
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Computational Investigations of the Simon and the SNARC Effects

Permalink
https://escholarship.org/uc/item/3tw1c508

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Authors
Stoianov, Ivilin
Umilta, Carlo
Zorzi, Marco

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3tw1c508
https://escholarship.org
http://www.cdlib.org/


 

Computational Investigations of the Simon and the SNARC Effects 
 

Ivilin Stoianov   (Ivilin.Stoianov@unipd.it) 
Università di Padova, Dipartimento di Psicologia Generale, via Venezia 8, Padova, Italy   

 
Carlo Umiltà   (Carlo.Umiltà@unipd.it)  

Università di Padova, Dipartimento di Psicologia Generale, via Venezia 8, Padova, Italy   
 

Marco Zorzi   (Marco.Zorzi@unipd.it) 
Università di Padova, Dipartimento di Psicologia Generale, via Venezia 8, Padova, Italy   

 
 

Abstract 
This article presents computational investigations of the 
Simon (location-response) and the SNARC (numerical–
response) correspondence effects, with the aim of shedding 
light on the issue of whether they arise from independent 
or shared spatial coding and spatial processing 
mechanisms. A neural network was trained to perform a 
parity-judgement task on lateralized numerals, following 
pre-training on location-response and numerical-response 
associations. Results showed independent effects of Simon 
and SNARC correspondences (i.e., without interaction 
between them), which  supports the hypothesis that the two 
effects originate from different neural mechanisms. 
 
Keywords: connectionist modelling; Simon effect; 
SNARC effect; Boltzmann machine 

Introduction 
Manual responses to lateralized stimuli are faster when the 
spatial location of the stimulus corresponds with that of the 
response, both when the spatial dimension is task-relevant 
(spatial-compatibility effect; see Umiltà & Nicoletti, 1990, 
for review) or task-irrelevant (the Simon effect; Simon & 
Rudell, 1967; Lu & Proctor, 1994, for review). In the latter 
case, the response is determined by a task-relevant specific 
stimulus dimension (e.g., color). In a typical Simon task, the 
subjects see lateralized color stimuli (e.g., red or green 
squares) and are instructed to respond with one hand to one 
color and with the other hand to the other color. One 
important finding about the Simon effect is that it decreases 
with increasing reaction times (e.g., Hommel, 1994). Hence, 
the Simon effect is assumed to originate from the processing 
of an automatically activated, but task-irrelevant, short-
lasting positional code that in turn activates a response code 
competing at the response-selection level with the task-
associated response (Zorzi & Umiltà, 1995). The effect is 
typically explained with dual-route processing models, in 
which one route processes the relevant stimulus dimension, 
whereas the second route processes the task-irrelevant 
dimension (location) (De Jong, Liang & Lauber, 1994; 
Tagliabue, Zorzi, Umiltà, & Bassagnani, 2000).  

Response speed and accuracy in tasks where the relevant 
stimulus dimension is numerical information (e.g., parity) is 
also modulated by a specific spatial-numerical 

correspondence, known as the Spatial-Numerical 
Association of Response Codes (SNARC) effect (Dehaene, 
Bossini & Giraux, 1993). The effect is culture-specific: in 
western countries, in which writing and reading direction is 
left-to-right, the effect appears as a faster response on small 
(big) numbers with the left (right) hand, and it reverses in 
Arabic cultures, in which reading direction is right-to-left. 
The effect is explained by an automatic activation of spatial-
numerical representations (i.e., a mental number line; see 
Zorzi, Priftis, & Umiltà, 2002) that prime lateralized 
responses and interfere with the task-relevant response code. 
Prima facie, the SNARC effect and the Simon effect appear 
to be very similar. First, both depend on processing of task-
irrelevant information within a spatial route; second, both 
depend on activation of spatial codes that in turn prime the 
response codes. Clearly, this raises the possibility that the 
two effects are produced by the same mechanisms (which 
would in turn suggest a common neural basis). However, in 
a study that aimed at producing both effects within the same 
experiment – where Arabic numerals were presented to the 
left or to the right of the centre of the screen and the subjects 
had to respond with the left or the right button according to 
the parity of the stimuli – Mapelli, Rusconi and Umiltà  
(2003) found additive Simon and SNARC effects. That is, 
parity judgments on lateralized numerals produced the two 
main effects but no interaction. The lack of interaction, 
according to the Additive Factors Method (AFM; Sternberg, 
1969), suggests that the two effects rely upon distinct 
mechanisms. This result, however, was questioned by a 
recent study that found interaction between the two effects 
(Gevers, Caessens & Fias, in press). 

There are relatively few attempts at modelling stimulus-
response compatibility phenomena with connectionist 
simulations. Zhang, Zhang and Kornblum (1999) 
investigated various types of stimulus-response 
compatibility problems, among which the Simon effect, but 
the network models were completely hand-crafted. The 
Simon effect was explained with an indirect interference of 
the irrelevant stimulus dimension at the response level 
(output units), but no response times analysis was provided. 
Moreover, since the irrelevant positional code was not 
decayed, the model cannot accommodate the fundamental 
observation of a decreasing Simon effect with increasing 
response times. In contrast, the distribution of RTs and the 
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time course of the Simon effect was of primary concern in 
the simulations of Tagliabue et al. (2000), which were based 
on variants of the network model of Zorzi and Umiltà 
(1995). The simulations revealed that a dual-route model 
comprising direct location-response connections and indirect 
feature-response and location-response connections could 
best explain their human RT-data. However, architecture 
and connection weights were set by hand. Erlhagen and 
Schoner (2002) modeled movement preparation with a 
dynamic field-theory model, in which stimulus-response 
compatibilities, and the Simon effect in particular, were also 
explained with an automatic modulatory input from the task-
irrelevant dimensions. Their model, however, is very 
general and no learning and architecture were considered. 
To the best of our knowledge, no published study has 
computationally investigated the SNARC effect. 

The current work aimed at investigating the computational 
bases of the two effects, by means of connectionist 
simulations of the parity-judgement task on lateralized 
numerals used by Mapelli et al. (2003). We employed 
cognitively plausible neural networks and minimal 
architectural assumptions. Our basic prediction was that 
both location-response (Simon) and numerical-response 
(SNARC) correspondences should significantly decrease 
response times with respect to non-corresponding trials. We 
particularly looked for an interaction between the effects, 
the occurrence of which would suggest common 
computational basis according to the AFM. We also 

investigated the network connectivity to gather insights into 
the computational mechanisms underlying the two effects. 

An associative model of stimulus-response 
compatibility 

Stimulus-response compatibility effects were studied in the 
context of the parity-judgement task, in which odd and even 
numbers were associated with left- and right-hand 
responses, respectively. Stimuli were numbers 1…4 and 
6…9, presented to the left or to the right of fixation. 
Location and number magnitude were task-irrelevant 
features, but associations between left (right) stimulus 
location and left (right) hand responses, as well as 
associations between small (big) numbers and left (right) 
hand responses were assumed to be present (i.e., pre-
learned) before learning the parity task. These previous 
associations were the primary causes of the Simon and 
SNARC effects. 

The model is shown in Figure 1. It is based upon the 
Boltzmann machine, an associative-memory neural network 
trained with a cognitively plausible learning mechanism (see 
below) that we have previously used for the simulation of 
various number processing tasks (e.g., Stoianov et al., 2002; 
Zorzi, Stoianov, & Umilta, 2005, for review). One group of 
neurons in the visible layer provides the following input to 
the model: (i) location (left, centre, right), (ii) magnitude, 
(iii) parity, and (iv) task: response determined by location, 
magnitude, or parity. Other neurons in the visible layer are 

 

1-2-3-4-5-6-7-8-9 
Parity 

odd/even 

L  response R 

visual input 
 

8 +  

SNARC: 
number-response 

association 
(task –irrelevant) 

L position R 

Simon: 
location–response 

association 
(task –irrelevant)

Task 

Task 

Figure 1. An associative model of spatial stimulus-response compatibility based upon the associative 
Boltzmann-machine trained on a parity-judgement task with lateralized numerals. Input is stimulus location,
parity, magnitude, and task. Output is response code. The intermediate hidden layer allowed the 
development of internal representations.  

Intermediate representations 

2081



 

output neurons that encode the response (left-hand, right-
hand). The three locations were encoded with a distributed 
code: left [1 0], centre [1 1], and right [0 1]. Central location 
was encoded in order to examine location-neutral 
conditions. Numbers were encoded semantically with a 
linear Number-line code (see Zorzi et al., 2005), whereby a 
specific number is represented by the position of the hill of 
activity over a set of units labelled [1 … 9]. Parity was 
localistically encoded with two features, standing for odd 
and even. The tasks were encoded by three dedicated units: 
location-based response, magnitude-based response, and 
parity-based response. All visible neurons were 
interconnected, which allowed the network to form any 
direct association within the visible layer. The network had 
10 hidden units, which allowed indirect associations through 
intermediate representations. 

Learning algorithm 
Boltzmann Machines (Ackley, Hinton & Sejnowski, 1985) 
are associative networks of stochastic neurons that 
iteratively generate patterns according to the distribution of 
the data learned. They consist of a layer of visible neurons 
encoding the presented pattern and a layer of hidden neurons 
that learn complex statistical dependencies among the data 
observed at the visible layer. The networks are fully 
connected, without structural biases. To generate patterns, 
after initialisation of all neurons, the networks iterate until 
convergence by updating all neurons in parallel, or 
asynchronously. The number of steps to convergence can be 
readily interpreted as response time, to be matched against 
human RT data. Originally, Boltzmann Machines were 
trained with a contrastive Hebbian learning algorithm: in a 
positive phase corresponding to classical Hebbian learning, 
patterns were clamped to the visible layer; the hidden units 
were settled and the weights were augmented with the mean 
correlations between every coupled neurons. In a second, 
negative  phase (anti-learning), the visible neurons were 
unclamped; all neurons settled again, and the weights were 
decreased with the mean correlations for this step. In this 
way, the visible neurons learned to reproduce the data. 
However, this stochastic learning algorithm is extremely 
slow.  

Hence, we used the approximate deterministic learning 
algorithm of Welling and Hinton (2002) that dramatically 
speeds-up the simulations, maintaining biological 
plausibility (Contrastive Divergence Mean-Field learning). 
The algorithm operates upon the mean-field activities mi of 
neurons i=1…n and are given by the solution of a set of n 
coupled mean-field equations: 

 || mi = σ ( Σj=1..n wij mj + θi) (1) 

where σ notates the sigmoid function; wij is the weight from 
unit j to unit i, and θi is the bias of unit i. Note that these 
equations correspond to “classical” neuronal activation with 
recurrent connectivity. Then, the update ∆wij of a weight 
connecting two units is proportional to the difference 
between the correlations between their mean-field activities 

at time zero (positive phase) and one-pass data 
reconstruction (negative phase): 

∆wij = η ( mi
0 mj

0 - mi
1 mj

1) (2) 

where η denotes the learning coefficient. In our simulations 
we used this learning algorithm in an unsupervised mode, 
i.e. during learning there was no distinction between input 
and output neurons (for details, see Stoianov et al., 2002). 

Training and testing procedure 

The network was first pre-trained for 5.000 epochs on 
location-response and numerical-response associations, in 
proportion of 80% and 20%, respectively – a ratio that could 
roughly reflect the natural distribution of both types of 
associations. Each epoch included the combination of all 
numbers (1…9) and locations (L,C,R), resulting in a total of 
27 patterns. In the spatial correspondence task, the left 
location was associated with left response, the right location 
with right response, and the central location was randomly 
associated with left or right responses. The number-
correspondence task, in turn, associated small numbers with 
left response and large numbers with right response in a 
stochastic manner, linearly dependent on the distance from 
the halfway number of 5. During either of the tasks, the 
corresponding task-code was activated, simulating attention 
to location or number. 

The network was then trained on the parity task, in which 
odd numbers were associated with left response and even 
numbers with right response. Stimuli were the same as in the 
previous learning tasks, with the exception of number 5, 
which was excluded in order to allow balanced distribution 
of left- and right-responses. During this phase all weights 
were free to change, which allowed the network to 
reallocate computational resources, in particular at the level 
of the hidden units. Learning in this phase was stopped at 
convergence of performance level. 

Performance on the parity task was tested by presenting 
lateralized numerals, as in the Mapelli et al. (2003) study. 
Thus, the input patterns were defined by the combination of 
location (left or right) and identity of the numeral (1-9, 
excluding 5). To accommodate earlier psychological 
findings about relatively slower feature identification and 
fast decay of the positional code (see Tagliabue et al., 2000), 
the onset of numerical features was delayed by 30 iterations 
and the positional code was offset after a small delay of 7 
iterations. Neuronal states were updated with a momentum 
of 0.97. Each testing condition was repeated 100 times, 
varying only the initial states of the hidden units and the 
Gaussian noise (µ=0, σ=0.1) added to the response units. 
Response retrieval was stopped at convergence of all 
neurons, i.e., when the change in the neuron’s activation 
between two processing time-steps has no significance 
(being smaller that a constant ε=0.0001). The number of 
iterations until response were recorded for statistical 
analysis. 
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Results 
Pre-training: The network learned all location-response and 
numerical-response associations. The location-response 
associations were learned as both direct input-output and 
indirect associations. The numerical-response associations 
were encoded with direct links only, although some hidden 
units showed preference for certain numbers. Thus, the 
hidden units mainly encoded location-response associations. 
The two response units at the visible layer, as well as any 
other coupled neurons (e.g., location and task), developed 
strong inhibitory interconnections (similarly to the weights 
in Figure 3). 

Parity-judgement: The parity-judgement task was learned 
for about 1000 epochs, relying mostly on direct parity-
response connections, and preserving both the direct 
location-response and numerical-response associations (see 
Figure 3). Network performance on this task was then 
examined by multiple response retrieval. Erroneous 
responses were about 5% - a typical level of errors for 
humans in this task. 

RT analysis: Response times on correct trials were first 
analysed for the SNARC and Simon effects with a 2x2 
ANOVA. As predicted, both the location-response  and 
numerical-response correspondences significantly 
influenced response times (p<0.001), indicating faster 
responses for corresponding trials compared to non-
corresponding trials. However, no interaction between the 
two effects was found (p>0.38), which suggests their 
reliance on different computational resources. To examine 
the time-course of the two effects, the RTs for each 
combination of SNARC and Simon correspondences were 
divided into 6 bins, with equal number of items per bin. A 
three-way ANOVA – Simon (2) x SNARC (2) x BIN (6) – 
showed that the effects also depended on the BIN factor. In 

particular, the Simon x BIN interaction (p<0.05) shows that 
the Simon effect disappears at the slowest bin (p>0.40). 

Magnitude is another factor that generally affects number 
processing, so we examined its effect on the RTs. For this 
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Figure 3. Direct connections among the neurons of the 
visible layer, after learning the parity task. The visible 
neurons encode: magnitude (neurons 1-11), parity (12-
13), task (14-16), position (17-18), and response (19-20). 
Gray and black boxes represent positive, and negative 
values, respectively; box size represents absolute 
strength. We note the strong mutual inhibitory 
connections and position-response, and parity-response 
excitatoty associations. 
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Figure 2. Network RTs as a function of Bin, Simon, and SNARC correspondences 
   (‘c.’=corresponding, ‘n-c.’=non-corresponding). 
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purpose, we first grouped odd and even numbers to produce 
four magnitude categories (1-2, 3-4, 6-7, 8-9). A three-way 
ANOVA on the RTs with predictors SNARC, Simon, and 
magnitude revealed significant main effect of each predictor 
(p<0.001), but also an interaction between the SNARC 
effect and magnitude (p<0.001). The latter shows that the 
size of the SNARC effect was bigger towards the extremes 
of the numerical interval 1-9. 

Internal representations: Most of the hidden units were 
specialized for responding to parity, but preserving their 
prior response preference to location. Thus, a kind of 
intermediate feature-response code modulated by location 
was formed. Units responding to opposite features 
developed mutual inhibitory connections, which caused 
competition also at the intermediate levels. In contrast, units 
responding to the same features supported each other by 
means of positive interconnections (previous models did not 
include interaction among the internal code; e.g., Tagliabue 
et al., 2000).  

In sum, partially maintained pre-learned spatial response 
preferences of the hidden units was one of the main 
determinants of the model’s behaviour. 

Discussion 
This study investigated the computational basis of two 
stimulus-response compatibility phenomena: the Simon and 
the SNARC effects. 

One source of the Simon effect in the model was a 
conflict between the task-relevant response code and the 
short-lasting positional signal coming from the direct 
location-response links that pre-activated or inhibited the 
target response. Indeed, the effect disappeared when the 
positional code offset was minimized: in a control 
simulation that used the same network and parameters, 
except for the positional code offset that was set to one, the 
network RTs again exhibited the SNARC effect (p<0.001), 
but not the Simon effect (p>0.40). 

Therefore, a kind of intermediate location-response code 
was maintained active even after decaying the positional 
code at the input level, due to the positive feedback among 
hidden units responding to the same features. This signal 
interfered with the correct response in the non-
corresponding trials, increasing RTs even in the case of 
relatively short positional code offsets. Thus, the typical 
pattern of the Simon effect (decreasing effect for bins 
containing slower RTs) was simulated only by means of 
Gaussian noise added to the input of the neurons (the noise 
gradually cancelled the intermediate positional signal). 

In sum, the size of the Simon effect and its interaction 
with bin depended on the delay of the spatial code offset (no 
effect for a very fast offset; no cancellation of the effect for 
relatively long offset delays) and the size of the noise 
induced (a minimal level of noise was needed in order to 
cancel the effect for the slowest RTs). 

The SNARC effect was relatively strong and it was 
caused by the direct associations between the number-line 
code and the response neurons that facilitated (or inhibited) 
response selection. The size of the effect was modulated by 

the number magnitude, appearing stronger towards the 
extremes of the numerical interval. In effect, the change of 
response preference in humans is also gradual (Dehaene et 
al., 1993; Fias et al., 1996). 

In agreement with the results of the Mapelli et al. (2003) 
study, the SNARC effect and the Simon effect did not 
interact (i.e., they were additive). According to the AFM, 
this result strongly suggests their reliance upon different 
neural mechanisms. From a computational point of view, the 
functional analysis of the network showed that (i) 
independent direct location-response and numerical-
response associations had been formed during pre-training, 
and (ii) the hidden units tuned on parity had developed 
during pre-training a preference mainly for location, which 
allowed the existence of indirect parity-response 
associations modulated by location but independent of 
number. Thus, the functional analysis confirmed the RT-
based finding that the two effects relied on different 
computational mechanisms, even if spatial and numerical 
signals necessarily meet at the response-selection (output) 
level. 

We note that the distribution of intermediate resources 
reflects the distribution of location-response compatibility 
and numerical-response compatibility tasks during the pre-
training (80% vs. 20%): the network has apparently used 
most of the indirect resources to encode location-response 
dependencies. The situation could be changed with more 
even distributions of the tasks (e.g., 50% - 50%), which 
would be however less plausible: spatial associations 
between stimuli and responses located on the same side 
(such as reaching for a right-located object with the right 
hand) are much more frequently experienced than spatial-
numerical associations. 

The model presented in this article is consistent with 
previous models of spatial stimulus-response compability, in 
particular with those developed by Zorzi and collegues 
(Zorzi & Umiltà, 1995; Tagliabue et al., 2000). Dispensing 
with a hand-wired architecture represents a major advantage 
of the present model over its predecessors. However, our 
results stepped upon numerous assumptions: i) a simple 
uniform architecture; ii) limited intermediate computational 
resources (just 10 hidden units); iii) a simple positional code 
(only two neurons, encoding L, C, R); iv) a specific 
distribution of location-response and numerical-response 
associations during learning (80% vs. 20%). Therefore, 
further systematic simulations with a richer positional signal 
and a different hidden layer size are needed to strengthen  
the conclusions. We also plan to investigate in detail the 
modulation produced by the task signal upon the 
intermediate resources. 

In conclusion, the simulations demonstrate that both the 
Simon and the SNARC effect arise at the response-selection 
(output) level, where all input signals converge, but they are 
based upon different mechanisms involving distinct 
processing pathways. 
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