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Abstract

We provide a formal definition of the notion of “transportability,” or “external

validity,” which we view as a license to transfer causal information learned in exper-

imental studies to a different environment, in which only observational studies can

be conducted. We introduce a formal representation called “selection diagrams” for

expressing knowledge about differences and commonalities between populations of in-

terest and, using this representation, we derive procedures for deciding whether causal

effects in the target environment can be inferred from experimental findings in a dif-

ferent environment. When the answer is affirmative, the procedures identify the set of

experimental and observational studies that need be conducted to license the transport.

We further demonstrate how transportability analysis can guide the transfer of knowl-

edge among non-experimental studies to minimize re-measurement cost and improve

prediction power. We further provide a causally principled definition of “surrogate

endpoint” and show that the theory of transportability can assist the identification of

valid surrogates in a complex network of cause-effect relationships.

1 Introduction: Threats vs. Assumptions

Science is about generalization, and generalization requires transportability. Conclusions
that are obtained in a laboratory setting are transported and applied elsewhere, in an envi-
ronment that differs in many aspects from that of the laboratory.

We all understand that if the target environment is arbitrary, or drastically different
from the study environment nothing can be learned and scientific progress will come to a
standstill. However, the fact that most studies are conducted with the intention of applying
the results elsewhere means that we usually deem the target environment sufficiently similar

∗This research was supported in parts by NIH grant #1R01 LM009961-01, NSF grant #IIS-0914211, and
ONR grant #N000-14-09-1-0665.

1

TECHNICAL REPORT 
R-372 
March 2011



to the study environment to justify the transport of some experimental results or modified
versions thereof.

Remarkably, the conditions that permit such transport have not received systematic
formal treatment. The standard literature on this topic, falling under rubrics such as “quasi-
experiments,” “meta analysis,” “heterogeneity,” and “external validity,”1 consists primarily
of “threats,” namely, verbal narratives of what can go wrong when we try to transport results
from one study to another (e.g., Shadish et al. (2002, chapter 3), Höfler et al. (2010)). Rarely
do we find an analysis of “licensing assumptions,” namely, formal and transparent conditions
under which the transport of results across differing environments or populations is licensed
from first principles.

The reasons for this asymmetry are several. First, threats are safer to cite than as-
sumptions. He who cites “threats” appears prudent, cautious and thoughtful, whereas he
who seeks licensing assumptions is immediately accused of endorsing those assumptions,
thus legitimizing unwarranted transport, or of pretending to know in advance when those
assumptions hold true.

Second, assumptions are self destructive in their honesty. The more explicit the assump-
tion, the more criticism it invites, for it tends to trigger a richer space of alternative scenarios
in which the assumption may fail. Researchers prefer therefore to declare threats in public
and make assumptions in private.

Third, whereas threats can be communicated in plain English, supported by anecdotal
pointers to familiar experiences, assumptions require a formal language within which the
notion “environment” (or “population”) is given precise characterization, and differences
among environments can be encoded and analyzed.

The advent of causal diagrams (Pearl, 1995; Greenland et al., 1999; Spirtes et al., 2000;
Pearl, 2009) provides such a language and renders the formalization of transportability pos-
sible. Armed with this language, this paper departs from the tradition of communicating
“threats” and embarks instead on the more adventurous task of formulating “licenses to
transport,” namely, assumptions that, if held true, would permit us to transport results
across studies.

2 Motivating Examples

To motivate our discussion and to demonstrate some of the subtle questions that trans-
portability entails, we will consider three simple examples, graphically depicted in Fig. 1.

Example 1 We conduct a randomized trial in Los Angeles (LA) and estimate the causal
effect of exposure X on outcome Y for every age group Z = z as depicted in Fig. 1(a).
We now wish to generalize the results to the population of New York City (NYC), but data
alert us to the fact that the study distribution P (x, y, z) in LA is significantly different from

1Manski (2007) defines “external validity” as follows: “An experiment is said to have “external validity”
if the distribution of outcomes realized by a treatment group is the same as the distribution of outcome that
would be realized in an actual program.” (Campbell and Stanley, 1963, p. 5) take a slightly broader view:
“‘External validity’ asks the question of generalizability: To what population, settings, treatment variables,
and measurement variables can this effect be generalized?”
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Figure 1: Causal diagrams depicting Examples 1–3. In (a) Z represents “age.” In (b) Z
represents “linguistic skills” while age (in hollow circle) is unmeasured. In (c) Z represents
a biological marker situated between the treatment (X) and a disease (Y ).

the one in NYC (call the latter P ∗(x, y, z)). In particular, we notice that the average age in
NYC is significantly higher than that in LA. How are we to estimate the causal effect of X
on Y in NYC, denoted P ∗(y|do(x)).2

Our natural inclination would be to assume that age-specific effects are invariant across
cities and so, if the LA study provides us with (estimates of) age-specific causal effects
P (y|do(x), Z = z), the overall causal effect in NYC should be

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z) (1)

This transport formula combines experimental results obtained in LA, P (y|do(x), z), with
observational aspects of NYC population, P ∗(z), to obtain an experimental claim P ∗(y|do(x))
about NYC.3

Our first task in this paper will be to explicate the assumptions that renders this extrap-
olation valid. We ask, for example, what must we assume about other confounding variables
beside age, both latent and observed, for Eq. (1) to be valid, or, would the same transport
formula hold if Z was not age, but some proxy for age, say, language proficiency. More
intricate yet, what if Z stood for an exposure-dependent variable, say hyper-tension level,
that stands between X and Y ?

Let us examine the proxy issue first.

Example 2 Let the variable Z in Example 1 stand for subjects language proficiency, and
let us assume that Z does not affect exposure (X) or outcome (Y ), yet it correlates with

2Readers not familiar with the do(x) notation (Pearl, 1995, 2009) should simply interpret P (y|do(x)) as
the probability of outcomes Y = y in a randomized experiment where the treatment (or exposure) variables
X take on values X = x. P (y|do(x), z) is logically equivalent to P (Yx = y|Zx = z) in counterfactual notation.
Likewise, the diagrams used in this paper should be interpreted as friendly devices for parsimonious encoding
of counterfactual assumptions (Pearl, 2009, p. 101), where every bi-directed arc X L9999K Y stand for a set
of unmeasured confounders affecting X and Y .

3At first glance, Eq. (1) may be regarded as a routine application of “standardization” – a statistical
extrapolation method that can be traced back to a century-old tradition in demography and political arith-
metic (Westergaard, 1916; Yule, 1934; Lane and Nelder, 1982; Cole and Stuart, 2010). On a second thought
it raises the deeper question of why we consider age-specific effects to be invariant across populations. See
discussion following Example 2.
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both, being a proxy for age which is not measured in either study (see Fig. 1(b)). Given the
observed disparity P (z) 6= P ∗(z), how are we to estimate the causal effect P ∗(y|do(x)) for
the target population of NYC from the z-specific causal effect P (y|do(x), z) estimated at the
study population of LA?

The inequality P (z) 6= P ∗(z) in this example may reflect either age difference or differ-
ences in the way that Z correlates with age. If the two cities enjoy identical age distributions
and NYC residents acquire linguistic skills at a younger age, then, since Z has no effect what-
soever on X and Y , the inequality P (z) 6= P ∗(z) can be ignored and, intuitively, the proper
transport formula would be

P ∗(y|do(x)) = P (y|do(x)) (2)

If, on the other hand, the conditional probabilities P (z|age) and P ∗(z|age) are the same in
both cities, and the inequality P (z) 6= P ∗(z) reflects genuine age differences, Eq. (2) is no
longer valid, since the age difference may be a critical factor in determining how people react
to X. We see, therefore, that the choice of the proper transport formula depends on the
causal context in which population differences are embedded.

This example also demonstrates why the invariance of Z-specific causal effects should
not be taken for granted. While justified in Example 1, with Z = age, it fails in Example
2, in which Z was equated with “language skills.” Indeed, using Fig. 1(b) for guidance, the
Z-specific effect of X on Y in NYC is given by:

P ∗(y|do(x), z) =
∑

age

P ∗(y|do(x), z, age)P ∗(age|do(x), z)

=
∑

age

P ∗(y|do(x), age)P ∗(age|z)

=
∑

age

P (y|do(x), age)P ∗(age|z)

Thus, if the two populations differ in the relation between age and skill, i.e.,

P (age|z) 6= P ∗(age|z)

the skill-specific causal effect would differ as well.
The intuition is clear. A NYC person at skill level Z = z is likely to be in a totally

different age group from his skill-equals in Los Angeles and, since it is age, not skill that
shapes the way individuals respond to treatment, it is only reasonable that Los Angeles
residents would respond differently to treatment than their NYC counterparts at the very
same skill level.

The essential difference between Examples 1 and 2 is that age is normally taken to be an
exogenous variable (not assigned by other factors in the model) while skills may be indicative
of earlier factors (age, education, ethnicity) capable of modifying the causal effect. Therefore,
conditional on skill, the effect may be different in the two populations.

Example 3 Examine the case where Z is a X-dependent variable, say a disease bio-marker,
standing on the causal pathways between X and Y as shown in Fig. 1(c). Assume further
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that the disparity P (z) 6= P ∗(z) is discovered in each level of X and that, again, both the
average and the z-specific causal effect P (y|do(x), z) are estimated in the LA experiment,
for all levels of X and Z. Can we, based on information given, estimate the average (or
z-specific) causal effect in the target population of NYC?4

Here, Eq. (1) is wrong for two reasons. First, as in the case of age-proxy, it matters
whether the disparity in P (z) represents differences in susceptibility to X or differences in
propensity to receiving X. In the latter case, Eq. (2) would be valid, while in the former,
more information is needed. Second, the overall causal effect (in both LA and NYC) is no
longer a simple average of the z-specific causal effects. To witness, consider an unconfounded
Markov chain X → Z → Y ; the z-specific causal effect P (y|do(x), z) is P (y|z), independent
of x, while the overall causal effect is P (y|do(x)) = P (y|x) which is clearly dependent on x.
The latter could not be obtained by averaging over the former. The correct weighing rule is

P (y|do(x)) =
∑

z

P (y, z|do(x)) (3)

=
∑

z

P (y|do(x), z)P (z|do(x)) (4)

which reduces to (1) only in the special case where Z is unaffected by X, as is the case
in Fig. 1(a). Thus, in general, both P (y|do(x), z) and P (z|do(x)) need be measured in the
experiment before we can transport results to populations with differing characteristics. In
the Markov chain example, if the disparity in P (z) stems only from a difference in people’s
susceptibility to X (say, due to preventive measures taken in one city and not the other)
then the correct transport formula would be

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z|x) (5)

=
∑

z

P (y|z)P ∗(z|x) (6)

which is different from both (1) and (2), and hardly makes any use of experimental findings.
In case X and Y are confounded and directly connected, as in Fig. 1(c), it is Eq. (5)

which provides the correct transport formula (to be proven in Section 4), calling for the
z-specific effects to be weighted by the conditional probabilities P ∗(z|x), estimated at the
target population.

3 Formalizing Transportability

3.1 Selection diagrams and selection variables

A few patterns emerge from the examples discussed in Section 2. First, transportability is a
causal, not statistical notion. In other words, the conditions that license transport as well as

4This is precisely the problem that motivated the unsettled literature on “surrogate endpoint” (Prentice,
1989; Freedman et al., 1992; MacKinnon and Dwyer, 1993; Fleming and DeMets, 1996; Burzykowski et al.,
2005; Baker, 2006; MacKinnon et al., 2007; Joffe and Green, 2009), that is, finding a way of adjusting for
a post-exposure variable Z so as to render effect estimates transportable across populations with differing
P (z|do(x)). A solution to this problem will be proposed in Section 6 below.
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the formulas through which results are transported depend on the causal relations between
the variables in the domain, not merely on their statistics. When we asked, for example (in
Example 3), whether the change in P (z) was due to differences in P (x) or due to a change
in the way Z is affected by X, the answer cannot be determined by comparing P (x) and
P (z|x) to P ∗(x) and P ∗(z|x). If X and Z are confounded (e.g., Fig. 4(e)), it is quite possible
for the inequality P (z|x) 6= P ∗(z|x) to hold, reflecting differences in confounding, while the
way that Z is affected by X, (i.e., P (z|do(x))) is the same in the two populations.

Second, licensing transportability requires knowledge of the mechanisms, or processes,
through which population differences come about; different localization of these mechanisms
yield different transport formulae. This can be seen most vividly in Example 2 (Fig. 1(b))
where we reasoned that no weighing is necessary if the disparity P (z) 6= P ∗(z) originates with
the way language proficiency depends on age, while the age distribution itself remains the
same. Yet, because age is not measured, this condition cannot be detected in the probability
distribution P , and cannot be distinguished from an alternative condition,

P (age) 6= P ∗(age) and P (z|age) = P ∗(z|age)

one that may require weighting according to to Eq. (1). In other words, every probability
distribution P (x, y, z) that is compatible with the process of Fig. 1(b) is also compatible
with that of Fig. 1(a) and, yet, the two processes dictate different transport formulas.

Based on these observations, it is clear that if we are to represent formally the differences
between populations (similarly, between experimental settings or environments) we must
resort to a representation in which the causal mechanisms are explicitly encoded and in
which differences in populations are represented as local modifications of those mechanisms.

To this end, we will use causal diagrams augmented with a set, S, of “selection variables,”
where each member of S corresponds to a mechanism by which the two populations differ,
and switching between the two populations will be represented by conditioning on different
values of these S variables.

Formally, if P (v|do(x)) stands for the distribution of a set V of variables in the exper-
imental study (with X randomized) then we designate by P ∗(v|do(x)) the distribution of
V if we were to conduct the study on population Π∗ instead of Π. We now attribute the
difference between the two to the action of a set S of selection variables, and write5

P ∗(v|do(x)) = P (v|do(x), s∗).

Of equal importance is the absence of an S variable pointing to Y in Fig. 2(a), which encodes
the assumption that age-specific effects are invariant across the two populations.

The selection variables in S may represent either exogenous conditions or endogenous
consequences of factors by which units are selected for the study. For example, the age
disparity P (z) 6= P ∗(z) discussed in Example 1 will be represented by the inequality

P (z) 6= P (z|s)

where S stands for all factors responsible for drawing subjects at age Z = z to NYC rather
than LA.

5Alternatively, one can represent the two populations’ distributions by P (v|do(x), s), and P (v|do(x), s∗),
respectively. The results, however, will be the same, since only the location of S enters the analysis.
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This graphical representation, which we will call “selection diagrams” can also represent
structural differences between the two populations. For example, if the causal diagram
of the study population contains an arrow between X and Y , and the one for the target
population contains no such arrow, the selection diagram will be X → Y ← S where the
role of variable S is to disable the arrow X → Y when S = s∗ (i.e., P (y|x, s∗) = P (y|x′, s∗)
for all x′) and reinstate it when S = s.6 Likewise, selection diagrams can easily represent
differences between the intervention used in the experimental study and the one actually
implemented on the target population. Our analysis will apply therefore to all factors by
which populations may differ or that may “threaten” the transport of conclusions between
studies, populations, locations or environments.

S

X Y

(c)(b)(a)

Z

S

Z

Z

S

X Y X Y

Figure 2: Selection diagrams depicting Examples 1–3. In (a) the two populations differ in
age distributions. In (b) the populations differs in how Z depends on age (an unmeasured
variable, represented by the hollow circle) and the age distributions are the same. In (c) the
populations differ in how Z depends on X.

For clarity, we will represent the S variables by squares, as in Fig. 2, which uses selection
diagrams to encode the three examples discussed in Section 2. In particular, Fig. 2(a) and
2(b) represent, respectively, two different mechanisms responsible for the observed disparity
P (z) 6= P ∗(z). The first (Fig. 2(a)) dictates transport formula (1) while the second (Fig.
2(b)) calls for direct, unadjusted transport (2). Clearly, if the age distribution in the target
population is different relative to that of the study population (Fig. 2(a)) we will represent
this difference in the form of an unspecified influence that operates on the age variable Z
and results in the difference between P ∗(age) = P (age|S = s∗) and P (age).

In the extreme case, we could add selection nodes to all variables, which means that we
have no reason to believe that the populations share any mechanism in common, and this, of
course would inhibit any exchange of conclusions among the populations. Conversely, absence
of a selection node pointing to a variable, say Z, represents an assumption of invariance: the
local mechanism that assigns values to Z is the same in both populations. Such assumptions,
as we will see, will open the door for the transport of some experimental findings.

In this paper, we will address the issue of transportability assuming that scientific knowl-
edge about invariance of certain mechanisms is available and encoded in the selection dia-

6Pearl (1995; 2009, p. 71) and Dawid (2002), for example, use conditioning on auxiliary variables to
switch between experimental and observational studies. Dawid (2002) further uses such variables to represent
changes in parameters of probability distributions.
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gram through the S nodes. Such knowledge is, admittedly, more demanding than that which
shapes the structure of each causal diagram in isolation. It is, however, a prerequisite for
any scientific extrapolation, and constitutes therefore a worthy object of formal analysis.

3.2 Transportability: Definitions and Examples

Using selection diagrams as the basic representational language, and harnessing the concepts
of intervention, do-calculus7 and identifiability (Pearl, 2009, chapter 3) we can now give the
notion of transportability a formal definition.

Definition 1 (Transportability)
Given two populations, denoted Π and Π∗, characterized by probability distributions P and
P ∗, and causal diagrams G and G∗, respectively, a causal relation R is said to be trans-
portable from Π to Π∗ if R(Π) is estimable from the set I of interventional studies on Π,
and R(Π∗) is identified from I, P, P ∗, G, and G∗.

Example 4 Let R stand for the causal effect of X on Y , accordingly, R(Π) = P (y|do(x))
and R(Π∗) = P ∗(y|do(x)). Let Π and Π∗ be characterized by the causal diagram of Fig.
2(a), and let P ∗(x, y, z) differ from P (x, y, z) by the prior probability of Z, i.e., P ∗(x, y, z) =
P (x, y, z)P ∗(z)/P (z).

R is transportable from Π to Π∗ when the interventional studies conducted on Π con-
tain estimates of the z-specific causal effects, P (y|do(x), z) for all Z = z because, in this
case, R(Π∗) is identifiable from {P, P ∗, G, G∗, I}, as seen from the Eq. (1). (This will be
shown formally in Section 4.) However, R is not transportable from Π to Π∗ when the I
contains only estimates of the overall causal effect P (y|do(x)), because the desired relation,
R(Π∗) = P ∗(y|do(x)) cannot be identified from {P, P ∗, G, G∗} and P (y|do(x)). In other
words, it is possible to construct two models, both compatible with the diagram G, that agree
on P (y|do(x)) but disagree on P (y|do(x), z)). Such construction rules out the identifiability
of R(Π∗) from {P, P ∗, G, G∗, I}, hence R(Π) is not transportable.

In the sequel we assume that I contains all covariate-specific causal effects that can be
estimated from the experimental study on Π, keeping in mind that, transportability is defined
modulo the information set I .

Definition 1 provides a declarative characterization of transportability which, in the-
ory, requires one to demonstrate the non-existence of two competing models, agreeing on
{P, P ∗, G, G∗, I}, and disagreeing on R(Π∗). Such demonstrations are extremely cumber-
some for reasonably sized models, and we seek therefore procedural criteria which, given the
pair (G, G∗) will decide the transportability of any given relation directly from the structures
of G and G∗. Such criteria will be developed in Section 4, and will be based on breaking down
a complex relation R into more elementary relations which will be recognized immediately
as transportable. We will formalize the structure of this procedure in Lemma 1, followed
by Definitions 2 and 3 below, through which two special cases of transportability will be
immediately recognized.

7The three rules of do-calculus are given in Appendix 1 and are illustrated in graphical details in (Pearl,
2009, p. 87).
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Lemma 1 Let D be the selection diagram characterizing two populations, Π and Π∗, and S
a set of selection variables in D. The relation R = P (y|do(x), z) is transportable from Π to
Π∗ if and only if the expression P (y|do(x), z, s) is reducible, using the rules of do-calculus,
to an expression in which S appears only as a conditioning variable in do-free terms. �

Proof :

(if part): Every relation satisfying the condition of Lemma 1 can be written as an algebraic
combination of two kinds of terms, those that involve S and those that do not. The formers
can be written as P ∗ terms and are estimable, therefore, from observations on Π∗, as required
by Definition 1. All other terms, especially those involving do-operators, do not contain S;
they are experimentally identifiable therefore in Π.
(only if part): If R is transportable, its transport formula T must satisfy the condition of
Lemma 1, and that means that R = T is a valid equality in do-calculus. Moreover, since
do-calculus is complete, (Shpitser and Pearl, 2006) every valid equality can be obtained by
a finite application of the three rules of the calculus. This proves the Lemma.

Definition 2 (Direct Transportability)
A causal relation R is said to be directly transportable from Π to Π∗, if R(Π∗) = R(Π).

The equality R(Π∗) = R(Π) means that S can be deleted from the expression of R(Π∗),
which satisfies the condition of Lemma 1. A graphical test for direct transportability of the
causal effect P (y|do(x)) follows immediately from do-calculus and reads: (S⊥⊥Y |X)G

X
; in

words, X blocks all paths from S to Y once we remove all arrows pointing to X.
Remark.

The notion of “external validity” as defined by Manski (2007) (footnote 1) corresponds to
Direct Transportability, for it requires that R retains its validity without adjustment, as
in Eq. (2). Such conditions are rather restrictive for they require in essence that Y be
independent of S for every level of the randomized treatment variable X.

Definition 3 (Trivial Transportability)
A causal relation R is said to be trivially transportable from Π to Π∗, if R(Π∗) is identifiable
from (G∗, P ∗).

This criterion amounts to ordinary (nonparametric) identifiability of causal relations
using graphs, as defined in Pearl (2009, p. 77), which permits us to estimate R(Π∗) directly
from observational studies on Π∗, un-aided by causal information from Π.

Example 5 Let R be the causal effect of X on Y , and let G and G∗ be Markovian diagrams
differing only in the treatment selection probabilities P (x|pa(X)) and P ∗(x|pa(X)) where
pa(X) are the parents of X in G. Then R is directly transportable, because causal effects are
independent of the selection mechanism (see Pearl, 2009, pp. 72–73).

Example 6 Let R be the z-specific causal effect of X on Y P (y|do(x), z) where Z is a set
of exogenous pre-treatment covariates. If G = G∗ and P ∗ differs from P only in the prior
probabilities P (z) and P ∗(z), then R is directly transportable. Fig. 2(a) depicts this example.

9



Example 7 Let R be the z-specific causal effect of X on Y P (y|do(x), z) where Z is a
set of variables, and P and P ∗ differ only in the conditional probabilities P (z|pa(Z)) and
P ∗(z|pa(Z)) such that Z⊥⊥Y |pa(Z), as shown in Fig. 2(b). Under these conditions, R is
not directly transportable. However, the pa(Z)-specific causal effects P (y|do(x), pa(Z)) are
directly transportable, and so is P (y|do(x)). Note that, due to the confounding arcs, none of
these quantities is identifiable.

Example 8 Let R be the causal effect P (y|do(x)) and let the selection diagram of Π and Π∗

be given by X → Y ← S, then R is trivially transportable, since R(Π∗) = P ∗(y|x).

Example 9 Let R be the causal effect P (y|do(x)) and let the selection diagram of Π and Π∗

be given by X → Y ← S, with X and Y confounded as shown in Fig. 4(b), then R is not
transportable, because P ∗(y|do(x)) = P (y|do(x), s) cannot be reduced to a s-free expression
using the rules of do-calculus. This is the smallest graph for which the causal effect is non-
transportable.

4 Transportability of causal effects - A graphical crite-

rion

We now state and prove two theorems that permit us to decide algorithmically, given a
selection diagram, whether a relation is transportable between two populations, and what
the transport formula should be.

Theorem 1 Let D be the selection diagram characterizing two populations, Π and Π∗, and
S the set of selection variables in D. The strata-specific causal effect P (y|do(x), z) is trans-
portable from Π to Π∗ if Z d-separates Y from S in the X-manipulated version of D, that
is, Z satisfies (Y⊥⊥S|Z)D

X
. �

Proof:

P ∗(y|do(x), z) = P (y|do(x), z, s)

From Rule-1 of do-calculus (Pearl, 2009, p. 85) we have: P (y|do(x), z, s) = P (y|do(x), z)
whenever Z satisfies (Y⊥⊥S|Z) in DX . This proves Theorem 1.

Definition 4 (S-admissibility)
A set T of variables satisfying (Y ⊥⊥S|T ) in DX will be called S-admissible (with respect to
the causal effect of X on Y ).

Corollary 1 The average causal effect P (y|do(x)) is transportable from Π to Π∗ if there
exists a set Z of observed pre-treatment covariates that is S-admissible. Moreover, the trans-
port formula is given by the weighting of Eq. (1). �
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X Y

S

Z Z

(a)

Y

W

X

(b)

Figure 3: Selection diagrams illustrating S-admissibility. (a) has no S-admissible set while
in (b), W is S-admissible.

Proof:

P ∗(y|do(x)) = P (y|do(x), s) (7)

=
∑

z

P (y|do(x), z, s)P (z|do(x), s) (8)

=
∑

z

P (y|do(x), z)P (z|s) (9)

(using S-admissibility and Rule-3 of do-calculus)

=
∑

z

P (y|do(x), z)P ∗(z) (10)

Example 10 The causal effect is transportable in Fig. 2(a), since Z is S-admissible, and
in Fig. 2(b), where the empty set is S-admissible. It is also transportable in Fig. 3(b), where
W is S-admissible, but not in Fig. 3(a) where no S-admissible set exists.

Corollary 2 Any S variable that is pointing directly into X as in Fig. 4(a), or that is
d-connected to Y only through X can be ignored.

This follows from the fact that the empty set is S-admissible relative to any such S
variable. Conceptually, the corollary reflects the understanding that differences in propensity
to receive treatment do not hinder the transportability of treatment effects; the randomization
used in the experimental study washes away such differences. �

We now generalize Theorem 1 to cases involving treatment-dependent Z variables, as in
Fig. 2(c).

Theorem 2 The average causal effect P (y|do(x)) is transportable from Π to Π∗ if either
one of the following conditions holds

1. P (y|do(x)) is trivially transportable

2. There exists a set of covariates, Z (possibly affected by X) such that Z is S-admissible
and for which P (z|do(x)) is transportable
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3. There exists a set of covariates, W that satisfy (X⊥⊥Y |W, S)D and for which P (w|do(x))
is transportable. �

Proof:

1. Condition (1) entails transportability.

2. If condition (2) holds, it implies

P ∗(y|do(x)) = P (y|do(x), s) (11)

=
∑

z

P (y|do(x), z, s)P (z|do(x), s) (12)

=
∑

z

P (y|do(x), z)P ∗(z|do(x)) (13)

We now note that the transportability of P (z|do(x)) should reduce P ∗(z|do(x)) to a
star-free expression and would render P (y|do(x)) transportable.

3. If condition (3) holds, it implies

P ∗(y|do(x)) =P (y|do(x), s) (14)

=
∑

w

P (y|do(x), w, s)P (w|do(x), s) (15)

=
∑

w

P (y|w, s)P ∗(w|do(x)) (16)

(by Rule-3 of do-calculus)

=
∑

w

P ∗(y|w)P ∗(w|do(x)) (17)

We similarly note that the transportability of P (w|do(x)) should reduce P ∗(w|do(x)) to
a star-free expression and would render P (y|do(x)) transportable. This proves Theorem
2.

Remark.

The test entailed by Theorem 2 is recursive, since the transportability of one causal effect
depends on that of another. However, given that the diagram is finite and feedback-free, the
sets Z and W needed in conditions 2 and 3 of Theorem 2 would become closer and closer
to X, and the iterative process will terminate after a finite number of steps. This occurs
because the causal effects P (z|do(x)) (likewise, P (w|do(x))) is trivially transportable and
equals P (z) for any Z node that is not a descendant of X. Thus, the need for reiteration
applies only to those members of Z that lie on the causal pathways from X to Y .

Example 11 Applying Theorem 2 to Fig. 2(c), we conclude that R = P (y|do(x)) is trivially
transportable, for it is identifiable in Π∗, through the front-door criterion (Pearl, 2009).
It is likewise (trivially) transportable in Fig. 4(c) (by the back-door criterion). R is not
transportable however in Fig. 3(a), where no S-admissible set exists.
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Figure 4: Selection diagrams illustrating transportability. The causal effect P (y|do(x)) is
(trivially) transportable in (c) but not in (b) and (f). It is transportable in (a), (d), and (e)
(see Corollary 2 and Appendix 2).

Example 12 Fig. 4(d) requires that we invoke both conditions of Theorem 2, iteratively. To
satisfy condition 2 we note that Z is S-admissible, and we need to prove the transportability
of P (z|do(x)). To do that, we invoke condition 3 and note that W d-separates X from Z
in D. There remains to confirm the transportability of P (w|do(x)), but this is guaranteed
by the fact that the empty set is S-admissible relative to W , since W⊥⊥S. Hence, by Theo-
rem 1 (replacing Y with W ) P (w|do(x)) is transportable, which bestows transportability on
P (y|do(x)). Thus, the final transport formula (derived formally in Appendix 2) is:

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P (w|do(x))P ∗(z|w) (18)

The first two factors on the right are estimable in the experimental study, and the third
through observational studies on the target population. Note that the joint effect P (y, w, z|do(x))
need not be estimated in the experiment; a decomposition that results in improved estimation
power.

A similar analysis applies to Fig. 4(e) (see Appendix 2). The model of Fig. 4(f) however
does not allow for the transportability of P (y|do(x)) because there is no S-admissible set in
the diagram and, furthermore, condition 3 of Theorem 2 cannot be invoked.

Example 13 To illustrate the power of Theorem 2 in discerning transportability and deriv-
ing transport formulae, Fig. 5 represents a more intricate selection diagram, which requires
several iteration to discern transportability. The transport formula for this diagram is given
by

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t) (19)

The main power of this formula is to guide investigators in deciding what measurements
need be taken in both the experimental study and the target population. It asserts, for
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Figure 5: Selection diagram in which the causal effect is shown to be transportable in two
iterations of Theorem 2 (see Appendix 3).

example, that variables U and V need not be measured. It likewise asserts that the W -specific
causal effects need not be estimated in the experimental study and only the conditional
probabilities P ∗(z|w) and P ∗(t) need be estimated in the target population. The derivation
of this formulae is given in Appendix 3.

Despite its power, Theorem 2 in not complete, namely, it is not guaranteed to approve
all transportable relations or to disapprove all non-transportable ones. An example of the
former is given in Appendix 4, the nature of which indicates that the frequency of such cases
will be low in practice.

5 Transportability across Observational Studies

Our analysis thus far assumed that transport is needed from experimental to observational
studies because R, the relation of interest, is causal and cannot therefore be identified solely
from observations in the target population. In this section we demonstrate that transporting
finding among observational studies can be beneficial as well, albeit for different reasons.

Assume we conduct an elaborate observational study in LA, involving dozens of variables
and thousands of samples, aiming to estimate some statistical parameter, R(P ), (that is, a
functional of the population distribution P ). We now wish to estimate the same parameter
R(P ∗) in the population of NYC. The question arises whether it is necessary to repeat the
study from scratch or, in case the disparity between the two populations is localized, we can
use much of what we learned in LA, supplement it with a less elaborate study in NYC and
combine the results to yield an informed estimate of R(P ∗).

In complex models, the savings gained by focusing on only a small subset of variables in
P ∗ can be enormous, because any reduction in the number of measured variables translates
into substantial reduction in the number of samples needed to achieve a given level of predic-
tion accuracy. This is especially true in non-parametric models, where estimation efficiency
deteriorates significantly with the number of variables involved.

An examination of the transport formulas derived in this paper (e.g., Eqs. (10), (18)
or (19)) reveals that the methods developed for transporting causal relations are applicable
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to observational studies as well, albeit with some modification. Consider Eq. (18) and its
associated diagram in Fig. 4(d). If the target relation R = P ∗(y|do(x)) was expressed, not
in terms of the do(x) operator, but as a regression expression R(P ∗) =

∑

c P ∗(y|x, c)P ∗(c)
where C is a sufficient set of confounders, the right hand side of (18) reveals that P ∗(z|w) is
the only relation that need to be re-estimated at the target population; all the other terms
in that expression are estimable from observational studies at the source population, using
C , X, Z, W and Y .

If C is multi-dimensional, or if it requires costly measurements, the savings gained by
limiting the scope of the new study to that of estimating P ∗(z|w) can be very substan-
tial. The amount of savings depends of course on how local the disparity between the two
populations is, whether we can pinpoint the location of this disparity and, not the least,
whether we can translate this knowledge into a mathematical expression that unveils the
feasible savings. In our example, the selection diagram of Fig. 4(d) makes that knowledge
explicit, and the theory of transportability accomplishes the latter task using the calculus
of graphical models. Of particular interest is the observation that measurement of Y is not
needed for estimating R(P ∗). Indeed, if Y is an outcome such as patient’s survival time
or student’s future earnings, measurement of Y may be extremely time consuming if not
infeasible in the target population; this is precisely the problem that motivates “surrogate
endpoint” analysis, to be discussed in the next section.

These considerations motivate a slightly different definition of transportability, tailored
to observational studies, which emphasizes narrowing the scope of observations rather than
identification per se.

Definition 5 (Observational Transportability)
Given two populations, Π and Π∗, characterized by probability distributions P and P ∗, and
causal diagrams G and G∗, respectively, a statistical relation R(P ) is said to be observation-
ally transportable from Π to Π∗ over V ∗ if R(P ∗) is identified from P , P ∗(V ∗), G, and G∗.
where P ∗(V ∗) is the marginal distribution of P ∗ over a subset of variables V ∗.

This definition requires that the relation transferred be reconstructed from data obtained
in the old study, plus observations conducted on a subset V ∗ of variables in the new study. In
the example above, R(P ) was shown to be observationally transportable over V ∗ = {Z, W},
while in the example of Fig. 5, we have V ∗ = {Z, W, T} (from Eq. (19)).

It should be noted that the notion of transportability, be it across observational or exper-
imental studies requires causal knowledge for its definition. It is the causal diagram G and
its associated selection diagram that identify the mechanism by which the two populations
differ, hence the mechanisms that remain invariant as one moves from one population to
another. The probabilities P and P ∗, being descriptive, cannot convey information about
the locality of the mechanism that accounts for their differences. In Fig. 5, for example,
changes in s’ will propagate to the entire probability P (t, u, x, w, y) and could not be distin-
guished from changes in an S-node that points, say, at W or at Y . Moreover P and P ∗ can
be deceptively identical, and hide profound differences in mechanisms. A typical example is
the structural differences between two statistically-indistinguishable models.

This observation has far reaching consequences in applied statistics and in several statistic-
based sciences, where it is commonly assumed that causal knowledge is necessary only when
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Figure 6: (a) Selection diagram in which relation R = P (y|x) can be transported without
measure X or Y , or, alternatively, by measuring only X and Z2. (b) The diagram resulting
from marginalizing over Z1.

interventions are contemplated and that in purely predictive tasks, such as survey data
analysis or classification, probabilistic knowledge suffices. The challenge of transportability
refutes this view; causal knowledge is necessary even in predictive tasks, whenever one is
concerned with generalization across domains, and there is hardly an area of application
where generalization, or “external validity” as it is often called, is not of primary concern.
We speculate that the absence of formal language for expressing causal knowledge has been
a major factor in preventing the problem of generalizability from reaping the benefits of
mathematical analysis.

While selection diagrams are still a viable tool for formulating differences among popula-
tion, the mechanics of solving observational transportability problems is somewhat different.
Since the transported relations are not cast in do-expressions, the do-calculus is no longer ap-
plicable, and we must rely solely on probability calculus and the conditional independencies
encoded in the diagrams.

An example of this mechanics will be illustrated through the selection diagram of Fig.
6. Assume that, after obtaining an estimate of P (x, y, z1, z2) in the source population, one
is interested in predicting the outcome Y in the target population from observations on
X. To this end, we may ask for example whether we can estimate P ∗(y|x) without taking
any measurement whatsoever of X or Y in the target population. Formally, this amounts
to asking whether P (y|x) is transportable over V ∗ = {Z1, Z2}. The answer is of course
positive, since, given the selection diagram of 6, the conditional probability P (z1|z2) is the
only factor that changes in the Markovian factorization of P . Therefore, we can simply
re-learn P ∗(z1|z2) and estimate our target relation P ∗(y|x) accordingly without measuring
X or Y in the new environment. This is done using the factorization:

P ∗(x, y, z1, z2) = P (x, y, z1, z2|s)

= P (y|z2, x)P (x|z1)P (z1|z2, s)P (z2)

= P (y|z2, x)P (x|z1)P (z2)P
∗(z1|z2) (20)

with all but the last factor transportable from the source environment. Once we have P ∗,
the target relation P ∗(y|x) is easily computed by marginalizing P ∗ over Z1 and Z2.
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A somewhat less obvious result obtains when we ask to transport the relation

R′ =
∑

z1

P (y|x, z1)P (z1) (21)

Here we observe that, since Z1 and Z2 are each a sufficient set (i.e., back-door admissible),
Z1 is interchangeable with Z2 (Pearl and Paz, 2010) and R′ can be written as:

R′ =
∑

z2

P (y|x, z2)P (z2) (22)

Therefore, using the independencies (S⊥⊥Y |X, Z2) and (S⊥⊥Z2) shown in the diagram, the
transported relation becomes:

R′(P ∗) =
∑

z2

P ∗(y|x, z2)P
∗(z2)

=
∑

z2

P (y|x, z2, s)P (z2|s)

=
∑

z2

P (y|x, z2)P (z2) (23)

Thus, R′ is transportable over the null set, or “directly transportable” (Definition 2). This
means that R′ can be estimated entirely in the source study and applied to the target
population with no additional measurement at all.

We see that, although the selection diagram designates P (z1|z2) as different in the two
population, some transported relations permit us to ignore this difference. The conditional
independencies embedded in the diagram have the capacity to further narrow the scope V ∗ of
variables that need be measured, so as to minimize measurement cost and sample variability.
For example, if the measurement of Z1 is more costly than that of X, R = P (y|x) can be
transported over V ∗ = {Z2, X}, instead of {Z2, Z1}, as dictated by Eq. (20). This can be
seen by ignoring (or marginalizing over) Z1, which yields the diagram of Fig. 6(b).

When the variables directly impacted by S (e.g., U in Fig. 5) are affected by unmeasured
confounders, it is not as easy to isolate the conditional probability factors that changes with
S, as we did in Fig. 6(a). An examination of Eq. (19) reveals nevertheless that, even in such
circumstances, certain relations would require a rather narrow scope for transport, i,e., P ∗(t)
and P ∗(z|w) in this example. While a systematic analysis of observational transportability is
beyond the scope of this paper, Definition 5 offers a formal characterization of this common
class of problems, and identifies the basic elements needed for their solution. In particular, it
demonstrates the essential role of causal knowledge, and the effectiveness of inferential tools
such as selection diagrams and their associated graph-based algorithms.
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6 On the definition and recognition of surrogate end-

points

6.1 Target for control or predictor of effects

As remarked in footnote 4, the literature on “surrogate endpoint” is concerned with a special
problem of transportability, in which causal effects on outcome variables are inferred from
those measured on surrogate variables, often under different conditions. Although traditional
definitions for a surrogate endpoint (e.g., Prentice (1989); Freedman et al. (1992); Lin et al.
(1997); Buyse and Molenberghs (1998); Buyse et al. (2000)) are based on regressions, they
are unwittingly motivated by causal considerations, and several attempts have been made
since to reformulate surrogacy in causal vocabulary (Frangakis and Rubin, 2002; Gilbert and
Hudgens, 2008; Joffe and Green, 2009; Wolfson and Gilbert, 2010).

At its core, the problem concerns a randomized trial where one seeks “endpoint surro-
gate,” namely, a variable that would allow good predictability of outcome for both treatment
and control. In the words of Ellenberg and Hamilton (1989) “investigators use surrogate end-
points when the endpoint of interest is too difficult and/or expensive to measure routinely
and when they can define some other, more readily measurable, endpoint, which is suffi-
ciently well correlated with the first to justify its use as a substitute.” Prentice (1989) has
argued that, for the purpose of substitution, strong correlation is not sufficient, and required
the true endpoint rate at any follow-up time to be statistically independent of treatment,
given the preceding history of the surrogate variable.

Prentice paper was written in 1989, before the legitimization of causal vocabulary. Today
we understand that he envisioned the surrogate to be a perfect mediator between the treat-
ment and the outcome, allowing no direct effect between the two. In Prentice’s own words
(Burzykowski et al., 2005, p. 345), “[the condition requires] that there are no pathways that
bypass the surrogate, and that, otherwise, the treatment effect is fully “explained” by the
preceding surrogate history.”

The question arises: Why would perfect mediation (no bypass) be required when the orig-
inal motivation was merely predictive, requiring “strong correlation” but no causal relation
between Z and Y or X and Z? Moreover, why should strong correlation not be sufficient for
surrogacy and, assuming that correlation alone encounters difficulties, how does mediation
alleviate these difficulties?

To answer these questions it is instructive to examine carefully the way surroacy is pre-
sented by modern writers. “There has been little agreement on an appropriate mathematical
framework or definition for surrogacy and the degree of surrogacy of a variable. In our view,
a surrogate outcome is an outcome for which knowing the effect of treatment on the sur-
rogate allows prediction of the effect of treatment on the more clinically relevant outcome”
(Joffe and Green, 2009).

Shared by most workers in the field, this description lacks a key ingredient: the relation-
ship between the two treatments considered, one prevailing when data is available on both
the surrogate (Z) and the endpoint (Y ), and the second, when data on the surrogate alone
are available. Clearly, if the two treatments are identical, the problem is trivially solved,
for then, strong correlation between Z and Y in the first study should suffice; all accurate
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Figure 7: Selection diagrams illustrating the relation between surrogacy and mediation. In
(a) Z is a perfect mediator that retains its predictive power under different settings of S. In
(b) Z does not retain that power, since it is a descendent of a mediator. (c) is an extreme
case of (b). In (d), Z is a perfect mediators, but does not retain its predictive power. In (e),
Z is an imperfect mediator and still retains its predictive power. In (f), Z is not a mediator
at all, but still fulfills all surrogacy requirements.

predictions that Z provides about Y in the first study, both across and within treatment
arms, will remain valid in the follow-up study. We must conclude therefore, that the collec-
tive intuition against the sufficiency of correlation8 stems from a tacit understanding that
the two studies are conducted under two different conditions, and that “strong correlation,”
should mean not merely accuracy of prediction but also robustness to the new condition. It
follows that any formal definition of surrogacy must specify how the new conditions differ
from those prevailing in the original study and incorporate this specification in the body of
the definition. We will now propose such specification.

Specifically, for Z to be a surrogate for Y , Z must be a good predictor of P (y|do(x)) and
also remain a good predictor under new settings in which Z is directly controlled, as in Fig.
2(c). The reason we should concern ourselves with such settings is that, once Z is proclaimed
a “surrogate endpoints” it invites efforts (e.g., by drug manufacturers) to find direct means
of controlling Z. It is important therefore to ascertain that Z retains its predictive power
under the new setting. A perfect mediator on the causal pathway from X to Y (Fig. 7(a))
retains such predictive power, whereas a descendant of a mediator which does not in itself
lie on the causal pathway (Fig. 7(b)) does not retain that power.

This difference can be seen by considering the robustness of z-specific effects in the two

8Attempts to formally justify this intuition have not been satisfactory. Fleming and DeMets (1996) leave
the impression that correlation fails to serve surrogacy only when it is weak or moderate, while Baker and
Kramer (2003) conclude that correlation fails because it is hard, in practice, to accurately estimate slopes
and intercepts.
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models. In Fig. 7(a), if the Z-specific effect in the initial study is

P (y|do(x), z) = P (y|z)

and will remain the same in the follow up study, since

P (y|do(x), z, s) = P (y|z)

This means that whatever predictions (about the true endpoint Y ) we can make from ob-
serving Z in the initial study, those same predictions will remain valid in the followup study,
irrespective of the new condition created by S. This is no longer the case in Fig. 7(b). Here
the true endpoint Y can be highly correlated with the putative surrogate Z, for both treat-
ment and control, but in the follow up study this correlation may be severely altered, even
destroyed.

A sharper difference emerges between the two models when we consider the role of Z in
evaluating the efficacy of new treatments, say S. In Fig. 7(a), the effect of S on Y (while
keeping X fixed at x) can be evaluated without measuring either Y or S, using

P (y|do(x), s) =
∑

z

P (y|do(x), z, s)P (z|do(x), s)

=
∑

z

P (y|z)P ∗(z|do(x)) (24)

This means that the effect of S on Y is determined entirely by its effect of Z, and the effect
of Z on Y . The former, commonly quantified by the difference P ∗(z|do(x)) − P (z|do(x)),
is estimable in the followup study, while the latter, P (y|z), is transportable from the initial
study, where measurements of Y were available. In Fig. 7(b), on the other hand, the effect
of S on Y cannot be thus decomposed into P -terms involving Y and P ∗-terms not involving
Y , which means that we cannot forego measurement of Y under the new environment, thus
loosing surrogacy. This is a direct consequence of the non-robustness of the Z-specific effect
P (y|do(x), z, s) to new treatments represented by S indeed, if Z is merely a symptom of U ,
its correlation with Y may be deceptive; a new drug (S) may cure Z without having any
effect on Y and without altering the effect of X on Y .

But perfect mediation in itself does not guarantee robust surrogacy. Consider Fig. 7(d),
in which Z is a perfect mediator, that is, no causal path bypasses Z, and yet it is not a robust
predictor of the effects on Y . The presence of unobserved confounders between Z and Y
renders Z no longer S-admissible and, so, measurements of P (y|do(x), z) and P (z|do(x), s)
would not be sufficient for assessing P (y|do(x), z, s) or P (y|do(x), s).

Frangakis and Rubin (2002) recognized the causal nature of the problem and have at-
tempted to capture surrogacy without considering graphs or mediation. They viewed sur-
rogates as predictors of causal effects, and considered examples where changing conditions
may threaten prediction reliability. Their definition, called “principal surrogacy” requires
that causal effects of X on Y may exist if and only if causal effects of X on Z exist (see Joffe
and Green (2009), for lucid interpretation) but stops short of delineating the set of new con-
ditions under which this requirement should be sustained. In Fig. 7(b), for example, Z and
Y may both be deterministic functions of U , perfectly complying with the requirement of
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“principal surrogacy,” and yet, the new condition created by S may render Z useless in pre-
dicting Y . The inadequacy of “principal surrogacy” is accentuated in Fig. 7(c) showing that
any side effect Z of X, say post-treatment discomfort, would pass the principal surrogacy
test, even when it has nothing to do with the process leading from treatment to outcome.9

The converse holds in Fig. 7(e) in which “principal surrogacy” fails for many units (e.g., if
Z and Y are stochastic functions of X) and yet Z sustains its function as a robust predictor
of Y .

6.2 Is mediation necessary?

Indeed, from surrogacy viewpoint, there is no need to insist on perfect mediation, as required
by Prentice (1989); the existence of a direct path that bypasses Z need not diminish the
robustness of Z as a predictor of Y , nor its capacity for evaluating new interventions. In Fig.
7(e), for example, the information that Z provides about the effect of X on Y , quantified by
P (y|do(x), z), remains invariant to S, in the same way that it does under perfect mediation
(Fig. 7(a)); Z is S-admissible in both cases. Therefore, measurements of Z may replace
those of Y in the evaluation of new interventions that point at Z. The evaluation proceeds
in the same fashion as Equation (24), giving

P (y|do(x), s) =
∑

z

P (y|do(x), z, s)P (z|do(x), s)

=
∑

z

P (y|do(x), z)P ∗(z|do(x)) (25)

in which, again, all P ∗-terms are Y -free.
What we may lose in going from perfect to imperfect mediation is the ability to control

the effect of X on Y through interventions on Z, but we do not lose the ability to properly
assess the effectiveness of such interventions by measuring their effect on Z. The first views
surrogates as targets for control, the second as sources of information. It is the latter
quality that has been the traditional motivation behind the quest for surrogates, and we will
adhere to this tradition in this paper. Control questions, of whether a variable qualifies as a
mediator, how to assess the degree of mediation from data, and what assumptions are needed
for such assessment have been thoroughly investigated in the literature of mediation10, or
direct and indirect effects (see Pearl (2001); Robins (2003); Petersen et al. (2006); Imai et al.
(2010); Pearl (2010)), and need not enter the definition of informational suggorates.

Joffe and Green (2009) compared the mediation-based and “principal surrogate” ap-
proaches to surrogacy and concluded that all approaches suffer from sensitivity to modeling
assumptions, especially in the presence of unmeasured common causes (confounders).11 This

9Rubin (2004) went further and proposed to do away with “deceptive” concepts such as direct and indirect
effects and replace them with “principal surrogacy.” Lauritzen (2004) objected to this sweeping suggestion
and clarified the distinction by giving a meaningful translation of “principal strata” as functional mappings
in graphs (see also Pearl, 2009, p. 264).

10In particular, causally-based Mediation Formulas, for assessing the extent to which mediation is necessary

as well as sufficient for an effect are given in Pearl (2001, 2010).
11They also considered “meta-analytical” approaches, on which we are unable to comment, due to our

failure to find a formal, theoretical basis supporting this popular approach.
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is not surprising, considering that the relationship between causal assumptions and causal
conclusion is universal, independent on the approach used in formulating or validating the
assumptions. Still, considerations of model validation need not enter the definition of surro-
gacy. In the definitional phase we take model validity for granted and ask what properties
must a surrogate candidate possess to assure that the use of the surrogate leads to correct
conclusions about the effect of the treatment on the true endpoints.

Having seen that perfect mediation is neither sufficient nor necessary for surrogacy, we
may ask whether partial mediation is necessary. Put another way, given that mediation is
not a goal in itself but an instrument for satisfying the requirement of surrogacy in terms of
correct and robust predictions of effects, it is natural to ask whether surrogacy may dispose of
mediation altogether. Indeed, we will show that surrogacy in its informational interpretation
can be achieved by non-mediating variables. Variable Z in Fig. 7(f), for example, does not
lie on the causal pathways between X and Y yet fulfills all the requirements for surrogacy
since, being S-admissible, it leads to:

P (y|do(x), s) =
∑

z

P (y|do(x), z, s)P (z|do(x), s)

=
∑

z

P (y|do(x), z)P ∗(z) (26)

Thus, the z-specific effect measured under randomization of X is averaged, weighted by
the probability of the surrogate Z under the new condition created by S, to yield a prediction
of the new effect of X on Y . Y need not be re-measured.

Conceptually, if Z is a catalyst for the effect of X on Y it may as well be a pre-X-
treatment covariate and, still, interventions aiming to control Z should not undermine its
capacity to reliably predict the endpoint Y . Note however that, in this example, Z can still
be regarded as a mediator, albeit between Y and the new treatment to be evaluated, which
is represented by S.

6.3 Surrogacy: Definitions and procedures

Translating these considerations to the language of selection diagrams, we propose the fol-
lowing definition for a surrogate endpoint.

Definition 6 Let G be the causal diagram characterizing the experimental study of interest.
A variable Z is said to be a surrogate endpoint relative the effect of X on Y if and only if:

1. P (y|do(x), z) is highly sensitive to Z in the experimental study, and

2. P (y|do(x), z, s) = P (y|do(x), z, s′) where S is a selection variable added to G and
directed towards Z.

In words, the causal effect of X on Y can be reliably predicted from measurements of
Z, regardless of the mechanism responsible for variations in Z. The graphical criterion
corresponding to condition 2 can be expressed as (Y⊥⊥Z|X)G

XZ
, that is, all directed paths
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from S to Y must go through Z and X. In Fig. 7, for example, models (a), (e), and (f) will
qualify Z as a surrogate for Y , while (b), (c), and (d) will not.

Definition 6 assumes, as did the rest of our discussion thus far, that the new condition
created by S is local, having no unintended side effects on Y except through Z. Fleming and
DeMets (1996) illustrate how this assumption may fail in practice and undermine the role of
Z as a surrogate for Y . While it is too ambitious (and useless) to suppose that investigators
can enumerate all possible side-effects that S might engender,12 it is useful to ask whether
Z retains its surrogacy against a set of side effects that can reasonably be anticipated. The
following definition, labeled “general surrogacy,” addresses this challenge by allowing a set
VS of variables to fall under the direct influence of S (e.g., VS = {Z, U} in Fig. 5), and letting
the surrogate be a set of variables residing anywhere in the graph.

Definition 7 (General Surrogacy) Let Π and Π∗ be two treatment regimes, with X random-
ized in Π and X ∪ S randomized in Π∗. Let VX ∪ Y be the set of variables measured in Π,
and let VS be the set of variables directly influenced by S in Π∗. A set Z∗ of variables in
VX is said to be a surrogate for the effect of X on Y , relative to {VX , VS}, if observations
of Z∗ in Π∗ enables the causal effect P (y|do(x)) to be transported from Π to Π∗ without
re-measurement of Y .

On the surface it may appear that Definition 7 merely rephrases the traditional require-
ment that a surrogate should substitute for the true endpoint Y . A closer look however
shows that it goes much deeper. It provides in fact an algorithmic procedure for determin-
ing what modeling assumptions are needed to assure that a set Z∗ of candidate surrogates
fulfills the promise given by its title. In Fig. 5, for example, it is not immediately obvious
that set Z∗ = {Z, T, W} is surrogate for Y relative to VX = {Z, T, W} and VS = {Z, U},
yet Eq. (19) confirms this to be the case, showing all P ∗ terms to be Y -free, and to contain
only variables in Z∗. Moreover, Z alone constitutes a valid surrogate it this example, due
to the fact that Z is S-admissible and, so, condition 2 of Theorem 2 is satisfied when X is
randomized in Π∗. The theory of transportability enables us to select valid surrogates even
when we forgo randomization, and insist that the surrogate chosen transmit its information
under observational studies.

7 Conclusions

Informal discussions concerning the transportability of experimental results across popula-
tions have been going on for almost half a century, usually invoking the notions of “external
validity,” “heterogeneity” and others. The formalization offered in this paper embeds this
discussion in a precise mathematical language, and provides researchers with the benefits of
mathematical analysis, to improve the design and analysis of experimental studies.

Given judgmental assessments of how target populations may differ from those under
study, the paper offers a formal representational language for making these assessments pre-
cise and for deciding whether causal relations in the target population can be inferred from
experimental findings. When such inference is possible, the criteria provided by Theorems 1

12Clearly, no surrogate can be identified under the assumption that S affects everything.
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and 2 yield transport formulae, namely, principled ways of modifying the transported rela-
tions so as to properly account for differences in the populations. These transport formulae
enable the investigator to select the essential measurements in both the experimental and
observational studies, and thus minimize measurement costs and sample variability.

Extending these results to observational studies, we showed that there is also benefit in
transporting statistical findings from one observational study to another in that it enables
researchers to avoid repeated measurements that are not absolutely necessary for reconstruct-
ing the relation of interest, considering the commonalities between the two populations. Pro-
cedures for deciding whether such reconstruction is feasible when certain re-measurements
are forbidden were demonstrated on several examples; though the general decision problem
for an arbitrary relation and arbitrary selection diagram remains open.

Of course, our analysis is based on the assumption that the analyst is in possession of
sufficient background knowledge to determine, at least qualitatively, where and how two
populations may differ from one another. In practice, such knowledge may only be partially
available and, as is the case in every mathematical exercise, the benefit of the analysis
lies primarily in understanding what knowledge is needed for the task to succeed and how
sensitive conclusions are to knowledge that we do not possess.

It should also be remarked that the inferences licensed by Theorem 1 and 2 represent
worst case analysis, since we have assumed, in the tradition nonparametric modeling, that
every variable may potentially be an effect-modifiers (or moderator.) If one is willing to
assume that certain relationships are non interactive, as is the case in additive models, then
additional transport licenses may be issued, beyond those sanctioned by Theorems 1 and 2.

Using the representational power of “selection diagrams” we have proposed a causally
principled definition of “surrogate endpoint” and showed procedurally how valid surrogates
can be identified in a complex network of cause-effect relationships. The definition proposed
is based on a painful effort to interpret the controversial literature on this subject and to echo
faithfully and formally the writings of many investigators who felt the need to use surrogate
variables but were unable, lacking the language of causation, to express that need in a formal
way.

It is not unlikely that practicing investigators would find that additional requirements
should be imposed on “surrogate endpoints,” supplementing those articulated in Definition 6.
We hope that any such requirements be cast in the language of selection diagrams and that
the results of this paper will be found useful in distinguishing good surrogates from bad ones.
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Appendix 1

The do-calculus (Pearl, 1995) consists of three rules that permit us to transform expressions
involving do operators into other expressions of this type, whenever certain conditions hold
in the causal diagram G.

We consider a DAG G in which each child-parent family represents a deterministic func-
tion xi = fi(pai, εi), i = 1, . . . , n, where pai are the parents of variables Xi in G; and
εi, i = 1, . . . , n are arbitrarily distributed random disturbances, representing background
factors that the investigator chooses not to include in the analysis.

Let X, Y , and Z be arbitrary disjoint sets of nodes in a causal DAG G. An expression of
the type E = P (y|do(x), z) is said to be compatible with G if the interventional distribution
described by E can be generated by parameterizing the graph with a set of functions fi and
a set of distributions of εi, i = 1, . . . , n

We denote by GX the graph obtained by deleting from G all arrows pointing to nodes in
X. Likewise, we denote by GX the graph obtained by deleting from G all arrows emerging
from nodes in X. To represent the deletion of both incoming and outgoing arrows, we use
the notation GXZ .

The following three rules are valid for every interventional distribution compatible with
G.

Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X, W )G
X

(27)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X, W )G
XZ

(28)

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X, W )G
XZ(W )

, (29)

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .
The do-calculus was proven to be complete, Shpitser and Pearl (2006). in the sense that

if an equality cannot be established by repeated application of these three rules, it is not
valid.
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Appendix 2

Derivation of the transport formula for the causal effect in the model of Fig. 4(d), (Eq. (18)),

P ∗(y|do(x)) =P (y|do(x), s)

=
∑

z

P (y|do(x), s, z)P (z|do(x), s)

=
∑

z

P (y|do(x), z)P (z|do(x), s)

(

2nd condition of thm. 2, S-admissibility of Z of CE(X, Y )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|do(x), w, s)P (w|do(x), s)

=
∑

z

P (y|do(x), z)
∑

w

P (z|w, s)P (w|do(x), s)

(

3rd condition of thm. 2, (X ⊥⊥ Z|S, W )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|w, s)P (w|do(x))

(

2nd condition of thm. 2, S-admissibility of the empty set {} of CE(X, W )
)

=
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)P (w|do(x)) (30)

Applying similar analysis, it follows the derivation of the transport formula for the causal
effect in the model of Fig. 4(e),

P ∗(y|do(x)) =P (y|do(x), s)

=
∑

z

P (y|do(x), s, z)P (z|do(x), s)

=
∑

z

P (y|s, z)P (z|do(x), s)

(

3rd condition of thm. 2, (X⊥⊥Y |S, Z)
)

=
∑

z

P (y|s, z)P (z|do(x))

(

2nd condition of thm. 2, S-admissibility of the empty set {} of CE(X, Z)
)

=
∑

z

P ∗(y|z)P (z|do(x)) (31)
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Appendix 3

Derivation of the transport formula for the causal effect in the model of Fig. 5, (Eq. (19)).

P ∗(y|do(x)) =P (y|do(x), s, s′)

=
∑

z

P (y|do(x), s, s′, z)P (z|do(x), s, s′)

=
∑

z

P (y|do(x), z)P (z|do(x), s, s′)

(

2nd condition of thm. 2, S-admissibility of Z of CE(X, Z)
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|do(x), s, s′, w)P (w|do(x), s, s′)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)P (w|do(x), s, s′)

(

3rd condition of thm. 2, (X ⊥⊥ Z|S, S ′, W )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), s, s′, t)P (t|do(x), s, s′)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), t)P (t|do(x), s, s′)

(

2nd condition of thm. 2, S-admissibility of T on CE(X, W )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), t)P (t|s, s′)

(

1st condition of thm. 2 / 3rd rule of do-calculus, (X ⊥⊥ T |S, S ′)G
X̄

)

=
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t) (32)
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X Z W V Y

Figure 8: Selection diagram demonstrating the incompleteness of Theorem 2.

Appendix 4

Incompleteness of theorem 2

Figure 8 presents an example in which the relation R = P ∗(Y |do(X)) is transportable using
the criterion of Lemma 1 and, yet, Theorem 2 is too weak to unveil its transportability.

Let us first check case by case the applicability of Theorem 2:

1. R is not trivially transportable (thm. 2/cond. 1) due to confounding X ↔ Z (Tian
and Pearl, 2002);

2. There is no S-admissible set (thm. 2/cond. 2) because the confounding V ↔ Y ;

3. There is no set W which make (X ⊥⊥ Y |W ), due to confounding X ↔ Y ;

However, this quantity is still transportable using the do-calculus, as the following deriva-
tion shows:
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P ∗(Y |do(X)) =P (Y |do(X), S)

=
∑

w

P (Y |do(X), S, W )P (W |do(X), S)

=
∑

w

P (Y |do(X), S, W )P (W |do(X))

(

empty set admissibility in the causal effect X →W
)

=
∑

w

P (Y |do(X), S, do(W ))P (W |do(X)) (33)

(

2nd rule of do-calculus, (W ⊥⊥ Y |X)G
XW

)

=
∑

w

P (Y |S, do(W ))P (W |do(X))

(

3rd rule of do-calculus, (X ⊥⊥ Y |W )G
XW

)

=
∑

w

(
∑

z

P (Y |S, do(W ), Z)P (Z|do(W ), S))P (W |do(X))

=
∑

w

(
∑

z

P (Y |S, W, Z)P (Z|do(W ), S))P (W |do(X))

(

2nd rule of do-calculus, (W ⊥⊥ Y |Z)GW

)

=
∑

w

(
∑

z

P (Y |S, W, Z)P (Z|S))P (W |do(X))

(

3rd rule of do-calculus, (W ⊥⊥ Z)G
W

)

=
∑

w

(
∑

z

P ∗(Y |W, Z)P ∗(Z))P (W |do(X)) (34)

Eq. (33) was instrumental in the derivation because we first add the interventional oper-
ator on W , and then we are able to remove it from X in the next step. Without this step,
which is not included in Theorem 2, R will not be transportable. The reader is invited to
try variations over this derivation.

Complete characterization

Theorem 3 Let D be the selection diagram characterizing two populations, Π and Π∗, and
S the set of selection variables in D. The causal effect R = P ∗(y|do(x)) is transportable from
Π to Π∗ if and only if the expression P (y|do(x), S) is reducible, using the rules of do-calculus,
to an expression in which no do-operator is conjoined with S. �

Proof sketch:

(if part): By definition of transportability, if R is expressible with no do-operator conjoined
with S, automatically the quantity is transportable.
(only if part): This follows directly from the completeness of do-calculus (Shpitser and Pearl,
2006) augmented with the S-semantics as previously defined. This proves Theorem 3.
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Appendix 5

In the next two examples, we show that the definition of mechanism is intrinsically connected
with the third layer of the causal hierarchy, as defined in (Pearl, 1995, 2009), and to appropri-
ately use the theory of transportability qualitative structural knowledge about the problem
is needed beyond the knowledge expressed through local interventional distributions.

First example

Consider graph G = {X → Z → Y, X ← U1 → Z, Z ← U2 → Y }, where X is encour-
agement to take a drug, Z is taking the drug, Y is recovery, U1 is personal attitude, U2 is
gender.

In model 1 (LA population), men are contrarian and cured by drug, when women are
obedient and hurt by the drug. In model 2 (NY population), no one is affected by the
drug. Let ⊕ stands for the logical gate exclusive or (XOR). The functional description is
given by P (U1) = P (U2) = 1/2 equal in both models, and the functions in model 1 are:
X = U1, Z = X ⊕ U2, Y = Z ⊕ U2. In model 2, the functions are: X = U1, Z = U2, Y = U2.

We measure local interventional distributions in both populations, and obtain Px(z) =
P ′

x(z) = 1/2 for all X and Z, and Pz(y) = P ′

z(y) = 1/2 for all Z and Y . Now, computing
the non-local interventional distribution Px(y), we notice in LA Px(y) = 1 when y = x, and
zero otherwise, but in NY we obtain P ′

x(y) = 1/2 for all Y and X.
This demonstrates explicitly that, when we ask whether a certain population difference

deserves an S, we should consider not only differences in ACE but also differences in func-
tional relations. In other words, differences in functional relations which do not show as
differences in local ACE can combine and yield differences in non-local ACE. A definition
in terms of mechanisms f()s and exogenous distributions P (u)s is necessary.

Second example

One definition of mechanism is: a probability distribution Pr over the set of functions from
pa(Y ) to Y . (Because the pair Y = f(pa(Y ), U) and P (u) defines such Pr.) But the
following example shows that this definition is insufficient.

Consider the same story as in the first example. Now, consider the functional model 1:
X = U1, Z = X ⊕ U2, Y = Z ⊕ U2, and model 2: X = U1, Z = X ⊕ U2, Y = Z ⊕ U2, where
U2 is the complement of U2.

In this case we have Pr() = Pr∗(), because the probability assigned to each of the four
functions is the same in both models, it is only the labeling on the values of the U2 variable
that is different. Now, let us compare ACE with ACE∗. For ACE we have P (y|do(x)) = 1,
if y = x, and 0 otherwise; for ACE∗ we have P (y|do(x)) = 0 if y = x, and 1 otherwise
(because Y = (X ⊕ U2) ⊕ U2 = X, Y = (X ⊕ U2)⊕ U2 = X).

The moral of the story is that equality of all Pr’s is not sufficient to guarantee equality
of all causal effects – the labeling on the four functions is as important and, hence, it should
be part of what we define as “mechanism”. The label can be neglected though when there
is no confounding arc into Y .
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