; these savings are not taken in many buildings. Davis [15] deployed a series of



experimental behavioral interventions in a wide variety of settings throughout America. For example, a

household’s electricity usage is compared to that of its neighbors in the "Home Energy Reports." The

results convincingly demonstrated that simple behavioral interventions are effective at reducing energy

demand in residential buildings. Utilities and governments are playing an important role in deploying and

promoting  the  behavioral  energy  saving  programs  [20][21][22],  gradually  turning  from  technical

measures to behavioral programs to grow their energy efficiency portfolios. Utility behavioral energy

efficiency programs not only have the potential to deliver massive energy savings, but also have been

found  to  improve  customer  engagement  and  increase  the  effectiveness  of  other  programs  [23].  For

example, the behavioral programs potentially could save up to 132 GWh per year in Colorado utility Xcel

Energy’s service territory [24]; in New Jersey, EnerNOC found that behavioral program potential in the

state could save up to 544 GWh of electricity and 25 million therms of natural gas over a three-year

period [25]. However, there is still much room for improvement: results from 218 large-scale behavioral

feedback programs conducted by Opower across more than 8 million households and 88 U.S. utilities

showed  that  utilities  and  states  are  currently  underinvesting  in  behavioral  savings.  Deployment  of

behavioral programs, at their full economic potential, could generate 19,000 GWh in annual electricity

savings and $2.2 billion in end-consumer savings per year. This represents 1.6% of current residential use,

and is enough energy to take the entire state of Arkansas off the grid  [26]. It should be noted that the

majority of the existing behavioral research and programs focus on residential buildings. More research is

needed on the impact of behavioral measures on commercial buildings.

Estimating  behavioral  savings  potential  is  important  for  a  more effective  design  of  behavior  change

interventions, which in turn will support more effective energy efficiency policies. A variety of methods

have been used to evaluate the impact of behavioral (ECMs), such as the survey-based approach, the

municipal behavior wedge (MBW) model, and building performance simulation (BPS) [27]. Poortinga, et

al.  [13] found that behavioral measures that can directly save energy are modestly acceptable, based on

completed questionnaires from 455 households. Ouyang and Hokao [28] conducted a series of surveys on

124 households in three typical residential buildings in Hangzhou, China, and concluded that electricity

use can be reduced by more than 10% with improved occupant behavior. Significant energy savings can

be achieved using strategies to stimulate shifts in the choices and behaviors of residents at a municipal

level.  Ehrhardt-Martinez  [29] developed  a  low-cost  approach to  determine  the  scale  of  city-specific

savings opportunities based on household eligibility (technology saturation and existing use patterns),

likely  participation  rates,  and  savings  from a  particular  shift  in  behavior.  She  used  the  approach to

estimate  the  savings  opportunities  associated  with  32  different  residential  behaviors.  Davis  [15]

performed  a  series  of  experimental  behavioral  interventions  over  11  different  utility  service  areas

encompassing  more  than  750,000  households  across  the  United  States.  The  results  convincingly



demonstrated  that  simple  behavioral  interventions,  such  as  comparing  electricity  usage  between

neighborhoods, are effective at reducing energy demand in residential buildings. Kane and Srinivas [30]

used  publicly  available  datasets  from  the  Energy  Information  Administration  and  monthly  savings

measurements from 218 behavioral feedback programs at 88 utilities to build a forecasting regression

model  for  predicting  energy  savings  of  behavioral  efficiency  programs.  Lopes,  et  al.  [31] used

EnergyPlus/DesignBuilder as a simulation tool to estimate the energy savings potential of behavioral

conservation  measures.  The  simulation  results  demonstrated  a  significant  energy  savings  potential

associated with both usage and investment energy behaviors. The survey-based approach can reflect the

reality and obtain relatively more accurate energy savings, but can’t be applied to estimate the energy

savings of other un-surveyed behaviors or to predict savings for future or at a larger scale. The MBW

model can estimate energy savings at a very large scale as well as predict future savings, but has lower

accuracy. Building performance simulation is able to estimate the energy savings of behavioral measures

at a very detailed and precisely controlled building level, but is relatively time consuming; many detailed

inputs are required and validation is difficult to do. It is important to select the appropriate approach to

perform the energy saving estimation according to actual needs, data availability, and experience.

BPS  programs  are  widely  applied  to  evaluate  the  performance  of  building  energy  systems  and

technologies.  Currently,  occupant  behavior  is  represented  in  oversimplified  and  pre-defined  static

schedules or fixed settings and rules, which are input into current BPS programs resulting in deterministic

and homogeneous results that ignore the stochastic nature, dynamics, and diversity of occupant behavior.

For example, occupants can open windows due to various reasons: (1) feeling hot – thermal comfort

driven, (2) feeling stuffy – IAQ driven, and (3) arriving in a space – event driven. Field-measured data

and  large-scale  surveys  confirmed  that  these  window  opening  behaviors,  which  are  represented  as

probabilistic  models  (logit  or  Weibull  functions),  have  been  adopted  by  several  BPS  programs  to

determine when occupants open windows [32][33]. Occupant behavior stochastic models are data driven

and improve modeling assumptions of occupant activities in the BPS programs [34][35][36][37]. BPS is

used to quantify the energy savings potentials of behavioral ECMs in this case study.

This  study  defines  five  typical  occupant  behavior  measures  in  office  buildings,  then  simulates  and

analyzes  their  individual  and  integrated  impacts  on  energy use  in  buildings.  Although actual  energy

savings  of  occupant  behavior  measures  depend  upon  many  factors,  including  building  type,  energy

services systems (lighting, plug loads, HVAC), climate, and occupants in the buildings, the presented

methodology is robust and can be adopted for other studies aiming to quantify occupant behavior impact

on building performance.



2.  Methodology

2.1 Overview

A methodology  was  established  in  this  study to  investigate  the  energy saving  potential  of  occupant

behavior  measures,  shown  in  Figure  1.  A real  office  building  was  field  investigated,  including  the

geometry, zoning, occupancy schedule, lighting schedule, plug load power density, and schedule. This

case study was based on the selected real building instead of the DOE prototype models  [38] which

simplify building zoning and occupant inputs. With realistic geometry, zoning, and schedules, the case

study can better reflect the realistic occupant behaviors in buildings.

Figure 1 Overall methodology

Whole  building  simulation,  using  EnergyPlus,  was  used  to  evaluate  the  energy  performance  of  the

occupant behavior measures.  EnergyPlus is  an open source program that  models heating,  ventilation,

cooling, lighting, water use, renewable energy generation, and other building energy flows [39] and is the

flagship building simulation engine supported by the United States  Department of Energy (DOE).  It

includes  many innovative  simulation  capabilities  including  sub-hourly  time-steps,  natural  ventilation,

thermal comfort, co-simulation with external interfaces, renewable energy systems, and user customizable

energy management  systems (EMS).  Some of  the  innovative  capabilities  such as  natural  ventilation,

thermal comfort  and EMS were used in  this  case study.  Based on the investigated office building,  a

baseline model was developed in Energy V8.4. A few assumptions were made in the baseline model,

which will be described in detail in Section 2.3.



There are many behavioral measures  studied in  previous research,  however,  mainly focusing on five

categories: lighting, plug load, thermal comfort, HVAC and windows [40][1]. In our study, one occupant

behavior measure was selected as the representative of each category to investigate their energy savings

potential. Therefore, five occupant behavior measures were investigated in this study: lighting, plug load,

comfort  criteria,  HVAC control,  and  window control.  The  energy  performance  of  the  five  occupant

behavior measures was evaluated in four climate types (Chicago, Fairbanks, Miami, and San Francisco)

and two vintages (1989 and 2010). These selected cities represent the four typical climate types in the US:

humid continental, subarctic, tropical (subtropical), and Mediterranean. The two vintages represent the

characteristics of the existing buildings and new constructions. In this case, the influence of climates and

vintages on the energy savings of occupant behavior measures can be evaluated. In this study, electricity

consumption (site energy) per square meter is used as the energy metric to estimate energy savings as

electricity is the only energy source of the case building. 

2.2 Field investigation

To get a more realistic estimation of the potential energy savings of occupant behavior measures, a real

office building was investigated and modeled in this case study. This building has two above-ground

stories with a total conditioned floor area of 1,723 m2. Main room functions include office, conference

room, classroom, and lounge (corridor). Smaller corridors are merged into office zones for simplification.

The perimeter zones have operable windows, which allow the occupants to open windows for cooling or

ventilation. The total number of occupants in the case building is 63. Figure 2 and Figure 3 show first and

second floor plans of the case building, including the room functions. 

 

Figure 2 The 1st floor plan



Figure 3 The 2nd floor plan

Detailed information on the case building, including zone occupancy, lighting schedule, plug load power

density,  and  schedule,  was  also  obtained  via  the  field  investigation.  The  zone  functions  and  their

maximum number of people are summarized in Table 1.

Table 1 Zone function and occupancy

Zone Function
Maximum
Number of People

Number  of
zones

Office

0 1
1 12
2 10
3 5
4 4

Classroom
3 1
5 1

Meeting Room
4 2
13 1

2.3 The baseline model 

A baseline model was developed using EnergyPlus Version 8.4 (Figure 4), based on the realistic geometry

and zoning of the case building. The main assumptions of the baseline model are described as follows.



Figure 4 The 3D view of the baseline model

2.3.1 Generation of stochastic occupancy schedule
Occupancy plays a critical role in the energy performance of occupant behavior measures. However, an

average whole building occupancy schedule is normalized and not able to reflect the realistic occupant

movement  and  the  variations  between  different  zones  within  the  buildings.  For  example,  when  the

average occupancy schedule of offices is 0.1 at 7am, it is impossible for a single private office to have 0.1

persons. The reality could be that only 1 out of 10 private single offices is occupied at this time. It may

not be a problem to estimate the total internal load of the building with a normalized occupancy schedule.

However, for occupant-based controls, normalized occupancy schedule is not able to reflect the realistic

occupancy,  which  is  critical  input  for  estimating  energy  performance  of  occupant-based  controls.

Implementing  realistic  occupancy  schedules  is  crucial  to  accurately  estimate  the  energy  savings  of

occupant behavior measures. 

Three approaches are primarily used for occupant modeling: stochastic approach, agent-based approach,

and  random  walk  approach  [41].  The  stochastic  approach  considers  the  occupant  movement  as

probabilistic.  Markov Chains’ transition  probabilities  were generally  utilized to  generate  a  stochastic

model for the occupant presence [34][35][42]. The agent-based approach aims to describe the interactions

between  occupants  based  on  their  perception,  desire,  and  intention—focusing  on  what  an  occupant

perceives and does in a certain situation. Agent-based models were developed to simulate autonomous

occupants  in  previous  research  [7][36][43][44].  The  random walk  approach presents  a  new concept,

which  views  occupancy  pattern  as  unpredictable  in  certain  cases.  It  was  obtained  from  occupancy

experiments in the university laboratories, which are quite different from process-driven buildings such as

residential buildings and schools. Though its application might be limited to certain building types, it

provides another method to predict occupant presence [41].

The authors used the Occupancy Simulator to simulate the realistic occupant movement in each zone,

with inputs from the site survey of the case building. The Occupancy Simulator, developed by Lawrence



Berkeley  National  Laboratory  (LBNL),  is  a  user-friendly  app  that  uses  Markov  chain  modeling  to

simulate occupancy in buildings [45]. The app takes high-level inputs of occupants, spaces, and events to

simulate the stochastic occupant presence and movement in buildings, capturing the spatial and temporal

occupancy diversity [34][35]. Each occupant and each space in the building are explicitly simulated as an

agent with their profiles of stochastic behaviors. The occupancy behaviors were represented with three

types of events,  including: (1) the status transition events (e.g.,  first  arrival in  office) simulated with

Reinhart’s LIGHTSWITCH-2002 model  [46], (2) the random moving events (e.g.,  from one office to

another)  simulated with Wang’s homogeneous Markov chain model  [35],  and (3) the meeting events

simulated  with  a  new stochastic  model.  The  Occupancy  Simulator  is  a  web  application  with  cloud

computing.  It  reduces  the  amount  of  data  inputs  by allowing users  to  group occupants  with similar

behaviors  as  an  occupant  type  and  spaces  with  similar  function  as  a  space  type.  The  theoretical

mathematical  distribution  of  the  occupancy  pattern  properties  have  been  verified  using  collected

occupancy data in real buildings [47]. The generated schedules capture the diversity and stochastic nature

of occupant activities. These schedules can be downloaded and used for building simulations.

The maximum occupancy and space types from Table 1 are inputs of the simulator. For the offices, three

prevailing types of work schedules on weekdays were summarized based on the survey: 8am – 5pm

(70%),  7am –  6pm  (20%),  and  6am  –  11pm (10%).  The  occupants  don’t  work  on  weekends.  The

classrooms and meeting rooms only hold events during several fixed time slots on weekdays with certain

possibilities.  With  the  above  inputs,  the  occupancy schedules  for  each space  were  generated  by  the

Occupancy Simulator.

Figure 5 shows the hourly variation and profile of total occupancy schedule in all the offices throughout

the  weekdays  of  a  whole  year.  Likewise,  Figure  6 and  Figure  7 show the  occupancy  schedules  on

weekdays in all the classrooms and meeting rooms, respectively. Figure 8 shows the occupancy schedule

of a four-person office on the second floor during a weekday with the time step of 15 minutes. According

to the normalized occupancy schedule in the DOE office building prototype models [38], the unoccupied

hours during weekdays are 1,564, while the average unoccupied hours of all the offices during weekdays

are 3,800 based on the generated stochastic occupancy schedule. This was calculated by averaging the

total  unoccupied hours during weekdays of each office.  With the stochastic  occupancy schedule,  the

spaces are unoccupied for more than twice the time of the normalized occupancy schedule, which leads to

a significant difference in the energy performance of occupant-based ECMs. 

The generated schedules can reflect the variation, diversity, and stochastic characteristic of the realistic

occupant movements. Compared with the normalized identical occupancy schedule in all spaces, these

generated schedules  are  more  reasonable  and can help improve the simulation  accuracy.  To make it



consistent for all the studied measures, the same set of generated schedules is applied to both the baseline

model and the five occupant measures.

Figure 5 Box-Whisker plot of the hourly schedule of total occupancy in all offices on weekdays. The four marks on each time scale
stand for (from top to bottom): maximum, upper quartile, lower quartile, and minimum. The dotted line connects the median

value of all.

Figure 6 Box-Whisker plot of the hourly schedule of total occupancy in all the classrooms on weekdays. The five marks on each
time scale stand for (from top to bottom): maximum, upper quartile, median, lower quartile, and minimum.



Figure 7 Box-Whisker plot of the hourly schedule of total occupancy in all the meeting rooms on weekdays. The five marks on
each time scale stand for (from top to bottom): maximum, upper quartile, median, lower quartile, and minimum.

Figure 8 The occupancy schedule of an office room on the 2nd floor on a typical weekday (Time interval: 15 min).

2.3.2 Efficiency of the building based on ASHRAE standard 90.1

All the efficiency inputs, including lighting power density, envelope properties, and HVAC equipment

efficiencies, are based on ASHRAE Standard 90.1. Two versions of ASHRAE 90.1 standards, 1989 [48]

and 2010  [49], were used as the reference for efficiency inputs, as shown in  Table 2 and  Table 3. The

1989 scenario represents old buildings while the 2010 represents new buildings. The building envelope

properties vary with climate types, while other customized inputs, such as schedules, plug load power

density, etc., were kept the same as the original building. The visible transmittance (VT) is not regulated

as are other thermal properties of the fenestration for each climate, so the study uses VT values from the

DOE prototype models.



Table 2 Efficiency inputs of lighting power density and HVAC systems based on ASHRAE 90.1

ASHRAE 90.1-1989 ASHRAE 90.1-2010
Lighting power density (W/m2) 18.5 9.69
Water-cooled chiller COP 3.8 5.55
Gas boiler thermal efficiency (Et) 0.7 0.75

Table 3 Efficiency inputs of envelope properties based on ASHRAE 90.1

Chicago San Francisco Miami Fairbanks
ASHRAE 90.1 version 1989 2010 1989 2010 1989 2010 1989 2010

Wall U-factor
W/(m2.K)

0.72 0.511 2.72 0.698 5.68 3.29 0.312 0.403

Roof U-factor
W/(m2.K)

0.3 0.27 0.514 0.27 0.43 0.358 0.176 0.273

Window U-factor
W/(m2.K)

3.35 3.12 4.09 3.69 6.98 6.81 2.95 2.56

Window SHGC 0.435 0.4 0.435 0.25 0.33 0.25 0.87 0.45

2.3.3 The variable refrigerant flow system

The case building uses variable refrigerant flow (VRF) systems. A VRF system varies the refrigerant flow

rate using variable speed compressor(s) in the outdoor unit and the electronic expansion valves located in

each indoor unit to meet the space cooling or heating loads while maintaining the zone air temperature at

the comfort setpoint  [50]. A VRF system’s ability to control the refrigerant mass flow rate according to

the cooling and/or heating load enables the use of as many as 60 indoor units with differing capacities in

conjunction with one single outdoor unit. This unlocks the possibility of having individualized comfort

control, simultaneous heating and cooling in different zones, and heat recovery from one zone to another

[50][51][52]. The new VRF model in EnergyPlus V8.4  [53], developed by LBNL, was used for VRF

system simulation in this study. The outdoor air volumes in each zone were kept at the same level as the

original system.

2.3.4 Fixed HVAC equipment sizing

The  sizing  of  the  HVAC  equipment  was  kept  the  same  through  all  the  calculations  since  HVAC

equipment will stay the same unless replaced or removed during retrofits. The sizing information was first

obtained by autosizing the equipment of the baseline model.

2.4 Simulation of the occupant behavior measures

There are four approaches that are used to simulate occupant behaviors in BPS programs [37]. (1) Direct

input or control: occupant-related inputs are defined using the semantics of BPS programs, just as other



model inputs are defined (building geometry, constructions, internal heat gains, and HVAC systems). (2)

Built-in occupancy behavior models: an advanced occupancy behavior control is implemented directly

into the BPS program, usually in a dedicated software module. (3) User function or custom code: the user

can write functions (e.g., user functions in DOE-2.1E) or custom code (e.g., EMS in EnergyPlus [54]) to

implement new or overwrite existing or default  building operation  and supervisory controls.  (4)  Co-

Simulation: a simulation methodology that  allows individual components to be simulated by different

simulation tools running simultaneously and exchanging information in a collaborative manner. In this

study, the first and third approaches were used to simulate the five occupant behavior measures.

2.4.1 Measure 1: Lighting control

In the baseline model, the lighting schedule is static throughout the year, and the same in all the zones of

the same room type. This occupant behavior measure evaluates the potential savings from occupant-based

lighting control. Two scenarios of lighting control were considered: (1) occupants turn on lights when

they enter the room and turn off lights when they leave the room; (2) occupants turn on lights when they

are in the room and feel that it is dark; they turn off lights either when they leave the room or feel that the

room is bright enough. According to previous studies [55][56] and the baseline schedule shown Figure 9,

the emergency and security lights are always on, even during night time and weekends when the building

is unoccupied. This part of lighting use is considered necessary, so the lighting schedule for this measure

was set the same as the nighttime value of the baseline model during unoccupied hours.

Figure 9 Office lighting schedule in the baseline model

The first scenario is directly associated with occupancy, which could be obtained according to occupancy

schedule in each zone. The second scenario relates not only to the occupancy but also to the probability of

turning  on/off  the  lights  at  different  daylighting  levels.  Wang,  et  al.  [57] measured  the  occupant

movement, daylight illuminance and lighting power in two private offices in an office building and found

a relationship between daylight illuminance and occupant behavior of lighting control. They defined a

three-parameter Weibull distribution function to describe the conditional probability of turning on/off the

lights (Table 4), the independent variable x is the indoor illuminance level at a work-plane height:



Table 4 Three-parameter Weibull distribution describing the conditional probability of turning on/off the lights

Turn on the light when feeling dark:

u-x

1 , x ,
0, x

k

Le uP when occupied
u

    
   
 

Turn off the light when feeling bright enough:

1 , x ,
0, x

kx u

Le uP when occupied
u

    
   
 

Where parameter u stands for the threshold of independent variable x, beyond which the probability of

occupant taking action would be 0.  For example,  when the indoor illuminance is  greater  than u,  the

probability of turning on the lights is 0. The parameter L describes the scale of the function, which is used

to nondimensionalize (x-u). The parameter k represents the slope of the function. The greater k value is,

the more sensitive the occupant is to the illuminance. In this study, we referred to the parameters’ values

in Wang’s paper  [57]. The profile of the probability of occupants turning on/off the lights is shown in

Figure 10.

(a) Probability of turning on the lights

u = 450, L = 427.32, k = 5

(b) Probability of turning off the lights

u = 150, L = 2300, k = 1.3
Figure 10 Probability of occupants turning on/off the lights

Time-step daylight illuminance in each zone was simulated in EnergyPlus, which was used to calculate

the time-step probability of turning on/off the lights according to the above probability function. If the

zone is occupied, a random number between 0 and 1 will be generated for each occupant. This occupant

will have the ability to take action (turn on/off the lights) if the random number is less than the relevant

probability. When there is only one occupant, the status of the lights will be determined by this occupant.

When the number of occupants is greater than 1, the lights will be turned on if one of the occupants has

the desire to, and turned off only if all of the occupants agree to do so. The “direct input or control”

approach was used to simulate the lighting control measure, where the generated lighting schedules will

be imported into the EnergyPlus models to replace the original static lighting schedule.



2.4.2 Measure 2: Plug load control

In the baseline model, the plug load schedule is deterministic, and its control has nothing to do with the

occupants. For this occupant behavior measure, the occupants have the option to control their personal

electric equipment, such as laptops, desktop screens, chargers, and personal fans, based on their presence.

This part of electric equipment is assumed to take up about 30% of total plug load. This is based on

previous research on occupancy-based control of plug load, which shows that plug load controlled by the

occupants can be reduced by up to 26% of the total electricity use during unoccupied hours [58–61]. In

that  case,  the  assumption  of this  measure  is  straightforward:  when the zone is  occupied,  the  electric

equipment is 100% on; when the zone is unoccupied, the electric equipment will be reduced by 30%. In

other words, the electric equipment schedule of each zone is directly associated with occupancy, which

could be obtained according to occupancy schedule in each zone. The simulation method is the same as

the lighting control measure.

2.4.3 Measure 3: Thermal comfort criteria

Thermal comfort standards have significant impacts on the energy consumption of HVAC systems by

affecting the cooling and heating setpoints. In buildings with centralized control, all the conditioned zones

are set to the same cooling/heating setpoints. They usually form a narrow comfort zone to guarantee

sufficient satisfaction. However,  the way occupants experience thermal conditions varies considerably

[57][62]. Outside the simulation, the operation strategy of setting a narrow comfort range can’t guarantee

better comfort while consuming more energy. Just like the thermostat  settings in the baseline model,

which follows the original settings from the case building, which uses 24.4°C for cooling and 21.1°C for

heating. Therefore, this measure considers an extreme situation where all the occupants have a broader

thermal comfort acceptance range to explore the potential energy savings from changing thermal comfort

criteria. 

Two thermal comfort criteria were considered: (1) ASHRAE standard 55 comfort zone limits  [63]; (2)

adaptive comfort [63][64]. Adaptive comfort was proposed to complement the traditional Predicted Mean

Vote (PMV)-based method in ASHRAE Standard 55. It allows warmer indoor temperatures for naturally

ventilated  buildings  during  warm  seasons.  Although  adaptive  comfort  was  originally  developed  for

naturally ventilated buildings, it is also recommended for use with buildings that have mechanical cooling

systems.

In the first  scenario,  the upper temperature limit  of the ASHRAE 55 comfort  zone was taken as the

cooling setpoint in the simulation while the lower limit was taken as the heating setpoint. In the second

scenario, the adaptive comfort model with 80% acceptability limits, developed by the Center for the Built

Environment  in  UC Berkeley,  was adopted  to  calculate  a  dynamic  comfort  range based  on  ambient



temperature, which was then used as dynamic cooling/heating setpoints in simulation (Figure 11). The

“direct input or control” approach was used to simulate this measure, where the cooling setpoint schedule

in the EnergyPlus models was adjusted according to different thermal comfort criteria.

Figure 11 Monthly Cooling Setpoint from the Adaptive Comfort (80% acceptability) model

2.4.4 Measure 4: HVAC control

In the baseline model, the HVAC system is controlled by a fixed schedule (5:00-19:00 Mon-Sun). This

occupant  behavior  measure  aims  to  evaluate  the  potential  energy  savings  of  occupant-based  HVAC

control.  The access to HVAC control for the  occupants varies with HVAC system types.  For HVAC

systems that have zonal control, occupants are allowed to turn on/off the HVAC in their zone without

affecting other zones; for centralized controlled HVAC systems, occupants are not able to control their

HVAC operation individually. In the case building, VRF systems enable occupants to control their zone

HVAC independently by turning on/off their indoor units without affecting others.

Similar to the lighting measure, two scenarios of HVAC control were considered: (1) occupants turn on

HVAC when they are in the room and turn off HVAC when they leave the room; (2) occupants turn on

HVAC when they are in the room and feel hot (in cooling mode) or cold (in heating mode), and turn off

HVAC either when they leave the room or feel cold (in cooling mode) or hot (in heating mode).

For the first scenario, the HVAC schedule in each zone is directly generated according to its occupancy

schedule.  For  the  second scenario,  the  probability  of  turning on/off  the  HVAC system relates  to  the

current conditioning mode (cooling or heating) and the indoor air temperature. Ren [65] investigated the

indoor temperature and HVAC usage of 34 families in  six Chinese cities and used a three-parameter

Weibull distribution function to describe different air conditioning usage patterns. Since residential units

have independent control of their HVAC system, which applies to the condition of our study, Ren’s model

was adopted to estimate the time-step HVAC control status in our models. The functions are shown in

Table 5 (taking cooling mode as an example), with indoor air temperature T as the independent variable:



Table 5 The three-parameter Weibull distribution describing the conditional probability of turning on/off the HVAC system

Turn on AC when feeling hot:

1 , ,
0,

kT u

Le T uP when occupied
T u

    
   
 

Turn off AC when feeling cold:

1 , ,
0,

ku T

Le T uP when occupied
T u

    
   
 

The parameter u stands for the threshold of independent variable T, beyond which the probability of an

occupant taking action would become 0. For air conditioning, when the indoor temperature T is lower

than u, the probability of turning on the AC is 0. The parameter L describes the scale of the function,

which is  used to nondimensionalize (T-u). The parameter k represents the slope of the function. The

greater k value is, the more sensitive the occupant is to indoor temperature. In each scenario, the three

parameters are predetermined to meet certain criteria. For example, for the probability function of turning

on HVAC when the occupants feel hot: (1) the heating setpoint 21.1°C was set as the u value. In other

words, it is considered impossible for the occupants to turn on the HVAC because of feeling hot when the

indoor temperature T is lower than the heating setpoint. (2) The L and k values were obtained assuming

that the probability of turning on HVAC is about 20% at the cooling setpoint 24.4°C (cooling setpoint

satisfies thermal comfort in 80% of the population) and about 50% at the upper limit of ASHRAE comfort

zone 28.3°C.

For this study, the assumption is  that when the indoor air temperature T locates in  the comfort zone

between the cooling and heating setpoints, the occupants will not turn on the HVAC. When the HVAC

status of last time step is off, the zone is occupied, and the indoor temperature T is higher than the cooling

setpoint  or  lower  than  the  heating  setpoint,  the  indoor  temperature  T will  be  used  to  calculate  the

probability of turning on the HVAC. A random number between 0 and 1 is generated for each occupant

and compared with the above probability per time step to determine whether to turn on the HVAC. On the

other hand, the occupants will turn off the HVAC on two conditions: (1) the zone is unoccupied, (2) the

zone is occupied, the HVAC status of last time step is on, and the calculated probability of turning off the

HVAC  is  greater  than  the  generated  random  numbers  of  all  present  occupants.  To  implement  the

occupant-based  HVAC  control  measure  in  the  EnergyPlus  models,  the  real-time  simulated  indoor

temperature per time step is the input for determining the action of the next time step. In this case, the

“user function or custom code” approach was used, where the EMS function of EnergyPlus was adopted

to interpret the conditional logics, generate random numbers and manipulate the HVAC schedules per

time step.



2.4.5 Measure 5: Window control

Natural  ventilation  can  be  effectively  applied  to  utilize  free  cooling  [66].  With  operable  windows,

occupants are able to open and close windows on their demand. In the baseline model, however, there is

no natural  ventilation  while  the  HVAC system is  operating all  the  time.  In this  study,  an  optimized

window control was considered, referring to the “concurrent mixed-mode ventilation” in Wang’s research

[67]: Natural ventilation is taken as the priority to provide cooling for perimeter zones, and mechanical

systems provide supplementary cooling when natural ventilation alone is not enough to meet cooling

setpoints. In other words, if natural ventilation can meet cooling loads for a thermal zone, its VRF indoor

unit  will  be  closed;  otherwise,  conditioned  air  from  the  VRF  indoor  unit  is  available  to  provide

supplementary cooling in order to meet thermal comfort. Natural ventilation is only avaialble when the

room is occupied. In case the impact of Measure 4 is interfused, the HVAC system is controlled by a fixed

schedule, which is the same as the baseline model. Figure 12 shows the control logic. Adaptive comfort

criteria  were  adopted  as  the  cooling  setpoints  for  naturally  ventilated  perimeter  zones  [64],  and  the

interior zones use the same cooling setpoints as the baseline model. The heating setpoints remain the

same as the baseline model.

Figure 12 Control logic of Measure 5

When windows in perimeter zones are favorable to open, the fractions of window opening are modulated

based  on  a  linear  relationship  with  indoor-outdoor  temperature  difference  if  zone  air  temperature  is

greater than outdoor air temperature and is also greater than the heating setpoint, illustrated in Figure 13

[67]. Windows will be fully closed when the indoor–outdoor temperature difference is greater than or



equal  to  15°C  and  windows  will  be  fully  open  for  ventilation  when  the  indoor  and  outdoor  air

temperatures are equal. The air change rate per hour with the windows fully open is assumed to be 10,

which is comparable to mechanical ventilation systems. Windows in perimeter zones are favorable to

open when  outdoor  air  temperature  is  greater  than  the  temperature  which  is  3°C below the  heating

setpoint in order to avoid overcooling thermal zones when outdoor air temperature is too low [67].

Figure 13 Modulation of window opening according to indoor and outdoor temperature difference 
(Tzone: zone air temperature; OAT: outdoor air temperature).

The “user function or custom code” approach was used, where the EMS function of EnergyPlus was used

to interpret the conditional logics and manipulate the natural ventilation schedules per time step.

2.4.6 Integration of all five measures

After  each  occupant  behavior  measure  was  studied,  the  following  question  was  asked:  what  energy

savings  would  result  from all  five  measures  used  together?  To solve  this  problem,  models  with the

integration of the five measures were developed, including: (1) lighting measure (scenario 2), (2) plug

load  measure,  (3)  thermal  comfort  criteria  measure  (adaptive  comfort),  (4)  HVAC  control  measure

(scenario 2),  and (5) window control measure. Adaptive comfort  criteria were adopted as the cooling

setpoints for naturally ventilated perimeter zones, and the interior zones use the same cooling setpoints as

the baseline model. The heating setpoints remained the same as the baseline model. The integration of (1),

(2) and (3) is straightforward by replacing the corresponding schedules. For (4) and (5), the EMS codes

will  run first  before each time step starts  to determine the availability of the HVAC system and the

availability  of natural  ventilation.  If  both are available,  natural  ventilation is  taken as  the  priority  to

provide  cooling  for  perimeter  zones,  and  mechanical  systems  provide  supplementary  cooling  when

natural ventilation alone is not enough to meet cooling setpoints; otherwise, the HVAC system and natural

ventilation will be operated based on their own availability.

2.5 The occupant behavior model of turning on/off the lights and HVAC

The Weibull distribution functions describing the conditional probability of turning on/off the lights and

HVAC, which were defined by Wang  [57] and Ren  [65], were adopted in this study. There are three



parameters  in  the  Weibull  distribution  functions:  u,  L,  and  k.  Different  sets  of  parameters  represent

different behavior patterns. Parameter u is the threshold for the uncomfortable domain that controls when

the action will begin, L describes the range for the functional variable, and k describes the shape. In Ren

and Wang’s studies, field tests were performed to identify the lighting and HVAC usage patterns, based on

which a set of parameters u, L, and k were generated to fit the measured data [65][57]. 

This case study referred to the parameter’s values in Wang’s paper for the lighting measure  [57] and

predetermined the parameters to meet certain assumptions for the HVAC measure scenario 2. These sets

of parameters were considered consistent for all the occupants in the case building. This assumption is

made  based  on  the  study’s  goal  of  estimating  the  theoretical  energy  saving  potential  of  occupants,

although not all occupants behave in the same patterns. In the future, more detailed field tests and surveys

are recommended to develop a library of typical occupant behavior models that can be used in BPS. 

2.6 The lighting usage in multi-occupant offices

In our study, we made assumptions on the lighting usage characteristics in multi-occupant offices: (1)

Every occupant in an open-plan office has the same lighting use behavior pattern; (2) when there are other

people in the office, the turning-off light action won’t happen, while the turning-on light action is not

influenced by others; (3) the lighting system is controlled by every occupant in the office with equal right.

The simulation was performed based on these assumptions.

There are existing studies on the lighting usage in offices with multiple occupants. Hunt [68] and Yun [69]

[70] both have observed the lighting usage in  multi-person offices and found that  lighting is  usually

turned on from the beginning until the end of the day. Wang, et al. [57] concluded that the more occupants

in an office, the less volatile its lighting status is. In future work, more field investigation is recommended

to collect more data to discover the behaviors of multiple occupants.

3. Results

Based on the assumptions made in  Section 2,  the energy performance of the  five occupant  behavior

measures was simulated using EnergyPlus V8.4. Site energy is used as the energy metric. Since a VRF

system is used for all the measures, electricity will be the only source of energy consumption. The results

are shown as follows.

3.1 Measure 1: Lighting control

As mentioned in Section 2.4.1, two scenarios of occupant-based lighting control were considered: one is

related with the occupancy only, the other is a combined decision based on occupancy and daylighting.

Figure 14 shows the lighting electricity use reduction of these two scenarios in the four climates on the



90.1-1989 standard basis. Likewise, Figure 15 shows the results on the 90.1-2010 standard basis. For the

first scenario, the lighting electricity consumption savings are the same across different climates of the

same vintage; and the percentage of lighting electricity consumption savings for the two vintages are both

14%. For the second scenario that combines occupancy and daylighting, the lighting electricity savings,

which vary among climates, are about 4%-11% more than the occupancy-only scenario. It is notable that

the Miami case saves the least for both vintages. This is because the VT of the windows is very low in

Miami,  leading to  insufficient  daylight  illuminance,  which reduces  the  probability  of  turning off  the

lights. 

Figure 14 Lighting electricity savings of Measure 1, in four climates, 90.1-1989 scenario

Figure 15 Lighting electricity savings of Measure 1, in four climates, 90.1-2010 scenario

The occupant-based lighting control measure also has a double impact on the energy consumption of the

HVAC system: more use of daylight reduces internal heat gains from electrical lighting, which increases

the  heating  consumption  and  decreases  the  cooling  consumption.  For  a  cold  climate  like  Fairbanks

(Figure 16 (a)), there is more heating demand than cooling demand, so lower internal heat gains tend to



have more influence on heating consumption. In this case, the total HVAC electricity consumption will

slightly increase. On the contrary, the total HVAC electricity consumption will decrease in a hot climate

like Miami (Figure 16 (b)). However, the indirect impact on HVAC system energy use is less than 20% of

the lighting energy savings, which will not change the total effect of the measure.

(a) (b)
Figure 16 HVAC electricity changes of Measure 1

3.2 Measure 2: Plug load control

The measure of occupancy-based plug load control is theoretically the same as the first scenario of the

lighting measure. The electric equipment is controlled based on occupancy. If the zone is occupied, the

electric equipment will be 100% on. Otherwise, the electric equipment will be reduced by 30%. 

The electric equipment density is consistent in all climates and vintages, making the percentage of plug-

load electricity savings consistent at 21.2%. Meanwhile, as with lighting, the plug load measure also

affects the HVAC system by reducing the internal  heat  gains,  and the impact  varies  due to different

climate types. The energy saving results are similar to those of the lighting measure, which will not be

repeated here. 

3.3 Measure 3: Thermal comfort criteria

As mentioned in Section  2.4.3, two thermal comfort criteria were simulated: (1) ASHRAE Standard 55

comfort zone—taking the upper limit as the cooling setpoint and the lower limit as the heating setpoint;

(2)  Adaptive  comfort  as  the  cooling  setpoint.  The  thermal  comfort  criteria  only  impacts  the  energy

consumption of the HVAC system, whose electricity savings are shown in Figure 17. 

The first scenario reduces energy use for both heating and cooling while the second scenario only reduces

cooling energy use. Therefore, the energy savings in climates that have significant winter seasons, such as

Chicago,  Fairbanks,  and  San Francisco,  tend to  be greater  in  the  first  scenario,  especially  when the

adaptive comfort temperature is not as high as the upper limit of ASHRAE 55 comfort zone. On the

contrary, there is no winter season in Miami, and most of the monthly adaptive comfort temperatures are



higher than the upper limit of the ASHRAE 55 comfort zone, so the energy savings are greater in the

second scenario. 

The building has better performance glazing (lower SHGC - Solar Heat Gain Coefficient)  and lower

lighting density (more efficient lighting) in the 90.1-2010 scenario, leading to higher heating load and

lower cooling load than the 90.1-1989 scenario. The saving results are slightly different. However, the

basic trends are the same in vintages 1989 and 2010.

(a) (b)

(c) (d)

(e) (f)



(g) (h)
Figure 17 HVAC electricity savings of Measure 3

3.4 Measure 4: HVAC control

As  mentioned  in  Section  2.4.4,  two  scenarios  of  HVAC control  were  considered:  one  is  related  to

occupancy only; the other is a combined decision based on occupancy and thermal comfort. Only the

energy use of the HVAC system is influenced by the HVAC control measure. Its electricity savings are

shown in Figure 18.

In the baseline models, the HVAC system is always available to operate to meet temperature setpoint

which observes setback during night time and weekends. As shown in Section 2.2, all of the offices are

unoccupied an average of 3,800 hours during weekdays, and the occupants don’t work on weekends. In

this case, the HVAC systems will be off for at least half of the time for both scenarios. Furthermore, for

the second scenario, the occupants only turn on the HVAC when they feel hot/cold and will turn off the

HVAC when they feel overcooled/overheated. This further reduces the HVAC operation hours and cuts

HVAC energy use (see  Figure 18). For the studied four climates and two vintages,  the first  scenario

reduces HVAC electricity use by 30.2%-52.0% and reduces whole building energy use by 4.9%-21.3%;

the second scenario saves HVAC electricity use by 51.8%-56.4% and saves whole building energy use by

8.6%-22.9%.

(a) (b)



(c) (d)

(e) (f)

(g) (h)
Figure 18 HVAC electricity savings of Measure 4

3.5 Measure 5: Window control

As discussed in Section 2.4.5, an optimized window control was considered: the natural ventilation and

mechanical system serve the perimeter zones concurrently, and natural ventilation is taken as the priority

to provide cooling for perimeter zones, while mechanical systems provide supplementary cooling when

natural ventilation alone is not enough to meet cooling setpoints. The effect of the integration of natural

ventilation and the mechanical system is similar to the effect of the air economizers, which makes full use

of the cool outdoor air and maintains good thermal comfort. In this case, the cooling load is significantly

reduced. Moreover, the adaptive comfort criteria for natural ventilation (mixed-mode in this study), which

is more flexible than the tranditional comfort criteria for mechanical systems, helps further cut the cooling

load.

For cold climates such as Fairbanks, the low-temperature outdoor air during cold winter and transition

seasons is not allowed for natural ventilation as they may cause overcooling. Therefore, the available



hours of natural ventilation are minor, leading to little HVAC energy savings—about 3.5%-4% (Figure 19

(b), (f)). Similarly, the HVAC energy savings from natural ventilation are also limited in hot summer and

cold winter climates such as Chicago, about 10.9%-12.0% (Figure 19 (a), (e)). On the contrary, it is warm

in Miami all year round, leading to a higher adaptive comfort temperature, which takes credit for reducing

the cooling load significantly. For mild climate such as San Francisco, the outdoor air is below 25°C

almost all the time, which is suitable for free cooling, except the hours that might cause overcooling when

the air is too cold for natural ventilation. According to Figure 19 (c), (d), (g) and (h), the HVAC energy

savings for Miami and San Francisco are about 30.1%-34.1% and 14.0%-21.2%, respectively.  Table 6

shows the total hours of natural ventilation as well as the percentage of total occupied hours.
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Figure 19 HVAC electricity savings of Measure 5

Table 6 The available natural ventilation hours

Vintage Climate

Naturally

ventilated time

(hours)

Percentage of

total occupied

hours (%)

1989

Chicago 694 28.2
Fairbanks 646 26.2
Miami 1550 62.9
San Francisco 871 35.4

2010

Chicago 680 27.6
Fairbanks 595 24.1
Miami 1522 61.8
San Francisco 852 34.6

3.6 Integration of all five measures

All  the  five  occupant  behavior  measures  were  integrated  in  Section  2.4.6,  and  their  integral  energy

savings  were  simulated.  Figure  20 shows  the  breakdown  end  uses  of  the  baseline  model,  the  five

individual measures (see 2.4.6), and the integrated measure. 

Each measure has its different impact on energy consumption: (1) the lighting measure and the plug load

measure reduce the internal heat gains, which cut the cooling load but raise the heating load; (2) the

comfort criteria measure reduces the heating/cooling load by enlarging the comfort boundary; (3) the

HVAC  measure  and  the  window  measure  reduce  the  energy  consumption  by  decreasing  the  HVAC

operation time. When they are integrated, the effect of (3) is relatively weakened due to a lower cooling

load level resulting from (1) and (2), and due to the higher heating load resulting from (1).

The integration of the five measures saves the whole building energy use by 27.9%-40.5% in the four

climates of vintage 1989, and 24.7%-41.0% in the vintage 2010. According to the simulation results, the



occupant behavior measures can potentially cut the total energy consumption by at least a quarter, and as

much as 41.0%.

(a) (b)

(c) (d)

(e) (f)



(g) (h)
Figure 20 Total end-use savings of integration of all five measures

4. Discussion

4.1 Influence of occupancy schedule on occupant-based measures

Previous studies show that a significant proportion of wasted energy in buildings comes from unnecessary

energy use in  the  unoccupied rooms  [71][8].  The occupant-based measures studied in  this  paper are

designed to eliminate this wasted energy. However, the occupancy schedules that are generally used in

current  energy  models  are  static  and  normalized  throughout  the  whole  building,  such  as  the  office

occupancy schedule in the DOE prototype models for office buildings  [38] (shown in  Figure 21). The

normalized occupancy schedule only represents the average occupancy level for the whole building and

stays the same on every weekday, every weekend and in each room, which means that the occupancy

schedules neither vary with the time (on a daily basis) nor vary with space. Taking the DOE reference

model as an example, all the zones will be considered occupied between 7am and midnight per Figure 21,

which only allows the shaving of unnecessary energy consumption during the unoccupied period from

midnight to 6am. In reality, the occupancy varies with time and space, each zone will be unoccupied for

certain hours of the day. Duarte, et al. collected the actual occupancy sensor data from a real commercial

office building in the U.S. [72]. Based on their observation, the measured private office diversity factors,

which are defined as hourly fractions for a 24-hour day, namely the value in the occupancy schedule, do

not come close to the 95% occupancy level as used in ASHRAE 90.1-2010 or the DOE reference model

for office buildings. They peak at 50%; the open office data also do not reach beyond a 0.8 peak [72]. On

the other hand, the average peak of the generated stochastic occupancy schedules of all the offices in the

case building is  0.73,  which better fits  the measured occupancy data in Duarte’s research. Therefore,

when estimating the potential energy savings of occupant-related measures,  it  is  crucial to apply the

occupancy schedules, which can reflect the realistic characteristics of the occupancy variations in each



zone. Tools such as the Occupancy Simulator developed by LBNL can be used to generate the stochastic

occupancy schedules for each zone that reflect the diversity and fluctuation characteristics of occupant

activities.

Figure 21 Office occupancy schedule in the DOE reference model for office buildings

If  the  DOE reference  occupancy  schedule  is  used  in  the  models,  the  application  of  some occupant

behavior  measures  would  be  different:  (1)  Lighting—during  the  daytime,  the  rooms  are  always

“occupied,” even with 0.1 persons. As the numbers of the occupants are not an integer, it makes no sense

to calculate the probability of turning on/off the lights at different daylighting levels from the perspective

of each occupant. During night time and weekends, the building is unoccupied, and the emergency and

security lights are on. Therefore, the lighting schedule is basically the same as the baseline model. (2)

Plug load—similar to the lighting measure, there are no savings on the plug load during daytime as the

rooms are always “occupied.” During night time and weekends, the 30% reduction was applicable. (3)

HVAC—similar to the plug load measure, it only applied to the night time and weekends.  

Using such static occupancy schedule, the total energy savings of the integrated five measures would be

8.8%-20.0% in the four climates for vintage 1989, and 8.6%-22.5% for vintage 2010, which are basically

less  than  half  of  the  energy savings simulated using the  stochastic  occupancy schedule  (Figure  22).

Therefore, the occupancy schedule makes a significant difference on the energy savings of occupant-

based measures.



(a) (b)
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(g) (h)
Figure 22 Comparison of the energy savings that are simulated using the stochastic occupancy schedule and the deterministic

occupancy schedule from DOE reference models

4.2 Actual vs. simulated potential energy savings

Many  factors  determine  energy  savings  from  the  use  of  energy  efficiency  technologies.  Behavior

measures are the same. Key influencing factors are the capability of individual controls of the building

systems, the occupants’ knowledge of energy conservation, and the occupants’ adoption rate of energy

savings behaviors in buildings. This study quantified the theoretical saving potential of typical behavior

measures in office buildings with assumptions that: (1) the building systems, including HVAC, lighting,

plug load, and windows, enable individual zonal controls by occupants; (2) the occupants are very well

educated  regarding  energy  conservation  and  can  effectively  operate  the  building  systems  in

correspondance  to  their  presence  and  the  surroundings  to  save  energy;  (3)  the  electric  equipment

controlled by the occupants is  assumed to be reduced by 30% when the zone is unoccupied; (4) the

simulation  of  window  control  didn’t  use  detailed  airflow  calculations  which  would  need  details  of

windows configurations. Instead, we adopted a maximum air change rate of 10, which is comparable with

mechanical ventilation systems, and modulated the air change rate according to a linear relationship with

indoor-outdoor temperature difference when windows in perimeter zones are favorable to open (zone air

temperature is greater than outdoor air temperature and is also greater than the heating setpoint).

4.3 Correlation between passive design and behavioral measures

The saving potentials of behavioral measures are also affected by building designs, especially passive

designs. Passive design strategies, such as daylighting or natural ventilation, are intentionally designed to

decrease or eliminate the need for energy. In that case, the integration of appropriate behavioral measures

and passive building designs will achieve maximum saving potentials. However, the benefit of passive

design may be largely discounted if the occupants don’t behave as they are expected to [73]. Furthermore,



there may be adverse impacts on the overall building energy use if occupants do not understand how to

operate building systems effectively  [74]. For example, window blinds allow the occupants access to

natural daylight as well as to block glare and heat if necessary. However, a window blind left open on the

south side during a hot summer day over the weekend may contribute to excess heat gains, requiring

additional mechanical cooling on the next workday. Alternatively, if  an operable window is left  open

overnight during the cold winter months, it would lead to unnecessary heating. In either scenario, the

occupant behaviors have significant impact on the energy performance of passive designs, which might

lead to discrepancies between the estimated and actual measured energy savings of passive designs [73–

75]. Future work can include investigating and quantifying the correlation between passive design and

behavioral measures.

5. Conclusions

This study introduced a simulation approach to estimate the potential energy savings of occupant behavior

measures. The approach was applied to a case study to calculate and analyze the individual and integrated

impacts of five typical occupant behavior measures on energy use in a real office building. The five

behavior measures include lighting, plug load, comfort criteria, HVAC control, and window control. The

main findings from this study include the following. (1) Based on the simulation results, the occupant

behavior measures can achieve considerable energy savings as high as 22.9% for individual measures and

up to 41.0% for the integrated measures. (2) The main energy savings captured by the occupant behavior

measures come from the avoidance of energy waste in unoccupied rooms especially for their lighting,

plug load, and HVAC systems. (3) The occupancy schedule makes a significant difference on the energy

savings of occupant-based measures. When estimating the potential energy savings of occupant-related

measures, it is crucial to apply the occupancy schedules, which can reflect the realistic characteristics of

the occupancy variations in each room. 

Although the current study covers five typical occupant-behavior measures, four U.S. climates, and two 

building energy efficiency levels, it is a case study with limited scope and not designed to estimate the 

energy savings potential at larger scales. Future studies can expand to cover: (1) a larger scale with more 

population, such as the city, state, and country scales; (2) other occupant behaviors such as operation of 

window shades; (3) other building types, such as residential and retail. Future work can also look for 

opportunities to implement the occupant-behavior measures in real buildings. If the actual energy savings 

by occupant-behavior measures are available, the method of quantifying the energy savings potential can 

be verified, and necessary enhancements to the method can be implemented to improve its accuracy.
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