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HIGH-ORDER FINITE-VOLUME METHODS ON

LOCALLY-STRUCTURED GRIDS

Phillip Colella ∗

Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA

Abstract. We present an approach to designing arbitrarily high-order finite-
volume spatial discretizations on locally-rectangular grids. It is based on the

use of a simple class of high-order quadratures for computing the average of

fluxes over faces. This approach has the advantage of being a variation on
widely-used second-order methods, so that the prior experience in engineering

those methods carries over in the higher-order case. Among the issues discussed
are the basic design principles for uniform grids, the extension to locally-refined

nest grid hierarchies, and the treatment of complex geometries using mapped

grids, multiblock grids, and cut-cell representations.

1. Introduction. It is often the case that one wants to compute solutions to partial

differential equations containing terms of the form ∇ · ~F , ~F = (F 1, . . . , FD), F d =
F d(x). Classical examples include Poisson’s equation

∇ · ~F = ρ,~F = ∇φ, (1)

and time-dependent systems of conservation laws

∂U

∂t
+∇ · ~F = 0,~F = ~F (U,∇U) ; U,F d ∈ RM . (2)

If ~F = ~F (U), the system is hyperbolic if ∇U (n̂ · ~F ) has real eigenvalues and a
complete set of eigenvectors for any constant unit vector n̂.

One of the oldest and most widely-used spatial discretization methods is the
finite-volume method on rectangular grids. In its simplest form, a rectangular
spatial domain Ω on which the PDE is to be solved is discretized into a union of
control volumes Vi, i ∈ ZD

Vi = [ih, (i+ u)h] , i ∈ ZD ,u = (1, 1, ..., 1). (3)

Averages over control volumes are denoted by 〈·〉i

〈q〉i =
1

hD

∫
Vi

q(x)dx. (4)
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By the divergence theorem, the average of ∇ · ~F over a control volume is equal to

the sum of differences of the averages of the normal component of ~F over the faces
bounding the control volume

〈∇ · ~F 〉i =
1

h

∑
d

〈F d〉i+ 1
2e

d − 〈F d〉i− 1
2e

d , (5)

〈F d〉i+ 1
2e

d ≡
1

hD−1

∫
Ad

i+1
2
ed

F ddAd,Adi+ 1
2e

d = [(i+ ed)h, (i+ u)h], (6)

where ed is the unit vector in the dth coordinate direction. A numerical approxima-

tion to 〈∇ · ~F 〉i is obtained by replacing the integrals of the fluxes on the boundary

of the control volume with quadratures. The resulting discretization of ∇ · ~F sat-
isfies a discrete form of the divergence theorem: for any union of control volumes

Υ, the sum of the volume-weighted averages of ∇ · ~F over the control volumes are
equal to the sum of the approximations of the boundary integrals.

hD
∑
i:Vi⊂Υ

〈∇ · ~F 〉i = hD−1
∑

Ad

i+1
2
ed
⊂∂Υ

±〈F d〉i+ 1
2e

d , (7)

where ± = −,+ if the boundary face is on the low or high side, respectively of a
control volume contained in Υ. To discretize solutions to time-dependent problems,
we average (2) over control volumes

d〈U〉i
dt

= − 1

h

∑
d

〈F d〉i+ 1
2e

d − 〈F d〉i− 1
2e

d , (8)

with the numerical fluxes on the right-hand side computed as a function of the
〈U〉, and the resulting system of ODE discretized in time. Using such a method of
lines approach, the fully-discrete system can be written in the form of a single-step
update

〈U〉n+1
i = 〈U〉ni −

∆t

h

∑
d

〈F d〉n+ 1
2

i+ 1
2e

d − 〈F d〉
n+ 1

2

i− 1
2e

d , (9)

where 〈U〉ni ≈ 〈U〉i(tn), and 〈F d〉n+ 1
2

i+ 1
2e

d is the approximation to

1

∆t

tn+∆t∫
tn

〈F d〉i+ 1
2e

d(t)dt (10)

implied by the time discretization of (8).
Finite-volume methods were first introduced by Lax in [25, 24] for the purpose

of computing discontinuous solutions to hyperbolic conservation laws. He found
that the discrete divergence property (7) leads to the discrete traveling waves that
satisfy the Rankine-Hugoniot jump relations. This empirical observation was later
supported by the theorem in [26]: if the discrete flux function is consistent and the
discrete time evolution is given by a one-step discretization of the form (8), then
the computed solution converges to a weak solution of (2), provided it converges at
all.

In addition to its essential role in computing discontinuous solutions to conser-
vation laws, the finite-volume approach is useful in at least two other settings. One
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is the solution to marginally-resolved problems. For example, in low-Mach num-
ber combustion problems, it is possible to obtain temperatures that significantly
exceed the adiabatic flame temperature if the thermodynamic energy and chemical
species are not strictly conserved [35]. The second is in solving Poisson’s equation
with Neumann or periodic boundary conditions, for which there is a nontrivial null
space consisting of constant functions. The resulting solvability condition is man-
ifest at the discrete level in a finite-volume discretization by applying (7) to the
entire computational domain.

For more than 60 years, finite volume methods have been a mainstay of applied
numerical PDE, with application to complex multiphysics problems, accurate and
robust treatment of discontinuities, and the use of elaborate gridding strategies,
both for representing complex geometries and for solution adaptivity. However,
up until about a decade ago, they were almost exclusively second-order accurate
methods, at least for multidimensional problems. In the context of the rectangular
grid discretization (5), this typically corresponds to the use of the midpoint rule as
the quadrature method for approximating the average of the fluxes over the faces.
There are a combination of software complexity and algorithmic reasons for this.
One is that, for complex multiphysics problems with multiple time scales, models for
different physical processes are coupled together using operator-splitting methods
that are at most second-order accurate. This permits the use of different combi-
nations of implicit or explicit time discretization methods, depending on degree of
stiffness of the underlying submodel relative to the time scales of interest. Operator
splitting also allows for a software design strategy that permits straightforward in-
sertion and removal of software components to simulate different physical processes.
A second issue is that the second-order spatial discretizations are robust: they lead
to M-matrices for elliptic and parabolic problems; for hyperbolic problems, there
are well-established strategies for suppressing oscillations at discontinuities and un-
derresolved regions, while remaining second-order accurate in regions where the
solution is smooth. More recently, this point of view has begun to change, for a
number of reasons.

• In certain specialized fields such as fundamental studies of turbulent flows
high-order methods (fourth- and higher-order) have been shown to be neces-
sary in regimes in which scientists would like to simulate more general complex
problems.

• There are new methods for time discretization [22, 9] that are higher-order ac-
curate, while retaining the other desirable algorithmic and software properties
of operator splitting.

• Finite-volume methods typically suffer a loss of one order of accuracy in trun-
cation error at places where the mesh fails to be smooth, such as refinement
boundaries in structured adaptive mesh refinement, block boundaries in multi-
block methods, and near the irregular control volumes arising in cut-cell ap-
proaches to complex geometries. Dropping from second-order accuracy to first
order accuracy, even on a set of codimension one, can lead to a significant in-
crease in the error; the relative impact of the loss of one order of accuracy is
less as the order of accuracy of the discretization increases.

• Processors used in high-performance computers have been undergoing disrup-
tive changes in their architectures [31, 40]: the ratio of total memory capacity
to aggregate floating point capability is decreasing, and the cost (in time
and power consumption) of data movement is increasing relative to that of
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performing float point operations. Higher-order accurate methods could be
an effective response to these changes. They typically perform more floating
point operations per unit of data traffic, and they have the potential to pro-
duce a result with a given level of accuracy with fewer computational degrees
of freedom, at nearly the same throughput as a low-order method [3].

In what follows, we describe one specific approach to designing arbitrarily high-
order finite-volume spatial discretizations on locally-rectangular grids. It is based
on the use of a particularly simple class of high-order quadratures for computing the
average of fluxes over faces. This approach has the advantage of being a variation on
widely-used second-order methods, so that the prior experience in engineering those
methods carries over to the higher-order case. Some of the design issues include:

• High-order accurate methods on a Cartesian grid. Given averages of the solu-
tion over control volumes, how does one compute high-order accurate averages
of nonlinear functions of the solution and / or its derivatives over faces ? For
time-dependent hyperbolic problems, another set of issues are the development
of limiters and other dissipation mechanisms to maintain stability, particularly
at discontinuities and underresolved regions, while preserving high-order ac-
curacy for resolved smooth solutions.

• Adaptive mesh refinement. Some aspects of adaptive mesh refinement on
nested rectangular grids are made simpler by the fact that the averages (4),
(6) on a coarse grid can be computed exactly by arithmetic averaging of the
corresponding quantities defined on a nested refined grid. This allows the
use of uniform-grid methods to interpolate boundary conditions at refinement
boundaries by averaging the fine grid solution onto the coarse grid, while still
maintaining high-order accuracy. In the case of time-dependent problems in
which different time steps are used at different levels of refinement, it is essen-
tial to perform interpolation in time at refinement boundaries without having
to keep the solution history at multiple time levels.

• Complex geometries. Mapped grids, multiblock grids, and cut-cell representa-
tions of geometry are all widely employed to handle various kinds of geomet-
ric complexity. Extending them to higher-order accuracy involves resolving a
number of new conceptual and technical issues.

2. High-order quadratures for fluxes.

2.1. Cartesian grids. We will use time-dependent conservation laws of the form
(2) as a motivating example. If we discretize first in space (8), we can use a high-
order ODE solution algorithm to solve the resulting system of ODE, such as an
explicit or semi-implicit Runge-Kutta method. In that case, it suffices to be able to
compute a high-order approximation to the flux averages on faces, given the values
of 〈U〉.

We first consider the case ~F (U) = ~CU , Cd each a constant M ×M matrix. In
one space dimension, we note [16, 43] that the averages over cells provide values for
the indefinite integral of U evaluated at cell faces

U(x) ≡
x∫
U(x)dx→ Ui+ 1

2
= h

∑
i′≤i

〈U〉i′ , (11)

dU
dx

= U → Ui+ 1
2

= (D(U))i+ 1
2
, (12)
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Where D is a finite-difference approximation to the spatial derivative of any or-
der of accuracy. For example, if D is the classical fourth-order centered-difference
approximation to ∂x, then

Ui+ 1
2

= (DU)i+ 1
2

=
7

12
(〈U〉i + 〈U〉i+1)− 1

12
(〈U〉i−1 + 〈U〉i+2) +O(h4), (13)

〈F 1〉i+ 1
2

= C1〈U〉i+ 1
2
. (14)

This reasoning applies to constant coefficient systems in higher dimensions without
modification. If U(xd) is the indefinite integral of the average of U across rectangular
patches aligned with a row of the faces {Ad

i+ 1
2e

d : id′ = i0d′ , d
′ 6= d}, then

U(xd) =

xd∫
U(x′d)dx

′
d → Ui+ 1

2e
d = h

∑
i:i′d≤id,

i′
d′=i

0
d′ ,d
′ 6=d

〈U〉i′ , (15)

〈U〉i+ 1
2e

d =
7

12
(〈U〉i + 〈U〉i+ed)− 1

12
(〈U〉i−ed + 〈U〉i+2ed) +O(h4), (16)

〈F d〉i+ 1
2e

d = Cd〈U〉i+ 1
2e

d +O(h4). (17)

We can use a similar approach to compute fluxes that are a linear combination
with constant coefficients of 〈∇U〉i+ 1

2e
d . For the derivative of U in the direction

normal to the face, we use

〈∂xd
U〉i+ 1

2e
d = 〈∂2

xd
U〉
i+ 1

2e
d , (18)

and approximate ∂2
xd

by a suitably high-order difference approximation. For the
case of 〈∂xd′U〉i+ 1

2e
d , d′ 6= d, we first compute 〈U〉i+ 1

2e
d using (12). We then

compute 〈∂xd′U〉i+ 1
2e

d using the exact relationship〈 ∂U
∂xd′

〉
i+ 1

2e
d

=
1

h

(
〈U〉i+ 1

2e
d+ 1

2e
d′ − 〈U〉i+ 1

2e
d− 1

2e
d′
)
, (19)

and approximate the averages of U over (d, d′) edges of the grid on the right-hand
side by applying (12) to the face averages of U .

For nonlinear problems, we have to do something more complicated, due to the
fact that 〈F (U)〉 = F (〈U〉) + O(h2). However, applying a nonlinear function to
U evaluated at a point has zero truncation error. So we need to be able to easily
compute point values from average values, and conversely. This is easily done, to
any order of accuracy. We denote by qi the value of q at the center of a control
volume. Then

qi = 〈q〉i −
h2

24

∑
d

∂2q

∂x2
d

− h4

5760

(
3
∑
d

∂4q

∂x4
d

+ 10
∑
d1>d2

∂4q

∂x2
d1
∂x2

d2

)
+ . . . . (20)

It is tedious, but straightforward, to apply the approach given above to compute
the derivatives in the right hand side to the necessary order - the process can be
automated using a symbolic algebra package. These formulas apply equally well
to transform between face averages and point values at the centers of faces, except
that the sums over the derivatives in the correction terms exclude the derivatives
with respect to the direction normal to the face over which one is averaging.

A special case that often arises is the calculation of the divergence where the
fluxes are the product of two spatially-varying functions, e.g. the advection operator
∇ · (~uq), ~u = ~u(x). In that case, it is useful to express the average of the product
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as the product of the averages plus higher order correction terms. For fourth-order
accuracy, such a formula is given by

〈fg〉i+ 1
2e

d =〈f〉i+ 1
2e

d〈g〉i+ 1
2e

d+ (21)

h2

12

∑
d′ 6=d

(Dd′〈f〉)i+ 1
2e

d(Dd′〈g〉)i+ 1
2e

d +O(h4),

where Dd′ the two-point centered-difference approximation to ∂d′ at i+ 1
2e

d. There
are further corrections that extend this to any order of accuracy.

To see how this works in practice, we outline how to apply this to equations in

which the flux ~F = ~F (W,∇W ), where W = W (U) is a nonlinear function of U . This
is typical of nonlinear fluid equations, both in the hyperbolic case [28], where one
may want to perform a change of variables to compute limiters; or in the presence
of diffusive transport, in which case the diffusive contributions to the fluxes are
given in terms of gradients of the derived quantities (velocity, temperature), rather
than the conserved variables (momentum, total energy). Given 〈U〉i, we want to
compute a fourth-order accurate approximation to 〈F d(W,∇W )〉i+ 1

2e
d . We do so

in the following steps.

1. Given 〈U〉i, compute 〈W 〉i using (20).

Ui = 〈U〉i −
h2

24

∑
d

(D2
d〈U〉)i, (22)

Wi = W (Ui),W i = W (〈U〉i),

〈W 〉i = Wi +
h2

24

∑
d

(D2
dW )i,

where D2
d is the three-point centered-difference approximation to ∂2

xd
. Note

that we use the average of U and W applied to the average of U to compute
the O(h2) correction terms in this step. This keeps the size of the stencil to
a minimum, while still maintaining fourth-order accuracy. It also guarantees
that, if W (U) = U , then 〈W 〉 = 〈U〉.

2. Compute 〈W 〉i+ 1
2e

d , 〈∇W 〉i+ 1
2e

d given 〈W 〉i, using the methods described

above.
3. We compute the fluxes by evaluating the flux at the point value of W , then

apply (20) again to obtain the average over the face. We use a similar second-
order approximation to derivatives in the O(h2) correction in the final step as
used in (22) to control the diameter of the stencil.

Wi+ 1
2e

d = 〈W 〉i+ 1
2e

d −
h2

24

∑
d′ 6=d

(D2
d′〈W 〉)i+ 1

2e
d , (23)

∇Wi+ 1
2e

d = 〈∇W 〉i+ 1
2e

d −
h2

24

∑
d′ 6=d

(D2
d′〈∇W 〉)i+ 1

2e
d , (24)

〈F d〉i+ 1
2e

d = F d(Wi+ 1
2e

d ,∇Wi+ 1
2e

d) +
h2

24

∑
d′ 6=d

(D2
d′〈∇F

d〉i+ 1
2e

d), (25)

F
d

= F d(〈W 〉i+ 1
2e

d , 〈∇W 〉i+ 1
2e

d). (26)
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Given that 〈U〉i is the exact value for the average of U over the control volume,

and that U is a smooth function of x and ~F is a smooth function of U , the error
〈F d〉i+ 1

2e
d as an approximation to the face average of the fluxes is O(h4), where

the coefficient multiplying the leading-order term of the error is a smooth function
of space. When this is substituted into the right-hand side of (7), we see that
the truncation error of the divergence is O(h4), due to the usual cancellation of
smoothly-varying errors on successive faces.

In the discussion above, we have focused mainly on the truncation error of these
methods. With respect to stability, we can use discrete Fourier analysis to prove
von Neumann stability in the constant coefficient case. For the higher-order exten-
sions described here of the classical second-order methods for second-order elliptic
operators with smooth coefficients, we obtain discretizations for which geometric
multigrid converges in O(1) iterations [2]. Boundary-value problems have the same
well-posedness and solvability properties as for the second-order case. For hyper-
bolic problems, the interaction between accuracy and stability / robustness is more
delicate, and is discussed in Section 2.3 below.

2.2. Mapped coordinates. We assume that we want to compute solutions to
conservation laws on a domain that is the image of a smooth mapping from the
unit cube in an abstract coordinate space into physical space [14]

X(ξ) = X : [0, 1]D → RD. (27)

In that case, the divergence of fluxes in physical space can be written in terms of a
divergance in the mapping space.

∇x · ~F =
1

J
∇ξ · (NT ~F ), (28)

J = det(∇ξX) = ∇ξ · (D−1NTX), (29)

and N is the cofactor matrix of ∇ξX. Conservation laws are discretized in terms

of averages of ∇x ~F over images of the control volumes in the coordinate space.

1

hD

∫
X(Vi)

∇x · ~Fdx =
1

hD

∫
Vi

∇ξ · (NT ~F )dξ (30)

=
1

h

∑
d

〈(NT ~F )d〉i+ 1
2e

d − 〈(NT ~F )d〉i− 1
2e

d , (31)

where h is the mesh spacing in the coordinate space, and 〈·〉i, 〈·〉i+ 1
2e

d denote the

averages over control volumes (4) and faces (6) in the coordinate space. Using

the change of variables formula we have converted the average of ∇x · ~F into the
average of a divergence of fluxes over cubic control volumes in the coordinate space,
so that the quadratures in the previous section applies here. In particular, we

can use product formulas such as (21) to compute 〈(NT ~F )d〉i+ 1
2e

d to fourth- or

higher-order accuracy

〈(NT ~F )〉
d

i+ 1
2e

d = (〈NT 〉i+ 1
2e

d〈~F 〉i+ 1
2e

d)d +
h2

12

∑
d′ 6=d

Dd′(〈NT 〉Dd′〈~F 〉)di+ 1
2e

d . (32)

For time-dependent problems (2), we can use the change of variables formula to
obtain an evolution equation for averages over the control volumes in the coordinate
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space

d〈JU〉i
dt

= − 1

h

D∑
d=1

〈(NT ~F )d〉i+ 1
2e

d − 〈(NT ~F )d〉i− 1
2e

d . (33)

If ~F is identically equal to a constant as a function of space, then ∇x · ~F ≡
0. We want to preserve this property under discretization. This requirement is
often referred to as freestream preservation. While this is trivially satisfied for the
Cartesian discretization (5), it imposes a nontrivial constraint on the calculation of
〈N〉i+ 1

2e
d for the right-hand side of (31) to vanish. If we use (32) to compute the

face-averaged fluxes, then the higher-order terms vanish if ~F is a constant, and (31)
becomes a constraint on the quadrature rule used to compute 〈N〉i+ 1

2e
d that, if met,

is sufficient to guarantee freestream preservation. By equality of mixed partials, the
rows of N {Ns}s=1...D satisfy ∇ξ · Ns = 0. By the Poincare lemma, there exists
N s
d,d′ such that

Ns
d =

∑
d′ 6=d

∂N s
d,d′

∂ξd′
,N s

d,d′ = −N s
d′,d. (34)

We can then use Stokes’ theorem to compute the average of Ns over faces in terms
of the integrals of N over edges

〈Ns
d 〉i+ 1

2e
d =

1

hD−1

∑
±=+,−

∑
d′ 6=d

±
∫

E±
d,d′

N s
d,d′dEξ. (35)

where E±d,d′ are the low (−) and high (+) edges of Ad
i+ 1

2e
d corresponding to both

ξd and ξd′ equal to constants. To obtain freestream preservation and pth-order
accuracy, we can compute 〈Ns〉i+ 1

2e
d using the right-hand side of (34) with the

edge integrals replaced by any quadrature rule that is pth order accurate, provided
that they satisfy the antisymmetry condition corresponding to N s

d,d′ = −N s
d′,d.

To complete the construction, we note that, while N is not unique, there is a
distinguished choice that is a local function of X,∇ξX.

Given (34), the extension of the approach used for Cartesian grids in the previous
section to the mapped-grid setting is relatively straightforward. For example, to
compute the right-hand side of (33) corresponding to (22)-(26), one can use a cell-
centered version of the product formula (21) to make the transformation 〈JU〉i →
〈U〉i; and compute 〈U〉i → 〈W 〉i → 〈W 〉i+ 1

2e
d , 〈∇xW 〉i+ 1

2e
d → 〈~F 〉i+ 1

2e
d . All

of the intermediate steps here use the Cartesian methods in (22)-(26), without
modification, except for the calculation of 〈∇xW 〉i+ 1

2e
d . In that case, we use the

chain rule ∇xW = J−1N∇ξW combined with the product formula (21). We then
use the product formula (32) to compute the average of the fluxes at faces.

2.3. Dissipation mechanisms, limiters, and positivity preservation for hy-
perbolic problems.
Dissipative Methods. Methods such as (14) that use stencils that are centered

around the face where the value is being computed correspond to even-order, cent-
ered-difference approximations. For constant-coefficient problems, as the wave-
length of a Fourier mode approaches 2h, the propagation speed of the mode ap-
poaches zero independent of the exact wave propagation velocity for the PDE, while
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the amplitude of the Fourier mode remains unchanged. While these methods are still
Fourier stable, the near-neutral stability and large phase error of short-wavelength
modes can lead to various degrees of instability when applied to variable-coefficient
and nonlinear problems. For this reason, it was suggested in [23] that such meth-
ods be modified so as to be dissipative: in the long-wavelength limit, the order of
accuracy of the method remains unchanged, while reducing the amplitude of all
nonconstant Fourier modes. This can be done in one of two ways. The approach
proposed in [23] is to add to the flux in the d direction of a 2pth-order method a
term of the form Ch2p+1∂2p+1

xd
U , where C = C(x) = O(1) has units of velocity,

with (−1)p+1C > 0. This corresponds to adding a dissipation term to the right-
hand side of (8). An alternative approach is to use an (2p + 1)st-order method
with a stencil for the flux at a face centered around the cell upwind to that face
relative to the propagation speed. Such a one-point upstream-centered method has
a truncation error that is instrinsically dissipative, damping all nonconstant Fourier
modes, including the high-wavenumber ones. For systems of equations, one com-
putes one-point upstream-centered face values centered on both cells adjacent to
the face, and then uses an approximate Riemann solver to synthesize a upwind
state relative to the different wave propagation speeds. Either approach provides a
suitable mechanism for damping neutrally-stable high-wavenumber modes, at least
in one dimension.

There are additional complications in more than one space dimension. For solu-
tions that depend on only one space variable, it is possible for modes with wavenum-
bers perpendicular to that direction of propagation to be neutrally stable, and dis-
sipation methods based on upwinding introduce no dissipation in the transverse
directions. The complete lack of dissipation in those settings can lead to nonlinear
instabilities, as observed, for example, in [41] for strong shocks aligned with one of
the coordinate directions. This instability is eliminated by modifying the nonlinear
diffusion term introduced near shocks so that the diffusion coefficient has the same
magnitude in all of the coordinate directions. This has the effect of damping the
nonlinear instability transverse to the shock, while maintaining the advertised level
of accuracy in smooth regions [16, 28]. This suggests that any dissipation that is
introduced to stabilize short-wavelength modes should introduce damping in all co-
ordinate directions appropriate to the desired level of accuracy.
Limiters. For hyperbolic conservation laws, there is a fundamental problem to rep-
resenting discontinuities as discrete traveling waves on a grid. In the neighborhood
of the discontinuity, it is necessary to add a regularization term in the form of a
numerical viscosity with a coefficient that is O(h) in the neighborhood of the dis-
continuity [32, 24]. Such a term being applied everywhere leads to large errors in
regions where the solution is smooth or for linearly degenerate discontinuities. This
was recognized as a problem early on in the development of methods for disconti-
nuities, and led to a variety of approaches for tuning the artificial viscosity so that
it was sufficiently large at nonlinear discontinuities, and small in smooth regions.
Early methods of this type required the setting of various parameters in the viscous
terms that were problem-dependent. A more robust class of solutions, called flux
limiters, were first introduced in the 1970’s [8, 39, 42] to address this issue. The
simplest version of this approach is the Flux-Corrected Transport (FCT) limiter in
which the time-averaged flux in (9) is given by

〈F d〉n+ 1
2

i+ 1
2e

d =〈F d〉Hi+ 1
2e

d + ηi+ 1
2e

d〈δF d〉i+ 1
2e

d , (36)
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〈δF d〉i+ 1
2e

d ≡〈F d〉
L

i+ 1
2e

d − 〈F d〉
H

i+ 1
2e

d ,

where 〈F d〉Hi+ 1
2e

d is a time-averaged flux computed using a high-order method such

as the one described above, 〈F d〉Li+ 1
2e

d is a flux computed using a stable first-order

accurate method, such as donor-cell differencing, or the CTU method in [12, 36].
The quantity ηi+ 1

2e
d ∈ [0, 1] is a hybridization coefficient: if ηi+ 1

2e
d = 0, we are

using the high-order accurate flux; if ηi+ 1
2e

d = 1, the first-order accurate flux. To

understand the idea behind this approach, consider the case of a scalar equation,
i.e., U(x, t) ∈ R. We note that, by modified equation analysis, the correction term
δF d ∼ αi+ 1

2e
d(〈U〉i − 〈U〉i+ed), αi+ 1

2e
d = O(1), αi+ 1

2e
d ≥ 0, i.e. like an O(h)

diffusion term. The FCT approach in [42] is to compute η to be as small as possible
subject to the conditions that the solution remains within prescribed bounds, e.g.
the componentwise max and min of in the neighborhood of i after the low-order
method has been applied for one time step, combined with the max and min of
〈U〉n in the same neighborhood.

Geometric limiting [39] is an approach that is specific to the interpolation-based
evaluation of the fluxes. In the semi-discrete setting considered here, we apply
the limiter at each evaluation of the right-hand side. For a scalar, we replace a
single-valued calculation of 〈U〉i+ 1

2e
d at the face with a double-valued one

〈U〉i+ 1
2e

d,L =〈U〉i+ 1
2e

d + ηi(〈U〉i − 〈U〉i+ 1
2e

d), (37)

〈U〉i+ 1
2e

d,R =〈U〉i+ 1
2e

d + ηi+ed(〈U〉i+ed − 〈U〉i+ 1
2e

d),

where 〈U〉i+ 1
2e

d is computed using (11). The single-valued flux is computed as an

approximate solution to the Riemann problem for the 1D equation obtained from
assuming that the solution is constant in the coordinate directions d′ 6= d is constant.
In the case where the sign of the wave speed is unambiguous, this simply corresponds
to choosing the upwind value of (37). The prescription in [39, 16] for computing the
hybridization coefficient ηi+ 1

2e
d is based on assuming an interpolating polynomial

derived from the 〈U〉i+ 1
2e

d does not introduce any new extrema not already present

in the values 〈U〉i. In the case where η ≡ 1, we are replacing the high-order method
for computing the flux with a first-order upwind discretization in space, which
introduces adequate dissipation at discontinuities. For both geometric limiting and
FCT, additional conditions and dissipation mechanisms need to be applied, e.g. to
enforce entropy conditions and obtain robust treatment of strong nonlinearities.

In order to obtain high-order accuracy for smooth solutions for h sufficiently
small using either of these approaches, this choice of bounds assumes that the exact
〈U〉i+ 1

2e
d can be bounded by local values of 〈U〉. This fails at smooth extrema,

where it is possible for 〈U〉i+ 1
2e

d(t) to not be within the range of the local values

of 〈U〉. If that occurs, η > 0 may be nonzero at some faces. This leads to a
low-order update to the solution, and typically a method that has O(h) errors in
the solution at smooth extrema. This was recognized in [42], and a method for
modifying such limiters to eliminate this loss of accuracy was proposed there. One
way of summarizing this approach is given by the following [15, 28, 10].

• If there is no possibility of a smooth extremum, the solution is bounded by
values of 〈U〉 in the neighborhood of the control volume, and and we use the
limiters described above.
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• In regions where there is a possibility of a smooth extremum, we use a different
limiter, based on comparing various approximations to the second derivatives
of the solution, and applying a limiter if they differ by O(1), or change sign.

This is a restatement in algebraic terms of the extremum-preserving method in
[42], in the spirit of [39]. In the latter work, the hybridization coefficient in one
dimension is a function of the ratios of several finite difference approximations to
first derivative. The coefficient η is nonzero if these ratios are not sufficiently close
to 1 or the estimates of the first derivative do not have a consistent sign. Using
constraints based on the relative sizes of first derivatives are reliable indicators of
whether the solution is sufficiently well-resolved on the grid so that the use of higher-
order methods can be used, except at locations where the first derivative vanishes
and the solution is not discontinuous. In that case, we use the same strategy, except
based on several finite-difference approximations to the second derivative. In one
dimension, this is the generic case, in the sense that a function with extremum at
which both of the first two derivatives vanish (e.g. a quartic) is transformed by
small perturbations into a solution in which there are two non-degenerate extrema.
Thus this approach to limiting using the second-derivative condition will preserve
high-order accuracy for any order method. The extension to multiple dimensions is
done by using the derivatives in each of the coordinate directions, with additional
conditions where the solution varies in only one of the coordinate directions, or in
the neighborhood of points where the solution is sufficiently close to a cubic [28]. In
any case, the cost of applying these more elaborate limiters at extrema are small,
since they are only computed at locations where there is a possibility of a smooth
extremum, a condition which is inexpensive to compute, and occurs typically on a
set of codimension one.

There are two possible approaches to extending the limiters described above to
the case of systems of equations. The first is to apply the limiter componentwise,
possibly after first performing a nonlinear change of variables, e.g. transforming
from conserved variables to primitive variables in gas dynamics. This is a straight-
forward generalization, but can fail for more complex systems, such as magneto-
hydrodynamics. The second approach is to apply the limiters in characteristic
variables. To do this, one expands either 〈δF d〉i+ 1

2e
d in (36) or (〈U〉i − 〈U〉i+ 1

2e
d)

in (37) as a sum of right eigenvectors, compute a limiting coefficient for each ampli-
tude, and resum the expansion with the corrected amplitudes to obtain the limited
values. In the scalar case, these coefficients are obtained as nonlinear combinations
of differences. For characteristic limiting, the limiter for the amplitude of the kth

eigenvector is computed as the same nonlinear combination of the kth expansion
coefficient of the same derivatives as used in the scalar case. While this is a sounder
approach theoretically, it also must be done with care, due to the nonlinear depen-
dence of the eigenvectors on the solution. All of the expansions in characteristic
variables used to compute a given limiting coefficient must be done with respect to
eigenvectors evaluated at the same value of the solution.
Positivity Preservation. Solutions to the advection equation remain nonnegative for
all times if they are initially nonnegative. It is desirable that this property be
preserved under discretization, for example, if other terms in a system of equation
are not defined unless an advected quantity on which they depend is nonnegative.
Such a property of a discretization is called positivity preservation. In the initial
development of limiters in one dimension, positivity preservation was considered
one of the design goals. In more than one dimension, this becomes problematic.
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The only classical positivity-preserving linear low-order finite-volume method for
advection by an arbitrary spatially-varying, discretely-divergence-free velocity field
is donor-cell differencing, which has a CFL constraint that scales like D−1. In high
dimensions, such as for kinetic problems in 6D phase space, this is a significant time
step penalty. A second issue is that positivity preservation constrains the design
space for extremum-preserving limiters, even in one dimension: in order to allow for
smooth extrema to be preserved, it is necessary to relax constraints on the max and
min of the discrete solution so that small violations of the bounds are introduced. An
alternative that has seen some success has been to use a separate post-processing
step after each time step to preserve positivity (or other bounds satisfied by the
PDE) [33, 11, 20]. At the end of every time step, one computes the increments
in each control volume corresponding to the extent to which positivity has been
violated. Those increments are then redistributed to nearby control volumes, with
weights proportional to the mass of the quantity in that control volume, and with
weights summing to one. If at the beginning of the time step, the averages were
all nonnegative, there is some nearby control volumes that have a surplus of mass
corresponding to the negative increment being redistributed. Thus the advected
quantity is conserved, and positivity is preserved. Our experience is that, in the
presence of discontinuities, redistribution cannot be used by itself, but must be
applied to solutions to which limiting is also applied.

3. Adaptive mesh refinement. In the block-structured finite-volume adaptive
mesh refinement algorithm in [5] the solution to a system of conservation laws
is represented on a hierarchy of locally-refined grids. At each level of refinement
` = 0, . . . , `max, a subset Ωl of the spatial domain Ω is discretized into a union of
control volumes of the form (3), which are in turn organized into a disjoint union of
rectangles

⋃
k

Ω`,k = Ω` (figure 1). The grids are assumed to be nested: Ω` ⊂ Ω`−1,

h`−1 = h`n`ref , where n`ref ∈ N+ is the refinement ratio. The control volumes
defined by these grids are assumed to be nested, i.e. that any control volume in
Ω` that intersects Ω`+1 is completely covered by Ω`+1. The additional requirement
of proper nesting is usually imposed, i.e. that the distance between the boundary
of Ω`+1 and any control volume in Ω`−1 not covered by Ω` is at least some integer
multiple of h`. This proper nesting distance is chosen to make the calculation of

〈∇ · ~F 〉 on Ω` use only those values defined on Ω{`,`±1} .

For a Cartesian grid hierarchy, the calculation of 〈∇ · ~F 〉 on
⋃̀

Ω`, where ~F =

~F (U,∇U), assuming 〈U `〉 : Ω` → RM is known, is performed as follows, with the
computation being done on each level in the order ` = `max, . . . , 0.

1. For each patch Ω`,k, compute 〈U〉 for a slightly larger patch containing Ω`,k,
copying values from other patches in Ω` if they exist, otherwise interpolating

values of 〈U〉` from Ω`−1. Then compute the fluxes using the approach in (22)
- (26).

2. Assuming that the fluxes 〈F d〉i+ 1
2e

d on Ω`+1, have already been computed as

in Step 1, replace the fluxes on the faces of the control volumes in Ω` covered
by ∂Ω`+1 by the arithmetic average of the level `+ 1 fluxes (figure 2).

3. Compute 〈∇ · ~F 〉 on Ω` using (5). For control volumes in Ω` covered by Ω`+1,

replace the value of 〈∇ · ~F 〉 with the arithmetic average of the values from the
level ` + 1 control volumes that are contained in the covered level ` control
volume.
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Figure 1. Example of block-structured locally-refined grids in 3D.
The white lines outline the boundaries of the intersection of the
individual control volumes with the green cut-planes, and the black
lines show the organization of the refined region into rectangular
blocks of control volumes.

Figure 2. Computing fluxes at refinement boundaries. The flux
into the coarse control volume to the right of the refined grid is
given by the arithmetic average 1

2 (FL,top + FL,bot), which is also
the flux out of the adjacent coarse control volume covered by the
fine region. Since arithmetic averaging of fine face averages to
obtain a coarse face average is exact, the accuracy of the flux on the
refinement boundary is the same as the accuracy of the component
fluxes.

This algorithm satisfies the natural generalization of the discrete conservation
property (7) to nested grid hierarchies. This follows easily from the replacement
of the fluxes in Step 2 with averages from the next finer level, combined with
the replacement of values of 〈∇ · F 〉 on the parts of Ω` covered by Ω`+1 by the
arithmetic averages of 〈∇ · F 〉 defined on the latter. A key observation is that
arithmetic averaging from fine grids to coarser grids of averages over control volumes
and over faces is exact in the sense of truncation error. This implies that if the
truncation error of the single-level method is O(hp), then the truncation error in
the calculation of the divergence on the hierarchy is O(hp) away from boundaries
between different levels of refinement, and O(hp−1) near refinement boundaries. For
all faces, the error in the flux calculation is O(hp). Near refinement boundaries, the
coefficient multiplying that error is not C1, so the cancellation of error in the final
flux divergence calculation does not hold, thus leading to a loss of one order of
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accuracy. For classical PDE, this loss of accuracy is often less, even in max norm.
For elliptic and parabolic PDE, the solution error is smoothed by the solution
operator, typically leading to an O(hp) solution error. For hyperbolic PDE, the
solution error can be O(hp) if the refinement boundary is non-characteristic. This is
suggested by a modified equation analysis similar to that used in [13], and observed
in practice [2, 28].

Formally, we view the solution to a system of conservation laws on a nested grid
hierarchy as being defined only on the control volumes at each level that are not
covered by the finer levels, i.e. on Ω` − Ω`+1. Furthermore, we need to interpolate
values at control volumes contained in the stencils for operators applied to level `
control volumes that extend outside of Ω`. In the former case, we compute 〈U〉 in
control volumes covered by the next finer level to be the arithmetic average of the
values on the next finer level. Since arithmetic averaging of averages over control
volumes is exact, the latter are pth-order accurate, so is the average. To interpolate
in space from the next coarser level, it is convenient to use a least-squares approach
to define interpolation stencils [28]. This is similar to what is done for mapped-
multiblock methods, so we will defer discussion to the next section. In addition,
AMR algorithms for time-dependent problems often employ refinement in time, so
that values of 〈U〉 at intermediate corresponding to the time steps at the next finer
level are required. For the Runge-Kutta methods used here, this is done by means of
dense output, i.e. reconstructing a polynomial in time from the intermediate stages
of a pth-order Runge-Kutta method to obtain a pth-order accurate approximation
to the solution at any intermediate time. This is done on for the coarse-grid values
near the refinement boundary prior to performing interpolation in space.

For mapped grids, there is a potential additional complication in defining dis-
cretizations on the AMR hierarchy, in that the discretized grid mappings and the
associated quadratures on faces may not match up exactly between refinement lev-
els. In the case where the mapping is specified analytically, and in addition that
the averages 〈J〉i and 〈Ns

d 〉i+ 1
2e

d can be computed analytically, arithmetic averag-

ing between levels is exact, and there is no problem. In [6], this issue was addressed
by constructing the grid at the finest possible level, then constructing the coarser
levels by averaging these quantities down from the finer grids, so that the requisite
consistency conditions are satisfied. This is not a practical solution in 3D, particu-
larly when the grid hierarchy is changing as a function of time. Instead [19], we use
(29) and (34) to construct values for 〈J〉i and 〈Ns

d 〉i+ 1
2e

d that are consistent across

refinement boundaries, and, in the case of 〈Ns
d 〉i+ 1

2e
d , satisfy freestream preserva-

tion. In the case of 〈J〉, this is just the calculation of 〈∇ξ · (D−1NTX)〉 on the
AMR grid hierarchy in the Cartesian mapping space. In that case, the discrete
conservation property becomes conservation of volume independent of how the grid
is refined. The calculation of the face averages uses the same idea, except one di-
mension lower. For all edges on level ` that are covered by edges on the boundary
of level `+1, we replace the integrals in (35) over the coarse edges by the sum of the
integrals of the fine edges (figure 3). By a similar argument to the divergence case,
the resulting calculation of 〈Ns

d 〉i+ 1
2e

d satisfies the freestream condition. There is

no loss of accuracy of the edge integrals, since summing integrals is exact. however,
there is a loss of one order of accuracy from differencing the edge integrals. There-
fore, in order to obtain pth-order order accuracy for the fluxes, the edge integrals in
(35) must be computed with a (p+ 1)st-order quadrature rule.
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Figure 3. Correction of the face metrics at refinement boundaries.
Along the dark coarse-grid edges, the 〈Nd,d′〉 used to compute 〈Nd〉
on the coarse grid is obtained by averaging the fine grid 〈Nd,d′〉
values onto the coarse lines. This changes the 〈Nd〉 on all the faces
that intersect the refined-region edges.

4. Complex geometries. There are two geometric challenges related to gener-
alizing the discretization methods described above that we address here. One is
representing simple domains, but where it is desirable for reasons of efficiency and
accuracy to align the grid with global anisotropies, while at the same time there are
topological constraints that make it impossible to do so with a single smooth mesh
mapping of the type described in Section 2.2. A simple example of this are problems
on thin spherical shells, such as the earth’s atmosphere. Large-scale motions can be
shown to have large aspect ratios [18], and therefore the it is desirable to have the
grid aligned with the normal and surface directions to the sphere, i.e. have the map
be the tensor product of a map to the surface of the sphere and a 1D mapping in the
radial direction, with the ratio of the grid spacing in those directions comparable to
the aspect ratio. It is not possible to do that with a single mapping of the form (27)
without introducing singularities, such as the pole singularities in classical spheri-
cal coordinates. A widely used alternative is the cubed-sphere grid, in which the
surface of the sphere is represented by a mapping from six coordinate blocks of the
form (27) that are continuous at boundaries, but cannot be represented in terms of
a single smooth coordinate map (figure 4).

For highly complex geometries coming from CAD specifications of engineering
devices, geophysical data, or image data, we use Cartesian grid embedded boundary
(EB) / cut-cell methods [33, 11, 7, 4, 34, 21, 1], an irregular domain Ω is discretized
by intersecting a rectangular grid with the domain to obtain a collection of control
volumes. One of the principal advantages of EB methods is the ease of what corre-
sponds to grid generation, i.e. the calculation of volume fractions, the area fractions,
and the centroids. These can be computed easily for highly complex geometries,
such as the exteriors of full aircraft configurations defined by surface triangulations
of components [1], and microscale geometries of porous media obtained from image
data [38].
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Figure 4. Mapped-multiblock gridding of the surface of a sphere.
This uses the cubed-sphere map, which maps the surface of a cube
onto the surface of a sphere. The map is smooth, except at bound-
aries between blocks (represented by the heavier dark lines) corre-
sponding to the boundaries between different faces of the sphere,
where the map has discontinuous derivatives in the direction nor-
mal to the boundary. The tensor-product of a cubed-sphere map
with a radial coordinate can be used to represent a thin 3D spher-
ical shell.

For mapped multiblock methods, the basic discretization approach is that in Sec-
tion 2.2, and the main issue is the definition of that discretization method near the
boundaries between blocks that preserves high-order accuracy. For the embedded
boundary approach, we have to define methods for computing high-order approx-

imations to the average of ∇ · ~F over irregular control volumes generated where
Cartesian control volumes intersect the irregular domain, as well as for faces are
sufficiently close to the boundary to require an irregular stencil. In both cases, the
problem is one of generalizing the constructions used in Section 2 to compute fluxes
to cases for which the unknowns are expressed in terms of averages of smooth func-
tions over control volumes that fail to be smooth rectangular discretizations of space
on a set of codimension one. The approach we have taken is based on constructing
polynomials whose averages over all sufficiently-nearby control volumes are known.
We use more control volumes than polynomial coefficients, leading to an overdeter-
mined linear system for the coefficients or, equivalently, an underdetermined system
for the stencil coefficients that express fluxes in terms of nearby averages. To solve
this overdetermined system, we use least-squares methods, with the introduction of
weighting in some cases to obtain stable discretizations.

4.1. Mapped multiblock methods. The method outlined here for computing

〈∇ · ~F 〉 on a mapped-multiblock grid is that given in [30]. In that approach, the
method in Section 2.2 to computing fluxes can be used without modification for
control volumes sufficiently far away from block boundaries. To compute the fluxes
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near to the block boundaries, we assume that there is a smooth extension of each of
the mappings beyond the boundary of the block. Using this extended mapping, we
can define an extended rectangular grid and associated control volumes sufficient
to compute the fluxes for all of the faces surrounding the control volumes inside
the block. To compute the average of the solution at i for block s, we construct a
polynomial approximation to the solution U near i

U (i,s)(x) =
∑

p∈ND:||p||1<P

apx
p +O(hP ). (38)

To compute the coefficients ap, we use the conditions that the average of the poly-
nomial over a collection of nearby valid control volumes is equal to the average of
U over those control volumes.∑

p∈ND:||p||1<P

ap〈xp〉(i′,s′) = 〈U〉(i,s),(i
′, s′) ∈ N(i,s), (39)

where the moments 〈xp〉(i′,s′) are computed using quadratures. Given (i, s), we

need to specify how to how to choose N(i,s). For the case of fourth-order accuracy,
we first find (x0, s0), the valid control volume containing the center of (i, s). Then
we add to that set all of the valid control volumes that share a face, edge, or corner
with (x0, s0). Finally, we add the valid control volumes that share a face opposite
the shared faces from the previous set. Away from three-or-more block intersections,
This stencil is a set of points of size (3D + 2D) (figure 5). At three-or-more-block
intersections, the number of points can be larger or smaller, but in any case no less
than the number of coefficients {ap}, and is sufficient to construct polynomials with
P = 4. In two and three dimensions, (39) is in general an overdetermined system of
equations. However, it has maximal rank, is well-conditioned, and a least-squares
solution can be computed. This same approach is used to compute ghost values
near domain boundaries, with slightly different heuristics [30] for choosing N(i,s).

Once the coefficents have been constructed, the ghost value can be computed as

〈U〉i,s =
∑

p∈ND:||p||1<P

ap〈xp〉(i,s). (40)

This provides us with the necessary ghost values to compute fluxes on all of the
faces of each block. This leads to fluxes that are double-valued on faces at block
boundaries. We can compute a single-valued flux either by averaging the two fluxes
(appropriate for elliptic operators), or using some upwinding method for computing
a single-valued flux (appropriate for hyperbolic operators).

4.2. Embedded boundary methods. The discretization of space given by the
intersection of Cartesian control volumes with the irregular domain leads to a finite-
volume discretization corresponding to (5)

〈∇ · ~F 〉v =
1

κh

(
〈~F · n̂〉

EB
+
∑
d

〈F d〉d,+ − 〈F
d〉d,−

)
, (41)

〈q〉v ≡
1

κhD

∫
v

q(x)dx, (42)

〈F d〉d,± =
1

hD−1

∫
ad,±

F ddA, (43)
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Figure 5. Left: mapped-multiblock coordinate system for a disk
in 2D. The different blocks are colored, and numbered. Right: com-
puting ghost values for the disk grids. The light dotted blue lines
indicate the control volumes defined by the extension of the coor-
dinate mapping for grid 2. For the ghost control volume outlined
by the heavy dashed blue line: (i) find the valid control volume
containing its center, outlined by the solid solid magenta line; the
find all of the control volumes that touch the faces or corners of
the control volume in (i), outlined by the dotted brown line; and
(iii) add two points in each logical coordinate direction to obtain
the stencil, indicated by the shaded valid control volumes.

〈n̂ · ~F 〉EB =
1

hD−1

∫
aEB

~F · n̂dA, (44)

(figure 6), where v is a connected component of Ω
⋂
Vi, a

±
d = ∂v

⋂
Ai± 1

2e
d ,

and aEB = ∂v
⋂
∂Ω. The quantity κ = κ(v) is the volume fraction of v, i.e.

V olume(v) = κhD. Globally, the geometry is represented as a graph: the nodes
of the graph are the control volumes, and the arcs of the graph are the faces αd
connecting a pair of control volumes in adjacent cells. Since the a connect exactly
two adjacent control volumes, the discretization (41) satisfies a discrete conserva-

tion principle analogous to (7): the volume-weighted sum of 〈∇ · ~F 〉 over a region
defined as a collection of control volumes is equal to the area-weighted sum of the

flux averages ±〈F d〉d,±, 〈~F · n̂〉EB summed over the boundary of the region. The

relationship (41) is exact, and the most commonly used discretization is based on
a second-order accurate approximation of the flux, combined with the analogue of
the midpoint rule:

〈∇ · ~F 〉v =
1

κh

(
αEBn̂(xEB) · ~F (xEB)+ (45)∑

d

αd,+F
d(xd,+)− αd,−F d(xd,−)

)
+O

(h
κ

)
,

where the area fractions α are defined by αd,±h
D−1 = Area(ad,±), αEBh

D−1 =
Area(aEB), and xd,±, xEB are the centroids of the corresponding a’s.
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Figure 6. Example of an embedded-boundary control volume.
The shaded region indicates the part of the control volume not
contained in the domain. the control volume is indicated by v, the
faces through which fluxes are defined indicated by a.

We note that there is a loss of one order in h in the truncation error relative to
what we get from the midpoint rule in control volumes that do not intersect ∂Ω.
This is a loss of one order of accuracy on a set of codimension one, which results in
second-order accuracy in max norm for elliptic problems, and at least in L1 norm
or possibly max norm or for hyperbolic problems, depending on whether or not the
boundary is characteristic [13]. In addition, the presence of the volume fractions κ
in denominators, which can take on arbitrarily small values, might be a cause for
concern, both from a stability and an accuracy standpoint. This turns out not to
be a problem. For elliptic problems, or parabolic problems that are discretized im-
plicitly in time, the volume fractions in the denominator are eliminated by diagonal
scaling [21, 29], while still leading to stable discretizations. For time-dependent hy-
perbolic problems, one can still use explicit time discretizations by hybridizing with
a stable, non-conservative method, and redistribute the increments corresponding
to the local loss of mass in each irregular control volume to nearby control volumes
in a way that is stable overall [33, 11, 4].

We generalize the EB approach to higher order for domains Ω that are defined
in terms of an implicit function: Ω = {x : φ(x) < 0}, where φ is assumed to be
smooth for the purposes of constructing high-order accurate methods. This is a rep-
resentation that arises naturally from image processing based on level-set methods
[27], and is increasingly an approach used in CAD systems based on constructive
solid geometry. In that case, ∂Ω = φ−1(0), and

n̂EB =
∇φ
||∇φ||

. (46)
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We take the Taylor expansion of of the fluxes inside the flux integrals (43) - (44).

〈∇ · ~F 〉v =
1

κh

∑
0≤q<Q

1

q!
(
∑
d

(
(∇qF d)(xd,+)m

(q)
d,+ − (∇qF d)(xd,−)m

(q)
d,−

)
+ (∇q ~F )(xEB) · ~m(q)

EB)+O
(hQ−1

κ

)
, (47)

m
(q)
d,± =

1

hD−1

∫
ad,±

(x− xd,±)qdAx, (48)

~m
(q)
EB =

∑
0≤||s||1<Q−||q||1

1

s!
(∇sn̂EB)(xEB)

( 1

hD−1

∫
aEB

(x− xEB)q+sdAx

)
. (49)

where we use the representation (46) to define the Taylor expansion of n̂ and the
points xd,±, xEB are points on the Cartesian face containing ad,±, and in the Carte-
sian control volume containing v, respectively. Thus grid generation in this exten-
sion of EB to higher order reduces to computing the moments over ad,±, aEB in
(48), (49), along with moments over the volume fractions

M (q)
v =

1

hD

∫
v

xqdx. (50)

Once the moments are computed, the computation of 〈∇ · ~F 〉v is reduced to finding
suitable approximations to the ∇qF d, or equivalently, a polynomial approximation
to F d of the appropriate order.

Following [37], we compute suitable approximations to these moments by apply-

ing (41) to fluxes of the form ~F (x) = xred∫
v

rdx
r−eddx−n̂EB,d(0)

∫
aEB

xrdAx = (51)

∑
d

( ∫
ad,+

xrdAx −
∫
ad,−

xrdAx

)
+

∑
s∈ND:0<||s||1<Q−||r||1

1

s!
(∇sn̂EB,d)(0)

∫
aEB

xr+sdAx+

O
(
hQ+D−1

)
.

The error term in this expansion is sufficient to lead the asymptotic error term in
(49) unchanged. For each R ≥ 0, the equations of the form (51) for {r : ||r||1 =
R, d = 1, . . . , D} form a well-conditioned overdetermined system of maximal rank
for the moments over v and aEB on the left-hand side, where the right-hand side con-
sists of higher-order moments over aEB or moments of the form (50) for dimension
D′ = D − 1. The hierarchy in R terminates at R = Q, for which the contribution
to the right-hand side of integral over aEB vanishes, so that, if one can compute
the moments over ad,±, we obtain a closed hierarchy of least-squares problems for
the moments which can then be solved, starting at the highest moment. We can
apply this argument recursively in dimensionality, until we get to the case D = 1,
for which the moments can be computed analytically by finding the intersection of
coordinate lines with ∂Ω.
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There are two cases in which the above construction must be modified. One is in
the case where a D′ < D calculation involves a zero set that grazes a D′ coordinate
surface; the second is where thickness of the region {x : φ(x) > 0} is comparable
to h (figure 7). In both cases, the solution is the same, i.e. to locally refine the
grid in the process of generating the control volumes and moments. In the latter
case, this will also lead to multiple control volumes per Cartesian cell, and a graph
representation of the embedded boundary grid that is not a subgraph of the lattice
ZD.

Figure 7. Example of an underresolved collection of control vol-
umes in 2D. The region above the heavy curve is contained in
the domain. However, a simple representation of the geometry and
topology of the embedded boundary grid based on computing a sin-
gle intersection of the coordinate line with the face is inadequate:
there are two disconnected components to that face that connect
the single volume on top to a pair of disconnected control volumes
below. We deal with this problem by locally refining the grid as
indicated here to represent accurately the geometry, as indicated
by the dotted lines.

The main problem for the higher-order EB algorithm formulation is finding ap-
proximations to the flux and its derivatives that are stable. There is no rigorous
theory for stability, so the goal is to find a methodology and a set of heuristics for
designing stable methods. One example of such a combination is contained in [17]
for Poisson’s equation. In that case, a least-squares algorithm similar to that in
used to compute ghost cells at block boundaries in Section 4.1 is used to compute
a polynomial interpolant to the flux on the faces. The essential new heuristic that
leads to a stable discretization is the use of weighted least-squares, in which the
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control volumes nearest the face are weighted the most heavily. This has the effect
of more heavily weighting the diagonal of the resulting matrix, while still providing
enough degrees of freedom to obtain higher-order accuracy.

5. Conclusions. The principal focus of the discussion here has been to lay out an
approach for extending classical finite-volume methods for (1), (2) to obtain dis-
cretization methods of any order of accuracy in the truncation error. It is based
on the use of uniform or smoothly-varying grids to define a rectangular lattice of
control volumes. Because of the grid smoothness, the truncation error in the dis-
cretization of the operator is O(hp) provided that the face averages of fluxes are
also computed to O(hp), and that the truncation error is a smooth function of its
inputs and location in space. This leads to a loss of one order of accuracy in trun-
cation error when the latter condition is not satisfied, e.g. at domain boundaries,
at boundaries between different levels of refinement in AMR, at block boundaries
for mapped-multiblock methods, and at control volumes near the irregular domain
boundary in embedded boundary methods. For classical PDE, this loss of accuracy
in the truncation error is often smoothed out by the solution operator, leading to a
solution error that can recover O(hp) accuracy, even in max norm. The approach
has been generalized to discretizations that are approriate for representing a variety
problems in complex domains.

Within the context of the approach given here, there are still some possible ex-
tensions that would increase the geometric flexibility of the methods, specifically
combinations of mapped and mapped-multiblock methods with embedded bound-
ary geometries. This could be useful, for example, in representing orography in
atmospheric modeling, or CFD in internal combustion engines. In these cases, a
mapped-multiblock background grid would be used to represent some global fea-
ture: the thin-layer anisotropy in atmospheric modeling, or in case of the combustion
problem, alignment of the grid with the cylinder wall in order to efficiently represent
the large-scale viscous boundary layer. Then the embedded boundary approach can
be used to represent the detailed geometry of variations in the surface of the earth,
or of valves, injectors, piston geometries, and other detailed engineering features in
the cylinder. Finally, for moving or free boundaries, the methods described in Sec-
tion 4.2 can be applied in space-time to obtain the moment information required

to derive finite-volume discretizations for the space-time divergence of (U, ~F ) to
generalize the methods in [11, 4] to any order of accuracy.

REFERENCES

[1] M. Aftosmis, M. Berger and J. Melton, Robust and efficient Cartesian mesh generation for

component-based geometry, AIAA Journal , 6 (1998), 952–960.
[2] M. Barad and P. Colella, A fourth-order accurate local refinement method for Poisson’s

equation, Journal of Computational Physics, 209 (2005), 1–18.
[3] P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker and P. Colella, Compiler-directed

transformation for higher-order stencils, in Proceedings of the Parallel and Distributed Pro-

cessing Symposium (IPDPS), Institute for Electrical and Electronics Engineers (2015), 313–

323.
[4] J. B. Bell, P. Colella and M. Welcome, A conservative front-tracking for inviscid compress-

ible flow, in Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference,
American Institute for Aeronautics and Astronautics, (1991), 814–822.

[5] M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal

of Computational Physics, 82 (1989), 64–84.
[6] M. J. Berger and A. Jameson, Automatic adaptive grid refinement for the Euler equations,

AIAA Journal , 23 (1985), 561–568.

http://dx.doi.org/10.2514/6.1997-196
http://dx.doi.org/10.2514/6.1997-196
http://www.ams.org/mathscinet-getitem?mr=MR2145781&return=pdf
http://dx.doi.org/10.1016/j.jcp.2005.02.027
http://dx.doi.org/10.1016/j.jcp.2005.02.027
http://dx.doi.org/10.1109/IPDPS.2015.103
http://dx.doi.org/10.1109/IPDPS.2015.103
http://dx.doi.org/10.2514/6.1991-1599
http://dx.doi.org/10.2514/6.1991-1599
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.2514/3.8951


HIGH-ORDER FINITE-VOLUME METHODS 4269

[7] M. J. Berger and R. J. LeVeque, An adaptive Cartesian mesh algorithm for the euler equa-
tions in arbitrary geometries, in Proceedings of the AIAA 9th Computational Fluid Dynamics

Conference, American Institute for Aeronautics and Astronautics, (1989), 1–7.

[8] J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm
that works, Journal of Computational Physics, 11 (1973), 38–69.

[9] A. Bourlioux, A. T. Layton and M. L. Minion, Higher-order multi-implicit spectral deferred
correction methods for problems of reacting flow, Journal of Computational Physics, 189

(2003), 651–675.

[10] C. Chaplin and P. Colella, A single stage flux-corrected transport algorithm for high-order
finite-volume methods, preprint, arXiv:1506.02999.

[11] I.-L. Chern and P. Colella, A conservative front tracking method for hyperbolic conservation

laws, Technical Report UCRL-97200, Lawrence Livermore National Laboratory, 1987.
[12] P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, Journal of

Computational Physics, 87 (1990), 171–200.

[13] P. Colella, Volume-of-fluid methods for partial differential equations, In Godunov Methods:
Theory and Applications, pages 161–177. Kluwer, 2001.

[14] P. Colella, M.R. Dorr, J. A. F. Hittinger and D. F. Martin, High-order, finite-volume methods

in mapped coordinates, Journal of Computational Physics, 230 (2011), 2952–2976.
[15] P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema,

Journal of Computational Physics, 227 (2008), 7069–7076.
[16] P. Colella and P. R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical

simulations, Journal of Computational Physics, 54 (1989), 174–201.

[17] D. Devendran, D. T. Graves and H. Johansen, A higher-order finite-volume discretization
method for Poisson’s equation in cut cell geometries, preprint, arXiv:1411.4283.

[18] C. Gatti-Bono and P. Colella, An anelastic allspeed projection method for gravitationally

stratified flows, Journal of Computational Physics, 216 (2006), 589–615.
[19] S. M. Guzik, X. Gao, L. D. Owen, P. McCorquodale and P. Colella, A freestream-preserving

fourth-order finite-volume method in mapped coordinates with adaptive mesh refinement,

Computers and Fluids, 123 (2015), 202–217.
[20] J. Hilditch and P. Colella, A Projection Method for Low Mach Number Fast Chemistry Re-

acting Flow , Technical Report AIAA-97-0263, American Institute of Aeronautics and Astro-

nautics, 1997.
[21] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s

equation on irregular domains, Journal of Computational Physics, 147 (1998), 60–85.
[22] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-

reaction equations, Applied Numerical Mathematics, 44 (2003), 139–181.

[23] H.-O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic
equations, Tellus, 24 (1972), 199–215.

[24] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,
Communications on Pure and Applied Mathematics 7 (1954), 159–193.

[25] P. D. Lax, On Discontinuous Initial-Value Problems and Finite-Difference Schemes, Techni-

cal Report LAMS-1332, Los Alamos Scientific Laboratory, 1952.

[26] P. D. Lax and B. Wendroff, Systems of conservation laws, Communications on Pure and
Applied Mathematics, 13 (1960), 217–237.

[27] R. Malladi, J. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level
set approach, IEEE Transactions on Pattern Anal. Machine Intell , 17 (1995), 158–175.

[28] P. McCorquodale and P. Colella, A high-order finite-volume method for conservation laws on

locally refined grids, Communications in Applied Mathematics and Computational Science 6

(2011), 1–25.
[29] P. McCorquodale, P. Colella and H. Johansen, A Cartesian grid embedded boundary method

for the heat equation on irregular domains, Journal of Computational Physics, 173 (2001),
620–635.

[30] P. McCorquodale, M. R. Dorr, J. A. F. Hittinger and P. Colella, High-order finite-volume

methods for hyperbolic conservation laws on mapped multiblock grids, Journal of Computa-
tional Physics, 288 (2015), 181–195.

[31] L. I. Millett and S. H. Fuller, et al., The Future of Computing Performance: Game Over or

Next Level?, National Academies Press, 2011.
[32] J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrody-

namic shocks, Journal of Applied Physics, 21 (1950), 232–237.

http://dx.doi.org/10.2514/6.1989-1930
http://dx.doi.org/10.2514/6.1989-1930
http://dx.doi.org/10.1016/0021-9991(73)90147-2
http://dx.doi.org/10.1016/0021-9991(73)90147-2
http://www.ams.org/mathscinet-getitem?mr=MR1996061&return=pdf
http://dx.doi.org/10.1016/S0021-9991(03)00251-1
http://dx.doi.org/10.1016/S0021-9991(03)00251-1
http://arxiv.org/pdf/1506.02999
http://www.ams.org/mathscinet-getitem?mr=MR1043308&return=pdf
http://dx.doi.org/10.1016/0021-9991(90)90233-Q
http://www.ams.org/mathscinet-getitem?mr=MR1963590&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2774325&return=pdf
http://dx.doi.org/10.1016/j.jcp.2010.12.044
http://dx.doi.org/10.1016/j.jcp.2010.12.044
http://www.ams.org/mathscinet-getitem?mr=MR2433962&return=pdf
http://dx.doi.org/10.1016/j.jcp.2008.03.034
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://arxiv.org/pdf/1411.4283
http://www.ams.org/mathscinet-getitem?mr=MR2235385&return=pdf
http://dx.doi.org/10.1016/j.jcp.2005.12.017
http://dx.doi.org/10.1016/j.jcp.2005.12.017
http://www.ams.org/mathscinet-getitem?mr=MR3419814&return=pdf
http://dx.doi.org/10.1016/j.compfluid.2015.10.001
http://dx.doi.org/10.1016/j.compfluid.2015.10.001
http://dx.doi.org/10.2514/6.1997-263
http://dx.doi.org/10.2514/6.1997-263
http://www.ams.org/mathscinet-getitem?mr=MR1657761&return=pdf
http://dx.doi.org/10.1006/jcph.1998.5965
http://dx.doi.org/10.1006/jcph.1998.5965
http://www.ams.org/mathscinet-getitem?mr=MR1951292&return=pdf
http://dx.doi.org/10.1016/S0168-9274(02)00138-1
http://dx.doi.org/10.1016/S0168-9274(02)00138-1
http://www.ams.org/mathscinet-getitem?mr=MR0319382&return=pdf
http://dx.doi.org/10.1111/j.2153-3490.1972.tb01547.x
http://dx.doi.org/10.1111/j.2153-3490.1972.tb01547.x
http://www.ams.org/mathscinet-getitem?mr=MR0066040&return=pdf
http://dx.doi.org/10.1002/cpa.3160070112
http://www.ams.org/mathscinet-getitem?mr=MR0120774&return=pdf
http://dx.doi.org/10.1002/cpa.3160130205
http://dx.doi.org/10.1109/34.368173
http://dx.doi.org/10.1109/34.368173
http://www.ams.org/mathscinet-getitem?mr=MR2825299&return=pdf
http://dx.doi.org/10.2140/camcos.2011.6.1
http://dx.doi.org/10.2140/camcos.2011.6.1
http://www.ams.org/mathscinet-getitem?mr=MR1866860&return=pdf
http://dx.doi.org/10.1006/jcph.2001.6900
http://dx.doi.org/10.1006/jcph.2001.6900
http://www.ams.org/mathscinet-getitem?mr=MR3320206&return=pdf
http://dx.doi.org/10.1016/j.jcp.2015.01.006
http://dx.doi.org/10.1016/j.jcp.2015.01.006
http://www.ams.org/mathscinet-getitem?mr=MR0037613&return=pdf
http://dx.doi.org/10.1063/1.1699639
http://dx.doi.org/10.1063/1.1699639


4270 PHILLIP COLELLA

[33] W. F. Noh, CEL: A time-dependent, two-space-dimensional, coupled Eulerian - Lagrangian
code, Methods in Computational Physics, 3 (1964), 117–180.

[34] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield and M. L. Welcome, An adaptive

Cartesian grid method for unsteady compressible flow in irregular regions, Journal of Com-
putational Physics, 120 (1995), 278–304.

[35] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland and
J. P. Jessee, An adaptive projection method for unsteady, low-Mach-number combustion,

Combustion Science and Technology, 140 (1998), 123–168.

[36] J. S. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, Journal of
Computational Physics, 115 (1994), 153–168.

[37] P. Schwartz, J. Percelay, T. Ligocki, H. Johansen, D. Graves, D. Devendran, P. Colella and

E. Ateljevich, High-accuracy embedded boundary grid generation using the divergence theo-
rem, Communications in Applied Mathematics and Computational Science, 10 (2015), 83–96.

[38] D. Trebotich, M. F. Adams, S. Molins, C. I. Steefel and C. Shen, High-resolution simulation

of pore-scale reactive transport processes associated with carbon sequestration, Computing
in Science and Engineering, 16 (2014), 22–31.

[39] B. van Leer, Towards the ultimate conservative differences scheme IV: a new approach to

numerical convection, Journal of Computational Physics, 23 (1977), 263–275.
[40] S. Williams, A. Waterman and D. Patterson, Roofline: an insightful visual performance model

for multicore architectures, Communications of the ACM , 52 (2009), 65–76.
[41] P. R. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with

strong shocks, Journal of Computational Physics, 54 (1984), 115–173.

[42] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal
of Computational Physics, 31 (1979), 335–362.

[43] S. T. Zalesak, A physical interpretation of the Richtmyer two-step Lax-Wendroff scheme

and its generalization to higher spatial order, in Advances in Computer Methods for Partial
Differential Equations, IMACS, (1984), 19–21.

Received June 2015; revised December 2015.

E-mail address: pcolella@lbl.gov

http://www.ams.org/mathscinet-getitem?mr=MR1349463&return=pdf
http://dx.doi.org/10.1006/jcph.1995.1165
http://dx.doi.org/10.1006/jcph.1995.1165
http://dx.doi.org/10.1080/00102209808915770
http://www.ams.org/mathscinet-getitem?mr=MR1300337&return=pdf
http://dx.doi.org/10.1006/jcph.1994.1184
http://www.ams.org/mathscinet-getitem?mr=MR3327728&return=pdf
http://dx.doi.org/10.2140/camcos.2015.10.83
http://dx.doi.org/10.2140/camcos.2015.10.83
http://dx.doi.org/10.1109/MCSE.2014.77
http://dx.doi.org/10.1109/MCSE.2014.77
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/1498765.1498785
http://www.ams.org/mathscinet-getitem?mr=MR748569&return=pdf
http://dx.doi.org/10.1016/0021-9991(84)90142-6
http://dx.doi.org/10.1016/0021-9991(84)90142-6
http://www.ams.org/mathscinet-getitem?mr=MR534786&return=pdf
http://dx.doi.org/10.1016/0021-9991(79)90051-2
mailto:pcolella@lbl.gov

	1. Introduction
	2. High-order quadratures for fluxes
	2.1. Cartesian grids
	2.2. Mapped coordinates
	2.3. Dissipation mechanisms, limiters, and positivity preservation for hyperbolic problems

	3. Adaptive mesh refinement
	4. Complex geometries
	4.1. Mapped multiblock methods
	4.2. Embedded boundary methods

	5. Conclusions
	REFERENCES



