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ARTICLE

Dual-barcoded shotgun expression library
sequencing for high-throughput characterization
of functional traits in bacteria
Vivek K. Mutalik 1, Pavel S. Novichkov1, Morgan N. Price1, Trenton K. Owens1, Mark Callaghan1,

Sean Carim 2, Adam M. Deutschbauer1,2 & Adam P. Arkin 1,3

A major challenge in genomics is the knowledge gap between sequence and its encoded

function. Gain-of-function methods based on gene overexpression are attractive avenues for

phenotype-based functional screens, but are not easily applied in high-throughput across

many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library

Sequencing (Dub-seq), a method that uses random DNA barcodes to greatly increase

experimental throughput. As a demonstration of this approach, we construct a Dub-seq

library with Escherichia coli genomic DNA, performed 155 genome-wide fitness assays in 52

experimental conditions, and identified overexpression phenotypes for 813 genes. We show

that Dub-seq data is reproducible, accurately recapitulates known biology, and identifies

hundreds of novel gain-of-function phenotypes for E. coli genes, a subset of which we verified

with assays of individual strains. Dub-seq provides complementary information to loss-of-

function approaches and will facilitate rapid and systematic functional characterization of

microbial genomes.
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Advances in DNA sequencing have had a tremendous
impact on microbial genomics, as tens of thousands of
genomes have now been sequenced1. However, only a

small fraction of these microorganisms have been experimentally
studied and as such, our predictions of gene function, metabolic
capability, and community function for these microorganisms are
based largely on automated computational approaches2. Unfor-
tunately, many of these computational predictions are incomplete
or erroneous, especially in instances where the homology of a
sequenced gene is too distant from any experimentally
characterized relative3. To bridge this gap between sequencing
and functional characterization, it is imperative that large-scale,
inexpensive, and organism-agnostic tools are developed and
applied4.

A number of large-scale approaches based on loss-of-function
genetics have been developed for microorganisms including gene-
knockout libraries5–9, recombineering based methods10,11,
transposon mutagenesis coupled to next-generation sequencing
(TnSeq)12,13, and CRISPR interference (CRISPRi)14. Collectively,
these strategies all rely on measuring the phenotypic con-
sequences of removing a gene from a microorganism and infer-
ring protein function based on these phenotypes. An adaptation
of TnSeq that incorporates and uses random DNA barcodes (RB-
TnSeq) to measure strain abundance in a competitive growth
assay13 has recently been applied on a larger scale to identify
mutant phenotypes for thousands of genes across 32 bacteria15.
Despite their utility, these loss-of-function approaches suffer
some limitations: only CRISPRi is effective for interrogating
essential genes under multiple conditions, it is challenging to
identify phenotypes for genes with redundant functions using
single mutants, and these approaches require some degree of
genetic tractability in the target microorganism.

A complimentary approach for studying gene and organism
function is to generate gain-of-function overexpression libraries
and analyze the phenotypic consequences of increased gene dosage.
Indeed, the impact of enhanced gene dosage on adaptation and
evolution are well documented across all three kingdoms of life and
have been shown to be an important contributor to numerous
diseases and drug resistance phenotypes16–18. Increased gene copy
or overexpression as a genetic tool has a rich history of connecting
genes to cellular functions and has been exploited as a versatile
screening technique to identify drug targets16,19,20, antibiotic and
metal resistance genes17,21,22, virus resistance genes23, genetic
suppressors24,25, as well as for a number of chemical genomics8,9

and biotechnology applications26–28. Although a number of tech-
nologies have been developed for overexpression screens including
defined open reading frame (ORF) libraries6,20,29 and activation
modes of recombineering30,31, transposon insertions32, or CRISPR
systems33, these strategies are limited, either due to the need for
expensive and laborious generation of archived strains or the need
for organism-specific genetic tools.

A simpler alternative for overexpression screens is a shotgun
library-based approach in which random DNA is introduced into
a host organism for phenotyping and functional assessment. This
approach has been widely used for studying increased copy
number effects on a desired phenotype26,27 and for activity-based
screening of metagenomic samples34,35. Nevertheless, most
shotgun expression libraries have only been assayed in a small
number of conditions looking for a specific gene function, and are
often performed as qualitative selections on a plate34–36. Fur-
thermore, current shotgun-based approaches typically require
tedious and expensive sequencing and sample preparation pro-
tocols for identifying the selected gene(s)26,27,37,38. With arrival of
next-generation sequencing technologies, all positive candidates
can be pooled, and cloned regions can be amplified and
sequenced in parallel39,40. Unfortunately, sequencing the cloned

regions (to identify the genes conferring the phenotype) is labor
intensive and may become cost-prohibitive if the overexpression
library is being assayed under many conditions. As such, there is
a need for high-throughput gain-of-function technology that is
simple, quantitative, agnostic to source DNA, and which facil-
itates multiplexed quantification of fitness under hundreds of
experimental conditions. Here we present a new method termed
Dub-seq, or dual-barcoded shotgun expression library sequen-
cing, for performing high-throughput and quantitative gain-of-
function screens. Dub-seq requires an initial characterization of
the overexpression library by linking the genomic breakpoints of
each clone to a pair of random DNA barcodes. Subsequent
screens are performed using a competitive fitness assay with
a simple DNA barcode sequencing and quantification assay
(BarSeq41). As a demonstration of this approach, we generate an
Escherichia coli (E. coli) Dub-seq library and assayed the phe-
notypic consequences of overexpressing nearly all genes on E. coli
fitness under dozens of experimental conditions. We show that
Dub-seq yields gene fitness data that is consistent with known
biology and also provides novel gene function insights. We vali-
date some of these new findings by overexpressing individual
genes and quantifying these strains’ fitness. Given that only DNA
and a suitable host organism for assaying fitness are necessary
and not the genetic tractability of the organisms of interest, Dub-
seq can be readily extended to diverse functional genomics and
biotechnology applications including functional interrogation of
DNA from uncultivated clades.

Results
Overview of Dub-seq. The Dub-seq approach involves cloning a
shotgun expression library between two random DNA barcodes
and associating the precise breakpoints of the DNA fragments to
the barcodes prior to measuring phenotypes. To assess the fitness
of individual strains carrying these plasmids, DNA barcode
sequencing (BarSeq)41 is then employed, which is simple and
amenable to large-scale sample multiplexing. The Dub-seq
approach is summarized in Fig. 1 and can be separated into
four different steps. First, a plasmid library is generated with pairs
of random 20 nucleotide DNA sequences, termed the UP and
DOWN barcodes. To link the identities of the two-barcode
sequences on each plasmid, Barcode Pair sequencing (BPseq) is
performed (Fig. 1a, Methods). Second, sheared genomic DNA
from an organism under investigation is cloned between the
previously associated UP and DOWN barcodes (Fig. 1b). Third,
the genomic fragment endpoints are mapped and associated with
the two-barcode sequences using a TnSeq-like protocol13. We
term this step Barcode-Association-with Genome fragment by
sequencing or BAGseq and the resulting plasmid library as the
“Dub-seq” library (Fig. 1c). The BAGseq step requires two sample
preparations to separately map genomic fragment junctions to the
UP and DOWN barcodes. The BAGseq characterization gen-
erates a table of barcode sequences and the cloned chromosomal
breakpoints at single-nucleotide resolution. Because the two
random DNA barcodes have been previously associated, we can
infer the exact sequence of each plasmid in the Dub-seq library if
the sequence of the source DNA is known. Finally, we introduce
the Dub-seq plasmid library into a host bacterium and monitor
the fitness of strains carrying these plasmids in a competitive
fitness assay under a particular condition by PCR amplifying and
quantifying the abundance of the DNA barcode sequences
(BarSeq41, Fig. 1d). In these pooled fitness experiments, the
barcode abundance changes depending upon the fitness pheno-
type imparted by the barcode-associated genome fragments. A
data analysis pipeline yields fitness scores for individual strains
(or “fragments”) and for each gene. These gene scores provide an
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assessment of the phenotypic consequence of overexpressing
nearly all of the genes represented in the cloned DNA fragments.
The advantage of Dub-seq is that it decouples the characterization
of a shotgun overexpression library (which is more laborious)
from the cheaper and simpler fitness determination step using
BarSeq. As such, a Dub-seq library can be readily assayed in
hundreds of different experimental conditions. Dub-seq can be
viewed as an overexpression-based, gain-of-function version of
our previously described method for random barcode transposon
site sequencing (RB-TnSeq)13.

Generation of E. coli Dub-seq library. To generate a Dub-seq
library, we used a broad host range medium copy vector with a
modified pBBR1 replication origin. We used standard molecular
biology techniques to insert two random 20 nucleotide barcode
sequences on the plasmid, the UP and DOWN barcodes, which
juxtapose a unique PmiI restriction enzyme site on the plasmid
(Methods). Both the UP barcodes and DOWN barcodes contain
common PCR priming sites for rapid amplification of all barcodes
from a pooled sample. We generated a dual-barcoded vector
library with ~250,000 clones in E. coli DH10B and characterized
this library by associating the barcode pairs using BPseq. The
vector library of ~250,000 clones was sufficient to map unique
barcode pairs with confidence and also to yield a Dub-seq library
in which each fragment will have a unique barcode (see below).

To generate the E. coli Dub-seq library, we extracted E. coli
(BW25113) genomic DNA, sheared to 3-kb fragment size, and
cloned the fragments in cloning strain DH10B into the dual-
barcoded backbone vector digested with PmiI. Both E. coli
BW25113 and E. coli DH10B are derivatives of E. coli K-12. The

E. coli BW25113 Dub-seq library encompasses ~40,000 vectors,
corresponding to about 8X coverage of the E. coli genome. In this
study, we depend on the endogenous E. coli transcription and
translation apparatus to drive the expression of the encoded gene
(s) within each genomic fragment, although future studies could
use inducible systems (for example, when the source of the cloned
Dub-seq DNA differs from the host bacterium for assaying
fitness42). The phenotypes we observe derive from increased gene
copy number (that will typically result in overexpression of the
genes encoded on the fragment) but other potential effects such
as toxicity associated with the gene overexpression43 or titration
of DNA-binding transcription factors due to increased copy
number of regulatory regions are possible16,44. Here, we use the
term “overexpression” throughout with the caveat that increased
gene dosage may not always lead to increased expression16,44.

We next characterized the E. coli BW25113 Dub-seq library
using BAGseq, which identifies the cloned genome fragment and
its pairings with the neighboring dual barcodes. As there are two
barcodes for each Dub-seq library, we performed two separate
BAGseq sample preparation steps, one for the UP barcodes and
one for the DOWN barcodes. Briefly, BAGseq involves shearing
of the Dub-seq plasmid library, end repair, Illumina adaptor
ligation, PCR amplification of the junction between the barcode
and genomic insert using primers that are complementary to one
of the barcode-specific primer binding sites, and deep sequencing
of these samples (modified from reference 13). After filtering out
barcodes that mapped to more than one genomic fragment, we
identified 30,558 unique barcode pairs that we could confidently
associate with a genomic fragment.

In the E. coli BW25113 Dub-seq library, the fragments are
largely evenly distributed across the chromosome (Fig. 2a), the
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average fragment size is 2.6 kb (Fig. 2b), and the majority of
fragments covered 2–3 genes in their entirety (Fig. 2c). Eighty
percent of genes in the E. coli genome are covered (from start to
stop codon) by at least five independent genomic fragments in the
Dub-seq library (Fig. 2d) and 97% of all genes are covered by at
least one fragment. Just 135 genes are not covered in their entirety
by any Dub-seq fragment (Supplementary Data 1). Many of these
unmapped or uncovered genes encode membrane and ribosomal
proteins and probably reflect the lethality of overexpressing these
genes45. Other genes could not be confidently mapped because
they are associated with repetitive regions. For example, we could
not confidently map fragments covering ETT2 type III secretion
system pathogenicity island and its regulator gene ygeH, which
has tetratricopeptide repeat motifs, whereas the neighboring
protein-coding genes are well mapped (Fig. 2a). Similarly, we
could not map genes within ribosomal RNA operons (for
example, rrlD, Fig. 2a), as E. coli encodes multiple nearly identical
copies of these loci. Some large genes with length >3.5 kb, such as
rpoB, are not entirely covered by any fragments in our library,
whereas other large genes such as acrB are covered by only one
fragment (Fig. 2a).

Out of the 303 E. coli protein-coding genes that were shown
essential for viability in previous studies5, 95% are completely
covered by at least one fragment in the Dub-seq library
(Supplementary Data 2). There are only 17 protein-coding genes
that are both essential for viability when deleted and absent from
our Dub-seq library (Supplementary Data 2).

Strain and gene fitness profiling using BarSeq. The key
advantage of Dub-seq is the ease of assessing the relative fitness
contributions of all genes contained in the cloned genomic
fragments using pooled, competitive growth assays. Depending
on the assay condition and the gene(s) encoded by a genomic
fragment, the relative abundance of a strain carrying that frag-
ment can change due to its fitness advantage or disadvantage
relative to strains carrying other fragments. Because the DNA
barcodes have been previously associated with each genomic
fragment, we can simply compare the relative abundance of each
barcode before and after selective growth using DNA barcode
sequencing or BarSeq41.

As a demonstration of Dub-seq fitness assays and to illustrate
our approach for calculating strain (fragment) and gene fitness
scores, we recovered an aliquot of the E. coli BW25113 Dub-seq
library cloned in E. coli DH10B strain in Luria-Bertani (LB)
liquid medium to mid-log phase, collected a cell pellet for the
“start” (or time-zero sample), and used the remaining cells to
inoculate an LB culture supplemented with 1.2 mM nickel. After
growth in the presence of nickel, we collected a second cell pellet
for the “condition” sample. We extracted plasmid DNA from
the start and condition samples, PCR amplified the UP and
DOWN DNA barcodes from each, and sequenced the DNA
barcodes with Illumina. We calculate the fragment fitness score
for each strain by taking the normalized log2 ratio of the
number of reads for each barcode in condition sample versus the
start sample (Fig. 1). Positive scores indicate that the gene(s)
contained on that fragment lead to an increase in relative fitness,
whereas negative values mean the gene(s) on the fragment
reduced relative fitness. Scores near zero indicate no fitness
reduction or benefit for the gene(s) under the assayed condition
(although overexpression of a gene at a different level might
have an effect). As in previous work46, we find that fitness scores
calculated with either UP barcodes or DOWN barcodes yield
very similar results (r= 0.94, Supplementary Fig. 1a, b).
Therefore, we only sequenced the UP barcodes for all additional
experiments in this study.

Given that multiple, causative and non-causative genes can be
contained on a single fragment, to assign a fitness score to a
particular gene it is necessary to examine the score of all
fragments containing the gene. Here, we considered two different
ways to estimate fitness score of a gene. The first approach was to
simply take the average of all fitness scores for fragments that
contained the gene in its entirety (the “mean” score). The second
approach was to use a regression method for estimating gene
fitness score so as to prevent genes from having artifactually high
fitness scores if they were located near other causative genes.
Specifically, we adopted non-negative least squares (NNLS)
regression (the “regression” score) (see Methods). To illustrate
how the mean and regression scores differ in practice, consider
the gene fitness scores for two adjacent genes under elevated
nickel stress, rcnA and rcnR (Fig. 3a, b). RcnA is a nickel efflux
protein whose overexpression is known to lead to increased nickel
tolerance47. Conversely, rcnR encodes a transcriptional repressor
that weakly represses its own expression and that of rcnA, and the
overexpression of rcnR alone is not expected to increase nickel
tolerance47. Although the mean and regression approaches both
result in similar (and correct) high Dub-seq scores for rcnA
(Fig. 3a), only the regression approach results in the correct,
neutral fitness score for the rcnR (Fig. 3b). The mean score
calculation approach leads to an artifactually high fitness score for
rcnR because many of the fragments that contain this gene also
contain the neighboring rcnA (Fig. 3b, Supplementary Figs. 2a, b
and 3a, b). Based on these results and other examples
(Supplementary Fig. 4) that we examined, we concluded that
the optimal strategy was to use the regression method for
calculating Dub-seq gene fitness scores (Methods).

To assess the reproducibility of Dub-seq fitness assays, we
compared the results obtained from independent samples. First,
the number of sequencing read counts for each UP barcodes from
the Dub-seq library from different start samples were highly
correlated (Supplementary Fig. 1c). Similarly, between two
biological replicates of the nickel stress experiment, we found a
strong correlation for fragment fitness (r= 0.80; Fig. 3c) and for
regression-based gene fitness (r= 0.89; Fig. 3d).

Fitness profiling across dozens of experimental conditions. To
demonstrate the scalability of Dub-seq, we performed 155
genome-wide pooled fitness experiments representing 52 different
chemicals: 23 compounds as the sole source of carbon in a
defined growth media and varying concentrations of 29 inhibitory
compounds in rich media (Fig. 4). The inhibitory compounds
included metals, salts, and antibiotics. For each of these assays, we
compared the abundance of the UP barcodes before and after
growth selection. We multiplexed 48 or 96 BarSeq PCR samples
per lane of Illumina sequencing, at a sequencing cost of about $20
per genome-wide assay. In the typical condition sample, we
obtained ~4.2 million BarSeq reads, representing ~100 reads on
an average for each clone in the Dub-seq plasmid library. We
computed gene fitness scores (using the regression approach) for
4027 protein-coding genes and for 124 RNA genes. The gene
fitness scores were reproducible, with a median pairwise corre-
lation of 0.80 across 64 biological replicates.

We classified effects as high-confidence if |score| >= 2, there
was sufficient read coverage, and the effects were consistent
across fragments that cover the gene and/or across replicate
experiments (see Methods). At a false discovery rate of 2%, we
identified 4051 high-confidence effects, representing 813 of the
4151 genes assayed (Methods, Supplementary Data 3). Four
hundred different genes had a high-confidence fitness benefit
when overexpressed in at least one condition, whereas the
overexpression of 570 different genes led to a decrease in fitness
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in at least one condition. Nearly all experiments (153 of 155) had
at least one gene with a high-confidence effect. As the current
Dub-seq design relies on the native promoters within the
fragments to drive the expression of encoded genes, we looked
at genes with high-confidence effect and their location within
operons. Overall, genes at the beginning of transcripts were
significantly more likely to have high-confidence effects than later
genes in an operon (30% versus 13%, P= 2×10−9, Fisher's exact
test). Nevertheless, there were 61 genes without a (known)
promoter nearby that had a high-confidence benefit (Methods).
Among the 303 E. coli protein-coding genes that were shown
essential for viability in previous studies5, 46 have a high-
confidence benefit in at least in one experiment, demonstrating
that gain-of-function approaches like Dub-seq can identify
conditional phenotypes for genes that are not typically inter-
rogated by loss-of-function approaches such as Tn-seq.

Some genes had positive fitness benefits across many condi-
tions. In particular, five genes (recA, galE, dgt, rcnA, fabB) had
high-confidence benefits in 10 or more different conditions. The
most frequent benefits were found for recA and galE, which are
disrupted in the DH10B derivative host strain we used48

(Methods). Even for pleiotropic genes, we find that they confer
a more extreme beneficial phenotype in some conditions. For
example, UDP-glucose 4-epimerase (galE) is highly beneficial at
high copy numbers in the presence of 0.1 mM benzethonium
chloride, with gene scores of+ 12 or+ 14 in two replicate
experiments. All of galE’s other scores were under+ 5. Similarly,

strand exchange and recombination gene recA shows high fitness
scores of+ 6 in the presence of cisplatin, lomefloxacin and
sodium chloride. In addition to these examples, we found that 32
genes provide growth advantage in five or more antibiotics,
metals or other stress conditions, as compared with 241 genes
showing growth benefit in just one condition (Supplementary
Data 3).

Some of the Dub-seq experiments identified dozens of genes
with high-confidence fitness benefits. For example, with potas-
sium acetate as the carbon source, we identified 56 genes that had
high-confidence fitness benefits in both of two replicate
experiments (Supplementary Data 3). The two highest-scoring
genes encode isozymes of aconitase (acnA and acnB), which are
part of the tricarboxylic acid cycle for oxidizing acetate49. But the
relationship between the other beneficial genes and acetate
catabolism is not obvious. As another example, in copper (II)
chloride stress at 2 mM, 120 genes had high-confidence benefits.
The genes with the highest scores were envZ, mltD, dpiA, mepM,
cutC, ompX, ompC, ompF, and lipoprotein nlpE (Supplementary
Data 2 and 3). Overexpression of most of these genes is known to
activate the complex regulatory network of envelope stress
response via cpxAR and sigma-E50,51. Specifically, the increased
copper tolerance of strains that overexpress nlpE or cutC are due
to activation of the Cpx pathway52 or the sigma-E response53,
respectively. Finally, dozens of genes show growth benefits in the
presence of the membrane-disrupting cationic surfactants
benzethonium and benzalkonium. Most of these genes are
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involved in membrane lipid homeostasis, envelope stress response
pathways, and drug efflux systems (Fig. 4, Supplementary Data 3).

In total, we identified 41 instances where the Dub-seq fitness
data are consistent with the known growth benefit imparted by
the gene (Supplementary Data 4). These high confidence, known
hits include genes encoding diverse functions such as efflux
pumps, transporters, and regulators, as well as biosynthetic
enzymes and small RNAs, each yielding enhanced fitness via
diverse mechanisms. For example, overexpression of cysE (which
encodes serine acetyltransferase) probably increases nickel
tolerance through increased glutathione biosynthesis54, whereas
overexpression of rnc (which encodes RNase III) yields a growth
benefit in nickel and cobalt stress, as it downregulates the
expression of corA, which encodes a transporter that mediates the
influx of nickel and cobalt ions into the cell55.

We also identified high-confidence fitness benefits for
hundreds of genes that had not been previously associated with
a tolerance phenotype, including pssA, dcrA/sdaC, and dcrB in
sisomicin; pmrD in aluminum; treA, treB, and phnM in
phosphomycin; sRNAs chiX in nickel and ryhB in zinc; and a
number of genes of unknown function (Fig. 4, Supplementary
Data 3). To follow up some of the novel observations, we assayed
the growth of strains overexpressing the genes individually with
and without added stress. We used murA overexpression as a test
case, as this is known to confer resistance to phosphomycin56

(Supplementary Fig. 5). Growth curves confirmed that the

overexpression of either pssA or dcrB confers resistance to the
aminoglycoside antibiotic sisomicin, although the mechanism(s)
by which this resistance is conferred remains unclear. The gene
pssA encodes an essential phosphatidylserine synthase, whereas
dcrB is a periplasmic protein with a role in phage infection49.
Growth curves also confirm that the overexpression of the outer
membrane protein MipA confers strong resistance to benzetho-
nium chloride (Supplementary Fig. 5). mipA has previously been
implicated in the resistance to other antibiotics57.

Gene overexpression can also decrease host fitness16,17,58 and
may indicate important function for those gene products. We
identified 570 genes with a high-confidence negative effect on
fitness in at least one experiment (Supplementary Data 3). Some of
these genes appear to be more generally toxic when overexpressed
or have a global regulatory role and compromise host fitness in
multiple conditions. Twenty-four genes had detrimental effects on
fitness in 10 or more different conditions (Supplementary Data 3).
Conversely, some genes have negative gene scores in a few
conditions. For example, consistent with earlier studies we found
that overexpression of glpT or uhpT increases susceptibility to
phosphomycin59. These results also agree with clinical data, which
shows that the main cause of phosphomycin resistance in patients
is the downregulation of GlpT via downregulation of cAMP59.
Accordingly, we also found that overexpression of cpdA (which
encodes an enzyme that hydrolyzes cAMP) enhances fitness under
phosphomycin stress (Fig. 4).
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Finally, we analyzed our data for “epistatic” instances where
multiple nearby genes are necessary for the observed phenotype.
Specifically, we searched for evidence of synergy between genes by
analyzing scores for fragments containing more than one gene
that are significantly greater than the inferred sum of score of the
constituent genes (Methods). In total, we found six high scoring
epistatic-effect cases across 52 conditions in our Dub-seq data set
(fetA-fetB on nickel, ampD-ampE on benzethonium, ackA-pta on
D-lactate, arcA-yjjY on sisomicin, hns-tdk on phosphomycin, and
yfiF-trxC on potassium acetate (Supplementary Fig. 6a–c)).
Among these, three gene pairs have related functions (fetA-fetB
form a complex, pta-ackA encode enzymes that catalyze adjacent
reactions in the catabolism of lactate, and ampD-ampE are
thought to be a signaling pathway49) and our data indicate,
together they provide a larger growth benefit. Specifically,

overexpression of fetAB together has been shown to improve
survival during nickel stress60.

Comparison with loss-of-function fitness data. Integrating
large-scale genetic gain- and loss-of-function can provide added
specificity to biological insights. For instance, genes with resis-
tance phenotypes when overexpressed and sensitivity phenotypes
when deleted are often specifically involved in the condition of
interest, as demonstrated by studies identifying drug targets in
yeast61 or identifying small RNA regulators62 or antibiotic
resistance factors in bacteria63. Furthermore, genes with opposing
loss- and gain-of-function phenotypes for stress compounds are
more likely to be true resistance determinants as opposed to genes
that have indirect effects when overexpressed16. For 45 of the
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Fig. 4 Heatmap of dual-barcoded shotgun expression library sequencing (Dub-seq) fitness data for 52 conditions and for 67 genes with large benefits. Only
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conditions that we profiled in this study with Dub-seq, we can
systematically compare these phenotypic consequences of over-
expression to loss-of-function mutations as determined by ran-
dom barcode transposon site mutagenesis15. The two data sets
studied the same growth media and compounds, but not neces-
sarily at the same concentrations, and they used different strains
of E. coli (DH10B or BW25113). Across these 45 conditions, we
identified 625 high-confidence benefits of overexpression (or
0.3% of gene-condition pairs). Of the 625 high-confidence ben-
efits, 480 are for genes with RB-TnSeq data, and in 62 cases (12%)
that loss-of-function led to a significant disadvantage (RB-TnSeq
fitness < –1 and t < –4, where t is a t-like test statistic13). By
chance, we would expect just 2.5% agreement, which is sig-
nificantly less (P < 10-15, chi-squared test of proportions). Overall,
we found moderate overlap between genes that are beneficial
when overexpressed and important for fitness when disrupted
(Supplementary Data 3).

To illustrate the biological insights that can be derived by
systematically comparing gain- and loss-of-function data on a
genomic scale, we present three examples: growth in the presence
of elevated nickel, cobalt, or sodium chloride (Fig. 5a–c). Under
each condition, we find that a number of genes that are both
necessary for resisting the stress when knocked-out and sufficient
for a resistance phenotype when singly overexpressed. These
instances include known examples such as the aforementioned
metal exporter RcnA47 and RNase III for cobalt and nickel
tolerance55, as well as the osmolyte transporter ProP64 and
envelope biogenesis factor YcbC (ElyC)65 for tolerance to osmotic
stress imposed by sodium chloride. (In our Dub-seq data, proP
and ycbC failed to pass the filters for high-confidence effects). In
addition to these known examples, there are more novel
observations (Fig. 5a–c). Under nickel and cobalt stress, the
uncharacterized protein YfgG (DUF2633) is important for
tolerance, a finding that is supported by RB-Tnseq data15 and
by individual growth curve analysis of an yfgG overexpression
strain (Fig. 5d). Although the precise biochemical function of
YfgG is unclear, a close homolog of this protein in Klebsiella
michiganensis is also important for fitness under nickel and cobalt
stress15. As a second example, we find that ProY is important for
nickel resistance. A ProY homolog in the related bacterium K.
michiganensis is also important for nickel resistance15. Using
individual strain growth curve analysis, we confirmed that
overexpression of proY alone can confer nickel resistance to E.
coli (Fig. 5e). Although ProY is currently annotated as a cryptic
proline transporter, we suspect that its function is to transport
histidine as it can suppress histidine auxotrophy25 and homologs
of this protein are required for histidine utilization in other
bacteria15. In light of this, we speculate that the nickel resistance
phenotype of ProY is due to increased sequestration of nickel ions
by a higher intracellular concentration of histidine. As a final
example, we found that the porphyrogen oxidase YfeX confers
sodium chloride resistance in E. coli, a finding confirmed by an
individual growth curve analysis (Fig. 5f). Although we are unsure
how this protein manifests this phenotype, we note that yfeX
homologs are important for resisting sodium chloride in multiple
bacteria15. We have provided a general working hypothesis for
many of other genes with high fitness scores in Supplementary
Data 5.

Discussion
Here we describe Dub-seq, a technology for performing paralle-
lized gain-of-function fitness assays across diverse conditions.
Dub-seq couples shotgun cloning of random DNA fragments
with competitive fitness assays to assess the phenotypic impor-
tance of the genes contained on those fragments in a single tube

assay. We demonstrate that Dub-seq is reproducible, economical,
scalable, and identifies both known and novel gain-of-function
phenotypes.

In this proof-of-concept study, we generated a Dub-seq library
of E. coli genomic DNA and performed 152 genome-wide assays
to identify 400 different genes with a high-confidence fitness
benefit when overexpressed in at least one experimental condi-
tion. As far as we know, the majority of these gene–phenotype
associations have not been reported before and they include
dozens of genes of unknown function (Supplementary Data 3).
We found 241 genes that confer a fitness benefit in just one
condition, indicating a condition-specific phenotype. Thirty-two
genes enhanced fitness in five or more conditions, suggesting
their broader role in host fitness and importance in cross-
resistance phenotypes observed between metals, antibiotics,
antiseptics, and other stresses66,67. Dub-seq recapitulated 41
known instances of positive fitness effects, wherein the fitness
phenotypes stem from diverse mechanisms (Supplementary
Data 4). Finally, we show that systematically comparing gain-of-
function and loss-of-function data sets provide additional insights
into those genes that are both necessary and sufficient for stress
tolerance phenotypes, as we illustrated for yfgG (a gene of
unknown function important for nickel and cobalt tolerance),
proY (a probable histidine transporter), and yfeX (poryphorigen
oxidase important for sodium chloride tolerance). Intriguingly, all
three of these examples have conserved phenotypes in other
bacteria, demonstrating that even in E. coli there are evolutionary
conserved functions that remain to be elucidated with approaches
like Dub-seq.

Dub-seq can be readily extended to DNA from other sources
and many cultured bacteria could be adapted as hosts for the
genome-wide fitness assays. By using other hosts, we can over-
come gene expression and toxicity issues associated with
expressing heterologous DNA in model hosts34–36. To extend the
Dub-seq methodology for functional profiling of metagenomic
DNA isolated from diverse communities, we would need to
generate and map a higher diversity of barcode pairs. In addition,
to ensure reliable expression of heterologous genes, a number of
approaches can be used to activate transcription or translation of
genes encoded within foreign DNA42,68.

In this work, we generated a Dub-seq library with a ~2.6 kb
insert size and therefore by design, the library only covers frag-
ments encoding 2–3 genes on an average. Almost all of the genes
with Dub-seq data (98%) are covered by at least two independent
fragments. As Dub-seq fragments in this work cover only 2–3
genes, the phenotypes that are only conferred by the activity of a
larger group of genes (such as multisubunit complexes) will not be
detected. By adapting the Dub-seq strategy to fosmids, cosmids and
bacterial artificial chromosomes, future efforts can clone larger size
genomic fragments to create Dub-seq libraries for the discovery of
activities encoded by multiple genes, including secondary meta-
bolites and screened in diverse model host organisms.

Given the increasing knowledge gap between genomic
sequence and function, and the limited ability of computational
approaches to accurately predict gene function from sequence,
high-throughput experimental methods are needed to assign gene
function and resolve roles of uncharacterized genes. Recently, a
number of loss-of-function methods have been developed5–8,10–
14, but only a fraction of genes from genetically tractable microbes
can be readily annotated with a specific function using these
approaches. We envision that multiple, complementary experi-
mental approaches that can be applied en masse and that corre-
sponding improvements in computational tools are ultimately
necessary to not only uncover the roles of most microbial genes,
but also to propagate these new annotations into existing data-
base structures. The Dub-seq approach we presented here fulfills
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an important technology gap in performing gain-of-function
screens and will facilitates systematic functional characterization
of microbial genomes.

Methods
Strains and growth conditions. E. coli BW25113 was purchased from the E. coli
Genetic Stock Center. All plasmid manipulations were performed using standard
molecular biology techniques69. All enzymes were obtained from New England
Biolabs (NEB) and oligonucleotides were received from Integrated DNA Tech-
nologies (IDT). E. coli strain DH10B (DH10B derivative, NEB 10-Beta) was used
for plasmid construction and as host for Dub-seq fitness assays. Unless noted, all
strains were grown in LB supplemented with 30 µg/ml chloramphenicol at 37 °C in

the Multitron shaker. The primers, plasmids, and strains used in this study are
listed in Supplementary Data 6, 7 and 8, respectively.

Construction of dual-barcoded Dub-seq vector. To construct a double-barcoded
vector, we used pFAB5477 an in-house medium copy (copy number of ~20)
plasmid with modified pBBR1 replication origin and a chloramphenicol resistance
marker70. pBBR1-based broad host plasmids are relatively small, mobilizable and
have been widely used for a variety of genetic engineering applications in diverse
microbes71. To insert a pair of DNA barcodes on the plasmid, we used phos-
phorylated oFAB2853 and oFAB2854 primers to amplify the entire plasmid
pFAB5477, removed the plasmid backbone using DpnI (as per manufacturing
instructions, NEB), and ligated the amplified and pure product using T4 ligase (as
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expression library sequencing (Dub-seq) gene fitness data for E. coli genes under growth with inhibitory concentrations of cobalt (a), nickel (b), and sodium
chloride (c). Selected genes are highlighted. d Growth of E. coli overexpressing yfgG under cobalt stress; pssA is a control. e Growth of E. coli overexpressing
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per manufacturing instructions, NEB). The random N’s in oFAB2853 and
oFAB2854 (Supplementary Data 6) represent the UP and DOWN barcode
sequences. The ligated product, pFAB5491, was column purified using the Qiagen
PCR purification kit, transformed into DH10B electrocompetent cells (NEB
10-Beta E. coli cells, as per manufacturing instructions, NEB) and transformants
were selected on LB agar plates supplemented with 30 µg/ml chloramphenicol. The
next day, ~250,000 colony forming units (CFU) were estimated and scraped
together into 20 ml LB with 30 µg/ml chloramphenicol. The culture library was
diluted to an optical density at 600 nm (OD600) of 0.2 in fresh LB medium sup-
plemented with 30 µg/ml chloramphenicol and grown to a final OD600 of ~1.2. We
added glycerol to a final concentration of 15%, made multiple 1 ml glycerol stocks,
and stored them at –80 °C. We also collected cell pellets to prepare plasmid DNA of
pFAB5491 for further characterization of the library (BPseq).

BPseq to characterize dual-barcoded Dub-seq vector. To associate the pair of
DNA barcodes, we performed BPseq of the plasmid pFAB5491 library. For deep
coverage of the library, we performed 10 different PCR reactions using primers
VM_barseq_P1 and VM_Barseq-P2. The forward primers VM_Barseq-P2 contains
different 6-bp TruSeq indexes, and were automatically demultiplexed by the Illu-
mina software.

We performed PCR in a 100-µl total volume with 5 µl common reverse primer
VM_barseq_P1 (4 µM), 5 µl forward primer VM_Barseq-P2 _IT001 to IT010 (4
µM), 38 µl of sterile water, 2 µl template pFAB5491, and 50 µl of 2X stock of Q5
DNA Polymerase mix (500 µl of 2X stock of Q5 DNA Polymerase mix consists of
200 µl Q5 buffer, 20 µl dNTP, 50 µl DMSO, 10 µl Q5 DNA Polymerase enzyme,
and 220 µl water) under following PCR conditions: 98 °C for 4 min, followed by 15
cycles of 30 s at 98 °C, 30 s at 55 °C, 30 s at 72 °C, and final extension at 72 °C for 5
min. Finally, we ran the PCR products on an analytical gel to confirm
amplification. We pooled equal volumes (10 µl) of BarSeq PCR products, purified
the combined product using Qiagen PCR purification kit, and eluted in 40 µl of
sterile water. We quantified the DNA product with a Qubit double-stranded DNA
(dsDNA) high-sensitivity (HS) assay kit (Invitrogen). The BPseq samples were
sequenced first on Illumina MiSeq and then HiSeq 2500: both with 150-bp single-
end runs.

BPseq data analysis. BPseq reads were analyzed with bpseq script from the Dub-
seq python library with default parameters (code available at https://github.com/
psnovichkov/DubSeq). The script looks for the common flanking sequences
around each barcode (UP and DOWN) and requires an exact match of nine
nucleotides on both sides. By default, these flanking sequences may be up to two
nucleotides away from their expected positions. The script also requires that each
position in each barcode have a quality score of at least 20 (that is, an estimated
error rate of under 1%). This gives an initial list of pairs of barcodes with the
correct length and reliable sequence quality.

We applied two additional filters to minimize the number of erroneous barcode
pairs that can be caused by PCR artifacts or sequencing errors. First, we check
whether a given barcode can be a result of a single-nucleotide substitution
introduced in a real barcode and filter out all such barcodes. We perform a pairwise
sequence comparison of all extracted barcodes (UP and DOWN barcodes are
treated separately) and search for “similar” barcodes. Two barcodes are considered
to be similar if they are different by only one nucleotide. A given barcode passes the
filter if it does not have similar barcodes or it is at least two times more frequent
than the most abundant similar barcode.

Second, we check whether a given barcode pair can be a result of chimeric PCR
and filter out all such pairs. As the region between and around UP and DOWN
barcodes are identical in all plasmids in our library, we expected artifacts from
formation of chimeric BPseq PCR products13. We perform a pairwise comparison
of all barcode pairs and search for “related” pairs. Two-barcode pairs are
considered to be related if they have either the same UP or DOWN barcodes. The
presence of the same UP (or DOWN) barcode in multiple barcode pairs is
potentially a sign of chimeric PCR. To distinguish the true barcode pair from the
chimeric one, we check the frequency of all the related barcode pairs. A given
barcode pair passes the filter and is considered to be non-chimeric if it does not
have related pairs or it is at least two times more frequent than the most abundant
related barcode pair. As a result, the “reference set” of barcode pairs is created.
From the BPseq step, we obtained 5,436,798 total reads. Among these, total usable
reads (reads that support barcode pairs from the reference set) were 2,933,702 and
represent about 54% of total reads.

Dub-seq vector preparation for cloning genomic fragments. To prepare the
Dub-seq vector pFAB5491 for cloning, we made 900 µl or about 100 µg of plasmid
preparation (Qiagen plasmid miniprep kit), and performed two rounds of PmiI
digestion. Restriction digestion reaction included 900 µl (total 100 µg) of pFAB5491
plasmid, 100 µl PmiI enzyme, 400 µl 10X cutsmart buffer, and water to make up the
volume of 4000 µl. We incubated the reaction at 37 °C on a heating block for 4 h
and then checked the reaction progress on an analytical 1% agarose gel. To
dephosphorylate the restriction-digested vector, we added one unit of rSAP for
every 1 pmol of DNA ends (about 1 μg of a 3-kb plasmid), and incubated at 37 °C
for 2 h in a PCR machine. We stopped the reaction by heat inactivation of rSAP

and restriction enzyme at 70 °C for 20 min. The cut and dephosphorylated vector
library was then gel purified (Qiagen gel extraction kit). To remove any uncut
vector, we repeated the entire process of restriction digestion, dephosphorylation,
and purification. The final concentration of cut and pure barcoded vector library
used for cloning genome fragments was about ~30 ng/µl.

Construction of E. coli Dub-seq library. To construct Dub-seq library of E. coli
genomic fragments, we extracted E. coli BW25113 genomic DNA and 1 µg was
fragmented by ultrasonication to an average size of 3000 bp with a Covaris S220
focused ultrasonicator. The sheared genomic DNA was then gel purified to size
select and end-repaired using End-IT kit (Epicentre, as per manufacturer
instruction). Briefly the 50 µl reaction included: 34 µl sheared DNA (1.0 µg total), 5
µl ATP 10mM, 5 µl dNTP mix (10 mM), 5 µl EndIt buffer 10X, and 1–2 µl EndIT
enzyme. We incubated the reaction at room temperature for 45 min, and inacti-
vated the enzyme by incubating the reaction at 70 °C for 10 min. The end-repaired
genome fragments were purified with PCR clean-up kit (Qiagen), and quantified
on Nanodrop.

The end-repaired genomic fragments were then ligated to the restriction-
digested, sequence-characterized dual-barcoded backbone vector (pFAB5491) at
8:1 insert:vector ratio using Fast-link Ligase enzyme (Epicentre, as per
manufacturer instruction). The total 60 µl ligation reaction consists of 4 µl of
restriction-digested pFAB5491, 20 µl end-repaired DNA, 3 µl ATP (10 mM), 6 µl
10X ligase buffer, 19 µl water, and 8 µl Fast-link-ligase. The ligation was incubated
overnight (18 h) at 16 °C, inactivated at 75 °C for 15 min, and purified using PCR
purification kit (Qiagen).

For transforming the ligation reaction, 60 µl of column-purified ligation
reaction was mixed gently with 1500 µl of NEB DH10B electrocompetent cells on
ice and then the mix was dispensed 60 µl per cuvette. Electroporation was done
using parameters supplied by NEB. Transformed cells were recovered by adding 1
ml super optimal recovery media (as per competent cell manufacturer instruction,
NEB). We pooled all recoveries and added additional 10 ml of fresh SOC.
Transformants were then incubated at 37 °C with shaking for 90 min. We spun
down the pellets and resuspended the pellet in 6 ml SOC. Different volumes of 6 ml
resuspended pellets were then plated on overnight-dried bioassay plates (Thermo
Scientific # 240835) of LB agar supplemented with 30 µg/ml chloramphenicol. We
also did dilution series for estimating CFUs.

We determined the number of colonies required for 99% coverage of E. coli
genome using the formula N= ln(1–0.99)/ln(1–(Insert size/Genome size)) to
ensure that genome fragments are present in the cloned library72. For example, to
cover the E. coli genome (of size 4.7 Mb) with fragments of 3 kb, we need about
4610 strains for 99% coverage. We collected ~40,000 colonies by scraping the
colonies using a sterile spatula into 20 ml LB supplemented with 30 µg/ml
chloramphenicol in a 50 ml Falcon tube and mixed well. This E. coli Dub-seq
library was then diluted to an optical density at 600 nm (OD600) of 0.2 in fresh LB
supplemented with 30 µg/ml chloramphenicol and grown to a final OD600 of ~1.2
at 37 °C. We added glycerol to a final concentration of 15%, made multiple stocks
of 1 ml volume, and stored the aliquots at –80 °C. We also made cell pellets to store
at –80 °C and to make large plasmid preparation (Qiagen) for BAGseq library
preparation.

BAGseq to characterize barcoded genomic fragment junctions. We char-
acterized the final plasmid library pFAB5516 using a TnSeq-like protocol13, which
we call Barcode-Association-with Genome fragment sequencing or BAGseq.
BAGseq identifies the cloned genome fragment and its pairings with neighboring
dual barcodes. This step of associating the dual barcodes with each library of
genomic fragments is only done once (by deep sequencing) and used as a reference
table to derive connections between observed functional/fitness traits with specific
cloned genomic fragment (Fig. 1).

To generate Illumina-compatible sequencing libraries to link both UP and
DOWN random DNA barcodes to the ends of the cloned genome fragments, we
processed two samples per library. The plasmid library (1 µg) samples were
fragmented by ultrasonication to an average size of 300 bp with a Covaris S220
focused ultrasonicator. To remove DNA fragments of unwanted size, we performed
a double size selection using AMPure XP beads (Beckman Coulter) according to
the manufacturer’s instructions. The final fragmented and size-selected plasmid
DNA was quality assessed with a DNA-1000 chip on an Agilent Bioanalyzer.
Illumina library preparation involves a cascade of enzymatic reactions, each
followed by a cleanup step with AMPure XP beads. Fragmentation generates
plasmid DNA library with a mixture of blunt ends and 5ʹ and 3ʹ overhangs. End
repair, A-tailing, and adapter ligation reactions were performed on the fragmented
DNA using the NEBNext DNA Library preparation kit for Illumina (New England
Biolabs), according to the manufacturer’s recommended protocols. For the adapter
ligation, we used 0.5 µl of a 15 µM double-stranded Y adapter, prepared by
annealing Mod2_TS_Univ (ACGCTCTTCCGATC*T) and Mod2_TruSeq (Phos-
GATCGGAAGAGCACACGTCTGAACTCCAGTCA). In the preceding
oligonucleotides, the asterisk and Phos represent phosphorothioate and 5ʹ
phosphate modifications, respectively.To specifically amplify UP barcodes and
neighboring genomic fragment terminus by PCR, we used the UP-tag-specific
primer oFAB2923_Nspacer_barseq_universal, and P7_MOD_TS_index1 primer.
For the DOWN-tag amplification, we used oFAB2924_ Nspacer_barseq_universal
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and P7_MOD_TS_index2 primer. For the BAGseq UP barcode and DOWN
barcode site enriching PCR, we used JumpStart Taq DNA polymerase (Sigma) in a
100 µl total volume with the following PCR program: 94 °C for 2 min and 25 cycles
of 94 °C 30 s, 65 °C for 20 s, and 72 °C for 30 s, followed by a final extension at
72 °C for 10 min. The final PCR product was purified using AMPure XP beads
according to the manufacturer’s instructions, eluted in 25 µl of water, and
quantified on an Agilent Bioanalyzer with a DNA-1000 chip. Each BAGseq library
was then sequenced on the HiSeq 2500 system (Illumina) with a 150 SE run to map
UP and DOWN barcodes to genomic inserts in the Dub-seq E. coli library.

BAGseq data analysis. BAGSeq reads were analyzed with bagseq script from the
Dub-seq python library with default parameters (code available at https://github.
com/psnovichkov/DubSeq). Fastq files for UP and DOWN barcodes with asso-
ciated (cloned) genomic fragments are processed separately. For each read, the
script looks for the flanking sequences around a barcode and requires an exact
match of nine nucleotides on both sides and a minimum quality score of 20 for
each nucleotide in a barcode. The sequence downstream of the identified barcode is
considered to be a candidate genomic fragment and is required to be at least 15
nucleotides long for further processing. As a result, the initial list of the extracted
barcodes and candidate genomic fragments is constructed.

All extracted genomic fragments were compared with the E. coli genome
sequence with BLAT using default parameters. Only hits with alignment block size
of at least 15 nucleotides and at most one indel were considered. It is also required
that the extracted genomic fragment is mapped to one location in the genome.
Thus, mappings to repeat regions were ignored. We applied two additional filters to
minimize the number of erroneous associations between barcode and genomic
location. First, we applied the same type of filter that we use for the analysis of
BPSeq reads to filter out barcodes with a one-nucleotide error.

Second, the same barcode can be associated with different genomic fragments
because of PCR artifacts (chimeras) or because multiple fragments were cloned
between the same pair of barcodes. To filter out erroneous barcode mappings, the
number of reads supporting different locations for the same barcode were
calculated. To distinguish the true location from the false one, the frequency of the
most abundant location (the number of supported reads) was compared with
frequencies of all other locations for the same barcode. A given association between
the barcode and the genomic location is considered to be true if the barcode does
not have any other associated locations or the abundance of this association is at
least two times more frequent than any other associations for the same barcode. As
a result, the reference set of associations between UP (and separately for DOWN)
barcodes and genomic locations is created, which we call “BAGseq reference set”.

The BPseq reference set of barcode pairs and BAGseq reference set are
combined together to associate pairs of barcodes with genomic regions (to create
the final “Dub-seq reference set”). This step is done using the bpag script from the
Dub-seq python library with default parameters. For each BPseq barcode pair, the
script checks if the associations between UP and DOWN barcodes with genomic
locations are present in the BAGSeq reference set. If both UP and DOWN barcodes
(from BPseq reference set) are mapped to the genome, then the script checks the
length of the region between the mapped locations and requires it to be between
100 nt and 6 kb. As a result, the final Dub-seq reference list of barcode pairs
associated with genomic regions is created. Among total 10,600,088 reads for UP
barcodes, usable reads were 3,884,931 (BAGseq UP barcode reads supporting the
Dub-seq reference set), representing about 36.65% of total reads, whereas for total
9,671,635 reads for DOWN barcodes, usable reads were 2,499,399, representing
about 25.84% of total reads (BAGseq DOWN barcode reads supporting the Dub-
seq reference set).

Competitive growth experiments. For genome-wide competitive growth experi-
ments, a single aliquot of the Dub-seq library in E. coliDH10B was thawed, inoculated
into 25ml of LB medium supplemented with chloramphenicol (30 µg/ml), and grown
to mid-log phase. At mid-log phase, we collected cell pellets as a common reference
for BarSeq (termed start or time-zero samples) and we used the remaining cells to set
up competitive fitness assays under different experimental conditions at a starting
OD600 of 0.02. For carbon source growth experiments, we used M9 defined medium
supplemented with 0.3mM L-leucine (as DH10B is auxotrophic for L-leucine)48 and
chloramphenicol. For experiments with stress compounds, we used an inhibitory but
sublethal concentration of each compound, as determined previously15. All stress
experiments were done in LB with chloramphenicol. All pooled fitness experiments
were performed in 24-well microplates with 1.2ml of media per well and grown in a
multitron shaker. We took OD readings periodically in a Tecan M1000 instrument to
ensure that the cells were growing and to confirm growth inhibition for the stress
experiments. The assayed Dub-seq library cell pellets were stored at –80 °C prior to
plasmid DNA extraction.

BarSeq. Plasmid DNA from Dub-seq library samples was extracted either indi-
vidually using the Plasmid miniprep kit (Qiagen) or in 96-well format with a
QIAprep 96 Turbo miniprep kit (Qiagen). Plasmid DNA was quantified with the
Quant-iT dsDNA BR assay kit (Invitrogen). The BarSeq PCR of UP barcodes was
done as previously described13 with ~50 ng of plasmid template per BarSeq PCR
reaction. To quantify the reproducibility of both UP and DOWN barcodes in
competitive growth experiments, we collected plasmid DNA from nickel and cobalt

experiments, and amplified both UP and DOWN barcodes in two separate PCRs
using the same plasmid library template. For BarSeq PCR of DOWN barcodes, we
used universal-forward-primer DT_BarSeq_p1_FW and reverse primer DT_Bar-
Seq_IT017. The PCR cycling conditions and purification steps were same as for the
UP barcodes13. All experiments done on the same day and sequenced on the same
lane are considered as a “set”.

BarSeq data analysis and fragment score calculation. From HiSeq 4000 runs,
we obtained ~400 million of reads per lane, or 4.2 million reads per sample (for
multiplexing 96 samples) typically >60% reads were informative after filtering out
reads for sequencing errors and unmapped barcodes. BarSeq reads were analyzed
with barseq script from the Dub-seq python library with default parameters. For
each read, the script looks for the flanking sequences around each barcode and
requires an exact match of nine nucleotides on both sides and a minimum quality
score of 20 for each nucleotide in a barcode. The number of reads supporting each
barcode is calculated. We apply the same type of filter that we use for the analysis
of BPSeq reads to filter out barcodes with single-nucleotide substitutions relative to
real barcodes (see BPSeq section). As a result, the list of barcode and their counts is
created.

Calculation of fragment scores (fScores). Given a reference list of barcodes
mapped to the genomic regions (BPSeq and BAGSeq), and their counts in each
sample (BarSeq), we estimate fitness values of each genomic fragment (strain) using
fscore script from the Dub-seq python library with default parameters. First, the
script identifies a subset of barcodes mapped to the genomic regions that are well
represented in the time-zero samples for a given experiment set. We require that a
barcode have at least 10 reads in at least one time-zero sample to be considered a
valid barcode for a given experiment set. Then, the fscore script calculates fitness
score only for the strains with valid barcodes.

Strain fitness (fi) is calculated as a normalized log2 ratio of counts between the
treatment (condition or end) sample si and sum of counts across all (start) time-
zero ti

fi ¼ log2
siþ1
tiþ1

� �

Then, the strain fitness scores are normalized so that the median in each
experiment is zero.

Calculating gene score (gScore). Given the fitness scores calculated for all Dub-
seq fragments, we estimate a fitness score for each individual gene that is covered
by at least one fragment. As mentioned in the Results, simply averaging the scores
for the fragments that cover a gene gives spurious results for non-causative genes
that are adjacent to a causative gene. To overcome this problem, we modeled the
fitness score of each fragment as the sum of the fitness scores of the genes that are
completely covered by this fragment. Our model for estimating gene scores
assumes that genes contribute independently to fitness, that most genes have little
impact on fitness, and that intergenic regions have no effect on host fitness.

To estimate gene scores, we cannot use ordinary least squares (OLSs), the most
common type of regression, because of over fitting, which would produce
unrealistic high positive and low negative scores for many genes. We also
considered regularization methods (Ridge, LASSO, and ElasticNet), but these
suffered from either too much shrinkage of fitness scores (biasing them towards
zero) or failed to eliminate over fitting (see Supplementary Note 1, Supplementary
Fig. 7). Instead, we use NNLS regression73, where the predicted gene scores are
restricted to take only non-negative values. If a gene with a potential benefit is next
to (but not covered by) a fragment with negative fitness, most regression methods
would inflate the benefit of the gene and assign a negative score to the nearby gene.
NNLS instead ignores the (often noisy) negative scores for the nearby fragments.
To estimate negative gene scores, we also used NNLS, but with the signs of the
fragment scores flipped.

In our model, the expected fitness of a fragment is given by

fi ¼
X
j

gij

were gij is a fitness score of a gene covered by i-th fragment completely. The NNLS
minimizes

jjAg � f jj22; subject to g � 0

where g a vector of gene fitness scores to be estimated, f is vector of the “observed”
fitness scores of fragments, A a matrix of ones and zeros defining which gene is
covered by which fragment completely. Gene scores were calculated using the
gscore script from the Dub-seq python library with default parameters, which uses
the nnls function from the optimize package of the scipy python library.

High-confidence gene scores and estimating the false discovery rate. We used
several filters to identify gene scores that were likely to be of high-confidence and
reliable. Whereas the non-negative regression was used to determine if the high
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fitness of the fragments covering the gene are due to this gene or a nearby gene,
these filters were intended to ensure that the fragments covering the gene had a
genuine benefit. Briefly, we identify a subset of the effects to be reliable, if the fitness
effect was large relative to the variation between start samples (|score| >= 2); the
fragments containing the gene showed consistent fitness (using a t-test); and the
number of reads for those fragments was sufficient for the gene score to have little
noise (see below). Effects that passed these filters were more likely to be consistent
in replicate experiments (for example, see Fig. 3d). We considered an effect that
passed these filters to be of high confidence if it was based on more than one
fragment or if the gene had a large effect in another experiment for the compound.
In the following paragraphs, we detail these data filtration steps.

The first filter was |gene score| >= 2, as such a large effect occurred just four
times in 17 control comparisons between independently processed but identical
“start” samples (0.2 per experiment). In contrast, the actual conditions gave 40
large effects per experiment on average (over 150 times more).

Second, we noticed that some genes had high scores because of a single
fragment with a very high score. These fragments did not have high scores in
replicate experiments, so their high scores might be due to secondary mutations.
To filter out these cases, we performed a single-sample t-test on the fragment scores
(for the fragments that covered the gene) and required P < 0.05 (two-tailed t-test).
This test asks if the mean is significantly different from a reference value. To handle
uncertainty in the true centering of the fragment scores (which were normalized to
have a median of zero), we considered the mean of all fragment scores for the
experiment. We used this as the reference value (instead of zero) if this mean had
the same sign as the gene’s score. This makes the filter slightly more stringent. If
the gene has just one fragment, then we cannot apply the t-test, so we instead
require that |fragment score| be in the top 1% for this experiment.

Third, we checked that the effect was larger relative to the expected noise in the
mean of the fragment scores that cover the gene. The expected noise for each
fragment can be estimated as sqrt(1/(1+ count_after)+ 1/(1+ count_start))/ln(2).
This approximation is derived from the best case that the noise in the counts
follows a Poisson distribution. The expected noise for the mean of the fragment
scores is then sqrt(sum(fragment_noise2))/nfragments. Note that z=mean
(fragment score)/noise would (ideally) follow the standard normal distribution. We
use |z| >= 4 as a filter; with 4303 genes being assayed, we would expect about 0.3
false positives per experiment.

Effects that passed these three filters were usually consistent across replicate
experiments and represent reliable scores. We had two biological replicates for 64
of the 82 conditions (a compound at a given concentration) that we studied. Across
these 64 pairs of replicate experiments, 85% of genes with filtered effects in one
replicate were consistent (|score| >= 1.5 and the same sign) in the other replicate.
Large effects (|score| >= 2) were more likely to replicate if they were filtered (85%
versus 59% otherwise). Among filtered effects for genes covered by more than one
fragment, 39% of the effects that did not replicate were from a single condition
(zinc sulfate stress at 1 mM). We did not identify any obvious issue for the data
from this condition. In total, 4303 genes are covered by at least one fragment, but
there are only 4151 genes with at least one gene score (adequate representation in
at least one start sample).

Effects that passed these three filters were considered to be high confidence if the
gene was covered by multiple fragments. Because of the risk of secondary mutations,
a measurement for a gene with a single fragment was only considered high
confidence if it was reliable and was also supported by a large effect (|score| >= 2)
in another experiment for that compound.

To estimate the false discovery rate for high-confidence effects, we randomly
shuffled the mapping of barcodes to fragments, recomputed the mean scores for
each gene in each experiment, and identified high-confidence effects as for the
genuine data. This shuffling test will probably overestimate the false discovery rate
because it assumes that all of the variability in the fragment scores is due to noise.
Also, we used the mean score, rather than regression-based gene score, in this test.
This might also lead to an overestimate of the false discovery rate . We repeated the
shuffle procedure 10 times. On average, each shuffled data set had 75 high-
confidence effects, whereas the actual data had 4051 high-confidence effects, so we
estimated the false discovery rate as 75/4051= 1.9%.

Impact of operon structure on gene fitness. In the current Dub-seq design, the
plasmid backbone lacks a promoter or ribosome binding site to drive the
expression of genes within the random fragments, so expression relies on the native
promoters within the fragments. If a fragment contains a gene but not its promoter,
then the gene might not be expressed and might not show a benefit. In particular,
genes that are in operons, but are not at the beginning of the operon, might not
show a benefit. On the other hand, internal promoters within operons are
common74,75. To determine if the lack of a promoter is a problem in practice, we
asked how often genes at the beginning of transcripts or later in transcripts76 had
high-confidence fitness benefits.

To quantify the effect on gene fitness due to gene location within an operon, we
made a list of genes that are found first in a transcript or later in a transcript based
on the operon structures from RegulonDB 10.5 version76. We ignored operons
with “weak” evidence confidence level. Genes that were at the beginning of one
transcript and at a later position in another transcript were excluded. This filtering
narrowed down the list of genes in operons to 881 that have Dub-seq data and gene

fitness scores. We compared the fitness of the first and later genes (in operons) to
examine the impact of operon structure in the Dub-seq data.

Calculating gene-pair fitness score. Although our model assumes that the genes
on a fragment contribute independently to fitness, there are cases where multiple
nearby genes work together to confer a phenotype. For estimating such “epistatic”
synergistic fitness contribution by neighboring pair of genes, we included addi-
tional variables in our fitness calculation to account for the contribution of pairs of
adjacent genes (and their intergenic regions). For a gene-pair to qualify to be valid
hit, the score for the gene-pair has to be more than the individual gene scores from
single-gene regression model, scores should be consistent across replicates and
should be supported by more than one fragment. After manual filtering, we found
six high scoring epistatic-effect instances where gene-pairs positively contribute to
the host fitness under specific condition (Supplementary Data 5). Among these,
three gene-pairs have related functions (fetA-fetB on nickel, ampD-ampE on
benzethonium, ackA-pta on D-lactate49) and make biological sense. However, in
the other three high scoring gene-pairs arcA-yjjY, hns-tdk and yfiF-trxC, each gene
is divergently transcribed and the reason behind combined fitness phenotype is not
obvious. We speculate, the fitness phenotype in these cases may be function of
intergenic regions in addition to the encoded genes.

Experimental validation of single genes. To experimentally validate some of top
hits in our Dub-seq results, we used the ASKA ORF collection29. The ASKA library
consists of E. coli ORFs cloned on a pMB1 replication origin plasmid and driven by
an Isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter. We
extracted individual ASKA ORF plasmids from the collection, sequence confirmed
and transformed the plasmids into our assay strain E. coli DH10B. As the plasmid
copy number and the strength of promoter and ribosome binding site used in the
ASKA ORF collection is different from the broad host pBBR1 plasmid system used
in E coli Dub-seq library, we screened for an optimum IPTG levels to induce the
expression of specific gene in order to study the host fitness. We grew the indi-
vidual strains in 96-well microplates with 150 µl total volume per well. These plates
were grown at 30 °C with shaking in a Tecan microplate reader (either Sunrise or
Infinite F200) with optical density readings every 15 min.

Library visualization tools. We used the Dub-seq viewer tool from the Dub-seq
python library (https://github.com/psnovichkov/DubSeq) to generate regions of the
E. coli chromosome covering fragments (landscape mode) presented in Fig. 2a. To
generate fitness score plots as shown in Fig. 3a, b, and Supplementary Figs. 4, 6 and
7, we used gene-browser mode. We used Circa software (OmGenomics) to generate
genome coverage plot shown in Fig. 2a.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. Code for processing and analyzing Dub-seq data is available at
https://github.com/psnovichkov/DubSeq

Data availability
Sequencing data have been uploaded to the Sequence Read Archive under Bio-
Project accession number PRJNA512427 [http://www.ncbi.nlm.nih.gov/bioproject/
512427]. Complete data from all experiments (read counts per barcode, fragment
scores, and gene scores) are deposited here: [https://doi.org/10.6084/m9.
figshare.6752753.v1]. The source data underlying Figs. 2b–d, 3c–d, 4 and 5a–f and
Supplementary Figs. 1a–c, 2a, b, 3a, b, 5a–d and 6a–c are provided as a Source Data
file. Link to website with supplementary information and bulk data downloads:
http://genomics.lbl.gov/supplemental/dubseq18/. All other data available from the
authors upon reasonable request.
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