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Abstract 
 
This research develops and tests, via microscopic simulation, a real-time adaptive control 
system for corridor management in the form of three real-time adaptive control strategies: 
intersection control, ramp control and an integrated control that combines both 
intersection and ramp control.  
 
The development of these strategies is based on a mathematical representation that 
describes the behavior of traffic flow in corridor networks and actuated controller 
operation. Only those parameters commonly found in modern actuated controllers (e.g., 
Type  170 and 2070 controllers) are considered in the formulation of the optimal control 
problem. As a result, the proposed strategies easily could be implemented with minimal 
adaptation of existing field devices and the software that controls their operation.  
 
Microscopic simulation was employed to test and evaluate the performance of the 
proposed strategies in a calibrated network. Simulation results indicate that the proposed 
strategies are able to increase overall system performance and also the local performance 
on ramps and intersections. Prior to testing the complete model, separate tests were 
conducted to evaluate the intersection control model on: 1) an isolated intersection, and 
2) a network of intersections along an arterial.  The complete model was then tested and 
evaluated on the Alton Parkway/I-405 corridor network in Irvine, California.   
 
In testing the optimal control model, we simulated a variety of conditions on the freeway 
and arterial subsystems that cover the range of  demand from peak to non-peak, incident 
to non-incident, conditions. The results of  these experiments were evaluated against full-
actuated operation and found to offer improved performance. 

 

Key Words: Adaptive Traffic Control, Corridor Management, Mathematical Modeling, 
Optimal Control 
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Executive Summary 

This project developed and tested, via microscopic simulation, a real-time adaptive control 
system for corridor management. Although the focus of the development is on signal controllers 
designed for operation on arterial street networks, the formulation of the adaptive control 
strategy explicitly includes interaction with freeway ramp control devices, which are also 
designed to react adaptively to both the onramp flow, as determined by the operation of adjacent 
intersection signal controllers, and the traffic state on the mainline freeway. The resulting control 
strategy is based on a mathematical representation that describes the behavior of real-life 
processes (traffic flow in corridor networks and actuated controller operation). In formulating the 
optimal control problem, we have restricted our attention to control of only those parameters 
commonly found in modern actuated controllers (e.g., Type 170 and 2070 controllers). By doing 
this, we hope to ensure that the procedures developed herein can be implemented with minimal 
adaptation of existing field devices and the software that controls their operation. 
 
In the methodological approach taken, we assume that the traffic arrival pattern can be 
represented as a queue with Poisson arrivals, and from queuing theory we first develop estimates 
of both the effective green time (equal to actual displayed green interval), and the vehicle arrival 
flow, departure number and spillovers for the expired signal phase based on the known controller 
parameter settings. Similarly, we estimate upstream contributions to the target intersections from 
known parameters at the upstream intersections and readouts from the corresponding signal 
displays. Dynamic turning fractions at the target intersection, which cannot be known a priori, 
are estimated based on a moving average model. 
 
Maximum green settings provide constraints for the decision of optimal phase splits, which are 
determined by solving a non-linear optimization problem with the objective to be minimizing 
total intersection control delay per cycle. The expression used for delay is a generalization of the 
well-known Webster formulation. These optimized phase splits are used to determine optimal 
phase minimum green and passage settings.  
 
The outputs of the adaptive control model for intersection signalization are the product of a 
stochastic optimal control problem that returns dynamic values for the three parameters of 
actuated controllers—phase minimum green parameter (subject to its absolute minimum based 
on such other conditions as pedestrian waiting time and start-up lost time), phase passage 
parameter and phase maximum green parameter—that control its responsiveness to stochastic 
fluctuations in traffic conditions (other parameters, e.g., yellow interval, clearance interval, phase 
sequencing, are determined principally in regard to safety and geometric considerations); 
contrasted to current controller operation, in which these parameters are static/preset, in our 
formulation they are dynamically set in response to estimates of demand.   
Three real-time adaptive control strategies: an intersection control, ramp control and an 
integrated control that combines both intersection and ramp control are proposed. Microscopic 
simulation was employed to test and evaluate the performance of the proposed strategies in a 
calibrated network. Prior to testing the complete model, separate tests were conducted to 
evaluate the intersection control model on: 1) an isolated intersection, and 2) a network of 
intersections along an arterial.  The complete model was then tested and evaluated on the Alton 
Parkway/I-405 corridor network in Irvine, California.  In testing the optimal control model, we 
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simulated a variety of conditions on the freeway and arterial subsystems that cover the range of 
demand from peak to non-peak, incident to non-incident, conditions. The results of these 
experiments were evaluated against full-actuated operation and found to offer improved 
performance.  

Simulation results indicate that the proposed strategies are able to increase overall system 
performance and also the local performance on ramps and intersections. 
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1. Introduction 

The objective of this project is to develop and test, via microscopic simulation, a real-time 
adaptive control system for corridor management. Although the focus of the development is on 
signal controllers designed for operation on arterial street networks, the formulation of the 
adaptive control strategy explicitly includes interaction with freeway ramp control devices, 
which are also designed to react adaptively to both the onramp flow, as determined by the 
operation of adjacent intersection signal controllers, and the traffic state on the mainline freeway. 
The proposed control strategy is based on a mathematical representation that describes the 
behavior of real-life processes (traffic flow in corridor networks and actuated controller 
operation). In formulating the optimal control problem, we have restricted our attention to 
control of only those parameters commonly found in modern actuated controllers (e.g., Type 170 
and 2070 controllers). By doing this, we hope to ensure that the procedures developed herein can 
be implemented with minimal adaptation of existing field devices and the software that controls 
their operation. 
 
A typical advantage of an adaptive signal controller is that, in the case of intersection control, the 
cycle length, phase splits, and even the phase sequence, may vary from cycle to cycle, in a 
manner that satisfies the demands of the current traffic pattern. To some extent, actuated 
controllers are themselves “adaptive” in the sense that they vary these same outcomes, but do so 
subject to a set of predefined, fixed, parameters that do not “adapt” to current conditions. For the 
functionality of truly adaptive controllers, a set of on-line optimized phasing and timing 
parameters are needed.  
 
Existing adaptive controls, such as SCOOT (Robertson and Bretherton, 1991), make incremental 
adjustments to the current signal plan for the next cycle, in response to the changing traffic 
demands. In another real-time network control, SCATS (Lowrie, 1992; Sims, 1979), the local-
level intersection controller decides its timing parameters on the basis of the degree of saturation, 
and then incrementally adjusts to varying traffic conditions. The major drawback of these 
systems is that they are not proactive and therefore, cannot accommodate significant transients 
effectively. RHODESTM, a real-time traffic-adaptive signal control system developed at the 
University of Arizona, uses a traffic flow arrivals algorithm – PREDICT (Head, 1995) – to 
improve effectiveness when calculating online phase timings. In the PREDICT algorithm, 
detector information on approaches of every upstream intersection, together with the traffic state 
(arrival and queues), and control plan for the upstream signals are used to predict future traffic 
volume. It assumes that all surrounding upstream intersections have fixed-time signalized 
planning, an assumption that is violated in virtually every modern system.  

 
In none of these previous systems do the embedded traffic flow prediction models fully utilize 
available detector information and control features. Consequently, their applicability is confined 
only to particular factors, and thus restricted in achieving comprehensively good performance. 
For any signalized intersection, at least three kinds of information—vehicle actuated detector 
information, signal timing plan and current signal phase information—can be exploited to infer a 
relatively rich body of information that can be used in adapting the operation of the signal 
controller to current, or expected, conditions. Here, we develop a traffic flow prediction model 
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based on the actuated phase control strategy and other features, such as phase minimum green 
parameter, phase passage parameter and phase maximum green parameter, together with related 
detector information gleaned from actuated-signalized upstream intersections to estimate the 
future arrivals at downstream intersections. To better utilize all available information, our traffic 
flow prediction model is divided into an approach volume prediction and the corresponding 
turning proportion estimation. Based on the time of actuation in the upstream detector of 
neighboring intersections, together with current signal state and control tactics of the neighboring 
intersections, the arrival pattern of vehicles is predicted. Then by using the exit/entry passage 
detector cycle/phase counts in the neighboring intersections, the turning percentage for each 
movement is estimated. As a result, the model can utilize instantaneous information that is 
currently available but not used, and thus assist fine-tuning intersection performance without any 
additional hardware investment.  
 
The development and adoption of adaptive control procedures for signalized intersections have 
been hampered by two fundamental impediments to their successful implementation—those that 
are theoretically sound invariably have been specified in terms of parameters and control options 
that simply are not within the lexicon of control devices and typically involve complex mixed-
integer-programming formulations that do not lend themselves to real-time solution, and those 
that do manipulate parameters employed in modern actuated control devices are based on highly 
simplified approximations and simplifications to both control response and traffic measurement.  
Consistent modeling of traffic signal operations inevitably includes some sort of conditional 
piece-wise functions in the mathematical representation. For example, such a representation is 
the basis of the dispersion-and-store model where the inflow to a link is dispersed and is 
subsequently stored at its end if the signal at the adjacent intersection is “Red,” or the similar 
store-and-forward model where the inflow is assumed to travel at a constant travel time, a 
general relationship of the corresponding outflow discharge would be described by a function 
that is conditional on the signal indication and the prevailing traffic conditions. Specifically, the 
outflow is equal to zero if the signal is “Red”, and equal to the minimum of the flow rate of the 
stored vehicles and the saturation flow rate if “Green”. Within the context of a mathematical 
programming problem this function is represented by some sort of constraint(s). 
 
Typically, this task has been approached either by considering specific aspects of the process 
behavior that narrow the applicability of the model and restrict the insight of the findings, or via 
its questionable manipulation in the solution procedure of the corresponding problem. For 
example, when designing optimal signal control strategies for surface street networks based on 
the store-and-forward model, Singh and Tamura (1974), D'Ans and Gazis (1976), and 
Papageorgiou (1995) assumed that oversaturated conditions prevail. The control variables are the 
green per cycle ratios given a cycle of fixed duration, so that the outflow discharge is calculated 
as the product of the saturation flow rate and the green per cycle ratio. In their formulations, 
traffic signal operation is not explicitly modeled, and the oversaturation assumption restricts the 
applicability of the control strategy that of a single-ring, 2-phase, fixed cycle controller. As 
another example, Chang et al. (1994) develop signal control strategies for mixed surface 
street/freeway networks by manipulating the outflow discharge function based on the values of 
the current state and the previously determined control variable, with the solution algorithm 
assigning the minimum of the two arguments to the link outflow. In other cases, the conditional 
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piece-wise function is expressed in the form of minimum or maximum operators; see, e.g., 
Stephanedes and Chang (1993), and Ziliaskopoulos (2000).  
 
Despite the theoretical consistency of optimal control formulations based on such piece-wise 
functions, the impracticality of their solution in real-time and their general inconsistency with the 
operation of existing control devices (e.g., by specifying control transition commands that cannot 
be understood by existing controller logic) have rendered their practical implementation virtually 
impossible. In the approach taken herein, we avoid this pitfall by formulating the optimal control 
problem for a signalized intersection in terms of parameters (phase minimum green parameters, 
phase passage parameters and phase maximum green parameters) featured in any modern 
actuated controller, based on a theoretically consistent model of stochastic traffic flow. 
 

2. Methodological Approach 

2.1   Intersection control module 
In the approach taken here, we assume that the traffic arrival pattern can be represented as a 
queue with Poisson arrivals, and from queuing theory (e.g., Cox and Smith, 1961) first develop 
estimates of both the effective green time (equal to actual displayed green interval), and the 
vehicle arrival flow, departure number and spillovers for the expired signal phase based on the 
known controller parameter settings. Similarly, we estimate upstream contributions to the target 
intersections from known parameters at the upstream intersections (a total of four) and readouts 
from the corresponding signal displays; depending on the expected travel time from the 
contributing intersection, these values may be drawn from a completed cycle or from an ongoing 
cycle of operation that commenced just prior to the forecast period for the target intersection.  
Dynamic turning fractions at the target intersection, which cannot be known a priori, are 
estimated based on a moving average model. 
 
Based on maximum cycle length restrictions, we set phase maximum green parameters based on 
Webster’s functions, accounting for any spillover from previous cycles of operation. These 
maximum green settings provide constraints for the decision of optimal phase splits, which are 
determined by solving a non-linear optimization problem with the objective to be minimizing 
total intersection control delay per cycle. The expression for delay is given by Darroch (1964), 
which is a generalization of the well-known Webster formulation. These optimized phase splits 
are used to determine optimal phase minimum green and passage settings. All these timing 
parameters will be used for the upcoming control cycle as well as provide signal timing data for 
further optimizations.  
 
As specified, the outputs of the adaptive control model for intersection signalization are the 
product of a stochastic optimal control problem that returns dynamic values for the three 
parameters of actuated controllers—phase minimum green parameter (subject to its absolute 
minimum based on such other conditions as pedestrian waiting time and start-up lost time), 
phase passage parameter and phase maximum green parameter—that control its responsiveness 
to stochastic fluctuations in traffic conditions (other parameters, e.g., yellow interval, clearance 
interval, phase sequencing, are determined principally in regard to safety and geometric 
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considerations); contrasted to current controller operation, in which these parameters are 
static/preset, in our formulation they are dynamically set in response to estimates of demand.   
 
 

2.2 Ramp meter control model 
Based on the procedures described in Section 4, below, real-time approach volumes (demand) at 
the entry ramps downstream of the intersections that feed the ramps are estimated.  Owing to the 
proximity of the intersections to the respective ramp meters, the arrival pattern at the point of 
metering will be determined using platoon dispersion principles. The departure pattern will be 
determined as an output of the ramp control model, which will have as its control parameter the 
instantaneous metering headway, subject to certain installation parameters (e.g., queue override 
headway, merge queue override headway), and to controller operation protocol. 
 
Caltrans Type 170 metering controllers comprise a number of control elements based on 
inductive loop detector data inputs.  A typical freeway configuration is shown in Figure 1. 
 
 
 

 
 

 

Under current deployment, the headway component of the signal controller uses input from: 1) 
the upstream detector station, 2) the downstream detector station, 3) the excessive queue detector, 
and 4) the merge detector station.  Basically, the upstream and downstream detectors are used to 
calculate an appropriate metering headway based on conditions on the mainline freeway, while 
the queue and merge detectors are used to override the calculated headway based on conditions 
on the ramp.  The actual ramp signal sequencing is determined by input from the demand 
(Checkin) detector and the passage (Checkout) detector. 
 
A typical open-loop control operation is shown in Figure 2 below, in which the objective of the 
control is to keep the total demand downstream at a value that does not exceed the capacity 
downstream: 
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Figure 1. Typical Ramp Metering Configuration 
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Figure 2. Typical Open-loop Ramp Metering Control 

 
In this controller, the reference input is the downstream capacity, ( )c downq  , and the metering 

headway is computed as the headway corresponding to a ramp flow rate that would lead to the 
total downstream demand being less than or equal to capacity.  Note that in this open loop design, 
the downstream detectors are not used; only the upstream flow rate (which is external to the 
control system) is utilized. 
 
An example of a simple closed-loop control system is shown in Figure 3 in which the objective 
is to maintain the downstream speed at a certain prescribed level, REFx . 
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In this controller, the count and occupancy from the downstream detector stations are used to 
compute an estimate of the downstream speed, which is then compared to the input reference 
speed; a proportional control is then used to calculate the ramp metering headway. In this 
application the upstream system detectors are not used. 
 
In neither of these typical installations is the system-wide performance an explicit consideration 
in the setting of parameters under which ramp meter controllers operate. In the work presented 
here, we formulate the ramp control element of our real-time adaptive control corridor model 
under assumptions of stochastic queuing, with demand input determined from the output of the 
associated intersection discharge model, and with output determined in accordance with 
minimizing the delay to the combined corridor system, comprised of: intersection delay, ramp 
delay, and freeway delay. 
 

2.3 Freeway model 
It is well-known that there is an inherent relationship among the speed (and, correspondingly, 
delay), flow, and density of traffic on a freeway (often referred to as the “fundamental diagram 
of traffic flow”). Less well-known is the exact form of this relationship. For analytical 
formulations, such as ours, it is nonetheless necessary to impose a mathematically tractable 
relationship. Although a number of such relationships have been proposed, based on their 
mathematical simplicity (see, e.g., Greenshield’s linear model), few of these are consistent with 
observed data; most of these models predict a gradual decrease in speed (linear, in the case of 
Greenshield’s model) as traffic density increases. In fact, our experience suggests that speed 
remains relatively constant until we reach a point where there are sufficient numbers of vehicles 
to cause interference in the traffic stream, resulting in the need or desire among drivers to change 
lanes, accelerate and brake. At this point, we know that things can quickly deteriorate to “stop-
and-go” conditions, i.e., congestion, with a precipitous drop in speed. That is, what we expect to 
see in the way of a relationship between speed and density is something like that shown in Figure 
4 below. 
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"Expected" Speed - Density Relationship
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Figure 4. Expected Speed-Density Relationship 

 
This figure depicts a speed–density relationship in which speed remains relatively constant at a 
value equal to the free-flow speed until we reach capacity, and then speed decreases somewhat 
unstably from that point to stop-and-go conditions. The corresponding flow–density picture 
suggests that an underlying theoretical model of the form shown in Figure 5 below (in red) 
would give results that closely approximate conditions observed in the field.  Such a theoretical 
model would have the attractive feature of being (piecewise) linear (but not smooth, i.e., not 
having continuous derivatives).  Unlike the Greenshield formulation, the linearity here would be 
in the flow–density relationship, rather than in the speed–density relationship. 
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Field Data: All Lanes Flow - Density Relationship
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Figure 5. Field Speed-Density Data 

 
Such a model was first proposed by Gordon Newell (of UC Berkeley).  Known as the 
“triangular” flow – density relationship, it has the mathematical form: 
 

;

1 ;

f c

c
c j c

j c

S k k k

q k k
q k k k

k k

 


   
       

 (2.1)  

Since q k x x q k     , the equations above imply the following speed – density relationship 
for the “triangular” flow – density relationship: 
 

;

1 ;
1

f c

f j
j c

j

c

S k k

S k
x k k k

k k
k



        
  

  (2.2)  

 
How closely does the “triangular” flow model replicate field conditions?  Below, in Figures 6-11, 
we superimpose the model results for 80 mph, 2,300 veh/hr/lanef cS q   and 

211 veh/mi/lane.jk    (Ordinarily, we would use a formal statistical analysis, such as “least 

squares regression” to find the best fit, but here we simply pick some values that seem to fit the 
data.) 
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Field Data: Lane 2 Speed - Density Relationship 
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Figure 6. Single Lane Speed-Density Field Data Correspondence with Model 

 
 

Field Data: Lane 2 Flow - Density Relationship
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Figure 7. Single Lane Flow-Density Field Data Correspondence with Model 
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Field Data: Lane 2 Flow - Speed Relationship
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Figure 8. Single Lane Flow-Speed Correspondence with Model 

 
 

Field Data: All Lanes Speed - Density Relationship
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Figure 9. All Lanes Speed-Density Correspondence with Model 
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Field Data: All Lanes Flow - Density Relationship
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Figure 10. All Lanes Flow-Density Correspondence with Model 

 

Field Data: All Lanes Flow - Speed Relationship
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Figure 11. All Lanes Flow-Speed Correspondence with Model 

 
The typical goal for efficient operations is to design a ramp control strategy that processes the 
maximum number of vehicles, while maintaining uncongested, or “high-speed,” conditions.  In 
work conducted herein, we first “fit” the triangular flow model to loop data for each section of 
the freeway in our corridor.  Then, using the calibrated speed-flow-density models, we specify 
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freeway delay in terms of the mainline volumes (determined from loop stations at the entry 
boundary to the corridor) and the controlled discharge from the entry ramps within the corridor. 
 

2.4 Optimal corridor control formulation 
The procedures outlined in Sections 2.1, 2.2, and 2.3 above specify the total delay components in 
the corridor network—intersection delay, ramp delay, and freeway delay—in terms of a set of 
control variables (gap settings, maximum green settings, minimum green settings, and ramp 
meter headway settings) that can be dynamically adjusted in response to detector inputs and 
known controller responses. Nominally, these adjustments would be guided by achieving some 
system optimal condition, e.g., minimization of total system delay, and achieved through solving 
the accompanying nonlinear optimization problem. For practical application, it is important to 
recognize that, in most cases, the arterial and freeway/ramp subsystems reside under different 
jurisdictional control. (For example, in the corridor used as the test network, the 
arterial/intersection components are under control of the City of Irvine (COI), while the 
freeway/ramp components are under the control of Caltrans District 12.)  We thus specify the 
system objective as a multi-objective minimization function—minimization of freeway/ramp 
delay and minimization of arterial signal delay—and develop solutions for optimal control that 
specify the efficient frontier; i.e., the set of non-dominated control options. In this way, we not 
only preserve the autonomy of the individual operating agencies, but also are able to present a set 
of global solutions that translate directly into the recommended set of options for use in 
CARTESIUS applications. 
 

2.5 Path to deployment  
The ultimate goal of this project is to set the stage for deploying a prototype of the optimal 
corridor control system in a real-world setting for evaluation and testing.  It is primarily because 
of this overriding goal that we have specified the adaptive control procedures solely in terms of 
those parameters common to existing signal control devices (e.g., Type 170, Type 2070, and 
NEMA controllers), and utilize only those data provided by inductance loop detectors.  As a 
result, upon successful completion of the adaptive control protocol, its deployment in the field is 
restricted only by the ability to communicate parameter value updates to the field devices at 
regular intervals. 
 
To facilitate deployment, our development work is conducted on a corridor network for which 
we have at least limited authority to conduct tests involving closed-loop control.  On the arterial, 
we have installed a system of Type 2070 controllers at all signalized intersections that operate 
independently from the local COI system. Work is currently underway to place management of 
these controllers under CTNet, the latest version of which supports serial and TCP/IP 
communications; a secondary system based on state-of-the-art Siemens ACTRA Central Traffic 
Control System with custom-designed Input Acquisition Software is in place as a backup, should 
the CTNet configuration prove problematic.  Software has been developed, and laboratory tested, 
that permits real-time adaptive control of Caltrans District 12 ramp meters in the study area.  We 
have established real-time communication with these control devices and also receive real-time 
raw data streams from loop detectors within the study area. 
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The scope of the current effort includes the development of the corridor adaptive control model 
and its testing and evaluation in a simulation environment.  Prior to testing the complete model, 
separate tests were conducted to evaluate the intersection control model on: 1) an isolated 
intersection, and 2) a network of intersections along an arterial.  The complete model is then 
tested and evaluated on the Alton Parkway/I-405 corridor network.  Although actual deployment 
is beyond the scope of the current effort, pending the results of the evaluation of the simulated 
network, it is envisioned that the adaptive control system can be incorporated as a service within 
the CARTESIUS deployment under CTNet (in separate, complementary PATH/Caltrans 
projects). 
 

2.6 Testing and evaluating the proposed control models 
In order to test and evaluate the proposed control models, the optimal control formulation has 
been developed as an API in Paramics. The test network has been drawn for a subsection of the 
so-called “Irvine Triangle” Paramics network (Figure 12) that has been extensively coded and 
calibrated as part of the Caltrans ATMS Testbed program. 
 
 

 

 

Figure 12. Irvine Triangle Network 

 
In testing the optimal control model, we simulate a variety of conditions on the freeway and 
arterial subsystems that cover the range of demand from peak to non-peak, incident to non-
incident, conditions. The results of these experiments are evaluated against full-actuated 
operation (these models have already been coded as API functions within Paramics). In the first 
phase of the evaluation, we are interested only in the performance of the arterial subsystem, 
rather than in the combined performance of the freeway-arterial system—this latter aspect of the 
study is addressed in subsequent testing. 
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3.  Theoretical Development of the Intersection Control Model 

3.1 Conceptualization 
Consider the dual-ring actuated controller shown in Figure13 below: 
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Figure 13. Dual-ring Controller Phasing Diagram 

 
Depending on the values of controller parameters and the traffic arrival pattern, at most six 
distinct “stages” will be realized; e.g., 
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Figure 14. Dual-ring Controller Stages 

 
For the i th phase, designate the phase split for the j th cycle by j

iG , and duration of red phase by 
j

iR . Then, the complete breakdown of any particular cycle j for phase i can be represented as 

follows: 
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Figure 15. Phase State 

 
In Figure 15: 
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Here we assume that the lost times 1il  and 2il , and thus the total lost time iL , for phase i are 

constant through all cycles, and the effective green, j
eiG , is equal to the actual displayed green. 

Designating the mean arrival flow rate for phase i during cycle j by j
i  and the constant mean 

saturation flow rate for phase i through all cycles by iS , the pattern of arrivals/departures for any 

particular phase i is as shown below:  
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Gap-out case 1                                                                         Max-out case 1 

        
Gap-out case 2                                                                          Max-out case 2 

        
Gap-out case 3                                                                        Max-out case 3  

Figure 16. Pattern of Arrivals/Departures 

 
In Figure 16: 
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As can be seen, depending on the phase termination mode (either gap-out or max-out) and the 
values of queue service time, there are six cases that describe distinct arrival/departure patterns.   
 
 

3.2 Determining vehicle arrival flow rate j
i  

The gap-out and max-out situations are considered separately to determine j
i . In gap-out 

control, the green phase terminates when the vehicle gap (headway) larger than the unit 
extension (gap setting) occurs. Let j

i  denote the gap setting for phase i during cycle j, and j
iZ  

the waiting time for the occurrence of the first vehicle gap of at least j
i . Based on Poisson 

arrival process, the associated headway distribution is given by ( ) exp( )j j
i it t    . Denote by 

( )t  the probability density of the delay in waiting for a gap of at least j
i . The probability that 

the first gap is j
i  is then 

 

 0 0

0

( )j
iH t t dt  



   (3.1) 

 
where ( )H   is the Heaviside function.  
 
Then, ( )t  is given by 
 

0 1( ) ( ) ( )t t t     (3.2) 

 
where ( )t  is the Dirac delta function, and 1( )t  is the contribution due to having to wait for at 

least one vehicle to pass before a gap of at least j
i  materializes. The probability that an arbitrary 

gap is at least j
i  is given by 

 
0

( )j
iH t t dt  



   (3.3) 

 
Then 
 

1( ) ( )j
it Z t   (3.4) 

 
where ( )j

iZ t dt  is the probability that a vehicle arrives during the time interval ( , )t t dt  and no 

gap of at least j
i  has been detected up to that point.   

 
Then 
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0( ) ( ) ( )j
it t Z t      (3.5) 

 
Let 
 

 
 

0 0( ) ( ) 1

( ) ( ) 1

j
i

j
i

t t H t

t t H t

 

 

     
     

 (3.6) 

 
Then, 0 ( )t dt  is the probability that the first gap is in the time interval ( , )t t dt  and it is not a 

gap of at least j
i , and ( )t dt  is the probability that a succeeding gap is in the time interval 

( , )t t dt  and is not a gap of at least j
i . If a vehicle passes at time t and no gap of at least j

i  

has materialized, it is either the first vehicle to do so, or the last such event occurred at some time 
t   and the succeeding gap was not a gap of at least j

i . These two possibilities are captured 

by 
 

0

0

( ) ( ) ( ) ( )
t

j j
i iZ t t Z t d        (3.7) 

 
Denote by 
 

*

0

( ) ( )stf s e f t dt


    (3.8) 

 
the Laplace transform of ( )f t . Then, the transformation of the convolution integral above is 
 

*
* 0
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  (3.9) 

 
But, 
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or, 
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  (3.11) 

 

Let  nj
iZ  denote the n th moment of j

iZ .  Then 
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  *
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       (3.12) 

 

Then, the expected wait time  j
iE Z  for the first gap of at least j

i  duration is given by 

 

   exp 1j j
i ij j

i ij
i

E Z
 





    (3.13) 

 
Therefore, the phase split can be expressed by  
 

   
min min

exp 1 exp 1j j j j
i i i ij j j j j

i i i i i i ij j
i i

G L G L G
   

 
 

 
                                        (3.14) 

 
In Eq. (3.14), all variables except j

i  are known signal timing parameters obtained from the 

expired phase, and thus the vehicle arrival flow rate j
i  can be determined by solving the 

nonlinear inverse function 1( )j
iF  , i.e.,  

 
1( )j j

i iF                                                                                                                              (3.15) 

where      
min

exp 1
0

j j
i ij j j

i i i i j
i

F G L G
 





                                                      

 
In max-out-controlled termination of green, arriving vehicles keep actuating the extension 
detector until maximum green limit is reached. Therefore, it is safe to presume that the number 
of vehicles arriving from the end of minimum green to the end of phase green is greater than the 
minimum vehicle arrivals sufficient to invoke max-out conditions, i.e., 
 

min
min( )

j j
j j j i i i

i i i i j
i

G L G
G L G


 

      

or, 
 

 
1j

i j
i




                                                                                                                                   (3.16) 

 
Specifically, we assume here that j

i  is approximately equal to the mean of 1 / j
i and iS , i.e., 

 
1

( ) / 2j
i ij

i

S


                                                                                                                      (3.17) 
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Also, j
i  can be determined with the known parameters j

i  and iS .  

 

3.3 Determining vehicle departure number ( )j
iN G  and spillover spill j

iQ  

The number of vehicle departures and any spillover depend on the value of queue service time, 
j

qiG . Let (0)j
iQ  denote the queue remaining at the end of the prior green phase and j

iQ  denote 

the number of arrivals associated with phase i during the effective red j j
i iR L .  Then j

qiG  is the 

convolution of (0) j j
i iQ Q  busy periods in a queue with Poisson arrivals with rate j

i  and 

constant service time  1 /i is S . Then, from queuing theory (e.g., Cox and Smith, 1961, p 55), 
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i i ij j j
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E G Q Q

s
                                                                                 (3.18) 

 

Under the assumption of Poisson arrivals, j
iQ  is Poisson distributed with mean  j j

i i iR L  , 
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or, 
 

     0  




j j j j
i i i ij

qi j
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Q R L
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S




                                                                                               (3.19) 

  
Referring to the arrival/departure pattern as shown in Figure 16 above, the value of j

qiG  may lie 

in one of three different ranges: 
 
Case 1:  
 

minj j
qi iG G  

 
or, 
 

   
min

0  




j j j j
i i i i j

ij
i i

Q R L
G

S




 

 
or, 
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 min

min

0


 

j j
ji i i

ij j
i i i

S G Q

R L G
                                                                                                                  (3.20) 

 
Case 2:  
 

 min   j j j
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or, 
 

     min

0  
  



j j j j
i i i ij j

i i ij
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0 ( ) 0  
 

  

j j j j
ji i i i i i i

ij j j j
i i i i i

S G Q S G L Q

R L G R G
                                                                             (3.21) 

 
Case 3: 
 

  j j
qi i iG G L  

 
or, 
 

     0  
 



j j j j
i i i i j

i ij
i i
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or, 
 

 ( ) 0 




j j
j i i i i

i j j
i i

S G L Q

R G
                                                                                                          (3.22) 

 
Note that in max-out-controlled termination, max j j

i i iG L G .  

 
As can be seen, three consecutive, non-overlapped numerical intervals regarding to the value of 

j
i  are illustrated by inequalities (3.20), (3.21) and (3.22), which are also expressed in terms of 

known timing parameters. Based on the j
i  determined by Eq. (3.15) or Eq. (3.17), only one 

inequality (i.e., only one case) is “true” for the gap-out or max-out situation. Hence, the vehicle 
departure number during the phase split, ( )j

iN G , and spillover spill j
iQ can be determined by the 

following equations that correspond to the true case. 
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Case 1 or 2: 
 

 ( )j j j j j
i i qi i i i qiN G S G G L G     

 
or, 
 

   ( )j j j j j
i i i qi i i iN G S G G L      
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0
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j j j

i i i ij j j j
i i i i i ij

i i
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or, 
 

   ( ) 0j j j j j
i i i i iN G Q G R                                                                                                    (3.23) 

 
And, 
 

 (0) ( )spill j j j j j j
i i i i i iQ Q G R N G     

 
or, 
 

0spill j
iQ                                                                                                                                     (3.24) 

 
Case 3: 
 

 ( )j j
i i i iN G S G L                                                                                                                   (3.25) 

 
And, 
 

 (0) ( )spill j j j j j j
i i i i i iQ Q G R N G     

 
Or, 
 

   (0)spill j j j j j j
i i i i i i i iQ Q G R S G L                                                                                  (3.26) 

 
For Eq. (3.23) to Eq. (3.26), ( )j

iN G  and spill j
iQ  can be determined with such known parameters 

obtained from the expired phase as (0)j
iQ , j

iG , j
iR  and j

i . 
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3.4 Determining future vehicle arrival flow rate 1j
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Figure 17. Approach Volumes 

 
at intersection m during cycle j .   
 

( ) ( ) /j j j
im im mE q N G C    (3.27) 

 
where 
 

1 2 3 4
j j j j jC G G G G          or  5 6 7 8

j j j j jC G G G G         

 
Therefore, 
 

( ) ( ) ( ) ; 1636,2527,3858,4714j j j
rsk tm umE q E q E q rstu      (3.28) 

 
where intersection m is on the respective upstream approach to the phase [1,6], [2,5], [3,8],and 
[4,7] movements at intersection k. 
 
And, the turning fractions for cycle j can be expressed as 
 

; 16,25,38,47,61,52,83,74
j

j ik
ik j j

ik rk

TF ir


 
 


 (3.29) 

 
where j

ikTF  denotes the percent of traffic on the approach contributing to phase i that is assigned 

to phase i during cycle j.  

Next, forecast 1j
ikTF   by some form of “moving average” model; e.g., 

 

1
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        (3.30) 
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Then, compute 1 , 1, ,8j
ik i     as 

 
1 1

1 1

, 16, 25,38, 47

, 16, 25,38, 47

j j j
ik ik irk

j j j
rk rk irk

TF q ir

TF q ir





 

 

  

  
 

 
 

3.5 Determining optimal maximum green 1
max
j

iG   

Here, we determine maximum green using Webster’s formulas, i.e., 
 

 1 1 1
max3600 / (0)j j j

i i i iD C Q S                                                                                         (3.31) 

 
where 
 

max  Maximum allowable cycle length , say 120 secondsC    

 
1(0)j spill j

i iQ Q                                                                                                                           (3.32)                       

 
The term   1

max3600 / (0)j
iC Q   represents an approximation of the equivalent apparent arrival 

rate (per hour) due to incorporating the leftover queue from the previous cycle (i.e., spill j
iQ ) 

present at onset of green. And, the critical path through each ring is determined by 
 

Left Side Conditions:  Critical Path =  * *
* * 1 1 1 1
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Right Side Conditions:  Critical Path =  * *
* * 1 1 1 1
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j j j j
r nr n r n
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                        (3.33) 

 
Employing Webster’s optimal distribution of green, we obtain for the left and right portions of 
the ring, 1Web j

leftG   and 1Web j
rightG  , respectively, 
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 (3.34) 

 
Using the same philosophy, we calculate for the critical movements: 
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 (3.35) 

 
And, for the non-critical movements: 
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1 * *; 34,78 ;r n r n r n 

 (3.36) 

Then, set maximum greens according to Webster’s optimal phase splits 

 
1 1

max ; 1, ,8j Web j
i iG G i     

 
 

3.6 Determining optimal phase split 1j
iG   

A nonlinear optimization problem is formulated to determine optimal phase splits, with the 
objective to be minimizing total intersection control delay during the upcoming cycle. The 
optimization of phase splits is also called "Critical Intersection Control (CIC)" and it is 
considered a first generation UTCS control strategy; our formulation of this strategy explicitly 
incorporates stochastic factors incorporated with optimal control. The delay expression is given 
by Darroch (1964), which is a generalization of the well-known Webster formulation, 
 

 
1

1 1 2 1 1
1 1 1

2 1
( ) (0) 1 ; 1,2, ,8

2(1 ) 1

j
j j j ji

i i i i ij j j
i i i i i
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s s
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or, 
 

 
1

1 1 2 1 1
1 1 1

2 1 1
( ) (0) ; 1,2, ,8

2( )

j
j j j ji i

i i i ij j j
i i i i i i

S
E W R R Q i

S S S


  


   

  

             
              (3.37) 

 
where 1j

iW   is the waiting time per cycle. The optimization problems can be expressed by  

 

 
8

1

1

j
i

i

Min E W 


                                                                                                    (3.38) 

 
Based on the circular dependency relationship in dual-ring structure as shown in Figure 18, the 
term 1j

iR   can be expressed as 

 
1
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1 1
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3 4 1 2

1 1 1 1
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j j j j
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                                                                                                           (3.39) 

 

Figure 18. Circular Dependency 
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We note that Eq. (3.39) does not contain terms 1
4
jG   and 1

8
jG  , and thus these two variables 

cannot be expressed in the optimization problem. Here, a rolling horizon scheme is applied by 
substituting 1

1
jR   with 2

1
jR   , and 1

5
jR   with 2

5
jR  , then we have 

 
2 1 1 1
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1 1
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j j j j

j j j j
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R G G G
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                                                                                                           (3.40) 

 
 Then, the optimization problem becomes 
 

   1 2

2,3,4,6,7,8 1,5

j j
i r

i r

Min E W E W 

 

 
 

 
                                                       (3.41) 

 

In the expression for  2j
rE W  , i.e., 
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2 1 1
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2( )

j
j j j jr r

r r r rj j j
r r r r r r

S
E W R R Q r

S S S


  


   

  

             
 

 
we assume 2(0) 0j

rQ   , and 2j
r
  can be estimated by some form of “moving average” model, 

e.g., 
 

1 1
2

1 1
1 1

; ; 1
o

o o

j j
j n

r n r j j j j n
n j j n j j

      
 


  

     

                                                         (3.42) 

 
In addition, two constraints are considered in formulating the optimization problem:  

(1) Barrier condition. According to the concept of dual-ring control, the timing period in ring A 
should be equal to the timing period in ring B on either side of the barrier, i.e.,  

 
1 1 1 1

1 2 5 6

1 1 1 1
3 4 7 8

j j j j

j j j j

G G G G

G G G G

   

   

  

  
                                                                                                          (3.43) 

 
(2) Equilibrium condition. The phase green is expected to be large enough to service all the      

vehicles that arrive during the effective red and effective green (plus initial queue) in order 
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to avoid oversaturation delay, i.e., to terminate the phase by gap-out control and invoke no 
vehicle spillover (refer to gap-out Case 1 and 2); therefore, 

 
1 1

max

1 1

j j
i i i

j j
qi i i

G G L
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                                                                                                                       (3.44) 

 

where   
   1 1 1 1

1
1
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Therefore, the complete optimization problem is expressed by 
 

   1 2

2,3,4,6,7,8 1,5

j j
i r

i r

Min E W E W 

 

 
 

 
   

 
subject to 
 

 

1 1 1 1
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1 1 1
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j j j j
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3.7 Determining optimal minimum green 1
min
j

iG   

Minimum green is set equal to queue service time if queue service time is less than the pre-
determined (i.e., traditional) minimum green, 0

min iG , otherwise, set it equal to the pre-determined 

minimum green, i.e., 
 

1 1 1 0
min min

1 0 1 0
min min min

     if  

    if  

j j j
i qi qi i

j j
i i qi i

G G G G

G G G G

  

 

 

 
 

  
or, 
 

1 1 0
min minmin ,j j

i qi iG G G                                                                                                                 (3.45) 

 
 

3.8 Determining optimal passage setting 1j
i
  

Recall that the optimized phase is expected to be terminated by gap-out control; therefore, the 
phase split can be expressed by Eq. (3.14), i.e., 
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 1 1

1 1
min 1

exp 1j j
i ij j

i i i j
i

G L G
 


 
 




                                                                                          

 
Then, 
 

 1 1 1
min1

1

ln 1 j j j
i i i ij

i j
i

G G L




  




                                                                                            (3.46) 

 

Note here that, the natural logarithm in Eq. (3.46) requires  1 1 1
min1 j j j

i i i iG G L         be 

greater than zero. According to inequality (3.44), i.e.,  
 

1 1j j
qi i iG G L    

 
we have  
 

1 1 1 1
min min

j j j j
qi i i i iG G G L G                                                                                                          (3.47) 

 
And, according to Eq. (3.45), we have      
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or, 
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Then,  
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                                                                         (3.48) 

 
and the requirement imposed by the natural logarithm is satisfied. Substituting inequality (3.48) 
into Eq. (3.46), we have 
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4.   Theoretical Development of Ramp Control Model 

Assume Poisson arrivals at a ramp; i.e.,  
 

 
( )

!

i t

i

t e
P t

i

 

  (4.1) 

 
Where the mean arrival rate V  and variance 2  are given by 
 

2V t    (4.2) 
 
The corresponding headway distribution is given by 
 
Pr( ) 1 th t e     (4.3) 
 
Note that if the arrivals are formed by a sum of Poisson arrivals, 
 

( ) ; ; 1, ,
!

km
k k

i k k

m e
P t m t k n

i




     (4.4) 

 
then, 
 

1

( ) ; ;
!

M i n

i k k k
k

e M
P t M m m t

i






    (4.5) 

 
Note:  The following derivation parallels that of Hokstad (1979). 
 
Consider a stationary ramp queue.  Let X denote the queue waiting time (not including the 
“service time” once the vehicle arrives at the ramp meter stop line).  Let Y denote the “service 
time,” which is simply the metering headway, or the inverse of the current ramp metering rate, 

RM ; initially, we assume that Pr( ) ( )Y F   . 
 
Assume that the ramp has a finite storage capacity, RC  (expressed in ft.).  Then, it is assumed 
that, once the queue length reaches this limit, any further ramp-bound vehicles will be diverted.  
This condition is specified by 
 

vehicle will join the ramp queue                              

vehicle will be diverted and not join the ramp queue

K
X Y

K

 
  

 (4.6) 

 
where 
 

;  Average length of a vehicleR
V

V

C Y
K L

L


   (4.7) 
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Therefore, X K .   
 
Following Takacs (1955), let ( )t denote the waiting time at the ramp at time instant t.  Denote 

0(0)   with distribution function *
0 0Pr( ) ( )x W x   .  Let *Pr( ( ) ) ( , )t x W t x   .   

 
Consider *( , )W t t x  .  The event ( )t t x     can occur in the following mutually exclusive, 
and exhaustive, ways: 
 
1. During the interval ( , )t t t   no event occurs; the probability of this outcome is 

1 ( )t o t    .  Then , for this outcome,   *Pr ( ) ( , )t x t W t x t       . 

 
2. During the interval ( , )t t t   one event occurs—the probability of this outcome is 

( )t o t   —and the waiting time ( )t y  , where  0 y x  .  For this, we must have 
Y x y  , which occurs with probability: 

 

*

0

( ) ( , )
x

uF x u d W t u  (4.8) 

 
Then , for this outcome,  
 

    *

0

*

0

Pr ( ) ( ) ( ) ( , )

( ) ( , ) ( )

x

u

x

u

t x t t o t F x u d W t u

t F x u d W t u o t

 



       

    




 (4.9) 

 
3. During the interval ( , )t t t   more than one event occurs; the probability of this outcome is 

( )o t . 
 
Then, 
 

 * * *

0

( , ) 1 ( , ) ( ) ( , ) ( )
x

uW t t x t W t x t t F x u d W t u o t              (4.10) 

 
But, 
 

*
* * ( , )
( , ) ( , ) ( )

W t x
W t x t W t x t o t

x


      


 (4.11) 

 
So, 
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*

* * *

0

*
* * *

0

( , )
( , ) 1 ( , ) ( ) ( , ) ( )

( , )
( , ) ( , ) ( ) ( , ) ( )

x

u

x

u

W t x
W t t x t W t x t t F x u d W t u o t

x

W t x
W t x t t W t x t F x u d W t u o t

x

 

 

 
             


          






 (4.12) 

 
Or, 
 

* * *
* *

0

( , ) ( , ) ( , )
( , ) ( ) ( , ) ( )

x

u

W t t x W t x W t x
W t x F x u d W t u o t

t x
    

      
    (4.13) 

 
Taking the limit as 0t  , 
 

* *
* *

0

( , ) ( , )
( , ) ( ) ( , )

x

u

W t x W t x
W t x F x u d W t u

t x
  

    
    (4.14) 

 
Consider stationary solutions, i.e., solutions satisfying 
 

*
*( , )

0 ( , ) ( )
W t x

W t x W x
t


  


 (4.15) 

 
where we define 
 

*( ) lim ( , ) Pr( )

Pr( 0) (0)
t

W x W t x X x

Q X W


  

  
 (4.16) 

 
We note that, from the condition X K , ( ) 1W K  . Then, ( ) ( )w x dW x dx  exists for all 0x  , 
and is defined by the integral-differential equation  
 

0

( )
( ) ( ) ( ) ( )

xdW x
w x W x F x u dW u

x
     

   (4.17) 

 
The probability that the waiting time will be between u  and u u  is simply ( )dW u  times the 
probability that the vehicle will join the queue; this latter probability is simply the probability 
that the service time Y  is K u  , or  ( )F K u .  (Recall ( ) 1W K  .)  Then, 
 

0

( ) ( ) ( )
x

W x F K u dW u   (4.18) 

and 
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0 0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ; 0

x x

x

w x F K u dW u F x u dW u

F K u F x u dW u x K

 



   

     

 


 (4.19) 

 
We assume that the “service times” are independent with cumulative distribution function (cdf) 

( ) Pr( )F y Y y  .  In the case where the “service times” can be assumed to be equal to the 

metering headway, 1
Rb M  , 

 
1,

( ) Pr( ) ( )
0,

y b
F y Y y H b

y b


    

 (4.20) 

 
where ( )H   is the Heaviside step function. 
 
Let n be an integer satisfying 
 

( 1) ; 1,2,nb K n b n     
 
(Note: we exclude the case 0n   since it corresponds to the case in which no vehicle is allowed 
to enter the system; we also treat the case 1n   separately.)  Assume 2n  .  Divide the interval 

 0, K  into 2n   subintervals; i.e., 

 
 
 

 
 

1

1
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 (4.21) 

 
Let 
 

( ) ( ) ; , 0,1, , 1

( ) ( ) ; , 0,1, , 1
k k

k k

W x W x x I k n

w x w x x I k n

   
   




 (4.22) 

 
Then 

 
0

0 0

( ) ( ) ( ) ( ) ; 0

( ) ( ) ( ) ; 0

x

x x

w x F K u F x u dW u x K

dW u F x u dW u x K



 

     

    



 
 (4.23) 

0 0( ) ( )w x W x  (4.24a) 
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 (4.24b) 

 

 1 2( ) ( ) ( )n n nw x W K b W x b       (4.24c) 

 

 1 1 1( ) ( ) ( )n n nw x W K b W x b       (4.24d) 
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But, 
 

0
0 (0)W Q ce c Q     

 
So,  
 

0 ( ) xW x Qe  (4.25a) 
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In general, 
 

0
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W x Qe e x jb k n
j

  




      (4.25b) 

 
And, from (4.24c) and (4.24d), 
 

 1 2
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            (4.25c) 
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1

1 1
0

( ) ( ) ( ) ( ) ( )
n

n n k k
k

W x Q x K b W K b W K n k b W x n k b


 


              (4.25d) 

 
Observe that, from (4.25d), 
 

1 1( ) ( )n nW K Q bW K b     (4.26) 

 
And, from the condition X K , ( ) 1W K  .  So, 
 

1( ) 1nQ bW K b     (4.27) 

 
Evaluating (4.25b) for 1k n  , we get 
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 (4.28) 

 
Substituting (4.28) into (4.27) 
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From which, 
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 (4.29) 

 
Recall, from (4.16), i.e., 
 

*( ) lim ( , ) Pr( )

Pr( 0) (0)
t

W x W t x X x

Q X W


  

  
 (4.16) 

 
So,  the cumulative distribution function for X, the queue waiting time, under the conditions of 
Poisson arrivals with mean arrival rate , and metering headway 1

Rb M  , and finite storage 

capacity, R VC K L b  , is given by:   
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1 1
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n n
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k k
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X x W x Q x K b W K b

W K n k b W x n k b nb x K

 





      

         
 

 
Observe that the probability that a random arrival J  joins the system is given by 
 

  1Pr( ) Pr Arbitrary arrival enters ramp system ( )nJ W K b    (4.30) 

 
Or, from (4.27),  
 

1
Pr( )

Q
J

b


  (4.31) 

 
Let M denote the number of vehicles queued on the ramp.  Then, 
 
Pr( ) Pr( ) ( ) ; 0,1, , 1mM m X mb W mb m n       (4.32a) 
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             (4.32b) 

 
The mean queue length is simply 
 

0

( ) Pr( )
n
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E M M m


   (4.33) 

 
Or, 
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But, 
 

   1( 1) ( 1) ; 0,1, , 2k kW k b W k b k n      

 
So, 
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But, 0 (0)W Q  and, from (4.17), 1( ) 1nQ bW K b    .  So, 

 

   
1

1 1
0

( ) 1 ( 1) ( ) ( ) 1 ( )
n

n k n
k

E M n n b K W K b W K n k b bW K b 


 


             

 
Or, 
 

   
1

1
0

( ) ( ) ( )
n

n k
k

E M n K nb W K b W K n k b





        (4.34) 

 
Using Little’s formula, see e.g., Kleinrock (1975), the expected number of vehicles on the ramp, 

( )qE M , is given by 

 
( ) ( ) (1 )qE M E M Q    (4.35) 

 
The arrival rate of those vehicles that actually enter the ramp is given by 
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Pr( )R J   (4.36) 

 
But, from (4.31), i.e., 
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Little’s formula gives 
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Then, the mean waiting time can be computed as 
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5.   Consideration of Freeway Delay 

As discussed in Section 2, the flow–density picture presented by actual field data suggests an 
underlying theoretical model of the form first proposed by Gordon Newell (of UC Berkeley), 
known as the “triangular” flow – density relationship, it has the mathematical form: 
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Here, we adopt this model to represent the freeway component of the corridor system.  A feature 
of this representation is that the freeway speed remains relatively constant for densities below the 
critical density, ck ; thus, there is no appreciable freeway delay for values ck k .  We note also 

that 
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Downstream of a ramp entry point, provided that densities are restricted to be ck , 
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where uq  is the mainline flow rate immediately upstream of the ramp. Or,  
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Enforcing such conditions will result in (approximately) zero delay to the freeway.  In the 
optimal control formulation based on minimizing total delay (as well as any combination of 
component delays), this condition places the following constraint on the solution: 
 

R
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6.   Development of Integrated Control Model 

The integrated control of the combined intersection and ramp system can be formulated as a 
nonlinear, multi-objective, programming problem. Consider some intersection k  that provides 
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access to freeway entry ramp R .  Let R
ik  denote the proportion of traffic associated with NEMA 

phase i  at intersection k that contribute flow to ramp R ; specifically, 0R
ik   for phases that do 

not feed the ramp, 1R
ik   for phases that exclusively feed the ramp, and 0 1R

ik  for phases in 

which it is optional to feed the ramp.  Then, during any particular cycle of operation of length C , 
the ramp arrival rate,  , is determined by 
 

NEMA 

R j
ik ik

i

q 


   (6.1) 

 
where j

ikq  are determined via the procedure outlined in Section 3.4 above; i.e., from (3.27)   
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Then, from (4.39) above and noting that 1

Rb M  , the mean waiting time can be computed as 
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And, from (4.37) and (4.38) above, i.e.,  
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( ) ( )q RE M E X  (4.38) 

 
the total expected delay due to ramp metering is 
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Substituting (6.2) and (4.37), 
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So, the problem of minimizing the ramp delay can be stated as: 
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subject to: 
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Recall that the problem of minimizing signal delay, SD , is given by (3.41) above, i.e., 
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In a multi-objective formulation, the ramp and signal delays (for intersections feeding freeway 
entry ramps) form a two-element set: 
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and the multi-objective problem can be stated as: 
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For the special case in which we wish to minimize total delay, TD , which is simply the sum of 
the ramp and signal delay (for intersections feeding freeway entry ramps), i.e., 
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T S RD D D   (6.9) 

 
the problem can be stated as: 
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subject to the conditions imposed by (6.8). 
 
 

7.   Simulation Evaluation  

7.1  Simulation model setup  
The proposed control strategies are tested and evaluated using a scalable, high-performance 
microscopic simulation package, Paramics (Cameron, G.D.B. and Duncan, G.I.B., 1996). 
Paramics has been widely used in the testing of various algorithms and evaluation of various 
Intelligent Transportation System (ITS) strategies because of its powerful Application 
Programming Interfaces (API), through which users can access the core models to customize and 
extend many features of the underlying simulation model, without having to deal with the 
underlying proprietary source codes. The proposed adaptive control model is implemented as a 
Paramics plug-in through API programming. It is noted that, although the theoretical models for 
adaptive control are developed under the assumption of Poisson arrivals (in order to obtain 
tractable mathematical results), in the simulation the arrival patterns are determined by the 
microsimulation and are, in general, not Poisson (particularly for peak flow conditions).  As a 
result, the models themselves may represent only a crude approximation to actual conditions; it 
can be expected that, relaxing the assumption of Poisson arrivals (to the extent that such is 
possible) would produce improved results.  
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Figure 19. Test Network 

 
The study network is shown as in Figure 19, which is so-called the “Irvine Triangle” located in 
southern California. A previous study calibrated this network in Paramics for the morning peak 
period from 6 to 10 AM (Chu, L. et al., 2004). This network includes a 6-mile section of freeway 
I-405, a 3-mile section of freeway I-5, a 3-mile section of freeway SR-133 and several adjacent 
surface streets, including two streets parallel to I-405 (i.e. Alton Parkway and Barranca Parkway), 
one street parallel to I-5 (Irvine Center Drive), and three crossing streets to I-405 (i.e. Culver 
Drive, Jeffery Road, and Sand Canyon Avenue). A total of thirty-eight signals under free-mode 
actuated control are included in this network. 
 
Three traffic demand scenarios are set up to test the proposed control models:  

1. Existing demand scenario: this scenario corresponds to the existing traffic condition for 
the morning peak period; demands are obtained from the calibrated simulation model 
directly (Chu, et al 2004);  

2. Medium demand scenario: demands are equivalent to 75% of the existing demand 
scenario;  

3. Low demand scenario: demands are equivalent to 50% of the existing demand scenario.  

Simulations are performed for a 4½-hour period for each scenario under the baseline control and 
the adaptive control, respectively. The baseline control corresponds to the free-mode actuated 
intersection control and the traffic-responsive ramp metering control in the existing network. The 
first 30 minutes are considered as the warm-up period for vehicles to fill in the network, and only 
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the last four hours of simulation are analyzed. Five simulation runs are conducted per scenario in 
order to generate statistically meaningful results. The mean value of simulation results are used 
for analysis. 
 

7.2 Evaluation of intersection control model 
In the adaptive intersection control model, the maximum allowable cycle length, Cmax, is set 
equal to 100 seconds for each signal. The total lost time, L, is 4 seconds for each actuated phase. 
The saturation flow rate, S, is equal to 1900 veh/hr/lane for each through movement phase, and 
1800 veh/hr/lane for each left-turn movement phase. And, to avoid some potential problems in 
the simulation network, those optimized control parameters that can take on unreasonably small 
values are further adjusted based on the following rules: 

1. If the minimum green time is extremely short (e.g., < 4 sec), it is set to be 4 seconds. 

2. If the maximum green time is shorter than the minimum green time, it is set equal to the 
minimum green. 

3. If the unit extension is not greater than 1/S, which may cause “early gap-out” right after 
the minimum green, it is set equal to 1/S + 0.1 seconds.     

Two groups of performance measures are used for the model evaluation: 

1. For isolated intersections: Vehicle Spillover (VSO), Maximum Queue Length (MQL) 
and Vehicle Travel Delay (VTD). 

2. Overall system performance: Average Travel Time (ATT), Average Vehicle Speed 
(AVS), Vehicle Mileage Traveled (VMT) and Vehicle Hours Traveled (VHT). 

      
As an example, a T-intersection is selected to show the performance of the proposed control 
model at individual intersections. This intersection corresponds to the junction of Irvine Center 
Drive and the off ramp from Southbound I-405, as shown in Figure 20. Phases 2 and 6 are 
assigned to the through movements and operated as min-recall phases, while phase 4 is assigned 
to the left-turn movement with no recall function. The extension detectors (6'×6') for through 
phases are placed 300 ft upstream from the stop line, and the call and extension detectors (5'×50') 
for left-turn phase are placed right behind the stop line. The baseline control parameters for this 
signal are shown in table 1. 
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Figure 20. Study Intersection 

 
Table 1. Parameters for the Study Intersection 

Phase 2 4 6 
Min Green (sec) 8 5 8 
Max Green (sec) 40 24 40 
Unit Extension (sec) 5.0 2.0 5.0 
Yellow and Red (sec) 4.0 4.0 4.0 

 

Here, we present only the simulation results from scenario 1 to demonstrate the impact of the 
proposed control model at this T-intersection. Figure 21 shows the arrival flow profiles for the 
three phases during the simulation period. Phases 2 and 4 experience two “peak” periods—
around 8am and 9am, respectively—and phase 6 experiences a relatively steady and low level of 
flow. The profiles under both baseline and adaptive control for each signal phase are very similar 
due to the use of the same demands for simulation.  

 

 

Figure 21. Flow Profile for Each Phase 
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Table 2 lists the performance measurements resulting from the simulation results for each phase. 
It can be seen that the vehicle spillover in phase 2 has been decreased by 9, and in phase 4 has 
been decreased by 8. A possible reason is phase 6 has relatively low flow rate and thus no 
spillover occurs in this phase. Some reduction in maximum queue length has been achieved with 
the biggest improvement being 23.5 feet in phase 2. No improvement has been gained in the 
maximum queue length for phase 4, but the travel time for this phase has been reduced by 128.8 
vehicle seconds. The travel time is also reduced for phases 2 and 6. The overall results show 
some improvement for the entire intersection in each measure of performance. 
   

Table 2. Performance of the Intersection Control 

 
VSO 

(number) 
MQL 
(feet) 

VTD 
(second) 

Phase 2 
Baseline 29 77.1 683.4 
Adaptive 20 53.6 599.3 

Improvement 9 23.5 84.1 
Phase 4 

Baseline 19 60.1 378.4 
Adaptive 11 60.1 249.6 

Improvement 8 0 128.8 
Phase 6 

Baseline 0 23.0 379.9 
Adaptive 0 19.7 362.2 

Improvement 0 3.3 17.77 
Overall 

Baseline 48 160.2 1441.7 
Adaptive 31 133.4 1211.1 

Improvement 17 26.8 230.6 

 

The performance of the entire network for all three scenarios is shown in Table 3. It is found that 
the network under adaptive control performs better than the baseline free-mode actuated 
control—drivers spend less time in the network and travel more distance with improved traveling 
speed. It is also found that the performance in scenario 1 is better than that in the other two 
scenarios, and scenario 3 has gained the least improvement. One possible reason underlying this 
result is that the extremely low-level traffic flow may behave freely in the network without being 
affected by the change of control strategies. On the other hand, it can be concluded that, although 
the vehicle arrival pattern is assumed to be a Poisson process in the model formulation, the 
performance of the signalized network can also be improved by the proposed adaptive control.    
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Table 3. Performance of the Network Control 

 
ATT 

(second) 
AVS 

(mile/hr) 
VMT 
(mile) 

VHT 
(hour) 

Scenario 1  
Baseline 344.3 43.9 760920.0 17367.6 
Adaptive 331.0 45.9 762491.2 16725.5 

Improvement (%) 3.86 4.56 0.21 3.70 
Scenario 2  

Baseline 257.0 59.1 575585.6 9788.2 
Adaptive 255.2 59.5 576046.1 9671.8 

Improvement (%) 0.86 0.68 0.08 1.19 
Scenario 3  

Baseline 249.5 60.9 382327.4 6284.3 
Adaptive 248.4 61.1 382649.9 6263.4 

Improvement (%) 0.48 0.33 0.01 0.33 

 
 

7.3 Evaluation of ramp control model 
In the adaptive ramp control model, the maximum allowable metering rate, rmax, is set equal to 
900 veh/hr/lane (i.e., 15 veh/min/lane), and minimum allowable metering rate, rmin, is set equal to 
240 veh/hr/lane (i.e., 4 veh/min/lane). And, the queue/merge overide operation applies as needed. 
Two groups of measure of performance are used for the model evaluation: 

1. For isolated ramps: Ramp Vehicle Travel Delay (RVTD), (Freeway) Mainline Vehicle 
Travel Delay (MVTD), and Total Vehicle Travel Delay (TVTD). Note that only the freeway 
section into which the ramp merges is considered here. 

2. Overall system performance: ATT, AVS, VMT and VHT. 
 
As an example, the ramp that corresponds to the onramp from Southbound Jeffery Road to 
Northbound I-405 (Figure 22) is selected to demonstrate the performance of the proposed control 
model at individual ramps. The onramp has two vehicle travel lanes merging into one that 
connects to the four-lane mainline section. The system detectors downstream of the ramp are 
placed to collect those data (e.g., occupancy and flow) that can be used as input to the ramp 
control model. 
 

 

Figure 22. Study Onramp 
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Figure 23. Flow Profile for Onramp and Freeway Section 

 
Figure 23 shows the flow profile for scenario 1 under both baseline and adaptive control for the 
onramp and freeway, respectively. The profiles are plotted with smoothed lines based on the 
flow data measured at 15-minute intervals. 
 
Table 4 lists the simulation results with the delay measurements. It can be seen that the vehicle 
travel delay on ramp is reduced by 976.0 seconds, which means about 70% improvement has 
been achieved for the ramp. The vehicle travel delay on freeway mainline is also reduced by 52.5 
seconds and totally, the vehicle travel delay has been reduced by 1028.5 seconds.  
 

Table 4. Performance of the Ramp and Mainline Sections 

 
RVTD 

(second) 
MVTD 
(second) 

TVTD 
(second) 

Baseline 1392.3 645.7 2038.0 
Adaptive 416.3 593.2 1009.5 

Improvement 976.0 52.5 1028.5 
Improvement (%) 70.1 8.1 50.0 

 

The performance measures for the entire network for each of the three scenarios are shown in 
Table 5. It is found that the network under adaptive control performs better than the baseline 
traffic responsive metering control—drivers spend less time in the network and travel greater 
distance with improved traveling speed. Similar to the intersection results, the performance in 
scenario 1 is better than that in the other two scenarios, and scenario 3 has gained the least 
improvement. 

. 
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Table 5. Performance of the Network 

 
ATT 

(second) 
AVS 

(mile/hr) 
VMT 
(mile) 

VHT 
(hour) 

Scenario 1  
Baseline 344.3 43.9 760920.0 17367.6 
Adaptive 311.2 48.7 765988.7 15745.9 

Improvement (%) 9.61 10.93 0.67 9.34 
Scenario 2  

Baseline 257.0 59.1 575585.6 9788.2 
Adaptive 256.1 59.3 577270.3 9731.4 

Improvement (%) 0.35 0.34 0.29 0.58 
Scenario 3  

Baseline 249.5 60.9 382327.4 6284.3 
Adaptive 248.8 61.1 382900.2 6255.1 

Improvement (%) 0.28 0.33 0.15 0.46 

 

7.4 Evaluation of combined intersection/ramp control model 
Here, the combined intersection/ramp control is evaluated using the overall system performance 
measures, ATT, AVS, VMT and VHT. Table 6 lists the simulation results for each of the three 
scenarios. Again, the network under adaptive intersection control and ramp control performs 
better than the baseline actuated intersection control and traffic-responsive metering control—
drivers spend less time in the network and travel more distance with improved traveling speed. 
And, the performance in scenario 1 is better than that in the other two scenarios, and scenario 3 
has gained the least improvement. 
 

Table 6. Performance of the Network 

 
ATT 

(second) 
AVS 

(mile/hr) 
VMT 
(mile) 

VHT 
(hour) 

Scenario 1  
Baseline 344.3 43.9 760920.0 17367.6 
Adaptive 305.5 49.6 766071.2 15442.5 

Improvement (%) 11.27 12.98 0.68 11.08 
Scenario 2  

Baseline 257.0 59.1 575585.6 9788.2 
Adaptive 255.5 59.4 577585.6 9653.9 

Improvement (%) 0.58 0.51 0.35 1.37 
Scenario 3  

Baseline 249.5 60.9 382327.4 6284.3 
Adaptive 248.3 61.2 383196.6 6252.1 

Improvement (%) 0.48 0.49 0.23 0.51 

 
Figure 24 compares the three control models using overall system performance measures. It is 
found that the combined intersection/ramp control model performs the best in terms of ATT, 
AVS, VMT, and VHT. The improvement on VMT is very minor since the simulation period for 
each scenario starts from a free flow condition and ends with another free flow condition.  
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Figure 24. Overall System Performance Comparison of the Three Control Models 

 
 

8. Concluding Remarks 

This project introduces three real-time adaptive control strategies, including an intersection 
control, ramp control and an integrated control that combines both intersection and ramp control. 
The development of these strategies is based on a mathematical representation that describes the 
behavior of real-life processes (traffic flow in corridor networks and actuated controller 
operation). Only those parameters commonly found in modern actuated controllers (e.g., Type 
170 and 2070 controllers) are considered in the formulation of the optimal control problem. As a 
result, the proposed strategies could be easily implemented with minimal adaptation of existing 
field devices and the software that controls their operation. 
 
Microscopic simulation was employed to test and evaluate the performance of the proposed 
strategies in a calibrated network. Simulation results indicate that the proposed strategies are able 
to increase overall system performance and also the local performance on ramps and 
intersections. Prior to testing the complete model, separate tests were conducted to evaluate the 
intersection control model on: 1) an isolated intersection, and 2) a network of intersections along 
an arterial.  The complete model was then tested and evaluated on the Alton Parkway/I-405 
corridor network in Irvine, California.   
 
In testing the optimal control model, we simulated a variety of conditions on the freeway and 
arterial subsystems that cover the range of demand from peak to non-peak, incident to non-
incident, conditions. The results of these experiments were evaluated against full-actuated 
operation and found to offer improved performance.  
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The scope of the current effort includes the development of the corridor adaptive control model 
and its testing and evaluation only in a simulation environment.  Although actual deployment is 
beyond the scope of the current effort, we believe that the results of the evaluation of the 
simulated network warrant further investigation of incorporation of the adaptive control system 
as a service within the planned CARTESIUS deployment under CTNet (in separate, 
complementary PATH/Caltrans projects). 
 
Such research deployment could relatively easily be conducted on the Alton Parkway/I-405 
corridor network for which we have at least limited authority to conduct tests involving closed-
loop control.  On the arterial, we have installed a system of Type 2070 controllers at all 
signalized intersections that operate independently from the local City of Irvine system. We have 
established real-time communication with these control devices and also receive real-time raw 
data streams from loop detectors within the study area. In addition, software has been developed, 
and laboratory tested, that permits real-time adaptive control of the Caltrans District 12 ramp 
meters in this corridor.   
 
Future efforts will be made to improve this model by: (1) seeking a more sophisticated algorithm 
that models the actual traffic flow pattern in signalized network; (2) further developing this 
model in order for the application in coordinated control systems; (3) comparing this model with 
other adaptive control strategies; and (4) incorporating access/egress choice model in the 
integrated corridor control.  
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