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Abstract

We report the creation and manipulation of structural phase boundaries in the single-layer 

quantum spin Hall insulator 1T’–WSe2 by means of scanning tunneling microscope tip pulses. 

We observe the formation of one-dimensional interfaces between topologically non-trivial 1T’ 

domains having different rotational orientations, as well as induced interfaces between 

topologically non-trivial 1T’ and topologically trivial 1H phases. Scanning tunneling 

spectroscopy measurements show that 1T’/1T’ interface states are localized at domain 
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boundaries, consistent with theoretically predicted unprotected interface modes that form 

dispersive bands in and around the energy gap of this quantum spin Hall insulator. We observe a 

qualitative difference in the experimental spectral lineshape between topologically “unprotected” 

states at 1T’/1T’ domain boundaries and protected states at 1T’/1H and 1T’/vacuum boundaries 

in single-layer WSe2.

Keywords: Scanning tunneling microscopy, transition metal dichalcogenides, quantum spin hall 

insulators, domain boundary, ferroelasticity. 

Recent experimental studies have reported the observation of the quantum spin Hall (QSH) 

effect in single layers of the transition metal dichalcogenides (TMDs) WTe2 and WSe2 in the 1T’ 

structural phase.1-5 Evidence of the QSH state include inverted bandgaps,1 topologically 

protected edge states,1,2,5 as well as quantized edge conduction of e2/h per edge.3,4 QSH edge 

states have been observed to reside at 1T’/1H and 1T’/vacuum boundaries, both of which are 

interfaces between non-trivial (1T’–TMD) and trivial (1H–TMD phase or vacuum) media.1,2,5 

Such interfaces are expected to host topologically protected edge states.6-11 A less well-studied 

type of boundary in quantum spin Hall insulator (QSHI) materials is the interface between 

different non-trivial domains where the Z2 topological invariant of the bulk does not change 

across the interface. We refer to a domain boundary as “topological” when there is a change in 

the topological invariant across the interface, and “trivial” when the invariant is the same on 

either side of the domain wall. A recent theoretical study of charge transport in quantum Hall 

insulators with trivial interfaces predicted that conduction through otherwise dissipationless 

quantum Hall edge states can be controllably deflected into trivial interface states, thus enabling 

gate-tunable charge and spin transport.12 Single-layer TMD materials provide a new strategy for 
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constructing such coexisting topological and trivial interfaces by switching the layer structural 

phase via some local stimuli.13-17 For example, the 1T’ phase has recently been predicted to be 

ferroelastic in single layers, suggesting that it can be switched between different dimerization 

orientations by applied stress. This provides a mechanism to induce topologically trivial 

interfaces between QSHI domains with different crystallographic orientations. A similar strategy 

could allow generation of topologically non-trivial interfaces by inducing local phase switching 

between structures that have different Z2 indices.18,19

Here we report the local phase manipulation of single-layer 1T’–WSe2 for the purpose of 

creating two kinds of one-dimensional interfaces: (1) trivial interfaces between two 1T’ domains 

and (2) topological interfaces between 1T’ and 1H domains. By using scanning tunneling 

microscope (STM) tip pulses we are able to locally switch from the 1T’ phase to the 1H phase of 

WSe2, as well as between different orientations of the 1T’ phase. 1T’/1T’ domain-boundary 

formation is observed to be reversible, supporting the conjecture that single-layer 1T’–WSe2 is a 

ferroelastic material.18 Our STM measurements show that 1T’/1T’ domain boundaries are well-

ordered interfaces that exhibit several different structures. By combining scanning tunneling 

spectroscopy (STS) measurements and first-principles calculations we have determined that 

1T’/1T’ domain boundaries exhibit topologically unprotected one-dimensional (1D) modes that 

are dispersive near the Fermi level and that exhibit energy dependent decay lengths. These 

modes reside both inside and outside of the 1T’–bulk bandgap and, unlike 1T’/1H interface 

modes, do not directly connect bulk valence and conduction bands. 

Mixed-phase single layers of WSe2 were grown using molecular beam epitaxy (MBE) on 

bilayer graphene (BLG) supported by SiC. These samples exhibit islands that are single domains 

of either 1T’ or 1H phase, as well as mixed-phase islands with coexisting 1T’ and 1H domains.2 
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Voltage pulses applied between the STM tip and monolayer 1T’–WSe2 islands were used to 

manipulate the WSe2 structural phase. Fig. 1 shows STM topographic images of a 1T’–WSe2 

island before and after application of STM tip pulses. The “before” image (Fig. 1a) shows a 

single-domain region of the 1T’ phase with a uniform orientation of atomic rows running from 

top to bottom (each row contains a zigzag chain of W atoms1,2,9,11). Fig. 1b shows the same 

region after a voltage pulse of 10 V was applied for 100 ms between the tip and surface at a 

constant tip-surface separation of ~6 Å. After application of the pulse the island exhibits multiple 

domains having different orientations that are connected by ordered 1D domain boundaries (tip 

pulses can also cause the formation of adsorbate clusters near domain boundaries, as shown in 

Fig. S7). 

Because the 1T’ phase can be formed in three equivalent orientations (via a Peierls 

distortion of its C3-symmetric 1T parent phase) several possible 1T’/1T’ domain boundaries are 

expected.18 The most common 1T’/1T’ interface observed in our samples is the 120° domain 

boundary which occurs for 85% of all observed boundaries and which connects neighboring 

domains rotated with respect to each other by 120° (Fig. 2a). Other observed domain boundaries 

are the 60° domain boundary (observed 13% of the time) and the 0° domain boundary (observed 

2% of the time), as shown in Figs. 2b, c (structural models are shown in Figs. 2d-f). These well-

ordered interfaces are straight-line defects that extend up to 20 nm in length in our samples.  The 

formation of 1T’/1T’ domain boundaries is reversible through the application of a high current 

raster scan by the STM (300mV, 1nA). Such scans remove the adsorbate clusters that form 

during the generation of 1T’/1T’ domains, likely changing local strain distributions. This 

provides additional evidence of the ferroelastic nature of 1T’–WSe2 (further details are discussed 

in section 6 of the SI).
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The local conversion of single-layer WSe2 from the 1T’ phase to the 1H phase can be 

induced using the same voltage pulse method as described above. Fig. 1c shows a different 

single-phase 1T’ island where the dimer chains run from top to bottom before applying a tip 

pulse, while Fig. 1d shows the same region after applying a voltage pulse of 10 V for 100 ms. 

The tip pulse causes an extended region of the island to convert into a new phase that exhibits 

reduced apparent height. We identified this region as the 1H phase of single-layer WSe2 (see Fig. 

S6 for details). Such 1T’ to 1H phase conversion was only observed in “confined” regions as 

seen here (i.e. tip-induced 1H domains were always surrounded by other material).

While 1T’/1T’ domain boundaries could be created by applying tip pulses with Vpulse ≥ 6 

V, stronger tip pulses (Vpulse ≥ 10 V) were required to locally induce the 1T’ to 1H phase 

transition. These observations agree with predictions that the transition barrier between different 

orientations of the 1T’ phase should be lower than the barrier for a 1T’→1H transition.18 Tip 

pulses with Vpulse > 6 V often caused damage to 1T’ islands, either by creating holes or by 

breaking apart the island. However, once 1T’/1T’ and 1T’/1H domain structures are successfully 

induced then they remain stable under normal scan conditions. 

In order to explore the electronic structure of topologically trivial interfaces in a QSHI we 

performed STS at the sites of the 120°, 60°, and 0° boundary structures shown in Figs. 2a-c. The 

dI/dV spectra obtained in the 1T’ bulk (green curves in Figs. 2g-i) reflect the 1T’–WSe2 bulk 

bandgap which has an average full width at half maximum (FWHM) of 85 ± 21 mV centered at –

130 ± 5 mV (determination of the bulk bandgap was performed as described in Supplementary 

Note 3 of ref. 2). The spectral weight observed inside the bulk bandgap is explained by lifetime 

broadening and the –130 mV offset is due to n-doping induced by the bilayer graphene/SiC 

substrate, consistent with previous studies.2,20,21 The narrow dip at V=0 seen in Figs. 2g-i likely 
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arises from an interplay between disorder and long-range electron-electron interactions as has 

been suggested previously.2,5,20,21,27,28  This feature is more pronounced at 1D domain boundaries 

which is consistent with predictions regarding disorder-induced behavior in low dimensions.28 

The spectra for the 120° and 60° domain boundaries (Figs. 2g, h) are similar in that they 

both have a minimum at V = 0 and exhibit broad, sloping features in the filled state regime over 

the range -300 mV < VS < 0. Neither of these domain boundaries show any significant signatures 

of the bulk bandgap. The 0° domain boundary (Fig. 2i) also has a minimum at V = 0, but it 

shows a pronounced dip right in the bulk bandgap energy range. These experimental features are 

qualitatively different from dI/dV spectra observed at topologically-protected 1T'/vacuum and 

1T'/1H boundaries where a clearly defined edge-state peak is seen at the bulk bandgap energy2 (a 

reference dI/dV spectrum taken at the topological 1T’/vacuum edge is shown in Fig. S8). 

Because the 120° domain boundaries are the dominant defect feature, we performed a more 

in-depth study of their spatially-dependent electronic structure. Fig. 3 shows dI/dV maps over the 

energy range -400 mV < Vs < 150 mV for a 120° 1T’/1T’ domain boundary that intersects a 

1T’/1H domain boundary. The first panel (Fig. 3a) shows an STM topograph of the region and 

includes the 120° 1T’/1T’ domain boundary (dashed oval) as well as the 1T’/1H boundary 

(marked by a vertical dashed line with the 1T’ phase to the right). This area allows us to 

simultaneously compare the electronic structure of “topological” and “trivial” domain 

boundaries.

Fig. 3b shows a dI/dV map measured at –400 mV, which corresponds to an energy below 

the lower edge of the bulk 1T’–WSe2 bandgap shown in Fig. 2g (i.e., the bulk valence states). 

Bright intensity corresponding to high LDOS is observed at the site of the 120° domain boundary 

while the LDOS near the 1T’/1H interface remains low. Fig. 3c shows a dI/dV map at –120 mV, 
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which lies inside the 1T’ bulk bandgap. At this energy high LDOS intensity is observed at both 

the 120° domain boundary and the 1T’/1H interface region (intensity near the 1T’/1H boundary 

originates from the topological edge state.2 Fig. 3d shows a dI/dV map measured at –60 mV, 

which is near the upper edge of the bulk bandgap. Here high-intensity LDOS is observed near 

the 1T’/1H interface (from the topological edge state), while the LDOS at the 120° domain 

boundary shows low intensity. Fig. 3e shows a dI/dV map measured at +150 mV, which 

corresponds to an energy well into the bulk conduction band. At this energy neither the 

topological 1T’/1H interface state nor the trivial 120° domain boundary show high intensity 

features. The high intensity LDOS localized at the 1T’/1T’ boundary in the dI/dV maps indicates 

the existence of defect states in the energy range –400 mV < Vs < –60 mV. The broad 

spectroscopic feature measured in the dI/dV point spectrum over this range for 120° domain 

boundaries (Fig. 2g) can thus be attributed to confined dispersive defect modes. The 120° 

domain boundary mode is seen to have a more strongly energy-dependent decay length than the 

1T’/1H interface state and to have more intensity at lower energies. 

In order to clarify the origin of these electronic features, we performed first-principles DFT 

simulations. The atomic structure of the interfaces was first relaxed using periodic boundary 

conditions in a ribbon geometry with a plane-wave basis set22 (the relaxed structures are 

presented in Figs. 2d-f). We then used the non-equilibrium Green's function method (NEGF) to 

model the line defects with semi-infinite boundary conditions.23,24 The resulting spin-dependent 

electronic band structures for the three different interfaces are presented in Figs. 4a-c. The 

number of bands, the dispersion, and the spin character of the defect modes changes dramatically 

for the different boundary types. Defect modes belonging to the 60° domain boundary (which 

has the least amount of symmetry) span the entire bandgap energy region while the localized 
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states of the 120° and 0° domain boundaries do not completely close the bulk energy gap (the 

bulk bandgap of the 60° domain boundary model is somewhat affected by the strain that arises 

from matching bulk lattice constants with the defect periodicity). We see that while the defect 

modes mostly close the overall energy gap for the 60° and 120° domain boundaries, the gap 

remains bulk-like for the 0° defect, consistent with our STM spectroscopy observations (Figs. 

2g-i). The simulated 120° domain boundary states are observed to be spin-polarized out of the 

plane while for 60° domain boundaries the direction of spin polarization rotates for different 

states within the same band (colors in Figs. 4a, b). 0° domain boundaries possess inversion 

symmetry and so defect states associated with this boundary show no spin polarization (Fig. 4c). 

Figs. 4d-f compare the calculated LDOS of the 120°, 60° and 0° domain boundaries (blue 

curves) with the LDOS of the 1T’ bulk (grey curves) as a function of energy (the Fermi level has 

been shifted to match the experimentally observed n-doping). Overall we find reasonable 

agreement between the simulated LDOS in Fig. 4 and the corresponding STM spectroscopy 

measurements of Fig. 2.  For example, while the experimental bulk bandgap feature vanishes for 

the 60° defect (Fig. 2h), an energy gap remains for the 0° defect (Fig. 2i), similar to the theory 

plots of Figs. 4e, f. In the 120° case the predicted small 10 meV energy gap is likely smeared out 

by level broadening effects that are observed experimentally but not accounted for in 

conventional DFT simulations.25 When we add Gaussian broadening to our calculation then the 

120° gap feature is smeared out (Fig. 4d) similar to what is seen experimentally (Fig. 2g). A 

significant discrepancy between the theory and the data is the pronounced LDOS peak seen near 

E = 0 for all three domain boundary types. By contrast, all three domain boundaries show a 

broad dip at V = 0 in the STM spectroscopy rather than the predicted peak. This is explained by 
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the coexistence of disorder and electron-electron interactions in these materials which opens a 

pseudogap at V = 0 eV but which is not accounted for in DFT simulations.

In conclusion, we have successfully manipulated the local electronic and structural 

properties of single-layer 1T’–WSe2, thereby inducing a local phase transition from the 1T’ to 

the 1H phase, as well as creating 1T’/1T’ domain boundaries. The induced 1T’/1T’domain 

boundaries exhibit different rotational configurations, with a 120° domain boundary being the 

most common structure. Our combined STS measurements and first-principles calculations show 

that these new 1T’/1T’ domain boundaries yield topologically unprotected 1D states that are 

dispersive in energy near the Fermi level and exhibit energy-dependent decay lengths. These 

results create new opportunities for exploring electron- and spin-based devices where charge 

carriers traveling along QSH edges might be deflected into trivial domain boundary modes in a 

controllable fashion.12
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Figure 1: STM tip-induced structural change in monolayer 1T’–WSe2.  STM topographic 

images of a monolayer 1T’–WSe2 island (a) before and (b) after applying a tip voltage pulse 

(Vpulse= 10 V, t = 100ms, tip-surface separation = 6 Å). The tip pulse creates 1T’/1T’ domain 

boundaries having different rotational orientations. STM topographic images show a different 

island (c) before and (d) after an applied tip voltage pulse (Vpulse= 10 V, t = 100 ms, tip-surface 

separation = 6 Å) induces a 1T’ to 1H structural phase transition near the center of the island. Vs 

= 1V , It =10 pA, T = 4.5 K for all images. (Image intensity here is proportional to dz/dx (where 

z is height) in order to enhance contrast between regions having different structural phases.)
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Figure 2: Structural and electronic properties of 1T’/1T’ domain boundaries. STM images 

of (a) 120°, (b) 60°, and (c) 0° 1T’/1T’ domain boundaries in 1T’–WSe2 (Vs = 1 V, It = 10 pA, 

standard STM topographs).  Relaxed structural models of (d) 120°, (e) 60°, and (f) 0° domain 

boundaries in 1T’–WSe2 (calculated using DFT).  STM dI/dV spectroscopy measured at (g) 

120°, (h) 60°, and (i) 0° domain boundaries compared to the bulk for single-layer 1T’-WSe2 

(spectroscopy positions marked by black and green dots in (a)-(c)) (f = 613.7 Hz, Vac = 4 mV, T = 

4.5 K. Initial tunneling parameters for spectroscopy measurements: Vs = –400 mV, I = 100 pA).
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Figure 3: Comparison of electronic properties of 120° 1T’/1T’ domain boundary and 

1T’/1H boundary coexisting in single-layer WSe2. (a) STM image of a mixed-phase WSe2 

island with a 120° 1T’/1T’ domain boundary (standard STM topograph). The 1T’/1H interface is 

marked by a vertical dashed line while the 1T’/1T’ interface is outlined by a dashed oval (Vs = 1 

V, It =10 pA). dI/dV maps of the same area are shown for (b) Vs = –400 mV, (c) –120 mV, (d) –

60 mV, and (e) +150 mV. Spectroscopy parameters: f = 613.7 Hz, Vac = 4 mV, I = 100 pA, T = 

4.5 K.  Dashed white box outlines the topologically protected edge-state.
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Figure 4: Calculated Band Structure and Local Density of States of Different 1T’/1T’ 

Domain Boundaries.  Calculated band structure of (a) 120°, (b) 60°, and (c) 0° 1T’/1T’ domain 

boundaries for 1T’–WSe2 monolayer. Bulk states are grey, spin-polarized interface modes are 

red and blue. (d-f) Calculated LDOS of top-layer Se atoms at a domain boundary (black solid 

curve) compared to LDOS in the bulk (black dashed curve) for (d) 120°, (e) 60°, and (f) 0° 

1T'/1T' domain boundaries. The Fermi level (E = 0) has been shifted to match experimental data 

(plots presented in (d)-(f) have been convolved with a Gaussian having σ = 30 mV to simulate 

level broadening effects25).
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