
Lawrence Berkeley National Laboratory
LBL Publications

Title
Experiences in porting mini‐applications to OpenACC and OpenMP on heterogeneous
systems

Permalink
https://escholarship.org/uc/item/3tx6b1t6

Journal
Concurrency and Computation Practice and Experience, 32(20)

ISSN
1532-0626

Authors
Larrea, Verónica G Vergara
Budiardja, Reuben D
Gayatri, Rahulkumar
et al.

Publication Date
2020-10-25

DOI
10.1002/cpe.5780

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3tx6b1t6
https://escholarship.org/uc/item/3tx6b1t6#author
https://escholarship.org
http://www.cdlib.org/

Experiences Porting Mini-applications to OpenACC and OpenMP on Heterogeneous
Systems

Verónica G. Vergara Larrea∗, Reuben D. Budiardja∗, Rahulkumar Gayatri†,
Christopher Daley†, Oscar Hernandez∗ and Wayne Joubert∗

∗National Center for Computational Sciences
Oak Ridge National Laboratory

Oak Ridge, TN
Email: {vergaravg,reubendb,oscar,joubert}@ornl.gov

†National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

Berkeley, CA
Email: {rgayatri,csdaley}@lbl.gov

Abstract—This paper studies mini-applications–minisweep,
GenASIS, GPP, and FF–that use computational methods com-
monly encountered in HPC. We will port these applications to
develop OpenACC and OpenMP versions, and evaluate their
performance on Titan (Cray XK7/K20x GPUs), Cori (Cray
XC40/Intel KNL), Summit (IBM Power9/Volta GPUs), and
Cori-GPU (Cray CS-Storm 500NX/Intel Skylake and Volta
GPUs). Our goals are for these new ports to be useful to
both application and compiler developers, to document and
describe the lessons learned and the methodology to create
optimized OpenMP and OpenACC versions, and to provide
a description of possible migration paths between the two
specifications. Cases where specific directives or code patterns
result in improved performance for a given architecture will
be highlighted. We also include discussions of the functionality
and maturity of the latest compilers available on the above
platforms with respect to OpenACC or OpenMP implementa-
tions.

Keywords-OpenMP; OpenACC; performance evaluation;
mini-applications;

I. INTRODUCTION

For the last few years, two distinct architectural trends
have remained the focus of exascale efforts: one relying
on many-core CPU and another relying on attached GPU
accelerators. The November 2018 edition from the Top500
list [1] shows that that GPU accelerated computing has
gained a significant portion of the market. Five out of

Notice of copyright: This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

the top ten systems in the list are using GPU accelerators
including the top two systems, Summit at Oak Ridge Na-
tional Laboratory (ORNL) and Sierra at Lawrence Livermore
National Laboratory (LLNL). More recently, the National
Energy Research Scientific Computing Center (NERSC)
announced that their next generation system, Perlmutter—
expected to have approximately 3X the performance of
Cori—will be a hybrid system that will include a partition
with GPU accelerators. Given the increasing complexity of
future architectures, it is important for application developers
to keep performance portability in mind when choosing a
programming model.

OpenACC and OpenMP are two of the most com-
monly used directives-based APIs for in-node paralleliza-
tion. Offload support for accelerators was first introduced by
OpenACC which has provided many application developers
a preview for directive-based programming for accelerators
and multi-cores with relative ease. OpenMP followed by in-
troducing an accelerator programming model in the OpenMP
4.0 specification published in 2014 as part of a bigger
specification providing many different types of parallelism
(e.g., tasks, offload, worksharing, SIMD, etc). A growing
list of compilers are implementing support for OpenMP
offloading to attached accelerators. Currently, many of the
mostpopular compilers—including the Intel, GCC, Clang,
CCE and XL compilers—used by high performance com-
puting (HPC) centers provide some level of support for the
OpenMP accelerator model.

The two APIs differ in their approach to specify par-
allelization. OpenACC is generally considered to be more
descriptive, meaning that programmers can rely on the com-
piler implementation to determine the best way to parallelize
the code for a particular target. OpenMP 4.5, on the other
hand, is considered to be a prescriptive programming model
and requires the programmer to explicitly specify how code

should be parallelized. Although a prescriptive approach
gives the programmer more control, it can be less portable
from a performance perspective as different architectures
will require different clauses. To address this gap, OpenMP
5.0 introduced the loop directive to provide an alternative
that would allow the compiler to choose the optimizations
to use.

In an effort to better understand the impact to application
performance and to evaluate the level of support provided
by implementations between these two programming mod-
els, researchers have conducted various studies comparing
OpenACC vs. OpenMP versions of several kernels including
Jacobi [2] and common HPC kernels such as those available
in the SPEC/HPG benchmark suite [3], [4]. Other papers
have explored the use of OpenACC on mini-applications
to explore performance portability [5]. In [6] the authors
show that through the use of directives it is possible to get
comparable performance to optimized hand-written CUDA
codes with some code restructuring. Directives have also
been used successfully to port real applications including a
hybird version of S3D, a combustion modeling application,
that showed a decent speedup using OpenACC [7].

Building on that work, for this study, we have selected
four (mini-)applications—minisweep, GENASIS GPP, and
FF—that use computational methods commonly encountered
in HPC. They also provide a partial representation of work-
loads executed at the Oak Ridge Leadership Computing
Facility (OLCF) and NERSC. Minisweep [8] is a proxy
application for Denovo [9], a radiation transport code. Min-
isweep is written in C and includes support for CUDA, and
more recently support for OpenACC [10]. GENASIS is a
multi-physics simulation code with large-scale astrophysics
simulations as its primary target applications [11]. It is
written using features of modern Fortran standards (Fortran
2003 and 2008). Its modular design allows mini-applications
to be built using only a portion of the code [12], which has
recently been ported to the OpenMP accelerator program-
ming model [13]. GPP and FF are mini-apps extracted from
the BerkeleyGW material science code [?]. BerkeleyGW is
written predominantly in Fortran-90 and computes electron
excited-state properties using the ab initio GW approxima-
tion [14]. The GPP and FF mini-apps represent the General
Plasmon Pole and Full Frequency self-energy summations
in BerkeleyGW. The GPP mini-app already has documented
OpenMP 4.5 and OpenACC ports.

For this project, we port the aforementioned applications
so that each has both OpenACC and OpenMP versions.
We evaluate application performance of both the OpenMP
and OpenACC versions on distinct platforms including
Titan (Cray XK7/K20x GPUs), Cori (Cray XC40/Intel
KNL), Summit (IBM Power9/Volta GPUs), Summitdev
(IBM Power8/Pascal GPUs), and Cori-GPU (Cray CS-Storm
500NX/Intel Skylake and Volta GPUs) using different com-
pilers. Our objectives are threefold: to contribute new ports

of key mini-applications that can be useful both as examples
for other application developers and to compiler develop-
ers, to document and describe the lessons learned and the
methodology to create optimized OpenMP and OpenACC
versions, and to provide a description of possible migration
paths between the two specifications. As part of this work,
we highlight cases where specific directives or code patterns
result in improved performance for a given architecture.
Finally, by way of this experience, we document and discuss
functionality and maturity of the latest compilers available
on Titan, Cori, Summit, and Cori-GPU with respect to their
OpenACC or OpenMP implementations. We make available
codes resulting from this work in an open repository.

The rest of this paper is organized as follows. In Section
II we describe the porting efforts for each application for
both OpenACC and OpenMP directive and demonstrate the
results. Section III collects the leason learned from this work
and ends with concluding remarks.

II. APPLICATIONS: PORTING AND RESULTS

For this work, we study the performance of each individ-
ual mini-application–Minisweep, GenASIS, GPP, and FF–on
Titan, Summitdev, Summit, Cori, Cori-GPU.

Titan is a Cray XK7 system with 18,688 compute nodes
each with a 16-core AMD Opteron processor and an
NVIDIA K20x GPU. Summitdev is a development system
available at the OLCF which is comprised of 54 nodes
each with two 10-core IBM POWER8 processors and four
NVIDIA P100 GPUs. Summit is the OLCF’s latest flagship
supercomputer and number one system in the Top500 [15]
November 2018 list. Summit is an IBM system with 4,608
compute nodes each with two 22-core IBM POWER9 pro-
cessors and six NVIDIA V100 GPUs. Cori is a Cray XC40
system with both Intel multi-core and many-core nodes. It
has 2,388 multi-core nodes which consist of dual-socket
Intel Xeon E5-2698 v3 ’Haswell’ CPUs with 16 cores per
socket running at 2.3 GHz and 9,688 many-core nodes which
consist of a single 68-core Intel Xeon-Phi 7250 ’KNL’ CPU
running at 1.4 GHz. The nodes in the system are connected
with a Cray Aries interconnect. Cori-GPU is an 18-node
Cray CS-Storm 500NX system. Each node consists of a
dual-socket Intel Xeon Gold 6148 ’Skylake’ CPU and 8
NVIDIA Volta V100 GPUs. Each Xeon socket has 20 cores
running at a clock frequency of 2.4 GHz. The V100 GPUs
are connected to each other via NVLink, the CPUs and
GPUs are connected via a PCIe switch, and the nodes are
connected in a fat-tree configuration with QDR Infiniband.

A. Minisweep

The Minisweep mini-appication [8], part of the Profugus
radiation transport proxy application project [16], models
the computational pattern of the sweep kernel used in
the Denovo Sn radiation transport application [9]. Denovo
solves the six-dimensional linear steady-state Boltzmann

transport equation, with applications to nuclear reactor core
analysis (neutronics), nuclear forensics, radiation shielding
and radiation detection. The Sn sweep kernel of Denovo
accounts for 80-99% of the runtime of the Denovo code, thus
is a significant focus of computational acceleration efforts.

The Minisweep algorithm employs multidimesional par-
allelism and is particuarly challenging computationally due
to its recursive wavefront computation. It contains multiple
computational moifs, posing a challenge to directives-based
programming models, including dense and sparse linear
algebra, structured grids, halo communications, hierarchical
synchronizations and atomic updates.

Minisweep is written in C and supports CUDA and
OpenMP 3.1. Recently, Searles et al. [10] ported Minisweep
to OpenACC, with favorable performance results on a par
with the CUDA implementation. For this work, we ported
Minisweep to thew OpenMP 4 accelerator programming
model.

Minisweep’s algorithm utilizes a 3-D grid of nx, ny, nz

dimensions. The code supports different values for the num-
ber of angular directions (na), energy groups (ne), unknowns
per gridcell (nu), and a compile-time variable NM for the
number of moments.

The algorithm is structured as a nest of multiple loop
levels. At the top level is a loop over the eight octant di-
rections; these are independent, parallelizable loop iterations
but require an atomic update in the innermost loop to avoid
a race condition. The octant loop contains three more nested
loops: a sequential wavefront loop and a pair of loops over
x and y coordinates in the wavefront. At the innermost
level are three code blocks, each a loop nest over several
remaining problem dimensions.

1) Porting Minisweep to OpenMP 4.5: For this work, we
ported Minisweep to support the OpenMP 4.5 accelerator
programming model using the OpenACC version developed
in [10] as a base.

#pragma omp target teams distribute parallel for collapse(3)
for(ie=0; ie<dim_ne; ++ie)

for(iu=0; iu<NU; ++iu)
for(ia=0; ia<dim_na; ++ia)
for(im=0; im < dim_nm; ++im)
{

result += ...;
vs_local[<ind>] = result;

}
#pragma omp target update from(vs_local[0:vs_local_size])

for(ie=0; ie<dim_ne; ++ie)
for(ia=0; ia<dim_na; ++ia)
{
Quantities_solve_inline(vs_local, dims, facexy, facexz, faceyz, ix, iy, iz,

ie, ia, octant, octant_in_block, noctant_per_block);
}

for(ie=0; ie<dim_ne; ++ie)
{

for(iu=0; iu<NU; ++iu)
for(im=0; im<dim_nm; ++im)
for(ia=0; ia<dim_na; ++ia)
{

result += ...;
vs_local[<ind>] = result;

}

#pragma omp atomic update
vo_h[<ind>] += result;

}

Listing 1. Sweeper_in_gricell() parallelization using OpenMP 4.5

void Sweeper_sweep(...)
{

/*--- Data transfer to the GPU ---*/
#pragma omp target enter data map(to: <vars>), map(alloc: facexy[...], facexz

[...], faceyz[...])
#pragma omp target data map(to:facexy[,..])
{

#pragma omp target teams distribute parallel for collapse(3)
for(octant=0; octant<NOCTANT; ++octant)
for(iy=0; iy<dim_y; ++iy)
for(ix=0; ix<dim_x; ++ix)
for(ie=0; ie<dim_ne; ++ie)
for(iu=0; iu<NU; ++iu)
for(ia=0; ia<dim_na; ++ia)
{

/*--- ref_facexy inline ---*/
/*--- Quantities_init_face routine ---*/
faceyz[<ind>] = Quantities_init_face(ia, ie, iu, scalefactor_space,

octant);
}

}

{

... // Repeats for facexy[], and facexz[]
#pragma omp target update from(faceyz[0:faceyz_size])
}

#pragma omp target enter data map(alloc: vs_local[:vs_local_size]), map(to:<vars
>)

{

/*---Loop over octants---*/
for(octant=0; octant<NOCTANT; ++octant)
{
...

/*--- Loop over wavefronts ---*/
for (wavefront = 0; wavefront < num_wavefronts; wavefront++)
{

/*--- Create an asynchronous queue for each octant ---*/

/*---Loop over cells, in proper direction---*/
if (dir_y==DIR_UP && dir_x==DIR_UP) {
for(iy=0; iy<dim_y; ++iy)

for(ix=0; ix<dim_x; ++ix)
{
/*--- In-gridcell computations ---*/
Sweeper_in_gridcell(...);

} /*---ix/iy---*/
} else if (dir_y==DIR_UP && dir_x==DIR_DN) {
for(iy=0; iy<dim_y; ++iy)

for(ix=dim_x-1; ix>=0; --ix)
{
/*--- In-gridcell computations ---*/
Sweeper_in_gridcell(...);

} /*---ix/iy---*/
} else if (dir_y==DIR_DN && dir_x==DIR_UP) {
for(iy=dim_y-1; iy>=0; --iy)

for(ix=0; ix<dim_x; ++ix)
{
/*--- In-gridcell computations ---*/
Sweeper_in_gridcell(...);

} /*---ix/iy---*/
} else {

for(iy=dim_y-1; iy>=0; --iy)
for(ix=dim_x-1; ix>=0; --ix)
{
/*--- In-gridcell computations ---*/
Sweeper_in_gridcell(...);

}
}

}

} /*--- wavefront ---*/

} /*---octant---*/

} /*--- #pragma enter data ---*/

/*--- Data transfer of results to the host ---*/
#pragma omp target exit data map(from: vo_h[...]), map(delete: <vars>)

} /*---sweep---*/

Listing 2. Sweeper_sweep() function in OpenMP 4.5 version of
Minisweep.

The majority of the OpenACC clauses in Min-
isweep are contained within the Sweep_sweep() and
Sweep_in_gridcell() functions. In order to port Min-
isweep to the OpenMP 4.5 programming model, we em-
ployed the following transformations:

• acc loop gang clauses were replaced with omp
teams distribute clauses.

• acc loop vector clauses were replaced with omp
parallel for clauses.

• acc loop seq were removed as there is no equiva-
lent clause in OpenMP 4.5.

• acc parallel regions were replaced with omp
target regions.

• acc wait clause in Sweep_sweep() function was
replaced with omp taskwait.

• acc data copyout clause was replaced with omp
data map(from:<var>).

• acc data copyin clause was replaced with omp
data map(to:<var>).

• acc data create clause was replaced with omp
data map(alloc:<var>).

2) Results: We used the following values in our sin-
gle node, single GPU experiments for Minisweep. ne =
64, na = 32, nu = 4, nx = ny = nz = 32, NM = 16.
The same problem size was used in [10] which will allow
us to compare the results to those from our OpenMP
4.5 prototype. Summit and Cori-GPU have NVIDIA V100
GPUs with 16GB of HBM2 memory and can support a 643

grid. Titan, on the other hand, has NVIDIA K20x GPUs with
6GB of DDR5 memory and can support only a 323 grid on
a single GPU. For that reason, in this work we compare
results from the 323 grid problem.

3) Lessons Learned: Due to the different interpretations
of the individual specifications, in practice, we encountered
that slight modifications of the source were required in order
to successfully build and execute Minisweep on the different
platforms using different compilers.

The GCC compiler with OpenACC support avail-
able on the target platforms was unable to compile
the original OpenACC implementation of Minisweep and
caused an internal compiler error (ICE). The follow-
ing changes were required to successfully compile this
version using GCC 7.1.1 on Summitdev, and GCC
8.1.1 on Summit and CoriGPU. First, we removed the
collapse(<number>) clauses. Then, we also had to
explicitly specify start and end segments in each data
clause, e.g. create(vs_local[0:size]) instead
of create(vs_local[size]). The gcc_openacc
branch [17] includes both changes. Although these changes
allow us to build the code, the built-in verification step is not
successful. We have included the performance results here
for reference and continue to investigate the issue.

On Summit, we observed that the original OpenACC
implementation caused unexpected behavior and will pro-

duce Invalid device errors. Because Summit has mul-
tiple GPUs per node and the job step launcher, jsrun
assigns GPUs based on resource sets requested, using the
acc_device_default clause can cause undefined re-
sults. Replacing that clause with acc_device_nvidia
addressed the issue.

On Titan, while the Cray compiler CCE 8.6.4 is able
to build the OpenACC implementation of Minisweep, we
encountered runtime errors. We are still investigating the
root cause of this issue. For that reason, only PGI was used
on Titan for OpenACC experiments.

The OpenMP 4.5 version of Minisweep can be compiled
successfully with the IBM XL C/C++ compiler on Summit-
dev and Summit. However, the performance is much slower
than when using OpenACC or CUDA. The majority of the
time is currently spent in data transfers between the host
and the device. Alternative versions of the OpenMP 4.5
implementation are still being considered. Using CCE on
Titan and CoriGPU the code fails to build. When using
self-offloading on CoriKNL, we see that the code runs
successfully but performance is significanlty lower than
when using the GPUs.

B. GenASIS

Prior to this work, GENASIS has been ported to use GPU-
acceleration for its hydrodynamics version via the use of
OpenMP 4.5 device memory runtime library routines and
target directive [18]. To achive useful speedup, the use
of OpenMP to utilize GPU in GENASIS can be summarized
by following two principles:

1) Explicit control of data allocation in GPU and their
association with the host copy.

2) Explicit control of data movement between GPU and
host.

GENASIS implements Fortran wrappers to several OpenMP
4.5 runtime library routines—because they are only provided
in C—using the C interoperability capabilities of Fortran
2003 to implement the above principles. These wrappers
provides lower-level GENASIS functionality—subroutines
in the Device module—callable by higher-level classes /
modules. They are:

• AllocateDevice (Value, D_Value): A
call to this subroutine with the input argument of
rank-1 or rank-2 array Value allocates a memory
with the same array size on the GPU and sets the
output variable D_Value—of type (c_ptr
)—to the allocated memory address on the GPU.
Under the hood this subroutine callsthe OpenMP
routine omp_target_alloc().

• DeallocateDevice (D_Value): This is the
counterpart of the subroutine AllocateDevice (
) to deallocate the memory region on the GPU by wrap-
ping the OpenMP routine omp_target_free()

Figure 1. Minisweep timings on Summit (V100), Summitdev (P100), CoriGPU (V100), and Cori (KNL). The OpenMP 4.5 implementation performs
considerably slower and its results go out of bounds of the figure.

• AssociateHost (D_Value, Value): A call
to this subroutine associates the variable Value with
device memory location in the variable D_Value such
that for any reference to Value inside the offload
directive, the device memory in D_Value is used.
For our OpenMP implementation, this routine wraps
omp_target_associate_ptr().

• DisassociateHost (Value) : This is the
counterpart to AssociateHost () to remove
the association of Value to any device mem-
ory location. This routine wraps OpenMP routine
omp_target_disassociate_ptr()

• UpdateDevice (Value, D_Value) : This
routine copies data from the array Value to the
device memory location in D_Value using OpenMP
routine omp_target_memcpy().

• UpdateHost (D_Value, Value) : This rou-
tine copies the data from the device memory location in
D_Value to the array Value using OpenMP routine
omp_target_memcpy().

Listing 3 shows an example of how some of the above
subroutines are used within GENASISİn particular, within
all of the kernels device memory location previously allo-
cated or updated elsewhere are associated with host variable,
such that any of the OpenMP offload directive avoids
unintentional data transfer.

Porting the code to use OpenACC is therefore relatively
straightforward, and can be summarized by the following
steps:

1) Change / implement wrappers to call corresponding
OpenACC library routines. These are, respectively:

subroutine ComputeDifference_X (V, D_V, D_dV, dV)

real (KDR), dimension (-1:, -1:, -1:), intent (in) :: V
type (c_ptr), intent (in) :: D_V, D_dV
real (KDR), dimension (-1:, -1:, -1:), intent (out) :: dV

integer (KDI) :: i, j, k

call AssociateHost (D_V, V)
call AssociateHost (D_dV, dV)

!$OMP target teams distribute parallel do &
!$OMP& collapse (3) schedule (static, 1)
do k = 1, nZ
do j = 1, nY
do i = 0, nX + 2
dV (i, j, k) = V (i, j, k) - V (i - 1, j, k)

end do
end do

end do
!$OMP end target teams distribute parallel do

call DisassociateHost (dV)
call DisassociateHost (V)

end subroutine ComputeDifferences_X

Listing 3. A kernel for computing a nearest-neighbor difference.

• acc_malloc()
• acc_free()
• acc_map_data()
• acc_unmap_data()
• acc_memcpy_to_device()
• acc_memcpy_from_device()

2) Change OpenMP target directive to OpenACC
loop directive. All of the kernels for this test problem
have the OpenMP directive in the form of:

• !$OMP target teams distribute &
!$OMP& parallel do [collapse(n)] &
!$OMP& schedule static (1)

where the collapse clause is used for any nested

loop of depth n. The corresponding directive in
OpenACC is simply:

• !$ACC loop gang vector [collapse(n)].
We implement a mechanism in GENASIS to switch be-

tween the OpenACC and OpenMP versions via preprocessor,
macro, and Makefile such that compiling the different ver-
sions can simply be done by declaring a Makefile environ-
ment variable at build time. For example, the following com-
mands build GENASIS’s test problem RiemannProblem
with OpenMP multithreading (default), OpenMP offload,
and OpenACC, respectively:

• make RiemannProblem
• make ENABLE_OMP_OFFLOAD=1 RiemannProblem
• make ENABLE_ACC_OFFLOAD=1 RiemannProblem

For this experiment, we run an 3D extension of the classic
RiemannProblem fluid dynamic problem on Summit,
Titan, and Cori-GPU. In this case, we are mostly interested
with performance on single GPU compared. The same code,
however, has been demonstrated to run using up to 8000
GPU on Summit with good weak scaling using 1 MPI
process per GPU. Figure 2 shows a visualization of this test
problem when run with 125 GPUs with a total resolution of
1280×1280×1280. We use 128×128×128 cells per GPU for
this experiment. We run the problem on Titan, Summit, and
Cori-GPU for 50 time steps. We use the following compilers
and versions:

• On Summit: XL-16.0.1 and GCC-8.1.1
• On Titan: CCE-8.7.7
• On Cori-GPU: CCE-8.7.7 and GCC-8.1.1
Figure 3 shows timings of various kernels required

to solve the 3D RiemannProblem test problem with
OpenMP for multi-threading on CPU, OpenMP offload
with target directive, and OpenACC on Summi, Titan,
and Cori-GPU. For the offload directives, as previously
mentioned the bulk of the data transfers between the host and
GPU is explicitly managed and measured as separate timing
from the computational kernels. From this figure, we can
glean that on Summit, speed-up from running on the GPU
with offload directive is obtained with both XL and GCC
compiler. On Titan however, both OpenMP and OpenACC
offload with CCE yields slower execution. Interestingly, both
seem to get the same execution timings, indicating a similar
or even the same code is generated by the compiler despite
using two different directives. On Cori-GPU, the results are
mixed. While same speed-up is achieved with OpenACC
using GCC compiler, the same thing cannot be said for the
Cray CCE compiler with either directives.

Figure 4 shows more explicitly the speed-up or slow-down
of the execution from code produced by multiple compilers
with the different directives on each machine. On this Figure
we plot the relative speed-up of the offloaded kernels to
the multi-threaded version (using OpenMP) running on the
CPUs of the respective machine. On Titan and Cori-GPU
we use 8 CPU threads, while on Summit we use 7 CPU

Figure 2. Volume plots of entropy of RiemannProblem 3D with
1280× 1280× 1280 cells on 125 GPUs at time t = 2.5.

threads. As we can see on this Figure, on Summit the XL
compiler with OpenMP offload produces an executable with
speed-up of 10X or more for almost all kernels. With the
GCC compiler using OpenACC on Summit, we also obtain
a speed up for most kernels, albeit lesser, with the exception
of the Difference and Fluxes kernels. On Titan with
the CCE compiler however, all kernels show a slow down
when OpenMP and OpenACC offload (not plotted on this
Figure) directives are used. On Cori-GPU, the CCE compiler
barely produces any speed-up for all the kernels using both
directives. The GCC compiler on Cori-GPU yields some
speed up for most kernels, but notably at a lesser factor
in general compared to on Summit.

Since both Summit and Cori-GPU have the same GPU
and the same version of GCC is used, we expect that the
kernels to have similar timings when OpenACC is used on
both machine. Figure 5 plots such timings. The results are
somewhat surprising in that although many kernels have
similar timings, several kernels show relatively large timing
differences. These results merit further investigation outside
the scope of this paper.

C. GPP

General Plasmon Pole (GPP) [19] is a mini-application
from the BerkeleyGW [20] application suite. The GPP kernel
computes the electron self-energy using General Plasmon
Pole approximation. The kernel is comprised of 4-nested
loops with a reduction in the innermost loop. Listing 4 shows
the pseudo code of GPP.

for(num_bands){ //512
for(ngpown){ //32768/20 = 1638

for(ncouls){//32768
for(iw){//3

achtemp[iw] += ...;
}

}
}

Listing 4. GPP pseudo code

The code uses a double-complex member as its primary
data type and performs a series of tensor contraction like
operations. The problem discussed in this paper has 512
electrons with 32,768 plane wave bases vectors and cor-
responds to a medium sized molecule. It is a common on-
node problem size. This choice of size leads to the following
characteristics for this kernel:

Figure 3. Timings of different kernels for RiemannProblem 3D on
Summit (top), Titan (middle), and Cori-GPU (bottom).

• The overall memory footprint is approximately 2GB.
• The first and second loops are closely nested and can

be collapsed. The resulting trip count will be around
O(800K)

• The third loop with the trip count of O(33K) can be
vectorized for CPUs or parallelized with threads over
GPUs

• The innermost loop has a small, fixed trip count of
3 and can be unrolled to exploit the SIMD/SIMT
parallelization.

Figure 4. Speed-up (or slow-down) of various kernels on Summit, Titan,
and Cori-GPU with multiple compilers and offload OpenMP or OpenACC
directives relatives to 8-threads CPUs on the respective machines (7-threads
on Summit). The y-axis is plotted in log scale. Value greater than 1.0 (with
bars point up) represents speed-up, while value less than 1.0 (with bars
point down) means slow down. Value equals to 1.0 represent no speed-up
relative to the multi-threaded code.

Figure 5. Timings of different kernels for RiemannProblem 3D with
GCC-8.1.1 OpenACC directive on Summit (blue) and Cori-GPU (red).

In case of CPUs the most optimal parallelization technique
was to distribute the outermost loop across the available
threads. In case of OpenMP 4.5 and OpenACC for GPUs
the most optimal implementations followed the following
two steps:

1) Reverse the loop order of the first two loops.
2) Collapse the reversed loop order and distribute the

resulting trip count across threadblocks and threads
in a block.

3) In order to optimize the performance, we flatten the
3 complex numbers that form the final output into 6
scalars, representing 3 real and 3 imaginary parts and
perform a reduction operation on them to maintain

correctness.
Listing 5 shows the most optimized OpenMP 4.5 imple-

mentation of the GPP kernel.

#pragma omp target teams distribute parallel for collapse(2) reduction(+:
achtemp_re{0,1,2}, achtemp_im{0,1,2})

for(num_bands){ //512
for(ngpown){ //32768/20 = 1638

for(ncouls){//32768
for(iw){//3

//store local values
}
achtemp_re{0,1,2} += ...;
achtemp_im{0,1,2} += ...;

}
}

Listing 5. GPP OpenMP 4.5 implementation

As shown in Listing 5, we flatten the three complex
numbers achtemp into six scalars each of them representing
three real and three imaginary parts of the complex numbers
and perform a reduction on them. Although this makes
the implementation less elegant, it has huge benefits to the
performance. On CPUs, that support array reductions, we
can perform a reduction on the real and imaginary array
equivalents rather than the scalars. A detailed analysis of
our methodology is presented in [21].

1) Results: GPP on Haswell takes 7.5 seconds and hence
goes out of the bounds of the figure. The data transfers in
the case of GPP and FF in both OpenMP 4.5 and OpenACC
implementation were handled before the kernels began by
using the data allocation and update statements provided by
both the frameworks.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

GPP

T
im

e
[s

ec
s]

GPP implementations

OpenMP(Haswell)

OpenMP(KNL)

OpenACC(V100)

OpenMP(V100)

Figure 6. Results obtained from the different implementations of GPP.

2) Lessons Learned: We created two versions of the
GPP application: one in more of a traditional C style
and the other in a modern C++ style. The large mem-
ory objects in the C style application were arrays of a
custom complex type, i.e. CustomComplex<double>

*aqsmtemp, where aqsmtemp was allocated using new.
The data for these large memory objects could easily
be copied to the device using map(aqsmtemp[0:N]).

This method worked well across all compilers. On the
other hand, we encountered many compiler errors when
using a modern C++ style where we replaced a C ar-
ray of Complex type with a C++ array class of Com-
plex type, i.e. Array2D<CustomComplex<double>>
aqsmtemp. The only compiler which consistently sup-
ported the modern C++ style was the upstream LLVM/Clang
compiler. The errors we encountered included:

1) The Cray compiler was unable to map C++ references
to the device.

2) The IBM compiler hung in the OpenMP device kernel.
3) The PGI compiler did not support a function

call in the OpenMP map construct, e.g.
aqsmtemp.dptr[0:aqsmtemp.getSpan()],
where getSpan() was an inline function returning
the number of elements in the C++ array object.

4) The GNU compiler failed at link time.

This highlights the challenge of writing modular and abstract
code in combination with the OpenMP target offload model.
The lack of support for C++ reference types in the Cray
compiler forces the programmer to declare variables in
the same code unit as the operations on that variable, i.e.
preventing the passing of data references to child functions.
This hurts modularity. This work also demonstrated that
the only robust way to use C++ with OpenMP target
offload across compilers was to only use C arrays containing
plain-old-data (POD) types on the device. Once again this
highlights a tension between good software engineering
practices in C++ and the restricted subset of C++ which
can successfully be used with multiple OpenMP compilers.

Although not shown in the results, we ran many perfor-
mance comparisons using the C style version of GPP across
compilers. We found that the simd construct needed to
be added when using the Cray compiler to obtain reason-
able performance. Here, the Cray compiler auto-parallelizer
failed to map an OpenMP parallel for loop to the threads on
the GPU. Performance improved by 80x when adding the
simd construct.

D. FF

FF kernel represents the Full-Frequency Self-Energy Sum-
mations in BerkeleyGW. It has 3 kernels each with its own
loop structure. The loop structures of all three kernels in FF
are shown below:

#pragma omp target teams distribute parallel for collapse(2) reduction(+:
achsDtemp_re, achsDtemp_im)

for(num_bands){ //15023
for(ngpown){ //66

for(ncouls){//22401
achsDtemp += ...;
}

}
}
achsDtemp = CustomComplex<double> (achsDtemp_re, achsDtemp_im);

Listing 6. achsDtemp Kernel

#pragma omp target teams distribute parallel for collapse(3)
for(num_bands){ //15023

for(ngpown){ //66
for(iw){//10

for(ncouls){//22401
#pragma omp atomic

asxDtemp[iw] += ...;
}

}
}

}

Listing 7. asxDtemp Kernel

#pragma omp target teams distribute parallel for collapse(2)
for(num_bands){ //15023

for(iw){ //66
for(ngpown){//10

for(ncouls){//22401
#pragma omp atomic

achDtemp_cor[iw] += ...;
}

}
}

}

Listing 8. achDtemp cor Kernel

As shown in the kernel listings, all three kernels have a
different loop structure. While in the achsDtemp kernel, the
reduction is on a single complex variable, in asxDtemp and
achDtemp cor the reduction is on an array of 10 elements.
In those cases, we used atomics to maintain correctness. The
OpenMP 4.5 parallelization technique for each of the kernels
is shown in the Listings ??. The optimized OpenACC
implementation follows a similar parallelization technique
and we are able to replace the OpenMP 4.5 directives with
their equivalent OpenACC directives.

1) Results: In case of FF and GPP kernels, the
OpenMP 3.0 version is compiled with the Intel compilers,
the OpenMP 4.5 with the Clang compiler and OpenACC
with the PGI compiler.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

achsDtemp asxDtemp achDtemp-cor

T
im

e
[s

ec
s]

FF implementations

OpenMP 3.0(Haswell)

OpenMP 3.0(Xeon-Phi)

OpenMP 4.5(V100)

OpenACC(V100)

Figure 7. Results obtained from different implementations of FF.

2) Lessons Learned: The lessons learned from porting
and running the FF kernel are summarized in Section II-C2.
Since both kernels, FF and GPP, perform a set of complex
number calculations we can learn from one of them and
apply the findings to the other kernel. The major difference
between the kernels is the use of atomics in the FF kernel.
Another major observation in the case of FF is that the
OpenMP 4.5 offloading on GPUs consistently performs
better than OpenACC on all 3 kernels. We are still in the
process of understanding this behavior.

III. CONCLUSION

In this work, we provide an overview of our experiences
porting four mini-applications of importance to the OLCF
and NERSC. The mini-applications chosen—Minisweep,
GENASIS GPP, and FF—are representative of real HPC
applications and use algorithmic patterns common to several
codes.

Some of the codes used in this study had already been
ported to one of the two programming models of interest.
This work contributes an OpenMP 4.5 port of Minisweep,
and an OpenACC port of GENASIS.

For GENASIS, although porting from the OpenMP 4.5
to OpenACC is relatively straightforward, the same perfor-
mance for the two versions of the code is not obtained.
This may be the due to different compiler’s maturity in
implementing directives or to the fact that more tuning
specific to the particular programmimg model is needed to
achieve good performance.

Similarly for Minisweep, which started with an OpenACC
implementation, porting has proved to require efforts to
update the code and to workaround several compiler-related
issues. Although some features are part of the language
standard or directive specification, in reality, compiler’s
support varies and one must adapt the code to be able to use
a certain compiler with a particular programming model. Yet
again this speaks to the different maturity of compilers in
implementing directives, often making porting efforts greater
than necessary. Similar lessons are present in the efforts to
port both the GPP and FF mini-applications.

We have documented these lesson learned in our porting
efforts and believe they will be useful for the community and
compiler vendors implementing these directives. The codes
made available from this work may also benefit the HPC
community at large.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. De-
partment of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] TOP500, “November 2018 list,” 2019. [Online]. Available:
https://www.top500.org/list/2018/11/

[2] V. G. V. Larrea, W. Joubert, M. G. Lopez, and O. Hernández,
“Early experiences writing performance portable openmp 4
codes,” 2016.

[3] S. Boehm, S. S. Pophale, V. G. Melesse Vergara, and O. R.
Hernandez, “Evaluating performance portability of accelera-
tor programming models using spec accel 1.2 benchmarks,”
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
States), Tech. Rep., 2018.

[4] G. Juckeland, O. Hernandez, A. C. Jacob, D. Neilson, V. G. V.
Larrea, S. Wienke, A. Bobyr, W. C. Brantley, S. Chan-
drasekaran, M. Colgrove, A. Grund, R. Henschel, W. Jou-
bert, M. S. Müller, D. Raddatz, P. Shelepugin, B. Whitney,
B. Wang, and K. Kumaran, “From describing to prescrib-
ing parallelism: Translating the spec accel openacc suite to
openmp target directives,” in High Performance Computing,
M. Taufer, B. Mohr, and J. M. Kunkel, Eds. Cham: Springer
International Publishing, 2016, pp. 470–488.

[5] R. Searles, S. Chandrasekaran, W. Joubert, and O. R.
Hernandez, “MPI + openacc: Accelerating radiation transport
mini-application, minisweep, on heterogeneous systems,”
Computer Physics Communications, vol. 236, pp. 176–
187, 2019. [Online]. Available: https://doi.org/10.1016/
j.cpc.2018.10.007

[6] O. Hernandez, W. Ding, B. Chapman, C. Kartsaklis,
R. Sankaran, and R. Graham, “Experiences with high-level
programming directives for porting applications to gpus,” in
Facing the Multicore-Challenge II. Springer, 2012, pp. 96–
107.

[7] J. M. Levesque, R. Sankaran, and R. Grout, “Hybridizing
s3d into an exascale application using openacc: an approach
for moving to multi-petaflops and beyond,” in Proceedings of
the International conference on high performance computing,
networking, storage and analysis. IEEE Computer Society
Press, 2012, p. 15.

[8] O. B. Messer, E. D’Azevedo, J. Hill, W. Joubert, M. Berrill,
and C. Zimmer, “Miniapps derived from production
hpc applications using multiple programing models,” The
International Journal of High Performance Computing
Applications, vol. 32, no. 4, pp. 582–593, 2018. [Online].
Available: https://doi.org/10.1177/1094342016668241

[9] C. G. Baker, G. G. Davidson, T. M. Evans, S. P. Hamilton,
J. J. Jarrell, and W. Joubert, “High performance radiation
transport simulations: Preparing for TITAN,” in Proceedings
of Supercomputing Conference SC12, 2012.

[10] R. Searles, S. Chandrasekaran, W. Joubert, and O. Her-
nandez, “Mpi+ openacc: Accelerating radiation transport
mini-application, minisweep, on heterogeneous systems,”
Computer Physics Communications, vol. 236, pp. 176–187,
2019.

[11] C. Y. Cardall, R. D. Budiardja, E. Endeve, and
A. Mezzacappa, “GENASIS: GENERAL ASTROPHYSICAL
SIMULATION SYSTEM. i. REFINABLE MESH
AND NONRELATIVISTIC HYDRODYNAMICS,” The
Astrophysical Journal Supplement Series, vol. 210,
no. 2, p. 17, jan 2014. [Online]. Available:
https://doi.org/10.1088%2F0067-0049%2F210%2F2%2F17

[12] C. Y. Cardall and R. D. Budiardja, “Genasis basics:
Object-oriented utilitarian functionality for large-scale
physics simulations,” Computer Physics Communications,
vol. 196, pp. 506 – 534, 2015. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0010465515002453

[13] R. D. Budiardja and C. Y. Cardall, “Targeting gpus with
openmp directives on summit: A simple and effective fortran
experience,” arXiv preprint arXiv:1812.07977, 2018.

[14] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L.
Cohen, and S. G. Louie, “Berkeleygw: A massively parallel
computer package for the calculation of the quasiparticle and
optical properties of materials and nanostructures,” Computer
Physics Communications, vol. 183, no. 6, pp. 1269 – 1289,
2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0010465511003912

[15] “TOP500 Supercomputer Sites,” https://www.top500.org.

[16] “Ornl-cees,” https://github.com/ORNL-CEES/Profugus,
2017.

[17] “Olcf minisweep,” https://github.com/olcf/minisweep, 2019.

[18] R. D. Budiardja and C. Y. Cardall, “Targeting GPUs with
OpenMP Directives on Summit: A Simple and Effective
Fortran Experience,” arXiv e-prints, p. arXiv:1812.07977, Dec
2018.

[19] J. Soininen, J. Rehr, and E. L. Shirley, “Electron self-
energy calculation using a general multi-pole approximation,”
Journal of Physics: Condensed Matter, vol. 15, no. 17, p.
2573, 2003.

[20] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L.
Cohen, and S. G. Louie, “Berkeleygw: A massively parallel
computer package for the calculation of the quasiparticle and
optical properties of materials and nanostructures,” Computer
Physics Communications, vol. 183, no. 6, pp. 1269–1289,
2012.

[21] R. Gayatri, C. Yang, T. Kurth, and J. Deslippe, “A case
study for performance portability using openmp 4.5,” in
International Workshop on Accelerator Programming Using
Directives. Springer, 2018, pp. 75–95.

