UC Davis UC Davis Previously Published Works

Title

Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis

Permalink https://escholarship.org/uc/item/3tz9919z

Journal Environmental Health Perspectives, 130(4)

ISSN 1542-4359

Authors

Costello, Elizabeth Rock, Sarah Stratakis, Nikos <u>et al.</u>

Publication Date 2022-04-01

DOI

10.1289/ehp10092

Peer reviewed

Review

Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis

Elizabeth Costello,^{1*} Sarah Rock,^{1*} Nikos Stratakis,¹ Sandrah P. Eckel,¹ Douglas I. Walker,² Damaskini Valvi,² Dora Cserbik,³ Todd Jenkins,⁴ Stavra A. Xanthakos,⁵ Rohit Kohli,⁶ Stephanie Sisley,⁷ Vasilis Vasiliou,⁸ Michele A. La Merrill,⁹ Hugo Rosen,¹⁰ David V. Conti,¹ Rob McConnell,¹ and Leda Chatzi¹

¹Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA ²Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA

³Barcelona Institute for Global Health, Barcelona, Spain

⁴Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA

⁵Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio

⁶Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA

⁷Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA

⁸Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

⁹Department of Environmental Toxicology, University of California, Davis, Davis, California, USA

¹⁰Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California

BACKGROUND: Experimental evidence indicates that exposure to certain pollutants is associated with liver damage. Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals widely used in industry and consumer products and bioaccumulate in food webs and human tissues, such as the liver.

OBJECTIVE: The objective of this study was to conduct a systematic review of the literature and meta-analysis evaluating PFAS exposure and evidence of liver injury from rodent and epidemiological studies.

METHODS: PubMed and Embase were searched for all studies from earliest available indexing year through 1 December 2021 using keywords corresponding to PFAS exposure and liver injury. For data synthesis, results were limited to studies in humans and rodents assessing the following indicators of liver injury: serum alanine aminotransferase (ALT), nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or steatosis. For human studies, at least three observational studies per PFAS were used to conduct a weighted *z*-score meta-analysis to determine the direction and significance of associations. For rodent studies, data were synthesized to qualitatively summarize the direction and significance of effect.

RESULTS: Our search yielded 85 rodent studies and 24 epidemiological studies, primarily of people from the United States. Studies focused primarily on legacy PFAS: perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid. Meta-analyses of human studies revealed that higher ALT levels were associated with exposure to PFOA (*z*-score = 6.20, p < 0.001), PFOS (*z*-score = 3.55, p < 0.001), and PFNA (*z*-score = 2.27, p = 0.023). PFOA exposure was also associated with higher aspartate aminotransferase and gamma-glutamyl transferase levels in humans. In rodents, PFAS exposures consistently resulted in higher ALT levels and steatosis.

CONCLUSION: There is consistent evidence for PFAS hepatotoxicity from rodent studies, supported by associations of PFAS and markers of liver function in observational human studies. This review identifies a need for additional research evaluating next-generation PFAS, mixtures, and early life exposures. https://doi.org/10.1289/EHP10092

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a public health epidemic.¹ In parallel with the growing obesity epidemic, prevalence of NAFLD has significantly increased in recent years and become one of the most common causes of chronic liver disease globally.^{2,3} The prevalence of NAFLD is estimated to be about 25% worldwide, whereas cases in the United States are expected to number 100.9 million, or about one-third of all adults, by 2030.⁴ Untreated, NAFLD may progress to more serious liver injury such as nonalcoholic steatohepatitis (NASH), cirrhosis, and end-stage liver disease.⁵

Exposure to environmental chemicals has emerged as a significant contributor to liver disease, including NAFLD. Experimental evidence indicates that exposure to per- and polyfluorinated substances (PFAS), a class of endocrine-disrupting chemicals, has the ability to promote metabolic changes that can result in fatty liver.⁶ PFAS are synthetic chemicals widely used in industry and consumer products such as stain-resistant fabric and fire retardants.^{7,8} The stable chemical properties that make PFAS ideal for industrial use also allow them to persist and accumulate in the environment, which is of concern because of the potential for long-term human health effects. Recent biomonitoring studies have emphasized the ubiquitous nature of PFAS exposure and have indicated that four congeners of PFAS account for most known human exposure: perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic perhubronexanesultonic acid (PPHXS), and perhubronomator acid (PFNA).^{10,11} Significant sources of exposure include drinking water, ^{12,13} food, ^{14,15} indoor and outdoor air, ^{16,17} and early life pla-cental or breast milk exposure.^{18–20} PFAS are detected in the serum of nearly all U.S. adults^{21,22} and accumulate in body tissues, such as in the liver.^{23–25} This bioaccumulation, coupled with the long half-lives of many PFAS,^{26,27} leads to concern about the potential for DEAS to discust liver homeostasis should they continue to accufor PFAS to disrupt liver homeostasis should they continue to accumulate in human tissue even if industrial use is abated.

Research evaluating hepatotoxic effects of PFAS has greatly increased in the peer-reviewed literature; however, conclusions remain inconsistent. In animal studies, PFAS have consistently induced steatosis and lipid accumulation in mice,²⁸ rats,²⁹ zebrafish,³⁰

^{*}These authors contributed equally to this work.

Address correspondence to Elizabeth Costello, 2001 N. Soto St., Los Angeles, CA 90032 USA. Email. eecostel@usc.edu

Supplemental Material is available online (https://doi.org/10.1289/EHP10092). The authors declare they have no actual or potential competing financial interests.

Received 5 August 2021; Revised 7 March 2022; Accepted 21 March 2022; Published 27 April 2022.

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehpsubmissions@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

chickens,³¹ frogs,³² and primates.³³ Despite this, it is difficult to extrapolate directly from animal results to human health effects in part due to species differences in PFAS elimination and half-lives.³⁴

Evaluations of occupationally exposed workers have not consistently reported associations between PFAS exposure and liver enzymes or liver disease,^{35–38} although recent analyses of other populations have reported positive associations between PFAS and liver enzymes indicative of liver injury.^{39–42} Epidemiological studies have also reported associations between PFAS exposure and cholesterol,^{43–47} triglycerides,^{38,45,47} bilirubin,⁴⁰ and uric acid,⁴⁰ further supporting a relationship between PFAS exposure and liver injury given that these are additional biomarkers of metabolic disruption, NAFLD, and advanced liver disease.^{48–50}

Indeed, the association between PFAS exposure and NAFLD in humans remains challenging to evaluate given the difficulty in obtaining biopsy-confirmed NAFLD histological data, and thus liver injury is typically assessed using serum biomarkers of hepatotoxicity or imaging assessments of hepatic steatosis.⁵¹ Alanine aminotransferase (ALT) in particular is considered a specific biomarker of liver injury and is widely used in epidemiological studies. $^{51-53}$ A recent review summarized the state of the literature regarding toxic effects of PFAS on many adverse health effects, including liver disease, lipid dysregulation, and other metabolic outcomes.⁵⁴ Fenton et al.⁵⁴ provided an overview of the evidence for hepatoxicity across human and animal studies, as well as a discussion of possible mechanisms underlying this relationship. In contrast, the purpose of the present review is to specifically evaluate the effects of PFAS exposure on NAFLD and markers of NAFLD, with a focus on the liver enzymes commonly used in human epidemiological research. To our knowledge, this is the first systematic review and meta-analysis integrating both the epidemiological (human) and experimental (rodent) evidence for an effect of PFAS exposure on liver enzymes and related markers of liver injury.

Materials and Methods

This review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The review protocol was registered in PROSPERO (CRD42020158911).⁵⁵

Search Strategy

We systematically searched two databases, PubMed and Embase, for human and rodent studies evaluating the association between exposure to PFAS and markers of liver injury from earliest available online indexing through 1 December 2021. For PubMed, the search strategy was as follows: (NAFLD OR "nonalcoholic fatty liver disease" OR "nonalcoholic fatty liver disease" OR NASH OR "nonalcoholic steatohepatitis" OR "nonalcoholic steatohepatitis" OR "nonalcoholic fatty liver" OR "fatty liver" OR steatosis OR ALT OR "alanine aminotransferase" OR AST OR "aspartate aminotransferase" OR GGT OR "gamma-glutamyl transferase" OR "gamma glutamyl transferase" OR CK18 OR "cytokeratin 18" OR ALP OR "alkaline phosphatase" OR "liver enzymes" OR "liver damage" OR "liver injury" OR "liver fibrosis" OR "liver weight") AND (Perfluoroalkyl OR Polyfluoroalkyl OR Perfluorinated OR polyfluorinated OR perfluoro* OR polyfluoro* OR PFAS* [tiab] OR PFOS [tiab] OR ((perfluorooctanesulfonic OR perfluorooctane sulfonic) AND acid) OR "perfluorooctane sulfonate" OR PFOA [tiab] OR "perfluorooctanoic" acid OR perfluorooctanoate OR PFHxS [tiab] OR ((perfluorohexane sulfonic OR perfluorohexanesulfonic) AND acid) OR "perfluorohexane sulfonate" OR perfluorohexanesulfonate OR PFNA [tiab] OR "perfluorononanoic acid" OR perfluorononanoate OR GenX [tiab] OR "hexafluoropropylene oxide dimer acid" OR PFOSA [tiab] OR "perfluorooctane sulfonamide" OR PFUnDA [tiab] OR "perfluorodecanoic acid" OR perfluoroundecanoate PFDA OR "perfluorodecanoic acid" OR perfluorodecanoate OR PFBS OR "perfluorobutane sulfonic acid" OR "perfluorobutane sulfonate".

For Embase, the search terms were (NAFLD OR "nonalcoholic fatty liver disease" OR "nonalcoholic fatty liver disease" OR NASH OR "nonalcoholic steatohepatitis" OR "nonalcoholic steatohepatitis" OR "nonalcoholic fatty liver" OR "fatty liver" OR steatosis OR ALT OR "alanine aminotransferase" OR AST OR "aspartate aminotransferase" OR GGT OR "gamma-glutamyl transferase" OR "gamma glutamyl transferase" OR CK18 OR "cytokeratin 18" OR ALP OR "alkaline phosphatase" OR "liver enzymes" OR "liver damage" OR "liver injury" OR "liver fibrosis" OR "liver weight") AND (Perfluoroalkyl OR Polyfluoroalkyl OR Perfluorinated OR polyfluorinated OR perfluoro* OR polyfluoro* OR PFAS*:ab,ti OR PFOS:ab,ti OR ((perfluorooctanesulfonic OR perfluorooctane sulfonic) AND acid) OR "perfluorooctane sulfonate" OR PFOA:ab,ti OR "perfluorooctanoic acid" OR "perfluorooctanoate" OR PFHxS: ab,ti OR ((perfluorohexane sulfonic OR perfluorohexanesulfonic) AND acid) OR "perfluorohexane sulfonate" OR perfluorohexanesulfonate OR PFNA:ab,ti OR "perfluorononanoic acid" OR perfluorononanoate OR GenX:ab,ti OR "hexafluoropropylene oxide dimer acid" OR PFOSA:ab,ti OR "perfluorooctane sulfonamide" OR PFUnDA:ab,ti OR "perfluorodecanoic acid" OR "perfluoroundecanoate PFDA" OR "perfluorodecanoic acid" OR perfluorodecanoate OR PFBS OR "perfluorobutane sulfonic acid" OR "perfluorobutane sulfonate". We also screened the references of recent reviews for eligible studies.

Study Selection

Studies were eligible for inclusion if they met the following criteria: (a) were original experimental or observational research published in English (i.e., not a review, meta-analysis, abstract, editorial, letter, or commentary); (b) conducted in humans, mice, or rats; (c) assessed one or more PFAS; and (d) reported data on serum ALT, NAFLD, NASH, or steatosis. ALT was chosen as the biomarker of interest because of its relative specificity to liver disease and use in previous literature on PFAS exposure and NAFLD. Other markers of liver disease-such as bilirubin, alkaline phosphatase, albumin, and uric acid-were not included because alterations in these biomarkers may suggest damage to other organ systems or liver diseases with alternate causes (e.g., cancer, alcoholic fatty liver).^{51,56,57} Secondary outcomes were extracted, if available, and included serum aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT), cytokeratin-18 (CK-18), liver histopathology, and relative liver weight (animals only). For the purpose of this review, increases in liver weight were presumed to be adverse, given our focus on additional measures of liver injury (e.g., enzymes, histopathology). However, increases in liver weight alone may be an adaptive response in rodents and do not always indicate that an injury has occurred.⁵⁸ Two reviewers (S.R. and E.C.) independently performed an initial screening of titles and abstracts and then evaluated potentially relevant studies based on full-text reviews. Any discrepancies were resolved by discussion with a third reviewer (N.S.).

Data Extraction

In human studies, the following information was extracted from each article: first author, publication year, country, year and method of exposure assessment and outcome assessment, study design, population characteristics, sample size, confounders, and results [adjusted β coefficients and odds ratios with standard errors (SEs) or 95% confidence intervals]. In rodent studies, the following information was extracted: first author, year, study design, species/strain, sex, sample size, age, exposure, frequency and duration of exposure, administration route, dose, diet, outcome results, and SE. Data were independently extracted by two reviewers (S.R. and E.C.) and compared for accuracy. Any discrepancies were resolved through discussion with a third reviewer (N.S.).

Quality Assessment

Human and rodent study quality was independently evaluated by two reviewers (S.R. and E.C.) using the Office of Health Assessment and Translation (OHAT) Risk of Bias tool,^{59,60} with discrepancies resolved through discussion. The OHAT Risk of Bias tool was used to evaluate threats to internal validity and assess the risk of bias. The OHAT tool was chosen for its ability to evaluate cross-sectional studies, which are not considered in other quality rating systems, and applicability to both human and rodent studies.^{61,62}

Six of the 10 domains in the OHAT tool were relevant to observational human studies; those pertaining to randomization and blinding were not applicable. Eight domains were relevant to experimental rodent studies; domains that addressed participant selection and confounding were not relevant. For each domain, a study was evaluated for definitely low risk of bias (++), probably low risk of bias (+), probably high risk of bias (-), and definitely high risk of bias (-). In domains where the study did not provide enough information to evaluate bias, an assignment of "probably high" risk was given with the notation "NR" for "not reported." Specific criteria for each domain are described in the section "Description of domains in Office of Health Assessment and Translation (OHAT) Risk of Bias tool" in the Supplemental Material.

Data Synthesis and Meta-Analysis

In human studies, we conducted meta-analyses between exposure to each of the four selected PFAS and serum concentrations of each of three liver enzymes (ALT, AST, and GGT), which were reported in at least three studies of similar design (e.g., cross-sectional, longitudinal). Because of the heterogeneous methodologies (e.g., logtransformation or natural log-transformation of the exposure, the outcome, or both) and noncomparable effect estimates, it was not possible to directly pool effect estimates across studies. For example, the effect estimate from a study that log₁₀-transformed both exposure and outcome cannot be pooled with a study that natural logtransformed only the exposure, and pooling only studies that had similar transformation methodologies may introduce selection bias. Thus, we used a weighted z-scores method to summarize results. z-Scores were calculated using adjusted β coefficients from linear regression analyses of PFAS and their SE.⁶³ Although the magnitude of the effect cannot be determined using this method, a weighted z-score allows for determination of the statistical significance and direction of the relationship. For each PFAS-liver enzyme relationship, a weighted-average z-score was calculated where weights were the square root of the sample size. Studies in populations <12 years of age (presumed to be either in early stages of puberty or prepubertal based on normal range of puberty in girls and boys)^{64,65} were excluded from this calculation to account for developmental effects and included in sensitivity analyses. For different studies with overlapping populations, only the study with the largest population was included. In studies that reported multiple models, we used the effect estimate from the most highly adjusted model. Although the inclusion criteria did not exclude studies with categorical measures, none of the studies in the present review used exclusively categorical measures. The z-score was calculated using the overall β , not those stratified by sex, weight, or other factors, unless an overall β was not available. However, when studies reported stratified analyses by sex in addition to overall population results, we included the stratified results to see whether sex-specific differences might exist when multiple studies are compared. Where possible, additional sensitivity analyses were performed and z-scores were calculated a) separately by sex, b) after excluding the largest study, c) for studies using National Health and Nutrition Examination Survey (NHANES) data, and d) including populations <12 years of age. The purpose of these analyses was to determine whether a) the relationships differed by sex, b) they were driven primarily by a single large study, c) the relationship differed between the general population of the United States and populations from other countries or those occupationally exposed, and d) including children changed the direction or statistical significance of the relationship.

In rodent studies, substantial differences in study design (e.g., length of exposure, exposure vehicle, dose) meant that metaanalyses were not feasible. Data were synthesized and displayed graphically. We used strip plots adapted from Thayer et al.⁶⁶ to summarize the direction of the effect of PFAS dose (in milligrams per kilogram of body weight or parts per million) on ALT across all eligible studies. Additional plots were used to summarize the effects of PFAS exposure on additional liver enzymes and relative liver weight in those studies that reported secondary outcomes. Some studies provided data on groups treated with PFAS combined with nonstandard diets or supplements; for these, we selected as control the group on standard diet with no PFAS or supplement exposure. PFAS plus experimental diet or supplement were included as exposure groups. All analyses were conducted in R (version 4.0.2; R Development Core Team).

Results

Our search produced 881 articles from PubMed (n=371) and Embase (n=510), 205 of which were duplicates (Figure 1). After title and abstract screening and full-text review, 109 studies met the eligibility criteria. Two additional studies were identified from review articles (see the section "Review articles screened for additional eligible articles" in the Supplemental Material). Of the 111 total studies, 25 were observational human studies and 86 were experimental rodent studies. Extracted data used in *z*-score calculations for human studies and in visual data synthesis for

Figure 1. Flow chart of the study selection.

Reference	Population ^a	Year of exposure assessment	Exposure assessment ^{b}	Year of outcome assessment	Outcome ^c	Confounding	Results
Attanasio ^{67,169}	NHANES adolescents (USA) n = 353 (M), 305 (F)	2013-2016	Geometric mean (SE) PFOA ^d 1.50 (0.06) ng/mL (M), 1.22 (0.06) ng/mL (F); PFOS ^d 3.68 (0.12) ng/mL (F); 2.76 (0.14) ng/mL (F); PFNA ^d 0.58 (0.03) ng/mL (F); PFHXS ^d 1.31 (0.09) ng/mL (F); PFHXS ^d 0.49 (0.03) ng/mL (F); PFHXS ^d 0.49 (0.03) ng/mL (F); PFHXS ^d 0.49 (0.03) ng/mL (F); PFNA ^d 0.40 (0.03) ng/mL (F); 0.40 (0.03)	Same as exposure	ALT (U/L)," GGT (U/L)," AST (U/L)"	Adjusted for age, race/ethnicity, weight category, poverty-income ratio, tobacco exposure, and education.	Males: PFOA and PFNA were associated with lower ALT. PFNA was associated with lower AST. There was no association between any PFAS and GGT. Females: PFOA and PFNA were associated with higher ALT. PFOA, PFOS, and PFNA were associ- ated with higher AST. PFOA and PFOS were assoc- ciated with higher GGT.
Bassler et al ⁶⁸	C8 Health Study adults (USA) n = 200	2006	Meun (SE) PFOA ^d 94.6 (183.6) ng/mL; PFOS ^d 26.9 (16.7) ng/mL; PFNA ^d 1.6 (0.7) ng/mL; PFHXS ^d 4.2 (3.9) ng/mL	Same as exposure	CK18 (U/mL) ^d	Adjusted for e-GFR, alcohol consumption category, BMI, age, and sex.	CK18-M30 and CK18-M65 were positively associated with PFOA, PFNA, and PFHxS, and there was a positive trend with PFOS.
Darrow et al. ³⁹	C8 Health Study adults (USA) n = 28.047	1951–2006 (cumulative); 2005–2006 (cross-sectional)	PFOA (modeled cumulative exposure) Median PFOA ^d 16.5 ng/mL	2005–2006 (enzymes); 2008–2011 (liver disease)	Liver disease (enlarged liver, fatty liver, or cirrhosis), ALT (U/L), ^d GGT (U/L) ^d	Adjusted for age, sex, BMI, alcohol con- sumption, regular exercise, smoking status, education, insulin resistance, fasting status, history of working at DuPont plant, and race.	Cross-sectional PFOA and longitudinal (estimated) PFOA were positively associated with ALT. There was no relationship between PFOA and liver disease.
Emmett et al. ⁶⁹	Residents (adults and children) of Little Hocking (USA) n = 371	Not Specified	Median (IQR) PFOA 354 (181–571) ng/mL	Same as exposure	Liver disease, ALT (U/L), GGT (U/L), AST (U/L)	No adjustment for covariates.	No linear association between PFOA and ALT, GGT, or AST. Having abnormal AST levels was associ- ated with lower PFOA. There was no relationship between liver disease and PFOA.
Gilliland et al. ¹⁶⁵	Male employees of PFOA plant Adults (USA) n = 115	1985–1989	Mean (range) Total fluorine 3.3 (0–26 ppm) (surrogate for PFOA)	Same as exposure	ALT (IU/AL), AST (IU/AL), GGT (IU/AL)	Age, cigarette use, alcohol use, and BMI	Total serum fluorine was not associated with ALT, AST, or GGT, ALT, AST, and GGT levels did not differ by level of fluorine exposure. There was a significant interaction between serum fluorine and BMI: There was a positive association between se- rum fluorine and both ALT and AST in people with obesity.
Gallo et al. ⁷⁰	C8 Health Study adults (USA) $n = 46,452$	2005-2006	Median (IQR) PFOA ^d 28.0 (13.5-70.8) ng/mL; PFOS ^d 20.3 (13.7-29.4) ng/mL	Same as exposure	ALT (U/L), ⁴ GGT (U/L) ⁴	Adjusted for alcohol consumption, socioe- conomic status, fasting status, race, month of blood sample collection, age, sex, smoking, BMI, physical activity, and insulin resistance.	PFOA and PFOS were positively associated with ALT.
Gleason et al. ⁴⁰	NHANES adults and adolescents (USA) n = 4,333	2007-2010	Median (IQR) PFOA ^d 3.7 (2.5-5.2) μg/L; PFOS ^d 11.3 (7.0–18.0) μg/L; PFNA ^d 1.4 (1.0–2.1) μg/L; PFHXS ^d 1.8 (1.0–2.1) μg/L	Same as exposure	ALT (U/L), ^d GGT (U/L), ^d AST (U/L) ^d	Adjusted for age, sex, race/ethnicity, BMI, poverty, smoking, and alcohol consumption.	PFHxS, PFOA, and PFNA were positively associated with ALT. PFOA and PFNA were positively asso- ciated with GGT. PFHxS was positively associated with AST.

Table 1. Human studies on per- and polyfluorinated chemicals and biomarkers or outcomes of liver injury included for systematic review.

Table 1. (Cc	ontinued.)						
Dafaranca	DomIntion ^d	Year of exposure	Evnouire accaccmantb	Year of outcome	Outcome	Conformating	DaenJte
Jain ⁷¹	NHANES adults (USA) n = 9.523	2003–2014	PFOA (ng/mL)*, PFOS (ng/mL)*	Same as exposure	ALT (UL), ^e GGT (UL), ^e AST (UL) ^e	Adjusted for sex, reacethnicity, smoking status, age, BMI, diabetes sta- tus, hypertension status, fasting time, poverty-income ratio, survey year, and	PFOA and PFOS were inconsistently associated with ALT, GGT, and AST when stratified by glomerular function stage and obesity status.
Jain and Ducatman ⁷²	NHANES adults (USA) n = 2,883	2011-2014	Geometric mean (95% CI) PFOA ^e 2.2 (2.0-2.3) ng/mL (non-obese); 2.0 (1.8-2.1) ng/mL (non-obese); PFOS ^e 6.3 (5.8-6.8) ng/mL (non-obese); 5.5 (5.0-6.0) ng/mL (non-obese); PFNA ^e 0.33 (0.68-0.79) ng/mL (non-obese); PFHXS ^e 1.41 (1.29-1.54) ng/mL (non-obese); 1.41 (1.29-1.54) ng/mL (non-obese);	Same as exposure	ALT (U/L), [¢] GGT (U/L), [¢] AST (U/L) [¢]	Adjusted for sex, race/ethnicity, age, age- squared, poverty-income ratio, physi- cal activity, BMI, and serum cotinine.	Positive associations between PFOA, PFHxS, and PFNA and ALT were observed in participants with obesity. In those with obesity, PFOA and PFNA were also positively associated with GGT. Additional PFAS: PFDA was not found to be associ- ated with liver enzymes.
Jin et al. ⁷³	Children with NAFLD (USA) n = 74	2007–2015	1.24 (1.13-1.37) ng/mL (obese) Median (IQR) PFOA 3.42 (1.65) ng/mL; PFOS 3.59 (4.46) ng/mL; PHXS 1.53 (17) ns/mI	Same as exposure	Histological severity of NAFLD	I	Higher PFOS, PFOA, and PFHAS concentrations were associated with more severe NAFLD (NASH, Fi- brosis, lobular/portal inflammation, NAFLD activ- ity score).
Khalil et al. ⁷⁴	Dayton Obese Cohort children (USA) n = 48	2016	Median (10R) PFOA 0.99 (0.45) ng/mL; PFOS 2.79 (2.10) ng/mL; PFNA 0.24 (0.15) ng/mL; PFHXS	Same as exposure	ALT (U/L), AST (U/L)	Adjusted for age, sex, race, and multiple testing.	There were no significant relationships between PFAS and ALT or AST.
Lin et al. ⁷⁵	NHANES adults (USA) n = 2.216	1999-2003	1.09 (1.41) ng/mL Mean (SE) PFOA ^e 4.51 (1.04) ng/mL; PFOA ^e 0.79 (1.07) ng/mL; PFHX ^e 1.98 (1.04) ng/mL	Same as exposure	ALT (U/L), GGT (U/L) [°]	Adjusted for age, sex, race/ethnicity, smok- ing, alcohol consumption, education level, BMI, HOMR-IR, metabolic syn- drome, iron saturation status.	PFOA was positively associated with ALT and GGT, with a stronger effect in those with obesity.

Table 1. (Con	ntinued.)						
Reference	Population ^a	Year of exposure assessment	Exposure assessment ^b	Year of outcome assessment	Outcome ^c	Confounding	Results
Mora et al. ⁷⁶	Project Viva children (USA) n = 508 (longitudinal); 630 (cross- sectional)	1999–2002 (longindi- nal); 2007–2010 (cross-sectional)	Median (IQR) Longitudinal: PFOA (maternal) 5.4 (3.9–7.6) ng/mL; PFOS (maternal) 24.6 (17.9–34) ng/mL; PFNA (maternal) 0.6 (0.5–0.9) ng/mL; PFNAS (maternal) 2.4 (1.6–3.8) ng/mL; PFNAS (maternal) 2.4 (1.6–3.8) ng/mL; PFOA (chid) 6.2 (4.2–9.7) ng/mL; PFNAS (chid) 1.5 (1.1–2.3) ng/mL; PFNAS (chid) 1.5 (1.1–2.3) ng/mL; PFNAS (chid) 1.9 (17–3.4) ng/mL;	2007–2010 (longitu- dinal. cross- sectional)	ALT (U/L)	Longitudinal: Adjusted for maternal educa- tion, prenatal smoking, gestational age at blood draw, sex, race/ethnicity, and age at ALT measurements. Cross-Sectional: Adjusted for maternal education, prenatal smoking, sex, race/ ethnicity, and age.	There was an inverse but not statistically significant inverse relationship between maternal PFOS, PFOA, and PFHXS exposure and ALT in girls. Higher childhood PFOA and PFOS concentrations were associated with lower ALT. Additional PFAS: Maternal EtFOSAA and MeFOSAA were not associated with liver enzymes.
Mundt et al. ³⁵	Employees at a chemical manufac- turer (USA) n = 592	1976–2003	High, low, no exposure	1989–2003	ALT (U/L), GGT (U/L), AST (U/L)	Adjusted for age and BMI.	PFNA exposure was not associated with mean ALT, GGT, or AST.
Nian et al. ⁴¹	Adult residents of Shenyang, China $n = 1.605$	2015-2016	Median (IQR) PFOA 6.19 (4.08–9.31) ng/mL; PFOS 24.22 (14.62–37.19) ng/mL; PFVA 1.96 (1.11–3.07) ng/mL; PFHX5 0.73 (0.01–2.68) ng/mL	Same as exposure	ALT (U/L), ^d GGT (U/L), ^d AST (U/L) ^d	Adjusted for age, sex, career, income, edu- cation, alcohol consumption, smoking, gible//seafood consumption, physical activity, and BMI.	PFOA, PFOS, and PFNA were positively associated with ALT. There were also positive associations between PFOA and AST and GGT. Additional PFAS: PFDA was positively associated with ALT.
Olsen et al. ³⁶	Male employees at two fluorochemi- cal manufacturers (Antwerp, Belgium, and Decatur, Alabama) n = 178 (1995); 149 (1997)	1995, 1997	Mean PFOS 1.93 ppm (Antwerp, 1995); 2.44 ppm (Decatur, 1995); 1.48 ppm (Antwerp, 1997); 1.96 ppm (Decatur, 1997)	Same as exposure	ALT (U/L), GGT (U/L), AST (U/L)	Adjusted for age, BMI, alcohol use, and smoking.	PFOS exposure was not associated with ALT, GGT, or AST.
Olsen et al. ³⁷	Employees at two fluonochemical manufacturers (Antwerp, Belgium, and Decatur, Alabama) <i>n</i> = 263 (Decatur), 255 (Antwerp), 174 (longitudinal)	1994–2000 (longitudi- nal); 2000 (cross- sectional)	Geometric mean (95% CI): PFOA 0.33 (0.27-0.40) ppm (Antwerp); 1.13 (0.99-1.30) ppm (Decatur); PFOS 0.44 (0.38-0.51) ppm (Antwerp); 0.91 (0.82-1.02) ppm (Decatur)	2000	ALT (U/L), GGT (U/L), AST (U/L)	Adjusted for age, BMI, alcohol use, smok- ing, and location.	Those in the highest quartile of PFOS exposure had higher mean ALT. PFOS was not associated with increased odds of elevated ALT or GGT. There were no associations between PFOS or PFOA and liver enzymes in the longitudinal analysis.
Olsen and Zobel ³⁸	⁴ Male employees at three fluorochem- ical manufacturers (Antwerp, Belgium; Decatur, Alabama; Cottage Grove, Minnesota) n = 196 (Antwerp), 188 (Decatur), 122 (Cottage Grove)	2000	Man (SD) PFOA ^d 1.02 (1.06) µg/mL (Antwerp); 1.89 (1.61) µg/mL (Decatur); 4.63 (12.53) µg/mL (Cottage Grove)	Same as exposure	ALT (U/L), ^d GGT (U/L), ^d AST (U/L) ^d	Adjusted for age, BMI, and alcohol use.	There were no significant linear associations between PFOA and ALT, GGT, or AST, or between PFOA and elevated liver enzymes.

Table 1. (Cor	ttinued.)						
c A		Year of exposure	4 4	Year of outcome	د (-	-
Kererence	Population.	assessment	Exposure assessment	assessment	Outcome	Contounding	Kesuits
Rantakokko et al. 7	Kupio Obesity Surgery Study adult participants (Finland) n = 161	2005–2010	Median (5th, 95th percentile) PFOA ^e 2.56 (1.04, 4.66) ng/mL; PFOS ^e 3.2 (0.89, 10.3) ng/mL; PFNA ^e 0.83 (0.2.19) ng/mL; 1.81 (0.54.2.90) na/mL	Same as exposure 12 months post (ALT)	ALT (U/L), ^e steatosis, NASH, lobular inflam- mation, liver cell ballooning	Adjusted for age, fasting insulin, and weight change.	There were no significant associations between PFOA. PFOS, PFNA, or PFHAS and ALT at either base- line or 12 months later. PFOA, PFNA, and PFHAS were inversely associated with lobular inflamma- tion at baseline. Additional PFAS: PFHAA was associated with ALT at 12 months. PFDA and sum of PFCA were associ- ated with lobular inflammation at baseline.
Sakr et al. ⁴⁴	Employees at the Washington Works polymer manufacturing site (USA) n=205	1979–2007	Mean (SD) PPOA 1.13 (2.1) ppm	1980–2007	ALT (U/L), GGT (U/L), AST (U/L)	Adjusted for age, sex, BMI, and decade of hire.	There was a positive association between PFOA and AST.
Sakr et al. ⁴³	Employees at Washington Works polymer manufacturing site (USA) n = 1.018	2004	Mean (SD) PFOA 0.428 (0.86) ppm	Same as exposure	ALT (U/L), ^d GGT (U/L), ^d AST (U/L) ^d	Adjusted for age, sex, BMI, alcohol con- sumption, family history of heart attack, and use of lipid-lowering medications.	There was a positive association between PFOA and GGT.
Salihovic et al. ⁴²	Older adults (Sweden) n = 1,002	2001–2014	Median (IQR) PFOA ^d 3.31 (2.52-4.39) ng/mL; PFOS ^d	2006-2014	ALT (ukat/L), GGT (ukat/L)	Adjusted for sex, LDL and HDL choles- terol, serum triglycerides, BMI, fasting glucose levels, statin use, and smoking.	There were positive associations between PFOA, PFOS, PFNA, and PFHAS and ALT. There was also a positive association between PFOA and GGT.
			13.2 (9.95–17.8) ng/mL; PFN A ^d 0.70 (0.52–0.97) ng/mL; PFHxS ^d 2.08 (1.6–3.42) ng/mL				Additional PFAS: PFHpA was positively associated with ALT, and PFUnDA was positively associated with GGT.
Sen et al. ⁷⁹	Adults undergoing laparoscopic bari- atric surgery without other risk factors for NAFLD (Sweden) n = 105	Not Specified	Median (min-max) PFOA 1.89 (0.49-6.36) ng/mL; Br-PFOS 2.13 (0.63-9.71) ng/mL; L-PFOS 2.50 (0.74-11.79) ng/mL; PFNA PFNA 0.60 (0.16-10.88) ng/mL; 0.60 (0.16-10.58) ng/mL	Same as exposure	NAFLD), NASH), macro- steatosis), necroinflam- matory activity), fibrosis	None	Positive associations were observed between PFAS (PFOA, PFOS, PFNA, and PFHxS) and macrostea- tosis. PFOA and PFOS were positively associated with necroinflammation and NASH. PFNA was negatively associated with fibrosis.
Stratakis et al. ⁷⁸	Children in the HELIX cohort (UK, France, Spain, Lithuania, Norway, Greece) <i>n</i> = 1,105	2005–2009 (prenatal)	PFAS mixture Median (IQR) PFOA 2.38 (1.45-3.45) ng/mL; PFOS 6.74 (4.43-10.35) ng/mL; PFNA 0.72 (0.47-1.11) ng/mL; PHAS 0.59 (0.34-0.93) ng/mL	2014–2015	Liver injury risk (ALT, AST, or GGT levels ≥90th percentile)	Adjusted for cohort, maternal age, maternal education, maternal prepregnancy BMI, child ethnicity, child age, and child sex.	Higher prenatal PFAS exposure was associated with increased ALT, AST, and GGT, and with being at increased risk of liver injury. Additional PFAS: PFUnDA was included in the mix- ture analysis.

		Year of exposure		Year of outcome			
Reference	Population ^a	assessment	Exposure assessment ^{b}	assessment	Outcome ^c	Confounding	Results
Yamaguchi et	Japanese residents with no occupa-	2008-2010	Median (IQR)	Same as exposure	ALT (IU/L), AST (IU/L),	Adjusted for age, sex, BMI, regional bloch	k, PFOA and PFOS were significantly positively corre-
al. ⁸⁰	tional PFAS exposure		PFOA^e		GGT (IU/L)	and smoking, and alcohol intake.	lated with ALT and AST. There was also a signifi-
	n = 608		2.1 (1.5–3.3) ng/mL;				cant positive correlation with GGT, but not after
			PFOS ^e				adjustment for alcohol intake.
			$5.8 (3.7 - 8.8) \mathrm{ng/mL}$				
Note: —, not midoacetic a density lipop	available; ALT, alanine transamir id; F, female; GGT, gamma-gluta otein; M, male; max, maximum;	nase; AST, aspartate tu umyl transferase; HDI MeFOSAA, N-methy	ransaminase; BMI, body mass index; L, high-density lipoprotein; HELIX, ylperfluorooctane sulfonamidoacetic	; CI, confidence interv Human Early Life E; acid; min, minimum	val; CK18, cytokeratin 18, xposome; HOMR-IR, Hoi ; NAFLD, nonalcoholic 1	; eGFR, estimated glomerular filtration meostatic Model Assessment of Insul fatty liver disease; NASH, nonalcoho	n rate; EtFOSAA, N-ethyl perfluorooctane sulfona- in Resistance; IQR, interquartile range; LDL, low. dic steatohepatitis; NHANES, National Health and

durition Examination Survey; PFAS, per- and polyfluorinated substances; PFDA, perfluorodecanoic acid; PFHpA, perfluoroheptanoic acid; PFHxA, perfluoroheptanoic acid; PFHxS, perfluoroheptanoic acid; PFHxS, perfluoroheptanoic acid; PFHxA, perfluoroheptanoic acid; PFHxA, perfluoroheptanoic acid; PFHxS, perfluoroheptanoic acid; PFHxA, perf Sample sizes given here represent the maximum number of subjects available for at least one of the analyses of interest. Specific analyses may have slightly different sample sizes Blood concentration of PFOA, PFOS, PFNA, PFHXS only. Exposure concentrations are reported where available. Outcomes listed here are limited to liver enzymes (ALT, AST, GGT), NAFLD, NASH, and liver histopathology. Studies may have reported additional outcomes. cid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; PFUnDA, perfluoroundecanoic acid; SD, standard deviation; SE, standard error

Natural log (ln) transformed Log₁₀ transformed. animal studies are available in Excel Tables S1 and S2, respectively.

The characteristics of human studies included in this review are shown in Table 1. Eighteen studies included populations from the United States, ^{35–40,43,44,67–76} 7 included populations from Europe, ^{36–38,42,77–79} and 2 from Asia, ^{41,80} Years of PFAS exposure assessment ranged from 1951³⁹ to 2016.^{41,67,74} Sixteen studies were cross-sectional and 6 had a longitudinal design. Two studies, Darrow et al.³⁹ and Olsen et al.³⁷ included both cross-sectional and longitudinal data.

Of the 86 eligible rodent studies, experiments investigating PFOA and PFOS were the most common. Other PFAS included PFNA, PFHxS, perfluorobutyrate (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA), perfluoroundecanoic acid (PFUA), perfluorohexanoic acid (PFHxA), and hexafluoropropylene oxide dimer acid (GenX). Experimental animal study designs varied widely in choice of dosing scheme, duration of exposure, and exposure route (Table 2). Doses ranged from 0.02 to 600 mg/kg body weight and lasted for as little as 1 d to as long as 2 y. The most common route of exposure was oral gavage, although additional studies exposed animals to PFAS through drinking water. diet, inhalation, intraperitoneal injection, or dermal contact. Some study conditions were intended to mimic occupational or environmental human exposure levels (e.g., Blake et al.⁸¹), whereas others, such as Crebelli et al.⁸² or Lieder et al.,⁸³ chose dose levels based on the no or lowest observed adverse effect level (NOAEL or LOAEL).

Results on OHAT risk of bias ratings are provided in Tables S1 and S2. No studies were excluded based on risk of bias. For human studies, risk of bias was often "definitely low" or "probably low" for all domains, but some were determined to have higher risk of bias because they did not adequately account for confounders related to NAFLD or NASH (e.g., alcohol use, body mass index, smoking). Most animal studies were determined to have "probably high" risk of bias for domains relating to blinding of researchers or concealment of experimental assignments, because most studies were either not blinded or did not report it. Animal studies generally received positive ratings on all other domains.

Exposure to PFOA

Human studies. Eight cross-sectional studies assessing the relationship between PFOA and ALT in adults and adolescents $(\geq 12 \text{ years of age})$ were included in the weighted *z*-score calculation.^{38,40,41,43,67,70,72,75} A weighted *z*-score of 6.20 (p < 0.001) indicated a positive relationship between PFOA and ALT (Table 3). This positive relationship remained across sensitivity analyses (Table S3). A weighted z-score for PFOA and ALT was also calculated for the three available longitudinal studies and was statistically significant (z-score = 5.12; p < 0.001; Table 3).^{39,42,44} Only two studies examined the effect of PFOA exposure on ALT levels in children <12 years of age, reporting no statistically significant associations.^{74,76} In adults, there was a positive relationship between PFOA exposure and GGT (*z*-score = 4.13, p < 0.001)^{38,40,41,43,67,69,70,72,75} (Table S4), and this remained statistically significant after removing the largest study and after restricting the calculation to only NHANES participants (Table S3). There was no statistically significant relationship between PFOA and AST (z-score = 1.95, p = 0.05) in adults (Table S4).^{38,40,41,43,67,69,72} Two longitudinal analyses did not find any associations between PFOA and other liver enzymes.^{37,39} One, Salihovic et al.,⁴² did find a positive association between PFOA and GGT.

Rodent studies. Thirty-two studies assessed exposure to PFOA in mice and 5 studies assessed exposure to PFOA in rats (Table 2).

Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^{a}
Bagley et al. ²⁹	K ⁺ PFOS, K ⁺ PFOS + CS	100 ppm and 100 ppm + CS	Rats; Sprague Dawley; male and female	Diet	3 wk	Steatosis, ALT, AST, GGT, rel- ative liver weight, liver histopathology	PFOS induces steatosis in male but not female rats, and it was not attenuated by choline supplementation.
Bijland et al. ¹²³	K ⁺ PFOS, K ⁺ PFH _x S, K ⁺ PFBS	PFOS: 3 mg/kg; PFHxS: 6 mg/kg; PFBS: 30 mg/kg	Mice; APOE*3-Leiden. CETP; male	Diet (Western diet)	4–6 wk	Steatosis	PFOS and PFHxS, but not PFBS-induced steatosis.
Blake et al. ⁸¹	NH4 ⁺ PFOA, GenX	PFOA: 1 and 5 mg/kg; GenX: 2 and 10 mg/kg	Mice; CD-1; female (dams)	Gavage	E1.5-11.5, E1.5-17.5	ALT, AST, relative liver weight, liver histopathology	PFOA and GenX exposure resulted in increased liver weights and altered liver histopathology. AST was elevated in the highest PFOA and GenX exposure groups at F17 5
Botelho et al ¹⁰¹	PFOA	0.002%, 0.005%, 0.01%, and 0.02% wt/wt	Mice; C57BL/6; male	Diet	10 d	ALT, relative liver weight, liver histopathology	PFOA exposure increased liver weight in all dose groups. ALT was significantly ele- vated in the highest dose group. Histopathological alterations were observed after PFOA exposure.
Butenhoff et al. ¹⁴⁷	K ⁺ PFH _x S	0.3, 1, 3, and 10 mg/kg	Rats; Sprague Dawley; male and female (F ₀ parents, F ¹ pups)	Gavage (F ₀); prenatal+lactational (F ₁)	44 d (F ₀ males), 14 d prior to mating–PND 22 (F ₀ females); prenatal – PND22 (F ₁)	ALT (F ₀ only); AST (F ₀ only), relative liver weight, liver histopathology	Relative liver weight was increased in F ₀ males at the 3- and 10-mg/kg dose levels only. There was no observed effect of PFHxS on liver histopathology or enzymes.
Butenhoff et al. ⁹³	NH4 ⁺ PFOA, NH4 ⁺ PFBA	PFOA: 30 mg/kg; PFBA, 28 d: 6, 30, and 150 mg/kg; PFBA, 90 d: 1.2, 6, and 30 mg/kg	Rats; Sprague Dawley; male and female	Gavage	28 d (PFOA, PFBA); 90 d (PFBA)	ALT, AST, relative liver weight, liver histopathology	28-4 study: In males only, liver weight was increased in 30- and 150-mg/kg PFBA dose groups and after PFOA exposure. ALT was elevated in both sexes after PFOA exposure and returned to normal in males after 21 d of recovery. No change in ALT or AST was observed after PFBS exposure. Histopathological changes were observed in male rats in the 150-mg/kg PFBA and PFOA groups. 90-d study: In males only, liver weight was increased after 30-mg/kg PFBA expo- sure. There was no change in ALT or AST in either sex. Histological changes were observed in male rats in the AST in either sex. Histological changes were observed in male rats in the AST in either sex. Histological changes
Butenhoff et al. ⁹⁵	K ⁺ PFOS	0.5, 2, 5, and 20 ppm	Rats; Sprague Dawley; male and female	Diet	2 y	ALT, AST, relative liver weight, liver histopathology	ALT was increased in the highest dose group at wk 14 and 53, in males only. No changes were observed in AST. PFOA induced histopathological changes and increased liver weight.
Butenhoff et al. ⁹⁴	NH4 ⁺ PFOA	30 and 300 ppm	Rats; Sprague Dawley; male and female	Diet	2 y	ALT, AST, relative liver weight, liver histopathology	ALT. AST, and liver weight were clevated in mates exposed to PFOA. PFOA also induced histopathological changes, which were more severe in males than in females.
Butenhoff et al. ¹²²	POSF	30, 100, and 300 ppm vol/vol	Rats; Sprague Dawley; male and female	Inhalation	13 wk (6 h/d, 5 d/wk)	ALT, relative liver weight, liver histopathology	Liver weight increased following exposure. ALT was elevated in male rats but

Table 2. Animal studies on per- and polyfluorinated chemicals and biomarkers or outcomes of liver injury included for systematic review.

Table 2. (Contin	nued.)						
Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^a
Chang et al. ¹⁴⁶	K ⁺ PFHxS	0.3, 1, and 3 mg/kg	Mice; CD-1; male and female (F ₀ parents, F ₁ pups)	Gavage (F ₀); prenatal + - lactational + gavage (F ₁)	42 d (F ₀ males); 14 d prior to mating-LD22 (F ₀ females);	prenatal-PND21 + 14 days (F1)	returned to normal after a 13-wk recovery period. ALT, AST, GGT, relative liver weight, liver histopathology
There was no observed effect on PFHXS on liver histopa- thology or enzymes in ei- ther the F ₀ or F ₁ generations. Liver weight was increased in F ₀ males ant females at the 1- and 3-mg/kg dose levels, and in F ₁ males and females at the 2-30 at the 3-mg/kg at the 3-mg/kg							
Chappell et al. ¹⁵⁸	GenX	0.1, 0.5, and 5 mg/kg	Mice; CD-1; male and female	Gavage	P 06	steatosis, liver histopathology	Histopathological changes, but no steatosis,
Chengelis et al. ¹⁵⁵	PFHxA	10, 50, and 200 mg/kg	Rats; Sprague Dawley; male and female	Gavage	90 d	ALT, AST, liver histopathology	ALT and liver weight were also group. ALT and liver weight were elevated in males at the 200-mg/kg dose level. Histopathological changes were also only observed in males at the highest dose.
Crebelli et al. ⁸²	PFOA, PFBA	PFOA: 0.1, 1, and 5 mg/kg; PFBA: 5 mo/ko	Mice; C57BL/6; female	Drinking water	5 wk	ALT, AST, liver histopathology	PFOA exposure at 5 mg/kg increased ALT and AST and resulted in histopathological changes. Mild histopathological changes were observed after PFRA exposure
Cui et al. ¹⁷⁰	PFOA	5 mg/kg	Mice; miR-34 $a^{-/-}$ and C57B1 /61 (WT), male	Gavage	28 d	ALT, AST, relative liver weight liver histomathology	PFOA exposure increased ALT, AST, and liver weights in both strains
Curran et al. ¹¹³	K ⁺ PFOS	2, 20, 50, and 100 mg/kg	Rats; Sprague Dawley; male	Diet	28 d	ALT, AST, relative liver weight	ALT was negative to an overlapped in male rats at the high- est dose level and AST in female rats at the highest dose level. Liver weights were increased following PFOS exposure in both exces
Das et al. ²⁸	NH4+PFOA, PFNA, K ⁺ PFH _X S	10 mg/kg	Mice: Sv/129 (WT) and PPAR &-null; male	Gavage	7 d	iteatosis, relative liver weight, liver histopathology	Steatosis was induced after exposure to any PFAS in WT mice and after exposure to PFNA and PFHXS in PPAR2-null mice, as well as in control PPAR2-null mice. Liver weight increased after all exposures in both energy
Deng et al. ¹²⁴	K ⁺ PFOS	250 mg/kg and 250 mg/kg+PCB126	Mice; C57BL/6; male	Gavage	1 d	steatosis, ALT, AST, liver histopathology	counsuents. Coexposure to PCB 126 increased lipid drop- lets and inflammation in the liver. ALT

Table 2. (Conti	inued.)						
Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^{a}
Ding et al. ¹⁵¹	PFDoA	0.02, 0.05, 0.2, and 0.5 mg/kg	Rats; Sprague Dawley; male	Gavage	110 d	Steatosis, ALT, AST, relative liver weight	and AST were also elevated in the coex- posed group. PFDoA induced steatosis and histopathologi- cal changes at doses >0.02 mg/kg. There were no changes to ALT or AST follow- ing exposure. Liver weight was increased
Elcombe et al. ¹¹⁴	K ⁺ PFOS	20 and 100 ppm	Rats; Sprague Dawley; male	Diet	1, 7, and 28 d	ALT, AST, relative liver weight, liver histopathology	at an use lower to the highest Liver weight was increased in the highest dose group after 7 and 28 d. No changes were observed in ALT or AST. Histopathological alterations increased with duration of reatment
Elcombe et al. ¹¹⁵	K ⁺ PFOS	20 and 100 ppm	Rats; Sprague Dawley; male	Diet	7 d	ALT, AST, relative liver weight, liver histopathology	with duration of the caliberin. Increases in relative liver weight reduced after 28 d of recovery. ALT and AST were not elevated. Alterations to liver histopathol- ogy did not completely resolve after 28, 56 or 84 d of recovery.
Fang et al. ¹⁴⁵	PFNA	0.2, 1, and 5 mg/kg	Rats; Sprague Dawley; male	Gavage	14 d	ALT, AST	PFNA exposure increased ALT and AST in the 5-mg/kg dose group.
Fang et al. ¹⁴⁴	PFNA	0.2, 1, and 5 mg/kg	Rats; Sprague Dawley; male (diabetic)	Gavage	7 d	ALT, AST	PFNA exposure increased ALT levels in the 1- and 5-mg/kg dose groups.
Foreman et al. ¹⁴⁹	PFBA	35, 175, and 350 mg/kg	Mice; Sv/129 (WT), hPPARα, and PPARα-null; male	Gavage	28 d	ALT, relative liver weight, liver histopathology	PFBA induced hepatocellular hypertrophy in WT and hPPAR& mice, and focal necro- sis in WT. ALT was not elevated in any dose eroup or strain.
Guo et al. ⁸⁴	NH4 ⁺ PFOA	0.4, 2, and 10 mg/kg	Mice; BALB/c; male	Gavage	28 d	ALT, AST, relative liver weight, liver histopathology	ALT and AST increased dose dependently. PFOA exposure increased liver weight and induced histopathological changes.
Guo et al. ^{90,171}	PFOA, K ⁺ GenX	0.4, 2, and 10 mg/kg	Mice; BALB/c; male	Gavage	28 d	Steatosis, ALT, AST, relative liver weight, liver histopathology	GenX induced mild steatosis in the highest dose group, and PFOA induced steatosis in the 2- and 10-mg/kg dose groups. ALT and AST were elevated in the high- est PFOA exposure group. Liver weight increased at all exposure levels.
Hamilton et al. ¹²⁵	PFOS	1 mg/kg, 1 mg/kg+HFD, 10 mg/kg, and 10 mg/kg+HFD	Mice; Cyp2b-null and hCYP2B6; male and female	Gavage	21 d	Steatosis, ALT	ALT was increased after 10 mg/kg of PFOS exposure, but less so with coexposure to HFD. Coexposure to HFD exacerbated PFOS-induced steatosis, more so in hCYP2B6 mice.
Han et al. ¹¹⁶	K ⁺ PFOS	1 and 10 mg/kg $$	Rats; Sprague Dawley; male	Gavage	28 d	ALT, AST, liver histopathology	ALT and AST levels increased following PFOS exposure. Changes in liver histopa- thology were observed.
Han et al. ¹¹⁷	K ⁺ PFOS	1 and 10 mg/kg	Rats; Sprague Dawley; male	Gavage	28 d	ALT, AST, relative liver weight, liver histopathology	ALT and AST levels increased following PFOS exposure. PFOS exposure induced histopathological changes and increases in liver weight.
Huang et al. ¹²⁶	PFOS	10 mg/kg and 10 mg/kg+GSPE	Mice; Kumning; male	Gavage	21 d	Steatosis, ALT, AST, relative liver weight, liver histopathology	PFOS induced statosis, increased ALT and AST levels, and increased liver weight. GSPE supplementation attenuated steato- sis, enzyme changes, and liver weight increases in PFOS-exposed mice.
Huck et al. ¹²⁷	PFOS	1 mg/kg and 1 mg/kg+HFD	Mice; C57BL/6J; male	Diet	6 wk	Steatosis, relative liver weight, liver histopathology	PFOS induced steatosis in mice fed standard diet. Steatosis did not develop in

Table 2. (Conti	inued.)						
Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^{a}
Hui et al. ⁸⁵	PFOA	1 and 5 mg/kg	Mice; BALB/c; male	Gavage	2 q	ALT, liver histopathology	PFOS+HFD mice. A similar pattern was observed for liver weight PFOA exposure resulted in increased ALT
Kato et al. ¹⁵²	PFDoA	0.1, 0.5, and 2.5 mg/kg	Rats; Sprague Dawley; male and female (dams and nonpregnant females)	Gavage	42 d and 14 d prior to mat- ing-LD5 (dams)	ALT, AST, GGT, relative liver weight, liver histopathology	and altered liver histopathology. No changes in ALT or GGT were observed. AST was significantly elevated in non- pregnant females 14 d after exposure ended. Liver weight increased following PFDoA exposure. Histopatholgical
Kim et al. ¹⁴⁸	PFDA	10 mg/kg	Rats; Sprague Dawley; female	Intraperitoneal injection	I	ALT, AST, GGT, relative liver weight	changes were observed in both sexes. No changes in ALT, AST, or GGT were observed at either Wk 2 or Wk 8. Relative liver weight was increased at hord, 2 and 8 uit processions
Kim et al. ¹¹⁸	K ⁺ PFOS	1.25, 5, and 10 mg/kg	Rats; Sprague Dawley; male and female	Gavage	28 d	ALT, AST, GGT, relative liver weight, liver histopathology	both 2 and 6 wh postexposure. AST increased in the highest dose group in males only. Altered liver histopathology was also observed in males. Liver weight increased in the highest dose group for hoth coves
Lai et al. ¹²⁸	PFOS	0.3 mg/kg	Mice; CD-1; male and female	Prenatal+DEN postnatally	E1–E18.5	ALT, AST	out axes. Elevated ALT and AST was observed in PFOS-exposed offspring after a DEN challenge.
Li et al. ⁸⁶	PFOA	1, 2.5, 5, and 10 mg/kg	Mice; Kunming; female	Prenatal	GDI-GD17	ALT, AST, relative liver weight, liver histopathology	ALT, AST, and liver weight were increased on PND21 following prenatal PFOS ex- posure. Histopathological alterations were observed.
Li et al. ¹⁰²	NH4+PFOA	1 mg/kg and 1 mg/kg+HFD	Mice; C57BL/6; male	Gavage	2, 8, and 16 wk	Steatosis, ALT, liver histopathology	No change in ALT was observed for PFOA alone, and PFOA+HFD reversed ALT increases and steatosis induced by HFD. PFOA alone and PFOA+HFD increased hiver worket
Liang et al. ¹⁴¹	PFOS	0.5 and 5 mg/kg	Mice; Kunming; female (dams)	Gavage	E0.5-E20.5	Steatosis, liver histopathology	PFOS-induced histopathological changes and steatosis in dams at the highest dose level
Lieder et al. ⁸³	K ⁺ PFBS	60, 200, and 600 mg/kg	Rats; Sprague Dawley; male and female	Gavage	P 06	ALT, AST, relative liver weight, liver histopathology	No changes in ALT, AST, relative liver weight, or liver histopathology were observed after DFBS evenesure
Liu et al. ¹⁰³	PFOA	10 mg/kg and 10 mg/kg+GSPE	Mice; Kunming; male	Gavage	14 d	ALT, AST, liver histopathology	PFOA increased ALT and AST levels and altered liver histopathology, but this was attenuised with conversion to COPF
Luo et al. ¹⁵³	PFDA	80 mg/kg	Mice; PPAR&-null and 129/ Sv (WT)	Intraperitoneal injection	One injection	ALT, AST, relative liver weight, liver histopathology	In WT mice, ALT and AST were both ele- vated 5 d after PFDA exposure. ALT returned to baseline levels 10 d after ex- posure. There were no changes in ALT or AST in PPAR2-null mice, and no
Lv et al. ¹¹⁹	PFOS	0.5 and 1.5 mg/kg	Rats; Wistar; male and female	Prenatal and lactational	GD0-PND21	Steatosis, liver histopathology	changes to liver histopathology in either strain after 5 d. Liver weight increased af- ter PFDA exposure in both strains. Histopathological changes and steatosis were observed in pups from the highest dose group 19 wk after weaning.

Table 2. (Contin	nued.)						
Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^{a}
Lv et al. ¹²⁹	PFOS	10 mg/kg and 10 mg/kg+Nar	Mice; strain not reported; male	Gavage	3 wk	ALT, AST, relative liver weight, liver histopathology	Nar coexposure attenuated changes in ALT, AST, liver weight, and histopathology induced by PFOS
Marques et al. ¹³⁹	K ⁺ PFOS	0.0003% wt/wt, 0.0003% wt/wt+HFD, and 0.0003% wt/wt+H-SD	Mice; C57BL/6N; male	Diet	10 wk	Steatosis, relative liver weight, liver histopathology	PFOS exposure induced steatosis in HFD and H-SD groups. PFOS also increased liver weight in all diet groups.
Marques et al. ¹³⁰	PFOA, K ⁺ PFOS, K ⁺ PFH _x S, PFAS mixture	1 mg/kg and 1 mg/kg+HFD	Mice; CD-1; female (dams) and male and female (pups)	Gavage (dams); prenatal+lactational (pups)	Gestation (GD1-birth) and lactation (birth–PND21)	ALT, relative liver weight	ALT was elevated only in dams fed a stand- ard diet and PFOS. PFOA and PFAS mix- ture exposure increased liver weights in both diet groups for dams. PFAS expo- sure generally increased liver weight in mins
Martin et al. ⁹⁹	NH4+PFOA, K ⁺ PFOS	PFOA: 20 mg/kg; PFOS: 10 mg/kg	Rats; Sprague Dawley; male	Gavage	1, 3, and 5 d	Steatosis, ALT, liver histopathology	Steatosis and increased liver weight were observed in both treatment groups after 3 and 5 d. Additional histopathological alterations were observed, more fre- quently after longer exposures. No chanses in ALT were observed.
Minata et al. ⁹⁶	NH4+PFOA	12.5, 25, and 50 mg/kg	Mice; 129S4/SvlmJ (WT) and PPAR &-null; male	Gavage	4 wk	Steatosis, ALT, AST, liver histopathology	Dose-dependent increases in ALT and AST were observed following PFOA exposure. Steatosis was present to a greater extent in all PPAR&-null mice than in WT mice. Liver weights increased in all exposed mice. Histopathological evaluation sug- gests that the mode of toxicity is different in PPA R&-null and WT mice.
Nakagawa et al. ⁹⁷	NH4 ⁺ PFOA	1.0 and 5.0 mg/kg	Mice; Sv/129 (WT), PPARα-null, and hPPARα; male	Gavage	6 wk	Steatosis, ALT, relative liver weight, liver histopathology	Histopathological alterations differed across the three strains. Steatosis was observed in PPARØ-null and hPPARØ mice. ALT was elevated in all mice at the highest dose. Liver weight was increased in all evroced mice
Owumi et al. ¹¹²	PFOA	5 mg/kg, 5 mg/kg+NAC (25mg), and 5 mg/kg+NAC (50 mg)	Rats, Wistar; male	Gavage	28 d	ALT, AST, GGT, relative liver weight, liver histopathology	PFOA exposure increased ALT, AST, and GGT, but not when coexposed to NAC. NAC coexposure mitigated histopatho- logical alterations induced by PFOA. There were no changes in relative liver weight.
Pfohl et al. ¹³¹	PFOS, PFNA	3 ppm+LFD and 3 ppm+HFD	Mice; C57BL/6J; male	Diet	12 wk	Steatosis, relative liver weight	Steatosis was present in all treatment groups, but coexposure to HFD mitigated its de- velopment. Liver weight was increased in all treatment groups.
Pouwer et al. ⁸⁷	NH4 ⁺ PFOA	10, 300, and 30,000 ng/g	Mice; APOE*3-Leiden. CETP; male	Diet	4 and 6 wk	Steatosis, ALT, liver histopathology	ALT and liver weight were increased in the highest dose group. Some steatosis was observed in the 10- and 300-ng/g dose groups.
Qazi et al. ¹⁰⁴	PFOA, NH4 ⁺ PFOS	PFOA: 0.002% wt/wt; PFOS: 0.005% wt/wt	Mice; C57BL/6; male	Diet	10 d	ALT, AST, liver histopathology	No changes in ALT or AST were observed for either exposure. Both PFAS-induced histopathological changes.
Qazi et al. ¹³²	NH4 ⁺ PFOS		Mice; C57BL/6; male	Diet	10 and 28 d		

,	Ň						
Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^a
		10 d: 0.004% wt/wt and 0.004% wt/wt+ConA; 28 d: 0.0001% wt/wt and 0.0001% wt/wt+ConA				ALT, AST, relative liver weight, liver histopathology	Coexposure of PFOS and Con A increased ALT and AST levels. Histopathological alterations were observed and liver weight increased with PFOS exposure in all study conditions.
Qazi et al. 105	PFOA	10 d: 0.002% wt/wt+ConA; 28 d: 0.00005% wt/wt and 0.00005% wt/wt+ConA	Mice; C57BL/6; male	Diet	10 and 28 d	ALT, AST, relative liver weight, liver histopathology	Coexposure of PFOS and Con A increased ALT and AST levels in the 10-d study. Substantial histopathological alterations were only observed with PFOS exposure in the 10-d study. Liver weight increased in both exposure groups in the 10-d study, and only in the PFOA group in the 28-d study.
Qin et al. ¹³³	PFOS	5 mg/kg and 5 mg/kg+HFD	Mice; C57BL/6J; male	Gavage	4 wk	Steatosis, ALT, AST, relative liver weight	PFOS exposure exacerbated steatosis in HFD-fed mice. ALT, AST, and liver weights were increased in both PFOA- extosed arouts.
Quist et al. ¹⁰⁶	NH4 ⁺ PFOA	Prenatal: 0.01, 0.1, 0.3, and 1 mg/kg; Postnatal: 0.01 mg/kg +HFD, 0.1 mg/kg +HFD, 0.3 mg/kg +HFD, and 1 m o /ke+HFD and	Mice; CD-1; female	Prenatal	GDI-GD17	ALT, AST, relative liver weight, liver histopathology	PFOA did not alter ALT or AST. Histopathological alterations were observed were observed on PND21 and became more severe by PND91 in a dose- dependent fashion. Liver weights were increased at PND21 but not at PND91.
Rigden et al. ⁹²	PFOA	10, 33, and 100 mg/kg	Rats; Sprague Dawley; male	Gavage	3 d	ALT, AST	Elevated ALT was observed in the 33-mg/kg dose group only 4 d after the end of treatment, and no changes in AST were observed
Roth et al. ¹³⁴	PFAS mixture (PFOS, PFOA, PFNA, PFHxS, GenX)	0.32 mg	Mice; C57BL/6J; male and female	Drinking water	12 wk	ALT, relative liver weight, liver histopathology	ALT and liver weight increased following PFAS exposure in both males and females. PFAS exposure also resulted in alterations to liver histopathology, with more inflammation observed in females
Schlezinger et al. ⁹¹	⁸ PFOA	8 µМ	Mice; WT, PPAR&-null, and hPPARx; male and female	Drinking water	6 wk	Steatosis, relative liver weight, liver histopathology	Steatosis was present after treatment with Steatosis was present after treatment with PFOA in hPPAR¢ mice, PPAR¢-null mice, and male WT mice. Liver weights increased in all concreases
Seacat et al. ¹²⁰	K ⁺ PFOS	0.5, 2.0, 5.0 and 20 ppm	Rats: Sprague Dawley; male and female	Diet	4 and 14 wk	ALT, AST, GGT, relative liver weight, liver histopathology	ALT was increased in females at 4 wk and males at 14 wk in the highest dose group. Liver weight was increased in both sexes at 14 wk. Histopathological alterations were observed in 5- and 20-ppm exposed
Shao et al. ¹⁷²	PFOA	0.05 mg/kg	Mice; CD-1; male (pups)	Prenatal	GD13-delivery	ALT, AST, liver histopathology	mares and 20-ppm exposed remares. ALT and AST were elevated in mice exposed prenatally to PFOA. PFOA induced hepatic inflammation and histo-
Shi et al. ¹⁷³	PFOA		Mice; C57BL/6J; male	Gavage	ID	ALT, AST, and GGT	pathological alterations. ALT, AST, and GGT were increased after PFOA exposure. These increases were

Table 2. (Com	tinued.)						
Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^a
		300 mg/kg and 300 mg/kg+11 LAB groups					mitigated with LAB exposure. PFOA also increased liver weight, which was not reduced with LAB exposure.
Son et al. ¹⁰⁷	NH4 ⁺ PFOA	2, 10, 50, and 250 ppm	Mice; CD-1; male	Drinking water	21 d	ALT, AST, relative liver weight, liver histopathology	ALT, AST, and liver weight increased dose dependently. Altered liver histopathology was present after PFOA exposure.
Su et al. ¹³⁵	PFOS	10 mg/kg, 10 mg/kg+100 mg/kg VC, and 10 mg/kg+200 mg/kg VC	Mice; CD-1; male	Gavage	21 d	Steatosis, ALT, AST, liver histopathology	VC supplementation ameliorated elevations in ALT, AST, and steatosis induced by PFOS. VC supplementation also improved histopathological alterations following PFOS exposure.
Takahashi et al. ¹	³⁶ PFUA	0.1, .03, and 1.0 mg/kg	Rats; Sprague Dawley; male and female (dams)	Gavage	42 d and 14 d prior to mat- ing-LD4 (dams)	ALT, AST, GGT, relative liver weight, liver histopathology	ALT was increased in males at the 1-mg/kg dose level. Liver weights were elevated in males at dose 0.3 and 1.0 mg/kg and in females at 1.0 mg/kg. PFUA induced his- topathological changes at doses >0.1 mg/kg in both sexes.
Tan et al. ¹⁰⁸	PFOA	5 mg/kg+LFD and 5 mg/kg+HFD	Mice; C57BL/6N; male	Diet	3 wk	ALT, AST, relative liver weight, liver histopathology	PFOA exposure increased ALT and liver weight. Coexposure to HFD exacerbated this and induced more severe histopatho- lorical chances.
Van Esterik et al. ¹⁰⁰	Na ⁺ PFOA	3, 10, 30, 100, 300, 1,000, and 3,000 μg/kg	Mice; C57BL/6JxFVB; male	Prenatal+lactational	14 d prior to mating-LD21	Steatosis, relative liver weight, liver histopathology	PFOA-exposed offspring fed a HFD after weaning had increased liver weight, and more severe histopathological alterations. Steatosis was observed in the highest dose eronn
Wan et al. ¹³⁶	PFOS	1, 5 and 10 mg/kg	Mice; CD-1; male	Gavage	3, 7, 14, and 21 d	Steatosis, liver histopathology	PFOS-induced steatosis in a dose- and time- dependent fashion.
Wan et al. ¹³⁶	PFOS	1 and 10 mg/kg	Rats; Sprague Dawley; male	Gavage	28 d	ALT, AST, liver histopathology	PFOS exposure increased ALT and AST levels and caused histopathological alterations.
Wang et al. ¹⁴²	PFNA	0.2, 1, and 5 mg/kg	Mice; BALB/c; male	Gavage	14 d	ALT, AST, relative liver weight	ALT and AST were elevated in the 5-mg/kg group. Liver weight increased in all dose groups.
Wang et al. ¹⁵⁷	GenX	1 mg/kg	Mice; CD-1; male	Gavage	28 d	ALT, AST, relative liver weight, liver histopathology	GenX exposure resulted in increased liver weight, mild steatosis, and histopatholog- ical alterations.
Wang et al. ¹³⁷	PFOS	0.3, 3, and 30 mg/kg	Mice; C57BL/6J; male	Gavage	16 d	ALT, AST, GGT, relative liver weight, liver histopathology	PFOS exposure increased ALT levels at all doses and GGT at the highest dose. Histopathology was altered and liver

Weatherly et al. 150 PFBA

ALT, AST, GGT, relative liver PFOA exposure increased ALT levels, weight, liver histopathology altered liver histopathology and increased

14 and 30 d

Gavage

Mice; C57BL/6J; male

3 and 30 mg/kg; 30 d: 14 d:

PFOA

Wang et al.¹⁰⁹

alterations.

liver weight.

Relative liver weight increased after ex-

posure to PFBA.

ALT, relative liver weight, liver There were no observed increases in ALT.

histopathology

28 d

Dermal

 $2.5,\,5,\,and\,10~mg/kg$ $3.75\%,\,7.5\%,\,and\,15\%$ vol/vol $\,$ Mice; $B_6C_3F_1;\,male$ and

female

were protective against increases in ALT

and AST and against histopathological

weights increased in all exposure groups.

PFDA induced steatosis. GTPs and EGCG

Steatosis, ALT, AST, liver histopathology

12 d

Drinking water

Mice; CD-1; male

0.1 mM, 0.1 mM+GTPs, and 0.1 mM+EGCG

PFDA

Wang et al.¹⁵⁴

Table 2. (Conti	inued.)						
Reference	Exposure	Dose	Species/strain/sex	Exposure route	Duration of exposure	Outcomes	Main findings ^a
Wu et al. ¹⁷⁴	PFOA	5 mg/kg	Mice; Kunning; male	Gavage	1 d	ALT and AST	ALT and AST levels were not significantly increased following exposure.
Wu et al. ⁹¹	РҒОА	1 and 5 mg/kg	Mice; Kunming; female	Gavage	21 d	ALT, AST, relative liver weight, liver histopathology	PFOA exposure increased ALT, AST, and relative liver weight in the highest dose group only. Liver histopathology was altered in both dose erouns.
Xing et al. ¹³⁸	PFOS	14 d: 30, 40, 50, 60, and 70 mg/kg; 30 d : 2 5 5 and 10 mc/ko	Mice; C57BL/6J; male	Gavage	14 and 30 d	ALT, ASTGGT, liver histopathology	PFOS exposure resulted in historyhological alteration and increased ALT and AST in a dose-dependent fashion.
Yahia et al. ⁸⁸	PFOA	1, 5, and 10 mg/kg	Mice; CD-1; female (dams)	Gavage	GD0-GD17/18	ALT, AST, GGT, relative liver 1 weight, liver histopathology	Histopathological alterations and elevated ALT, AST, and GGT were observed in the highest dose group. PFOA exposure increased liver weight in a dose-dependent fashion.
Yan et al. ⁸⁹	PFOA, PFOS	PFOA: 0.08, 0.31, 1.25, 5, and 20 mg/kg; PFOS: 1.25 and 5 mg/kg	Mice; BALB/c; male	Gavage	28 d	ALT, AST, relative liver weight ,	ALT and AST were increased at the highest PFOA and PFOS exposure group. Liver weight increased in all but the lowest dose of PFOA.
Yan et al. ¹⁷⁵	PFOA	5 mg/kg+125 mg/kg 4-PBA and 5 mg/kg+250 mg/kg 4-PBA	Mice; BALB/c; male	Gavage	28 d	ALT, AST, relative liver weight	ALT and liver weight increased in all PFOA- exposed groups. AST increased in the PFOA-only treatment group.
Yang et al. ¹¹⁰	PFOA	2.5, 5, and 10 mg/kg	Mice; Kunming; male	Gavage	14 d	ALT, AST, relative liver weight, liver histopathology	ALT levels increased in a dose-dependent manner. AST was increased at the two highest dose levels. Histopathological alterations and liver weight increases were seen in all dose groups, and were more severe at the highest dose.
Zhang et al. ¹⁴⁰	K ⁺ PFOS	0.003% wt/wt, 0.003% wt/wt+mMCD, 0.006% wt/wt+mMCD, 0.006% wt/wt+mMCD, 0.012% wt/wt+mMCD, and 0.003% wt/wt+CS	Mice; C57BL/6; male	Diet	21 d (mMCD) and 6 wk (CS)	Steatosis, ALT, relative liver l weight, liver histopathology	PFOS increased ALT and liver weight, and induced histopathological changes and steatosis. Toxicity was exacerbated in the PFOS+mMCD group and attenuated with CS coexposure.
Zhang et al. ¹⁴³	PFNA	0.1 mmol/kg	Mice: C57BL/6 (WT), PPARα-null, and CAR- null; male	Intraperitoneal injection	One injection	ALT, relative liver weight, liver 1 histopathology	PFNA increased liver weight in all three strains after 14 d. After 1 wk, ALT was elevated in the WT and CAR-null mice. Alterations in histopathology were observed after 14 and 90 d.
Zou et al. ¹¹¹	PFOA	10 mg/kg and 10 mg/kg+Que	Mice; Kunming; male	Gavage	14 d	ALT, AST, liver histopathology	Coexposure to Que decreased PFOA induced ALT and AST levels and ameliorated his- topathological changes.
Notes: 4-PBA, 4- EGCG, epi-galloc	-phenylbutyrate; ALT, a satechin-3-gallate; GD, g	alanine aminotransferase; AST, gestation day; GenX, hexafluoro	aspartate aminotransferase; C/ propylene dimer acid; GGT, ga	AR, constitutive antigen re umma-glutamyl transferase;	ceptor; Con A, Concanavalin / ; GSPE, grape seed proanthocya	v; CS, choline supplementation; I nidin extract; GTP, green tea poly	DEN, diethylnitrosamine; E, embryonic day; phenol; HFD, high-fat diet; hPPAR, human-

ized peroxisome proliferator-activated receptor; H-SD, high-fat diet to standard diet; K⁺, potassium ion; LAB, lactic acid bacteria; LD, lactation day; LFD, low-fat diet; mMCD, marginal methionine-choline-deficient diet; NAC, N-acetylcys-teine; Nar, naringin; NH₄⁺, ammonium ion; PCB, polychlorinated biphenyl; PFAS, per- and polyfluorinated substances; PFBA, perfluorobutanoic acid; PFBS, perfluorodecanoic acid; PFBA, perfluorobexanoic acid; PFHXS, perfluorobutanoic acid; PFOA, perfluorooctanoic acid; PFOA, perfluorobutanoic acid; PFDA, perfluorobutanoic acid; PFDA

Overall, exposure to PFOA in rodents was associated with elevated mean serum ALT (Figure 2). Twenty-one mouse studies observed a statistically significant difference in mean serum ALT in treatment groups relative to unexposed controls. Of these, 10 studies observed a statistically significant positive association at higher doses and no effect at lower doses, suggesting a dose-dependent relationship.^{81,82,84-91} However, these results did not reveal an obvious threshold for lowest dose of observed effect. Of the 4 studies in Sprague Dawley rats, 3 found a statistically significant relationship between PFOA exposure and ALT.^{92–94} Most studies included only males, and the few studies including both males and females observed no consistent differences by sex in effects on ALT levels.^{94,95} Studies also reported elevated AST or liver weight in PFOA-exposed rodents (Figures S1 and S2). PFOA exposure in adult mice and rats frequently induced steato-sis.^{28,84,87,90,96–99} Only 1 study investigated prenatal PFOA exposure and development of steatosis in adulthood and no association was found.¹⁰⁰ Other reported histopathological alterations included hepatocellular hypertrophy and necrosis in both mice^{28,81,82,84,86–88,96,97,101–111} and rats.^{93,94,99,112}

Exposure to PFOS

Human studies. Six cross-sectional studies assessing the relationship between PFOS and ALT in adults and adolescents (≥ 12 years of age) were included in the weighted *z*-score calculation. 40,41,67,70,72,75 A weighted *z*-score of 3.55 (p < 0.001) suggested a positive association between PFOS and ALT (Table 3). After including two studies in children (<12 years of age),^{74,76} the association remained statistically significant (z-score = 3.27, p < 0.001); however, the association was no longer statistically significant in sensitivity analyses that removed the largest study⁷⁰ (z-score = 1.11, p = 0.27) or that restricted the analysis to only those studies using NHANES data^{40,67,72,75} (z-score = 0.90, p = 0.37) (Table S3). No statistically significant associations between PFOS and ALT were reported in children in either cross-sectional^{74,76} or longitudinal⁷⁶ analyses. Weighted z-scores did not suggest a relationship between PFOS and GGT when including all eligible studies $(z-\text{score} = 1.13, p=0.26)^{40,41,67,70,72,75}$ or in sensitivity analyses (Table S3) or between PFOS and AST (z-score = 0.37, p = 0.72) in adults (Table S4).^{40,41,67,72} One longitudinal analysis reported a positive association with ALT,⁴² but none found any relationship between PFOS and other liver enzymes.^{37,42}

Rodent studies. Among rodent studies, 13 studies assessed exposure to PFOS in rats^{29,95,99,113–122} and 19 assessed PFOS exposure in mice^{28,89,104,123–138} (Table 2). PFOS exposure consistently increased serum ALT in mice (Figure 3). This effect was also observed in rats, although several studies did not report any effect of PFOS on ALT levels.^{99,114,118} Many mouse studies also observed increases in AST after PFOS exposure (Figure S3), and both mouse and rat studies reported increases in liver weight following PFOS exposure (Figure S4). PFOS exposure was also shown to induce steatosis in mice and rats.^{99,118,123,125–127,131,133,139–141} Prenatal exposure also resulted in steatosis in Wistar rats.¹¹⁹ Hepatocellular hypertrophy and necrosis were also consistently observed after PFOS exposure in both mice^{104,129,132,135,137,138} and rats.^{29,95,99,113–118,120–122}

Exposure to PFNA

Human studies. Five cross-sectional studies assessing the relationship between PFNA and ALT in adults and adolescents were included in the weighted *z*-score calculation.^{40,41,67,72,75} A weighted *z*-score of 2.27 (p = 0.023) suggested a positive relationship between PFNA and ALT (Table 3). Owing to the limited number of available studies, no sensitivity analyses were performed for this weighted *z*-score. Mora et al.⁷⁶ reported a

statistically significant negative association in cross-sectional analyses of PFNA and ALT in boys only, although no statistically significant associations were found for children overall in either cross-sectional or longitudinal analyses by either Mora et al.⁷⁶ or Khalil et al.⁷⁴ There was no relationship between PFNA and GGT (*z*-score = 1.45, p = 0.15)^{40,41,67,72} or AST (*z*-score = 0.95, p = 0.35) in adults (Table S4).^{40,41,67,72} Mundt et al.³⁵ found no difference in mean ALT, GGT, or AST between production workers with low, high, or no occupational exposure to PFNA. Salihovic et al. reported a positive association between PFNA and GGT in a longitudinal analysis.⁴²

Rodent studies. Six studies evaluated exposure to PFNA and markers of liver injury in mice or rats. Results consistently demonstrated elevated ALT, steatosis, and hepatocellular hypertrophy in treatment groups compared with controls in both mice^{28,131,142,143} and rats.^{144,145}

Exposure to PFHxS

Human studies. Five cross-sectional studies assessing the relationship between PFHxS and ALT in adults and adolescents were included in the weighted *z*-score calculation.^{40,41,67,72,75} A weighted *z*-score of 1.42 (p = 0.15) did not suggest any relationship between PFHxS and ALT (Table 3). No sensitivity analyses were performed for this weighted *z*-score because of the limited number of available studies. One longitudinal study reported a positive association between PFHxS and ALT.⁴² Studies in children reported no relationship between PFHxS and ALT.⁴² Studies in children reported no relationship between PFHxS and ALT.^{74,76} Likewise, weighted *z*-scores did not indicate a relationship between PFHxS and GGT (*z*-score = 0.66, p = 0.52)^{40,41,67,72,75} or between PFHxS and AST (*z*-score = 1.50, p = 0.13) in adults (Table S4).^{40,41,67,72}

Rodent studies. Five studies examined the effects of PFHxS on liver outcomes. Two studies in mice^{130,146} and one in rats¹⁴⁷ investigated the effects of PFHxS exposure on liver enzymes. No alterations in ALT or AST were observed in adult male rats or rat dams, or in mouse dams or pups.^{130,146,147} However, PFHxS-induced steatosis and hepatocellular hypertrophy at doses of >3 mg/kg per day in the one rat and two mouse studies that reported histopathological results.^{28,123,147}

Exposure to Other PFAS

Findings among studies assessing exposure to other PFAS (PFDA, PFHxA, PFHpA, PFBS, PFBA, PFDoA, PFHxA, PFDoA, and GenX) were not consistent (Table 1). For instance, Nian et al. observed a positive relationship between PFDA and ALT in humans,⁴¹ whereas several other human studies found no relationship.^{42,72,77} Positive associations of human exposure to PFHxA⁷⁷ and PFHpA⁴² with ALT were observed. Our search identified only one study that evaluated the effects of PFAS as a mixture in humans and found that higher prenatal PFAS exposure was associated with increased risk for livery injury in childhood, based on ALT, AST, and GGT percentiles.⁷⁸ This finding suggests that, even if certain individual PFAS exert minor or no effects on the liver, the overall effect of multiple exposures may be detrimental.

No changes in ALT were reported after exposure to PFDA in rats,¹⁴⁸ PFBS in rats,⁸³ PFBA in mice or rats,^{82,93,149,150} or PFDoA in rats.^{151,152} Elevated ALT was reported following exposure to PFDA in mice,^{153,154} and PFHxA¹⁵⁵ and PFUA¹⁵⁶ in male but not female rats . PFDA¹⁵⁴ and PFDoA¹⁵¹ exposure was also shown to result in steatosis in mice and rats, respectively, whereas PFBS exposure in mice did not.¹²³

Table 3. Strip plots for the *z*-scores of the analyses of PFAS on ALT.

Reference	Population	Age (y)	Sex	Weight	n	Exposure	PFAS Blood Conc.	<i>z</i> -Score (<i>p</i> -value)
PFOA (cross-sectional stu	(dies)							
Sakr et al. ^{43,a}	GHS	≥18	Overall	All	1,024	PFOA	$0.428 \mathrm{ppm}^b$	1.53 (0.13)
Olsen and Zobel ^{38,a}	Plant employees	21-67	Male	All	506	PFOA	$2,210 \text{ng/mL}^{b}$	-0.59 (0.56)
Emmett et al. ⁶⁹	Little Hocking, Ohio	2–90	Overall	All	371	PFOA	$354 \mathrm{ng/mL}^c$	0.45 (0.67)
Gallo et al. $70,a$	C8HP	≥ 18	Overall	All	46,452	PFOA	$28.0 \mathrm{ng/mL}^c$	12.32 (<0.001)
Darrow et al. ³⁹	C8HP	>20	Overall	All	28,047	PFOA	NS	6.72 (<0.001)
Darrow et al. ³⁹	C8HP	>20	Male	All	12,364	PFOA	$17.1 \mathrm{ng/mL^c}$	4.63 (<0.001)
Darrow et al. ³⁹	C8HP	>20	Female	All	15,683	PFOA	$16.0 \mathrm{ng/mL}^c$	3.92 (<0.001)
Nian et al. ^{41,a}	I C8HP	22–95	Overall	All	1,605	PFOA	$6.19 \mathrm{ng/mL}^c$	4.23 (<0.001)
Lin et al. ^{75,a}	NHANES 1999–2003	≥ 20	Overall	All	2,197	PFOA	4.51 ng/mL^{b}	2.99 (0.003)
Lin et al. ⁷⁵	NHANES 1999–2003	≥20	Male	All	1,063	PFOA	5.05 ng/mL^{b}	1.85 (0.064)
Lin et al. $140.a$	NHANES 1999–2003	≥20	Female	All	1,134	PFOA	$4.06 \text{ ng/mL}^{\circ}$	1.65 (0.098)
Gleason et al.	NHANES 2007-2010	≥ 12	Overall	All Nau altara	4,333	PFOA	$3.5 \text{ ng/mL}^{\prime\prime}$	3.10 (0.002)
Jain and Ducatman $72a^{a}$	NHANES 2011–2014 NILANES 2011–2014	≥20 ≥20	Overall	Non-obese	1,082	PFUA	$2.2 \text{ ng/mL}^{\prime\prime}$	0.22(0.84)
Attomosio ^{67,a}	NHANES 2011–2014	≥ 20	Molo	All	1,601	PFUA	1.50 mg/mL^d	3.17(0.002)
Attanasio ^{67,a}	NHANES 2013-2010 NHANES 2012 2016	12-19	Formala	All	205	PFOA	1.30 lig/lilL 1.22 ng/mL^d	-2.29(0.022)
Mora et al ⁷⁶	Project Vivo	6 11	Overall	A11	630	PFOA	1.22 lig/lill	-0.35(0.019)
Mora et al ⁷⁶	Project Viva	6-11	Male	A11	332	PEOA	4.3 ng/mL^{c}	-0.33(0.74) -1.18(0.24)
Mora et al ⁷⁶	Project Viva	6-11	Female	A11	298	PFOA	4.2 ng/mL^c	-1.16(0.24) -1.96(0.050)
Khalil et al ⁷⁴	DCH	8-12	Overall	Obese	48	PFOA	0.99 ng/mL^{c}	1.62 (0.11)
Weighted z-score	Dell	0 12	overuit	000050	10	110/1	0.99 llg/ lll2	6.20 (<0.001)
PFOA (longitudinal studie	28)							0120 ((01001))
Sakr et al. ^{44,a}	GHS	>18	Overall	A11	205	PFOA	1.13 ppm^{b}	1.06 (0.29)
Darrow et al. ^{39,a}	C8HP	>20	Overall	All	28.047	PFOA	NS	5.88 (<0.001)
Darrow et al. ³⁹	C8HP	>20	Male	All	12.364	PFOA	$17.1 \mathrm{ng/mL}^c$	4.57 (<0.001)
Darrow et al. ³⁹	C8HP	>20	Female	All	15,683	PFOA	$16.0 \mathrm{ng/mL^c}$	3.92 (<0.001)
Salihovic et al. ^{42,a}	Swedish	70	Overall	All	1,002	PFOA	$3.31 \mathrm{ng/mL^c}$	5.20 (<0.001)
Mora et al. ⁷⁶	Project Viva	6-11	Overall	All	508	PFOA	$5.4 \mathrm{ng/mL}^c$	-1.31 (0.19)
Mora et al. ⁷⁶	Project Viva	6-11	Male	All	273	PFOA	$5.5 \mathrm{ng/mL^c}$	-0.89(0.38)
Mora et al. ⁷⁶	Project Viva	6-11	Female	All	235	PFOA	$5.4 \mathrm{ng/mL^c}$	-1.31 (0.19)
Weighted z-score								5.12 (<0.001)
PFOS (cross-sectional stu-	dies)							
Gallo et al. ^{70,a}	C8HP	≥ 18	Overall	All	46,452	PFOS	$20.3 \mathrm{ng/mL}^c$	6.53 (<0.001)
Nian et al. ^{41,a}	I C8HP	22–95	Overall	All	1,605	PFOS	24.22 ng/mL^c	2.31 (0.021)
Lin et al. $73,a$	NHANES 1999–2003	≥ 20	Overall	All	2,216	PFOS	$24.6 \mathrm{ng/mL}^{b}$	1.90 (0.057)
Gleason et al. ⁷²	NHANES 2007–2010	≥12	Overall	All	4,333	PFOS	11.3 ng/mL ^c	1.19 (0.24)
Jain and Ducatman ^{72,a}	NHANES 2011–2014	≥20	Overall	Non-obese	1,082	PFOS	6.3 ng/mL^a	-1.02(0.31)
Jain and Ducatman ^{2,a}	NHANES 2011–2014	≥20	Overall	Obese	1,801	PFOS	$5.5 \text{ ng/mL}^{\alpha}$	1.26 (0.21)
Attanasio ^{67,a}	NHANES 2013-2016	12-19	Famala	All	334 205	PFUS	$3.08 \text{ ng/mL}^{\circ}$	0.21(0.85) 1.86(0.062)
More et al ⁷⁶	Droject Vive	6 11	Overall	All	503 630	PFOS	2.70 lig/lilL	1.80(0.003) 1.07(0.20)
More et al. ⁷⁶	Project Viva	6 11	Mala	A11	222	PEOS	6.2 ng/mL^{c}	-1.07(0.29)
Mora et al ⁷⁶	Project Viva	6-11	Female	A11	208	PEOS	6.1 ng/mL^c	-1.21(0.23)
Khalil et al ⁷⁴	DCH	8_12	Overall	Obese	48	PFOS	2.79 ng/mL^{c}	-1.21(0.23) 0.16(0.88)
Weighted z-score	Dell	0 12	Overan	Obese	40	1105	2.79 116/ 1112	3.55 (< 0.001)
PFNA (cross-sectional stu	(dies)							5.55 ((0.001)
Nian et al. ^{41,a}	I C8HP	22-95	Overall	All	1.605	PFNA	$1.96 \mathrm{ng/mL}^c$	3.86 (<0.001)
Lin et al. ^{75,a}	NHANES 1999-2003	>20	Overall	All	2,216	PFNA	$0.79 \mathrm{ng/mL}^b$	1.55 (0.12)
Gleason et al. ^{40,a}	NHANES 2007-2010	≥ 12	Overall	All	4,333	PFNA	$1.2 \mathrm{ng/mL}^d$	3.51 (<0.001)
Jain and Ducatman ^{72,a}	NHANES 2011-2014	≥ 20	Overall	Non-obese	1,082	PFNA	$0.83 \mathrm{ng/mL}^d$	0.47 (0.65)
Jain and Ducatman ^{72,a}	NHANES 2011-2014	≥ 20	Overall	Obese	1,801	PFNA	$0.73 \mathrm{ng/mL}^d$	3.53 (<0.001)
Attanasio ^{67,a}	NHANES 2013-2016	12-19	Male	All	354	PFNA	$0.58 \mathrm{ng/mL}^d$	-2.49 (0.013)
Attanasio ^{67,a}	NHANES 2013-2016	12-19	Female	All	305	PFNA	$0.49 \mathrm{ng/mL}^d$	3.02 (0.003)
Mora et al. ⁷⁶	Project Viva	6-11	Overall	All	630	PFNA	$1.5 \mathrm{ng/mL}^c$	-2.94 (0.003)
Mora et al. ⁷⁶	Project Viva	6-11	Male	All	332	PFNA	$1.5 \mathrm{ng/mL}^c$	-3.92 (<0.001)
Mora et al. ⁷⁶	Project Viva	6-11	Female	All	298	PFNA	$1.5 \mathrm{ng/mL}^c$	-1.31 (0.19)
Khalil et al. ⁷⁴	DCH	8-12	Overall	Obese	48	PFNA	$0.24 \mathrm{ng/mL}^c$	-0.18 (0.86)
Weighted z-score								2.27 (0.023)
PFHxS (cross-sectional st	udies)							
Nian et al. ^{41,a}	I C8HP	22-95	Overall	All	1,605	PFHxS	0.73 ng/mL^{c}	0.39 (0.71)
Lin et al. 13,a	NHANES 1999-2003	≥20	Overall	All	2,216	PFHxS	1.98 ng/mL^{b}	0.40 (0.71)
Gleason et al. ^{40,a}	NHANES 2007–2010	≥12	Overall	All	4,333	PFHxS	$1.8 \mathrm{ng/mL}^a$	2.61 (0.009)
Jain and Ducatman ^{72,d}	NHANES 2011–2014	≥ 20	Overall	Non-obese	1,082	PFHxS	1.41 ng/mL^a	0.26 (0.81)
Jain and Ducatman ^{$2,a$}	NHANES 2011–2014	≥20	Overall	Obese	1,801	PFHxS	$1.24 \text{ ng/mL}^{\circ}$	3.33 (<0.001)
Attanasio 67,a	NHANES 2013-2016	12-19	Male	All	354	PFHxS	1.31 ng/mL^{a}	0.49(0.64)
Auanasio	NHAINES 2013-2016	12-19	Female	All	305	PFHXS	0.88 ng/mL"	2.35 (0.019)

Table 3. (Continued.)

Reference	Population	Age (y)	Sex	Weight	п	Exposure	PFAS Blood Conc.	z-Score (p-value)
Mora et al. ⁷⁶	Project Viva	6-11	Overall	All	630	PFHxS	$1.9 \mathrm{ng/mL}^c$	0.00 (1.0)
Mora et al. ⁷⁶	Project Viva	6-11	Male	All	332	PFHxS	$1.9 \mathrm{ng/mL^c}$	-0.65(0.52)
Mora et al. ⁷⁶	Project Viva	6-11	Female	All	298	PFHxS	$1.9 \mathrm{ng/mL^c}$	0.78 (0.44)
Khalil et al. ⁷⁴	DCH	8-12	Overall	Obese	48	PFHxS	$1.09 \mathrm{ng/mL}^c$	0.08 (0.94)
Weighted z-score							- /	1.42 (0.15)

Notes: Both overall and sex-specific results are presented where available. ALT, alanine aminotransferase; C8HP, C8 Health Project; DCH, Dayton Children's Hospital; GHS, General Health Survey; I C8HP, Isomers of C8 Health Project; NHANES, National Health and Nutrition Examination Survey; NS, not specified; PFAS, per- and polyfluorinated substances; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid. "The weighted *z*-score calculation was performed for those \geq 12 years of age, using the larger of overlapping cohorts.

^bMean.

^cMedian.

^dGeometric mean.

Few rodent studies evaluated the effects of GenX exposure on liver injury, and no eligible human studies evaluated this relationship. In mice, three studies reported that exposure to GenX resulted in steatosis^{90,157} or histopathological changes,⁸¹ although there were no changes in liver enzyme levels . A fourth study in mice did not find any significant histopathological changes or steatosis following GenX administration.¹⁵⁸

Two studies in mice evaluated the effects of PFAS mixtures. In one, a mixture of PFOA, PFOS, and PFHxS was not found to alter ALT levels in pregnant dams fed either standard or high-fat diet or in their offspring.¹³⁰ In the other, a mixture of PFOS, PFOA, PFNA, PFHxS, and GenX was found to increase ALT levels and alter liver histopathology in adult males and females.¹³⁴

Discussion

This systematic review summarizes the body of evidence linking markers of liver injury with exposure to PFOA, PFOS, PFHxS, and PFNA, the most commonly studied PFAS. Meta-analysis in human studies provided convincing evidence that exposure to PFOA, PFOS, and PFNA are associated with higher serum ALT. Rodent studies have consistently demonstrated a positive relationship between exposure to PFOA and PFOS and serum ALT as well as relative liver weight, which may indicate accumulation of excess liver fat. We also found evidence to suggest a positive association between PFNA and ALT. Findings in rodents were largely consistent across studies that differed in exposure routes and duration. Many rodent studies exposed animals to doses far above expected human exposures; this is due to differences in PFAS elimination and half-lives in mice and rats relative to humans³⁴ and does not preclude comparison with human research. The findings of the present review indicate consistency of results across human and rodent studies, adding support to the idea that associations found in observational human studies may be causal.

Per- and polyfluorinated compounds were first detected in the blood of occupationally exposed workers in the 1970s and in the general population in the 1990s, which brought awareness of their potential health risks.⁷ The hydrophobic and oleophobic properties of the carbon–fluorine bond make PFAS ideal for industrial use in flame retardants and surfactants yet also allow them to persist in the environment, with concerning implications for long-term health effects. Although manufacturers started to phase out the production of PFOS and other long-chain PFAS in the early 2000s, the Centers for Disease Control and Prevention still reports wide-spread PFAS exposure in U.S. adults, demonstrating their persistence in biological systems and the continued public health relevance of the present review.^{21,22} Of additional concern, newer PFAS that have replaced the legacy PFAS for industrial use, such as GenX, have similar chemical structure and properties. The

limited studies of these replacement PFAS suggest that they may have toxic effects similar to the legacy chemicals.^{157,159}

The exact mechanism of PFAS hepatotoxicity remains unresolved. PFAS are thought to promote liver inflammation and triglyceride accumulation through activation of both human and mouse peroxisome proliferator-activated receptor alpha (PPARα) and other receptors given their structural similarities with fatty acids.^{28,96–98,143,149,153,158,160} Consequently, altered lipid metabolism has been associated with PFAS exposure in both human^{46,54,73,78} and animal studies.^{28,32,85,129,136} Although much of the mechanistic research has been done using mouse models, cell-culture studies evaluating comparability of this mechanism in both mouse and human receptors have demonstrated that PFAS similarly activate human PPARα^{161–163} However, PFAS-induced liver injury and steatosis may not depend on PPARα alone.¹⁶⁴ Alternate or complementary mechanisms may involve activation of constitutive androstane receptor (CAR),^{98,143} down-regulation of nuclear factor erythroid 2-related factor 2 (NRF2),^{121,129} and up-regulation of nuclear factor kappa-light-chain-enhancer of activated B cells nuclear factor-kappa B (NF-κB).¹⁴⁵ An additional possibility suggests that PFAS may reduce the bioavailability of choline, leading to steatosis as a result of choline deficiency.^{29,140}

Several studies in mice examined the effects of PFAS exposure with coexposure to either a dietary supplement or high-fat diet. Supplementation with antioxidants was consistently found to ameliorate PFAS-induced liver injury.^{103,111,126,129,135,137} The effects of PFAS exposure in populations consuming high-fat diets were mixed; studies have found that PFAS exposure in rodents exacerbates the effect of high-fat diets on liver injury,^{108,125,139} although others have reported potentially protective effects.^{102,127,131} It is possible that the mechanisms by which PFAS induce liver injury are altered when liver homeostasis is already disrupted. These findings have not been replicated or studied extensively in humans, although there is some evidence that the relationship between PFAS and ALT may be mediated by metabolic disease or obesity.^{72,165}

The parallel findings in experimental rodent studies identified in the present review address the limitations of observational findings and provide comprehensive evidence to suggest hepatotoxic effects of PFAS exposure. Many human studies, because of limited access to histopathological and imaging data for asymptomatic participants, limit analyses to liver enzymes and other biomarkers than can be easily measured in blood samples. Although levels of ALT and other enzymes are relatively specific indicators of liver injury, the exact nature or severity of the injury cannot be determined without more invasive procedures.⁵¹ However, it is well understood that populations that have higher levels of ALT also experience higher mortality and morbidity related to liver disease, and mild elevations of ALT in individuals may suggest the presence of NAFLD.⁵⁷ Animal studies report similar increases in liver enzymes and pathological alterations to the structure and function

			Exposure	_		Sample							
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection				Dose (mg	j/kg)		
Martin et al.99	Rats	SD (M)	Gavage	PFOA	1D 2D	EOT		0					
Martin et al. ²⁹	Rais	SD (M)	Gavage	PFUA	2D 5D	EOT		8					
Rigden et al 92	Rate	SD (M)	Gavage	PEOA	30	EOT	l	0				0	
Butenhoff et al 93	Rats	SD (M)	Gavage	PEOA	280	FOT	<u> ا</u>		A			0	
Butenhoff et al. ⁹³	Rats	SD (F)	Gavage	PFOA	28D	FOT			T				
Butenhoff et al.93	Rats	SD (M)	Gavage	PFOA	28D	3W Post			0				
Butenhoff et al.93	Rats	SD (F)	Gavage	PFOA	28D	3W Post			Ă				
Owumi et al.112	Rats	Wistar (M)	Gavage	PFOA	28D	EOT							
Owumi et al. ¹¹²	Rats	Wistar (M)	Gavage	PFOA + NAC 25	28D	EOT	0						
Owumi et al.112	Rats	Wistar (M)	Gavage	PFOA + NAC 50	28D	EOT	0						
Minata et al.96	Mice	129S4/SvlmJ (M)	Gavage	PFOA	4W	EOT							
Nakagawa et al.97	Mice	mPPARα (M)	Gavage	PFOA	6W	EOT	04						
Nakagawa et al.97	Mice	hPPARα (M)	Gavage	PFOA	6W	EOT -	04						
Nakagawa et al.97	Mice	PPARα-null (M)	Gavage	PFOA	6W	EOT	04						
Minata et al.96	Mice	PPARα-null (M)	Gavage	PFOA	4W	EOT							
Yahia et al.88	Mice	ICR (Dams)	Gavage	PFOA	GD0-GD17	EOT	00						
Yang et al. 17	Mice	Kunming (M)	Gavage	PFOA	14D	EOT							
Wu et al. 91	Mice	Kunming (M)	Gavage	PFUA	10	EOT							
Vvu et al. ³⁷	Mice	Kunming (M)	Gavage	PFUA	21D 15D	EOT							
Zou et al 111	Mice	Kunming (M)	Gavage	PFOA PEOA ± Ouo	150	EOT							
Liu et al. ¹⁰³	Mice	Kunming (M)	Gavage	PFOA + Que	140	EOT	•						
Liu et al.	Mice	Kunming (M)	Gavage	PEOA + GSPE	140	EOT							
Yan et al ⁸⁹	Mice	BALB/c (M)	Gavage	PEOA	280	FOT	00						
Guo et al. ⁸⁴	Mice	BALB/c (M)	Gavage	PFOA	28D	FOT							
Guo et al. ¹⁷¹	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	a T						
Yan et al. 175	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	T .						
Yan et al. ¹⁷⁵	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 125	28D	EOT	A						
Yan et al.175	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 250	28D	EOT							
Hui et al.85	Mice	BALB/c (M)	Gavage	PFOA	7D	EOT							
Marques et al.130	Mice	CD-1 (Dams)	Gavage	PFOA	GD1-PND21	EOT	0						
Marques et al.130	Mice	CD-1 (Dams)	Gavage	PFOA + HFD	GD1-PND21	EOT	0						
Blake et al.81	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-E11.5	E17.5 =	00						
Blake et al.81	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-E11.5	E11.5	00						
Tan et al. ¹⁰⁸	Mice	C57BI/6N (M)	Diet	PFOA	3W	EOT	A						
Tan et al. ¹⁰⁸	Mice	C57BI/6N (M)	Diet	PFOA+HFD	3W	EOT							
Li X et al. ⁷⁰²	Mice	C57BI/6 (M)	Gavage	PFOA+LFD	16W	EOT	0						
Li X et al. ⁷⁰²	Mice	C57BI/6 (M)	Gavage	PFOA+LFD	8W	EOT	0						
Li X et al. ¹⁰²	Mice	C57BI/6 (M)	Gavage	PFOA+LFD	200	EOT	0						
LIX et al. ¹⁰²	Mice	C57BI/6 (M)	Gavage	PFOA+HFD	1674	EOT	10						
LIX et al.	Mice	C57BI/6 (M)	Gavage		21//	EOT	18						
Crebelli et al 82	Mice	C57BI/6 (M)	Water	PFOA	2 V V 5 W	EOT	No.						
Shi et al ¹⁷³	Mice	C57BL/6L(M)	Gavage	PEOA	10	EOT							
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + Que	10	FOT							
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad1	1D	FOT							
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad2	1D	EOT							
Shi et al. 173	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad1	1D	EOT							
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad2	1D	EOT							
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad1	1D	EOT							
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad2	1D	EOT							0
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao1	1D	EOT							
Shi et al. ¹⁷³	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao2	1D	EOT =			1000				
Wang et al. ¹⁰⁹	Mice	C57BL/6J (M)	Gavage	PFOA	15D	EOT			A				
Wang et al. 709	Mice	C57BL/6J (M)	Gavage	PFOA	30D	EOT							
Cui et al. 170	Mice	C57BL/6J (M)	Gavage	PFOA	28D	EOT	A						
Cui et al. 170	Mice	miR-34a(-/-) C57BL/6J (M)	Gavage	PFOA	28D	EOT							
Pouwer et al. ⁸⁷	Mice	APOE 3-Leiden CETP (M)	Diet	PFUA	6VV	VVeek 4	0		÷				
Pouwer et al. 87	Mice	APOE 3-Leiden CETP (M)	Diet	PFUA	414/	EOT	10		•				
Shap at al 172	Mice	ICP (M)	Bronatal	REOA	GD12 17	DN Wook 12			-				
LiDetal. ⁸⁶	Mice	Kunming (F)	Prenatal	PEOA	GD1-17	PND21	-						
Quist et al. 106	Mice	CD-1 (F)	Prenatal	PFOA	GD1-17	PND91	0						
Quist et al. 106	Mice	CD-1 (F)	Prenatal	PFOA + I FD	GD1-17	PND91	ŏ						
Quist et al. 106	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-17	PND91 (F)	õ						
Quist et al. ¹⁰⁶	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-17	PND91 (NF)	õ						
Marques et al. 130	Mice	CD-1 (MF)	Prenatal	PFOA	GD1-PND21	EOT	A						
Marques et al. 130	Mice	CD-1 (MF)	Prenatal	PFOA + HFD	GD1-PND21	EOT	0						
Marques et al.130	Mice	CD-1 (F)	Prenatal	PFOA	GD1-PND21	PND90	0						
Marques et al. ¹³⁰	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-PND21	PND90	0						
Marques et al. 130	Mice	CD-1 (M)	Prenatal	PFOA	GD1-PND21	PND90	0						
Marques et al. 130	Mice	CD-1 (M)	Prenatal	PFOA + HFD	GD1-PND21	PND90	0						
							<u> </u>			1		100	7/
							0			50		100	300
			Exposure			Sample							
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection				Dose (p	pm)		
Butenhoff et al.94	Rats	SD (M)	Diet	PFOA	2Y	Month 3	1		A				A
Butenhoff et al.94	Rats	SD (M)	Diet	PFOA	2Y	Month 6	1		A				
Butenhoff et al.94	Rats	SD (M)	Diet	PEOA	2Y	Month 12	1		•				
Dukennom et al. ³⁴	Rats	SD (M)	Diet	PEOA	2 ĭ 2∨	Month 18	1						•
Butenhoff et al 94	Rate	SD (IVI) SD (F)	Diet	PEOA	∠ 1 2V	EUT Month 2	1		2				
Butenhoff et al 94	Rate	SD (F)	Diet	PEOA	∠ 1 2V	Month 6	1		0				0
Dutermon et al."	Rate	SD (F)	Diet	PEOA	∠ 1 2V	Month 12]		8				0
Butenhoff et al 94			Diet	PEOA	29	Month 12	1		õ				0
Butenhoff et al.94 Butenhoff et al.94	Rate	SD (E)	2101			FOT	1		š				
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴	Rats	SD (F) SD (F)	Diet	PEOA	2 Y								0
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Qazi et al. ¹⁰⁴	Rats Rats Mice	SD (F) SD (F) C57BL/6 (M)	Diet Diet	PFOA PFOA	2 Y 10D	FOT	0		0				0
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Qazi et al. ⁷⁰⁴ Qazi et al. ⁷⁰⁵	Rats Rats Mice Mice	SD (F) SD (F) C57BL/6 (M) C57BL/6 (M)	Diet Diet Diet	PFOA PFOA PFOA	2 Y 10D 10D	EOT	0		0				0
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Qazi et al. ⁷⁰⁴ Qazi et al. ⁷⁰⁵ Qazi et al. ⁷⁰⁵	Rats Rats Mice Mice Mice	SD (F) SD (F) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M)	Diet Diet Diet Diet	PFOA PFOA PFOA PFOA + Con A	10D 10D 10D	EOT EOT EOT			0				0
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Qazi et al. ⁷⁰⁴ Qazi et al. ⁷⁰⁵ Qazi et al. ⁷⁰⁵ Qazi et al. ⁷⁰⁵	Rats Rats Mice Mice Mice Mice	SD (F) SD (F) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M)	Diet Diet Diet Diet Diet	PFOA PFOA PFOA PFOA + Con A PFOA	2 Y 10D 10D 10D 28D	EOT EOT EOT EOT	000		0				0
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Dazi et al. ¹⁰⁴ Qazi et al. ¹⁰⁵ Qazi et al. ¹⁰⁵ Qazi et al. ¹⁰⁵ Qazi et al. ¹⁰⁵	Rats Rats Mice Mice Mice Mice Mice	SD (F) SD (F) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M)	Diet Diet Diet Diet Diet Diet	PFOA PFOA PFOA + Con A PFOA + Con A PFOA + Con A	2 Y 10D 10D 28D 28D	EOT EOT EOT EOT EOT	004		0				0
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Dazi et al. ¹⁶⁴ Qazi et al. ¹⁶⁵ Qazi et al. ¹⁶⁵ Qazi et al. ¹⁶⁵ Qazi et al. ¹⁶⁵ Botelho et al. ¹⁰¹	Rats Rats Mice Mice Mice Mice Mice Mice	SD (F) SD (F) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M)	Diet Diet Diet Diet Diet Diet Diet	PFOA PFOA PFOA + Con A PFOA + Con A PFOA + Con A PFOA	2Y 10D 10D 28D 28D 10D	EOT EOT EOT EOT EOT EOT	000		0				0
Butenhoff et al. ⁹⁴ Butenhoff et al. ⁹⁴ Dazi et al. ¹⁶⁶ Qazi et al. ¹⁶⁶ Qazi et al. ¹⁶⁶ Qazi et al. ¹⁶⁶ Qazi et al. ¹⁶⁶ Dazi et al. ¹⁶⁷ Son et al. ¹⁰⁷	Rats Rats Mice Mice Mice Mice Mice Mice Mice	SD (F) SD (F) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) C57BL/6 (M) ICR (M)	Diet Diet Diet Diet Diet Diet Water	PFOA PFOA PFOA + Con A PFOA PFOA + Con A PFOA PFOA	2Y 10D 10D 28D 28D 10D 21D	EOT EOT EOT EOT EOT EOT EOT	00000		0		•		0

Figure 2. Strip plots for PFOA and ALT in animal studies. Triangles indicate a significant increase in ALT relative to control. Circles indicate no significant change in ALT relative to control. Additional exposures in Shi et al.¹⁷³ refer to lactic acid bacterial strains. An accessible version of this figure is available in Table S5. Note: 4-PBA, 4-phenylbutyric acid; ALT, alanine aminotransferase; Con A, concanavalin A; D, day; E, embryonic day; EOT, end of treatment; F, female; GD, gestational day; GSPE, grape seed proanthocyanidin extract; HFD, high-fat diet; hPPAR, humanized peroxisome proliferator-activated receptor; LFD, low-fat diet; M, male; mPPAR, mouse peroxisome proliferator-activated receptor; NAC, *N*-acetylcysteine; PFOA, perfluorooctanoic acid; PND, postnatal day; Que, quecertin; SD, Sprague Dawley; W, week; Y, year.

			Exposure			Sample					
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection			Dose (mg/kg)		
Curran et al. ¹¹³	Rats	SD (M)	Diet	PFOS	28D	EOT	0	0	0	A	
Unran et al. ¹¹⁶	Rats	SD (F)	Diet	PFUS	280	EOT	0	0	0	0	
Han et al ¹¹⁷	Rate	SD (M)	Gavage	PFOS	280	EOT	A A				
Kim et al. 118	Rats	SD (M)	Gavage	PFOS	28D	EOT					
Kim et al. ¹¹⁸	Rats	SD (F)	Gavage	PFOS	28D	EOT	000				
Wan et al.121	Rats	SD (M)	Gavage	PFOS	28D	EOT					
Martin et al.99	Rats	SD (M)	Gavage	PFOS	1D	EOT	0				
Martin et al.99	Rats	SD (M)	Gavage	PFOS	2D	EOT	0				
Martin et al.99	Rats	SD (M)	Gavage	PFOS	5D	EOT	0				
Yan et al. ⁶⁹	Mice	BALB/c (M)	Gavage	PFOS	28D	EOI	0 🔺				
Lvetal ¹²⁹	Mice	- (IVI) - (M)	Gavage	PFOS + Nar	210	EOT	^				
Sulet al. ¹³⁵	Mice	ICR (M)	Gavage	PFOS	21D	FOT	0				
Su et al. ¹³⁵	Mice	ICR (M)	Gavage	PFOS + VC100	21D	EOT					
Su et al.135	Mice	ICR (M)	Gavage	PFOS + VC200	21D	EOT	0				
Deng et al. ¹²⁴	Mice	C57BL/6 (M)	Gavage	PFOS	1D	2D Post	Ŭ				0
Deng et al. ¹²⁴	Mice	C57BL/6 (M)	Gavage	PFOS + PCB126	1D	2D Post					
Qin et al. ¹³³	Mice	C57BL/6J (M)	Gavage	PFOS	4W	EOT	A				
Qin et al. ⁷³⁵	Mice	C57BL/6J (M)	Gavage	PFOS + HFD	4W	EOT	A				
Ving of al 138	Mice	C57BL/7 (M)	Gavage	PFUS	300	EOT .	AA	A			
Huang et al 126	Mice	Kunming (M)	Gavage	PFOS	21D	FOT					
Huang et al. 126	Mice	Kunming (M)	Gavage	PFOS + GSPE	21D	FOT	^				
Hamilton et al.125	Mice	hCYP2B6-Tg (M)	Gavage	PFOS	3W	EOT	•				
Hamilton et al.125	Mice	Cyp2b-null (M)	Gavage	PFOS	3W	EOT	0				
Hamilton et al.125	Mice	hCYP2B6-Tg (F)	Gavage	PFOS	3W	EOT	0				
Hamilton et al.125	Mice	Cyp2b-null (F)	Gavage	PFOS	3W	EOT	0				
Hamilton et al. ¹²⁵	Mice	hCYP2B6-Tg (M)	Gavage	PFOS + HFD	3W	EOT					
Hamilton et al. 125	Mice	hCYP2B6-Tg (F)	Gavage	PFOS + HFD	3W	EOT	0 🔺				
Hamilton et al. 125	Mice	Cyp2b-null (F)	Gavage	PFOS + HFD	3W	EOI .	A				
Marques et al. 130	Mice	CD-1 (dams)	Gavage	PFUS DEOS I HED	GD1-PND21	EOT	A				
laiotal ¹²⁸	Mice	C57BL/7 (ME)	Prenatal	PEOS + DEN	GD1=F1021	EOT	0				
Marques et al. 130	Mice	CD-1 (MF)	Prenatal	PFOS	GD1-PND21	FOT					
Marques et al. 130	Mice	CD-1 (MF)	Prenatal	PFOS + HFD	GD1-PND21	EOT	0				
Marques et al. 130	Mice	CD-1 (F)	Prenatal	PFOS	GD1-PND21	PND90	0				
Marques et al. 130	Mice	CD-1 (F)	Prenatal	PFOS + HFD	GD1-PND21	PND90	0				
Marques et al. 130	Mice	CD-1 (M)	Prenatal	PFOS	GD1-PND21	PND90	0				
Marques et al. 130	Mice	CD-1 (M)	Prenatal	PFOS + HFD	GD1-PND21	PND90	0				
									50	1 Y	250
			Exposure			Sample	-				
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection			Dose (ppm)		
		. ,									
Seacat et al. ¹²⁰	Rats	SD (F)	Diet	PFOS	14W	EOT	000	0	WI /		
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰	Rats Rats	SD (F) SD (M)	Diet Diet	PFOS PFOS	14W 14W	EOT EOT	00 0 00 0	0 ▲			
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵	Rats Rats Rats	SD (F) SD (M) SD (M)	Diet Diet Diet	PFOS PFOS PFOS	14W 14W 7D	EOT EOT 1D Post	00 0 00 0	0 ▲		٨	
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵	Rats Rats Rats Rats Rats	SD (F) SD (M) SD (M) SD (M) SD (M)	Diet Diet Diet Diet	PFOS PFOS PFOS PFOS	14W 14W 7D 7D	EOT EOT 1D Post 28D Post	00 0 00 0	0		•	
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵	Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (M) SD (M) SD (M) SD (M)	Diet Diet Diet Diet Diet Diet	PFOS PFOS PFOS PFOS PFOS PFOS	14W 14W 7D 7D 7D 7D	EOT EOT 1D Post 28D Post 56D Post 84D Post	00 0 00 0			•	
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (M) SD (M) SD (M) SD (M) SD (M)	Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS PFOS PFOS PFOS PFOS PFOS	14W 14W 7D 7D 7D 7D 1D	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT	000			•	
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS PFOS PFOS PFOS PFOS PFOS PFOS	14W 14W 7D 7D 7D 7D 1D 7D	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT	000 000			• • • • • • • • • • • • • • • • • • • •	
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS PFOS PFOS PFOS PFOS PFOS PFOS	14W 14W 7D 7D 7D 7D 1D 7D 28D	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT	000 000				
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 1D 7D 28D 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT W4	000 000				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 1D 7D 28D 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT W4 W14	000 000 000 000				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT EOT W4 W14 W27	000 000 000 000 000				
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 1D 7D 28D 52W 52W 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT EOT W4 W14 W27 EOT	000 000 000 000 000 000				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 1D 7D 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT W4 W14 W14			u ,		
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁶ Butenhoff et al. ⁹⁶ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 7D 1D 7D 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT W4 W14 W27 EOT W4 W14 W14 W14 W27					
Seacat et al. ¹²⁰ Seacat et al. ¹²⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT W4 W14 W27 EOT W4 W14 W14 W27 EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT W4 W14 W14 W27 EOT W14 W27 EOT EOT			<u>u</u> , ,		
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT 1D Post 28D Post 56D Post 84D Post EOT EOT EOT W4 W14 W27 EOT W4 W14 W14 W27 EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁷⁵ Elcombe et al. ¹¹⁷⁴ Elcombe et al. ¹¹⁷⁴ Elcombe et al. ¹¹⁷⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁹ Bagley et al. ²⁹	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 280 Post 840 Post EOT EOT EOT EOT W4 W14 W14 W27 EOT W4 W14 W14 W27 EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁹ Bagley et al. ²⁹	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 28D Post 84D Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT			<u>u</u> , ,		
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁹ Bagley et al. ²⁹ Bagley et al. ²⁹ Bagley et al. ²⁹	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) F SD (M) SD (M) SD (F) SD (F) SD (F) SD (M) SD (M) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 560 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT	000 000 000 000 000 000 000 000 000 00				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁵⁵ Butenhoff et al. ⁵⁵ Bagley et al. ²⁹ Bagley et al. ²⁹	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley et al. ²⁰	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 28D Post 84D Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁰ Bagley et al. ²⁰	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (M)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 560 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁰ Bagley et al. ²⁰	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	ЕОТ ЕОТ 1D Post 28D Post 84D Post 84D Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁹ Bagley et al. ²⁹	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD (F) SD (F) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 560 Post EOT EOT EOT EOT EOT W14 W14 W27 EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁰ Bagley et al. ²⁰	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (M) SD (F) SD (F) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS + CS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT	000 000 000 000 000 000 000 000 000 00				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley et al. ²⁰	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT	000 000 000 000 000 000 000 000 000				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹²⁶ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley et al. ²⁰	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F)	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 560 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley et	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F)	Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT	000 000 000 000 000 000 000 000 000 00				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁰ Bagley et a	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT	000 000 000 000 000 000 000 000 000 00				
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹²⁶ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁹ Bagley et al. ²⁹ Ba	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹²⁶ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley e	Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT	000 000 000 000 000 000 000 000 000 00				•
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁴ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁰ Bagley et al. ²⁰ Butenhoff et al. ¹⁷²	Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD (M) SD (F) SD (F) SD (F) SD (M) SD (M) SD (M) SD (M) SD (M) SD (M) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					• • •
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁹ Bagley et al. ²⁹ Butenhoff et al. ¹²² Butenhoff et al. ¹²² Butenhoff et al. ¹²²	Rats Rats <td>SD (F) SD (M) SD (F) SD (F) SD (F) SD (M) SD (F) SD</td> <td>Diet Diet Diet Diet Diet Diet Diet Diet</td> <td>PFOS PFOS PFOS</td> <td>14W 14W 14W 7D 7D 7D 7D 2BD 52W 52W 52W 52W 52W 52W 52W 52W</td> <td>EOT EOT ID Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT</td> <td></td> <td></td> <td></td> <td></td> <td>▲ ○ ○</td>	SD (F) SD (M) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 2BD 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley e	Rats Rats <td>SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD</td> <td>Diet Diet Diet Diet Diet Diet Diet Diet</td> <td>PFOS PFOS PFOS</td> <td>14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W</td> <td>EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT</td> <td></td> <td></td> <td></td> <td></td> <td>▲ ○ ○</td>	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Butenhoff et al. ⁹⁵ Bagley et al. ²⁰ Bagley et al.	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹²⁰ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁹ Bagley et al. ²⁰ Bagley et	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT ID Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹²⁶ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ²⁹ Bagley et al. ²⁰ Bagley et	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁶ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley et a	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁹ Bagley et al. ²⁰ Butenhoff et al. ¹²² Butenhoff et al. ¹²² Butenhoff et al. ¹²² Cazi et al. ¹³² Cazi et al. ¹³² Cazi et al. ¹³² Cazi et al. ¹³² Cazi et al. ¹⁴⁰ Zhang et al. ¹⁴⁰	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 2BD 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 560 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹²⁶ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ²⁹ Bagley et al. ²⁰ Cazi et al. ¹¹² Zhang et al. ¹⁴⁰ Zhang et al. ¹⁴⁰	Rats Rats <td>SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD</td> <td>Diet Diet Diet Diet Diet Diet Diet Diet</td> <td>PFOS PFOS PFOS</td> <td>14W 14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W</td> <td>EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT</td> <td></td> <td></td> <td></td> <td></td> <td>▲ ○ ○ ○</td>	SD (F) SD (M) SD (F) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○ ○
Seacat et al. ¹⁷⁰ Seacat et al. ¹⁷⁰ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁵ Elcombe et al. ¹¹⁴ Elcombe et al. ¹¹⁵ Butenhoff et al. ⁸⁵ Butenhoff et al. ⁸⁵ Bagley et al. ²⁰ Bagley e	Rats Rats Rats Rats Rats Rats Rats Rats	SD (F) SD (M) SD (F) SD (F) SD (F) SD (M) SD (F) SD	Diet Diet Diet Diet Diet Diet Diet Diet	PFOS PFOS	14W 14W 14W 7D 7D 7D 7D 7D 28D 52W 52W 52W 52W 52W 52W 52W 52W	EOT EOT EOT 1D Post 280 Post 840 Post EOT EOT EOT EOT EOT EOT EOT EOT EOT EOT					▲ ○ ○

Figure 3. Strip plots for PFOS and ALT in rodent studies. Triangles indicate a significant increase in ALT relative to control. Diamonds indicate a significant decrease in ALT relative to control. Circles indicate no significant change in ALT relative to control. Plots are ordered by species and strain. In the study by Butenhoff et al.¹²², atmospheric exposure occurred for 5 h/d, 5 d/wk. An accessible version of this figure is available in Table S6. Note: ALT, alanine amino-transferase; CS, choline supplementation; Con A, concanavalin A; D, day; DEN, diethylnitrosamine; EOT, end of treatment; F, female; GD, gestational day; GSPE, grape seed proanthocyanidin extract; HFD, high-fat diet; M, male; mMCD, marginal methionine/choline-deficient diet; Nar, naringin; PCB, polychlorinated biphenyl; PFOS, perfluorooctanesulfonic acid; PND, postnatal day; SD, Sprague Dawley; VC, vitamin C; W, week.

of the liver. Indeed, changes to serum biomarkers of liver function following PFAS exposure are often accompanied by histopatho-logical changes or steatosis in rodents,^{126,135,140} suggesting that associations between PFAS and ALT, AST, and GGT may be indicative of liver disease. However, only one study in humans reported both histological and liver enzyme data.⁷⁷ Some rodent studies reported histological alterations without associated changes in liver enzymes, ^{29,81,99,151} demonstrating the limitations of liver enzymes as markers of liver health. Recently, metabolomics^{79,131} and mixtures^{78,130,134} methods have emerged as more focused approaches to uncovering the relationship and mechanism between PFAS and liver injury and account for realistic exposure conditions, which may address this limitation. Most human studies identified by this review were cross-sectional, which precludes causal conclusions, and were conducted using different methods of data transformation and control of potential confounders. Far more studies have been conducted in rodents, and these findings, in conjunction with the limited number of longitudinal human studies, support a direct effect of PFAS on liver injury.

Still, there are a number of understudied factors in both epidemiolocal and experimental studies that require evaluation to elucidate the relationship between PFAS and liver injury. In this review, we have identified few studies in humans or rodents that evaluated sex-specific histological effects of PFAS exposure. Attanasio⁶⁷ reported positive associations between PFAS and ALT in female adolescents and negative associations in male adolescents, whereas studies in adults did not observe any sex-specific differences.^{39,75} Some evidence for sex-specific differences was also reported in rats, with elevated ALT observed more frequently in male rats following PFAS exposure,^{29,94,95,120,122} and sex-specific differences in the elimination half-lives of PFOA and PFOS have also been reported for rodents.³⁴ Many rodent studies were limited to males alone, which narrows the scope of findings and potential for mechanistic understanding. PFAS have been found to exert differential health effects by sex among other disease outcomes,166,167 and thus, the sex specificity of PFAS toxicity merits further investigation. Early life exposure to PFAS is another potentially significant factor that requires additional investigation. In humans, Stratakis et al. ⁷⁸ reported that prenatal PFAS exposure was significantly associated with elevated liver enzymes in childhood; however, Mora et al.⁷⁶ observed modest inverse associations between maternal PFAS concentration and child ALT levels. In rodents, in utero and perinatal PFAS exposure was associated with elevated liver enzymes and liver weight, steatosis, and other histopathological alterations.^{86,100,106,119,128} These significant findings in rodent studies warrant the need for further consideration in humans. In both human and rodent studies, we found that most studies focused on the relationship between a single PFAS exposure and liver injury. As NHANES and other surveillance programs have indicated, multiple PFAS can regularly be detected in individuals and these exposures are highly correlated.^{21,40,67,72,75} Research suggests that effects of PFAS mixtures, as well as the interaction between PFAS and other environmental exposures (e.g., diet, polychlorinated biphenyls) may exert synergistic or antagonistic effects.¹⁶⁸ Only two animal studies appear to have investigated this possibility to date, and the study designs differ in vehicle and duration of exposure, as well as in life stage and PFAS mixture composition, making it difficult to draw conclusions or extrapolate to humans.^{130,134} Only one study in humans investigated the liver effects of PFAS mixtures rather than single exposures and found convincing evidence for synergistic effects.78 Rapidly evolving methods for assessing exposure-mixture effects in population studies have potential to unravel the complex relationships between environmental exposures and liver injury.

To our knowledge, this is the first systematic review of the literature on PFAS exposure and liver injury and one of few reviews to consider both observational human and experimental rodent evidence for the effects of environmental exposures on health. We focused on ALT as a specific indicator of liver injury in occupationally exposed and general human populations and have followed PRISMA guidelines to limit the risk of bias in data synthesis and reporting of results. We found significant heterogeneity in the analyses, which limited our ability to perform a traditional meta-analysis and obtain a pooled effect estimate for human studies. However, evidence from experimental rodent studies consistently supported the results from human studies and indicates that PFAS exposure may contribute to markers of liver injury such as elevated liver enzymes, steatosis, and histopathological alterations.

Conclusion

Data from human studies consistently demonstrate an association between PFOA, PFOS, and PFNA and markers of liver injury: ALT, AST, and GGT. Complementary evidence from experimental rodent studies provides biological plausibility that this association may be causal. Insufficient evidence in both human and rodent studies exists to conclude that PFHxS and other PFAS have hepatoxic effects, possibly due to the low number of available studies. That there are positive associations between PFAS and ALT levels in humans suggests that PFAS exposure may contribute to the growing NAFLD epidemic. Future research should evaluate the full spectrum of NAFLD (including inflammation, hepatocellular injury, steatosis, and fibrosis) through histopathology or imaging, as well as consider additional investigation on lesser studied PFAS and PFAS mixtures to elucidate potential synergistic effects.

Acknowledgments

This work was conceptualized and supervised by L.C. and N.S. The methodology was developed by L.C., N.S., D.V.C., and S.P.E. All analyses and data curation was performed and the original manuscript draft was written by S.R. and E.C. Critical review and editing of the manuscript was provided by L.C., N.S., S.P.E., D.I.W., D.V., D.C., T.J., S.A.X., R.K., S.S., V.V., M.A.L., H.R., D.V.C., and R.M. The financial support for this project was acquired by L.C. Sadly, Dr. Hugo Rosen passed away during revisions and did not review the final version of the paper. The authors agreed that Dr. Rosen should remain a co-author on the published article. All other authors provided final approval of this manuscript.

We gratefully acknowledge R. Jain for providing standard errors for the analyses extracted from Jain⁷¹ and Jain and Ducatman⁷².

The results reported herein correspond to specific aims of grant R01ES030691 (L.C., R.M., D.V.C., S.P.E., D.I.W., D.V.) from the National Institutes of Health (NIH) National Institute of Environmental Health Science (NIEHS). Additional funding from the NIEHS included R21ES029681 (L.C., R.M., D.V.C., D.V.), R01ES029944 (L.C., D.V.C., D.I.W., D.V., S.R.), R01ES030364 (L.C., R.M., D.V.C., D.I.W., D.V., M.A.L., S.P.E., N.S., E.C.) R01ES032712 (V.V.), R21ES028903 (R.M., D.V., D.I.W., L.C.), P30ES007048 (R.M., L.C., D.V.C., S.P.E., S.R.), R21ES029328 (D.V.), P30ES023515 (D.V.), U2C ES030859 (D.I.W.), and T32ES013678 (E.C.). Additional funding from the NIH included P01CA196569, R01CA140561, R01ES016813, P30DK048522 (D.V.C.). Funding from the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture included the Hatch project [1002182 (M.A.L.)] and funding from USDA Agricultural Research Service agreement #58-3092-0-001 (S.S.).

References

- Mitra S, De A, Chowdhury A. 2020. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl Gastroenterol Hepatol 5:16, PMID: 32258520, https://doi.org/10.21037/tgh.2019.09.08.
- Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. 2013. From NAFLD to NASH to cirrhosis—new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol 10(11):627–636, PMID: 23958599, https://doi.org/10.1038/ nrgastro.2013.149.
- Li B, Zhang C, Zhan YT. 2018. Nonalcoholic fatty liver disease cirrhosis: a review of its epidemiology, risk factors, clinical presentation, diagnosis, management, and prognosis. Can J Gastroenterol Hepatol 2018:2784537, PMID: 30065915, https://doi.org/10.1155/2018/2784537.
- Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. 2018. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67(1):123–133, PMID: 28802062, https://doi.org/10.1002/hep.29466.
- Brunt EM. 2004. Nonalcoholic steatohepatitis. Semin Liver Dis 24(1):3–20, PMID: 15085483, https://doi.org/10.1055/s-2004-823098.
- Foulds CE, Trevino LS, York B, Walker CL. 2017. Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol 13(8):445–457, PMID: 28524171, https://doi.org/10.1038/nrendo.2017.42.
- Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541, PMID: 21793199, https://doi.org/10.1002/ieam.258.
- Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbühler K. 2008. Estimating consumer exposure to PFOS and PFOA. Risk Anal 28(2):251– 269, PMID: 18419647, https://doi.org/10.1111/j.1539-6924.2008.01017.x.
- Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. 2007. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115(9):1298–1305, PMID: 17805419, https://doi.org/10.1289/ehp.10009.
- Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, et al. 2004. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38(17):4489–4495, PMID: 15461154, https://doi.org/10.1021/es0493446.
- Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. 2016. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett 3:344–350, https://doi.org/10. 1021/acs.estlett.6b00260.
- Harada K, Saito N, Sasaki K, Inoue K, Koizumi A. 2003. Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: estimated effects on resident serum levels. Bull Environ Contam Toxicol 71(1):31–36, PMID: 12945838, https://doi.org/10.1007/s00128-003-0126-x.
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Foot Chain), Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, et al. 2020. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 18(9):e06223, PMID: 32994824, https://doi.org/10.2903/j.efsa.2020. 6223.
- Domingo JL, Nadal M. 2017. Per- and polyfluoroalkyl substances (PFASs) in food and human dietary intake: a review of the recent scientific literature. J Agric Food Chem 65(3):533–543, PMID: 28052194, https://doi.org/10.1021/acs. jafc.6b04683.
- Sasaki K, Harada K, Saito N, Tsutsui T, Nakanishi S, Tsuzuki H, et al. 2003. Impact of airborne perfluorooctane sulfonate on the human body burden and the ecological system. Bull Environ Contam Toxicol 71(2):408–413, PMID: 14560396, https://doi.org/10.1007/s00128-003-0179-x.
- Shoeib M, Harner T, Ikonomou M, Kannan K. 2004. Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers. Environ Sci Technol 38(5):1313–1320, PMID: 15046331, https://doi.org/10.1021/es0305555.
- So MK, Yamashita N, Taniyasu S, Jiang Q, Giesy JP, Chen K, et al. 2006. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environ Sci Technol 40(9):2924– 2929, PMID: 16719092, https://doi.org/10.1021/es060031f.
- Aimuzi R, Luo K, Chen Q, Wang H, Feng L, Ouyang F, et al. 2019. Perfluoroalkyl and polyfluoroalkyl substances and fetal thyroid hormone levels in umbilical cord blood among newborns by prelabor caesarean delivery. Environ Int 130:104929, PMID: 31228788, https://doi.org/10.1016/j.envint.2019.104929.
- 20. Eryasa B, Grandjean P, Nielsen F, Valvi D, Zmirou-Navier D, Sunderland E, et al. 2019. Physico-chemical properties and gestational diabetes predict

transplacental transfer and partitioning of perfluoroalkyl substances. Environ Int 130:104874, PMID: 31200157, https://doi.org/10.1016/j.envint.2019.05.068.

- (CDC) Centers for Disease Control and Prevention. 2021. Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables. Atlanta, GA: CDC.
- U.S. EPA (U.S. Environmental Protection Agency). 2021. Fact Sheet: 2010/2015 PFOA Stewardship Program. https://www.epa.gov/assessing-and-managingchemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program [accessed 22 April 2021].
- Kärrman A, Domingo JL, Llebaria X, Nadal M, Bigas E, van Bavel B, et al. 2010. Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples. Environ Sci Pollut Res Int 17(3):750–758, PMID: 19458971, https://doi.org/10.1007/s11356-009-0178-5.
- Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, et al. 2013. Accumulation of perfluoroalkyl substances in human tissues. Environ Int 59:354–362, PMID: 23892228, https://doi.org/10.1016/j.envint.2013.06.004.
- Mamsen LS, Björvang RD, Mucs D, Vinnars MT, Papadogiannakis N, Lindh CH, et al. 2019. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ Int 124:482–492, PMID: 30684806, https://doi.org/10.1016/j.envint. 2019.01.010.
- Worley RR, Moore SM, Tierney BC, Ye X, Calafat AM, Campbell S, et al. 2017. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environ Int 106:135–143, PMID: 28645013, https://doi.org/10.1016/j.envint.2017.06.007.
- Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, et al. 2018. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med 75(1):46–51, PMID: 29133598, https://doi.org/10.1136/ oemed-2017-104651.
- Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB, et al. 2017. Perfluoroalkyl acids—induced liver steatosis: effects on genes controlling lipid homeostasis. Toxicology 378:37–52, PMID: 28049043, https://doi.org/10. 1016/j.tox.2016.12.007.
- Bagley BD, Chang SC, Ehresman DJ, Eveland A, Zitzow JD, Parker GA, et al. 2017. Perfluorooctane sulfonate-induced hepatic steatosis in male Sprague Dawley rats is not attenuated by dietary choline supplementation. Toxicol Sci 160(2):284–298, PMID: 28973659, https://doi.org/10.1093/toxsci/kfx185.
- Cheng J, Lv S, Nie S, Liu J, Tong S, Kang N, et al. 2016. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish. Aquat Toxicol 176:45–52, PMID: 27108203, https://doi.org/10.1016/j.aquatox.2016.04.013.
- Xu X, Ni H, Guo Y, Lin Y, Ji J, Jin C, et al. 2021. Hexafluoropropylene oxide dimer acid (HFP0-DA) induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens: roles of peroxisome proliferator activated receptor alpha. Environ Pollut 290:118112, PMID: 34500398, https://doi.org/10.1016/j. envpol.2021.118112.
- Zhang H, He J, Li N, Gao N, Du Q, Chen B, et al. 2019. Lipid accumulation responses in the liver of *Rana nigromaculata* induced by perfluorooctanoic acid (PFOA). Ecotoxicol Environ Saf 167:29–35, PMID: 30292973, https://doi.org/10.1016/j.ecoenv.2018.09.120.
- Butenhoff J, Costa G, Elcombe C, Farrar D, Hansen K, Iwai H, et al. 2002. Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol Sci 69(1):244–257, PMID: 12215680, https://doi.org/10.1093/toxsci/69. 1.244.
- Pizzurro DM, Seeley M, Kerper LE, Beck BD. 2019. Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to healthbased criteria. Regul Toxicol Pharmacol 106:239–250, PMID: 31078680, https://doi.org/10.1016/j.yrtph.2019.05.008.
- Mundt DJ, Mundt KA, Luippold RS, Schmidt MD, Farr CH. 2007. Clinical epidemiological study of employees exposed to surfactant blend containing perfluorononanoic acid. Occup Environ Med 64(9):589–594, PMID: 17409178, https://doi.org/10.1136/oem.2007.032664.
- Olsen GW, Burris JM, Mandel JH, Zobel LR. 1999. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. J Occup Environ Med 41(9):799–806, PMID: 10491796, https://doi.org/10.1097/00043764-199909000-00012.
- Olsen GW, Burris JM, Burlew MM, Mandel JH. 2003. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med 45(3):260–270, PMID: 12661183, https://doi.org/10.1097/01.jom. 0000052958.59271.10.
- Olsen GW, Zobel LR. 2007. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health 81(2):231–246, PMID: 17605032, https://doi.org/10.1007/s00420-007-0213-0.
- Darrow LA, Groth AC, Winquist A, Shin HM, Bartell SM, Steenland K. 2016. Modeled perfluorooctanoic acid (PFOA) exposure and liver function in a Mid-

Ohio Valley community. Environ Health Perspect 124(8):1227–1233, PMID: 26978841, https://doi.org/10.1289/ehp.1510391.

- Gleason JA, Post GB, Fagliano JA. 2015. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007–2010. Environ Res 136:8–14, PMID: 25460614, https://doi.org/10.1016/j.envres.2014.10.004.
- Nian M, Li QQ, Bloom M, Qian ZM, Syberg KM, Vaughn MG, et al. 2019. Liver function biomarkers disorder is associated with exposure to perfluoroalkyl acids in adults: isomers of C8 Health Project in China. Environ Res 172:81–88, PMID: 30776734, https://doi.org/10.1016/j.envres.2019.02.013.
- Salihovic S, Stubleski J, Kärrman A, Larsson A, Fall T, Lind L, et al. 2018. Changes in markers of liver function in relation to changes in perfluoroalkyl substances—a longitudinal study. Environ Int 117:196–203, PMID: 29754000, https://doi.org/10.1016/j.envint.2018.04.052.
- Sakr CJ, Kreckmann KH, Green JW, Gillies PJ, Reynolds JL, Leonard RC. 2007. Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO) as part of a general health survey in a cohort of occupationally exposed workers. J Occup Environ Med 49(10):1086–1096, PMID: 18000414, https://doi.org/10.1097/ JOM.0b013e318156eca3.
- Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR. 2007. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J Occup Environ Med 49(8):872–879, PMID: 17693785, https://doi.org/10.1097/JOM.0b013e318124a93f.
- Canova C, Barbieri G, Zare Jeddi M, Gion M, Fabricio A, Daprà F, et al. 2020. Associations between perfluoroalkyl substances and lipid profile in a highly exposed young adult population in the Veneto Region. Environ Int 145:106117, PMID: 32971418, https://doi.org/10.1016/j.envint.2020.106117.
- Li Y, Barregard L, Xu Y, Scott K, Pineda D, Lindh CH, et al. 2020. Associations between perfluoroalkyl substances and serum lipids in a Swedish adult population with contaminated drinking water. Environ Health 19(1):33, PMID: 32169067, https://doi.org/10.1186/s12940-020-00588-9.
- Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. 2009. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol 170(10):1268–1278, PMID: 19846564, https://doi.org/10.1093/aje/kwp279.
- Malhotra P, Gill RK, Saksena S, Alrefai WA. 2020. Disturbances in cholesterol homeostasis and non-alcoholic fatty liver diseases. Front Med (Lausanne) 7:467, PMID: 32984364, https://doi.org/10.3389/fmed.2020.00467.
- Tian J, Zhong R, Liu C, Tang Y, Gong J, Chang J, et al. 2016. Association between bilirubin and risk of non-alcoholic fatty liver disease based on a prospective cohort study. Sci Rep 6:31006, PMID: 27484402, https://doi.org/10. 1038/srep31006.
- Huang Q, Yu J, Zhang X, Liu S, Ge Y. 2016. Association of the serum uric acid level with liver histology in biopsy-proven non-alcoholic fatty liver disease. Biomed Rep 5(2):188–192, PMID: 27446539, https://doi.org/10.3892/br.2016.698.
- Giannini EG, Testa R, Savarino V. 2005. Liver enzyme alteration: a guide for clinicians. CMAJ 172(3):367–379, PMID: 15684121, https://doi.org/10.1503/cmaj.1040752.
- Clark JM, Brancati FL, Diehl AM. 2003. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 98(5):960–967, PMID: 12809815, https://doi.org/10.1111/j.1572-0241.2003.07486.x.
- Ioannou GN, Weiss NS, Boyko EJ, Kahn SE, Lee SP. 2005. Contribution of metabolic factors to alanine aminotransferase activity in persons with other causes of liver disease. Gastroenterology 128(3):627–635, PMID: 15810122, https://doi.org/10.1053/j.gastro.2004.12.004.
- Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. 2021. Perand polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem 40(3):606–630, PMID: 33017053, https://doi.org/10.1002/etc.4890.
- Costello E, Stratakis N, Chatzi L. 2020. The emerging role of perfluoroalkyl substances in liver injury and nonalcoholic fatty liver disease. PROSPERO 2020: CRD42020158911. [accessed 4 December 2019].
- Muiesan ML, Agabiti-Rosei C, Paini A, Salvetti M. 2016. Uric acid and cardiovascular disease: an update. Eur Cardiol 11(1):54–59, PMID: 30310447, https://doi.org/10.15420/ecr.2016:4:2.
- Kwo PY, Cohen SM, Lim JK. 2017. ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol 112(1):18–35, PMID: 27995906, https://doi.org/10.1038/ajg.2016.517.
- Hall AP, Elcombe CR, Foster JR, Harada T, Kaufmann W, Knippel A, et al. 2012. Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes—conclusions from the 3rd International ESTP Expert Workshop. Toxicol Pathol 40(7):971–994, PMID: 22723046, https://doi.org/10.1177/ 0192623312448935.
- NTP (National Toxicology Program). 2015. Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration. Washington DC: National Institute of

 $\ensuremath{\mathsf{Environmental}}$ Health Sciences, Division of the National Toxicology Program, OHAT.

- NTP. 2015. OHAT Risk of Bias Rating Tool for Human and Animal Studies. Washington DC: National Institute of Environmental Health Sciences, Division of the National Toxicology Program, OHAT.
- 61. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. 2021. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa, Ontario, Canada: Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford. asp [accessed 22 March 2021].
- Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. 2011. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343:d5928, PMID: 22008217, https://doi.org/10.1136/bmj.d5928.
- Willer CJ, Li Y, Abecasis GR. 2010. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190–2191, PMID: 20616382, https://doi.org/10.1093/bioinformatics/btq340.
- Buttke DE, Sircar K, Martin C. 2012. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003–2008). Environ Health Perspect 120(11):1613–1618, PMID: 23124194, https://doi.org/10.1289/ ehp.1104748.
- McDowell MA, Brody DJ, Hughes JP. 2007. Has age at menarche changed? Results from the National Health and Nutrition Examination Survey (NHANES) 1999–2004. J Adolesc Health 40(3):227–231, PMID: 17321422, https://doi.org/10. 1016/j.jadohealth.2006.10.002.
- Thayer KA, Heindel JJ, Bucher JR, Gallo MA. 2012. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect 120(6):779–789, PMID: 22296744, https://doi.org/10.1289/ ehp.1104597.
- Attanasio R. 2019. Sex differences in the association between perfluoroalkyl acids and liver function in US adolescents: analyses of NHANES 2013–2016. Environ Pollut 254(pt B):113061, PMID: 31454574, https://doi.org/10.1016/j. envpol.2019.113061.
- Bassler J, Ducatman A, Elliott M, Wen S, Wahlang B, Barnett J, et al. 2019. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ Pollut 247:1055–1063, PMID: 30823334, https://doi.org/10.1016/j.envpol.2019.01.064.
- Emmett EA, Zhang H, Shofer FS, Freeman D, Rodway NV, Desai C, et al. 2006. Community exposure to perfluorooctanoate: relationships between serum levels and certain health parameters. J Occup Environ Med 48(8):771–779, PMID: 16902369, https://doi.org/10.1097/01.jom.0000233380.13087.37.
- Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, et al. 2012. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect 120(5):655–660, PMID: 22289616, https://doi.org/10.1289/ehp.1104436.
- Jain RB. 2019. Concentration of selected liver enzymes across the stages of glomerular function: the associations with PFOA and PFOS. Heliyon 5(7): e02168, PMID: 31388590, https://doi.org/10.1016/j.heliyon.2019.e02168.
- Jain RB, Ducatman A. 2019. Selective associations of recent low concentrations of perfluoroalkyl substances with liver function biomarkers: NHANES 2011 to 2014 data on US adults aged ≥20 years. J Occup Environ Med 61(4):293–302, PMID: 30589657, https://doi.org/10.1097/JOM.000000000001532.
- Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N, et al. 2020. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in children: an untargeted metabolomics approach. Environ Int 134:105220, PMID: 31744629, https://doi.org/10.1016/j.envint.2019.105220.
- Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, et al. 2018. Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8–12 year old children: a pilot study. Environ Res 160:314–321, PMID: 29040951, https://doi.org/10.1016/j.envres.2017.10.014.
- Lin CY, Lin LY, Chiang CK, Wang WJ, Su YN, Hung KY, et al. 2010. Investigation of the associations between low-dose serum perfluorinated chemicals and liver enzymes in US adults. Am J Gastroenterol 105(6):1354– 1363, PMID: 20010922, https://doi.org/10.1038/ajg.2009.707.
- Mora AM, Fleisch AF, Rifas-Shiman SL, Woo Baidal JA, Pardo L, Webster TF, et al. 2018. Early life exposure to per- and polyfluoroalkyl substances and mid-childhood lipid and alanine aminotransferase levels. Environ Int 111:1–13, PMID: 29156323, https://doi.org/10.1016/j.envint.2017.11.008.
- Rantakokko P, Männistö V, Airaksinen R, Koponen J, Viluksela M, Kiviranta H, et al. 2015. Persistent organic pollutants and non-alcoholic fatty liver disease in morbidly obese patients: a cohort study. Environ Health 14(1):79, PMID: 26420011, https://doi.org/10.1186/s12940-015-0066-z.
- Stratakis N, Conti DV, Jin R, Margetaki K, Valvi D, Siskos AP, et al. 2020. Prenatal exposure to perfluoroalkyl substances associated with increased susceptibility to liver injury in children. Hepatology 72(5):1758–1770, PMID: 32738061, https://doi.org/10.1002/hep.31483.

- Sen P, Qadri S, Luukkonen PK, Ragnarsdottir O, McGlinchey A, Jäntti S, et al. 2022. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. J Hepatol 76(2):283–293, PMID: 34627976, https://doi.org/10.1016/j.jhep.2021.09.039.
- Yamaguchi M, Arisawa K, Uemura H, Katsuura-Kamano S, Takami H, Sawachika F, et al. 2013. Consumption of seafood, serum liver enzymes, and blood levels of PFOS and PFOA in the Japanese population. J Occup Health 55(3):184–194, PMID: 23574777, https://doi.org/10.1539/joh.12-0264-oa.
- Blake BE, Cope HA, Hall SM, Keys RD, Mahler BW, McCord J, et al. 2020. Evaluation of maternal, embryo, and placental effects in CD-1 mice following gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Environ Health Perspect 128(2):27006, PMID: 32074459, https://doi.org/10.1289/EHP6233.
- Crebelli R, Caiola S, Conti L, Cordelli E, De Luca G, Dellatte E, et al. 2019. Can sustained exposure to PFAS trigger a genotoxic response? A comprehensive genotoxicity assessment in mice after subacute oral administration of PFOA and PFBA. Regul Toxicol Pharmacol 106:169–177, PMID: 31071380, https://doi.org/10. 1016/j.yrtph.2019.05.005.
- Lieder PH, Chang SC, York RG, Butenhoff JL 2009. Toxicological evaluation of potassium perfluorobutanesulfonate in a 90-day oral gavage study with Sprague– Dawley rats. Toxicology 255(1–2):45–52, PMID: 18992301, https://doi.org/10.1016/j. tox.2008.10.002.
- Guo H, Wang J, Yao J, Sun S, Sheng N, Zhang X, et al. 2019. Comparative hepatotoxicity of novel PFOA alternatives (perfluoropolyether carboxylic acids) on male mice. Environ Sci Technol 53(7):3929–3937, PMID: 30865431, https://doi.org/10.1021/acs.est.9b00148.
- Hui Z, Li R, Chen L. 2017. The impact of exposure to environmental contaminant on hepatocellular lipid metabolism. Gene 622:67–71, PMID: 28431976, https://doi.org/10.1016/j.gene.2017.04.024.
- 86. Li D, Zhang L, Zhang Y, Guan S, Gong X, Wang X. 2019. Maternal exposure to perfluorooctanoic acid (PFOA) causes liver toxicity through PPAR-α pathway and lowered histone acetylation in female offspring mice. Environ Sci Pollut Res Int 26(18):18866–18875, PMID: 31062244, https://doi.org/10.1007/s11356-019-05258-z.
- Pouwer MG, Pieterman EJ, Chang SC, Olsen GW, Caspers MPM, Verschuren L, et al. 2019. Dose effects of ammonium perfluorooctanoate on lipoprotein metabolism in APOE^{*}3-Leiden.CETP mice. Toxicol Sci 168(2):519–534, PMID: 30657992, https://doi.org/10.1093/toxsci/kfz015.
- Yahia D, El-Nasser MA, Abedel-Latif M, Tsukuba C, Yoshida M, Sato I, et al. 2010. Effects of perfluorooctanoic acid (PFOA) exposure to pregnant mice on reproduction. J Toxicol Sci 35(4):527–533, PMID: 20686339, https://doi.org/10. 2131/jts.35.527.
- Yan S, Wang J, Zhang W, Dai J. 2014. Circulating microRNA profiles altered in mice after 28 d exposure to perfluorooctanoic acid. Toxicol Lett 224(1):24–31, PMID: 24459700, https://doi.org/10.1016/j.toxlet.2013.10.017.
- Guo H, Sheng N, Guo Y, Wu C, Xie W, Dai J. 2021. Exposure to GenX and its novel analogs disrupts fatty acid metabolism in male mice. Environ Pollut 291:118202, PMID: 34562693, https://doi.org/10.1016/j.envpol.2021.118202.
- Wu X, Xie G, Xu X, Wu W, Yang B. 2018. Adverse bioeffect of perfluorooctanoic acid on liver metabolic function in mice. Environ Sci Pollut Res Int 25(5):4787–4793, PMID: 29198028, https://doi.org/10.1007/s11356-017-0872-7.
- Rigden M, Pelletier G, Poon R, Zhu J, Auray-Blais C, Gagnon R, et al. 2015. Assessment of urinary metabolite excretion after rat acute exposure to perfluorooctanoic acid and other peroxisomal proliferators. Arch Environ Contam Toxicol 68(1):148–158, PMID: 25015730, https://doi.org/10.1007/s00244-014-0058-y.
- Butenhoff JL, Bjork JA, Chang SC, Ehresman DJ, Parker GA, Das K, et al. 2012. Toxicological evaluation of ammonium perfluorobutyrate in rats: twentyeight-day and ninety-day oral gavage studies. Reprod Toxicol 33(4):513–530, PMID: 21878386, https://doi.org/10.1016/j.reprotox.2011.08.004.
- Butenhoff JL, Kennedy GL Jr, Chang SC, Olsen GW. 2012. Chronic dietary toxicity and carcinogenicity study with ammonium perfluorooctanoate in Sprague– Dawley rats. Toxicology 298(1–3):1–13, PMID: 22531602, https://doi.org/10.1016/ j.tox.2012.04.001.
- Butenhoff JL, Chang SC, Olsen GW, Thomford PJ. 2012. Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats. Toxicology 293(1–3):1–15, PMID: 22266392, https://doi.org/10.1016/j. tox.2012.01.003.
- 96. Minata M, Harada KH, Kärrman A, Hitomi T, Hirosawa M, Murata M, et al. 2010. Role of peroxisome proliferator-activated receptor-alpha in hepatobiliary injury induced by ammonium perfluorooctanoate in mouse liver. Ind Health 48(1):96–107, PMID: 20160413, https://doi.org/10.2486/indhealth.48.96.
- 97. Nakagawa T, Ramdhan DH, Tanaka N, Naito H, Tamada H, Ito Y, et al. 2012. Modulation of ammonium perfluorooctanoate-induced hepatic damage by genetically different PPARα in mice. Arch Toxicol 86(1):63–74, PMID: 21499893, https://doi.org/10.1007/s00204-011-0704-3.

- Schlezinger JJ, Puckett H, Oliver J, Nielsen G, Heiger-Bernays W, Webster TF. 2020. Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an American diet. Toxicol Appl Pharmacol 405:115204, PMID: 32822737, https://doi.org/10.1016/j.taap.2020.115204.
- Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, et al. 2007. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci 97(2):595–613, PMID: 17383973, https://doi.org/10.1093/toxsci/ kfm065.
- 100. van Esterik JCJ, Sales LB, Dollé MET, Håkansson H, Herlin M, Legler J, et al. 2016. Programming of metabolic effects in C57BL/6JxFVB mice by in utero and lactational exposure to perfluorooctanoic acid. Arch Toxicol 90(3):701– 715, PMID: 25827101, https://doi.org/10.1007/s00204-015-1488-7.
- Botelho SC, Saghafian M, Pavlova S, Hassan M, DePierre JW, Abedi-Valugerdi M. 2015. Complement activation is involved in the hepatic injury caused by high-dose exposure of mice to perfluorooctanoic acid. Chemosphere 129:225– 231, PMID: 25108893, https://doi.org/10.1016/j.chemosphere.2014.06.093.
- 102. Li X, Wang Z, Klaunig JE. 2019. The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice. Toxicology 416:1–14, PMID: 30711707, https://doi.org/10.1016/j.tox.2019.01.017.
- 103. Liu W, Xu C, Sun X, Kuang H, Kuang X, Zou W, et al. 2016. Grape seed proanthocyanidin extract protects against perfluorooctanoic acid-induced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice. Toxicol Res (Camb) 5(1):224–234, PMID: 30090339, https://doi.org/10. 1039/c5tx00260e.
- 104. Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2010. Dietary exposure to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes and alters the hepatic immune status in mice. Int Immunopharmacol 10(11):1420–1427, PMID: 20816993, https://doi.org/10.1016/j.intimp.2010.08.009.
- 105. Qazi MR, Hassan M, Nelson BD, Depierre JW, Abedi-Valugerdi M. 2013. Subacute, moderate-dose, but not short-term, low-dose dietary pre-exposure of mice to perfluorooctanoate aggravates concanavalin A-induced hepatitis. Toxicol Lett 219(1):1–7, PMID: 23458897, https://doi.org/10.1016/j.toxlet.2013.02.017.
- 106. Quist EM, Filgo AJ, Cummings CA, Kissling GE, Hoenerhoff MJ, Fenton SE. 2015. Hepatic mitochondrial alteration in CD-1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA). Toxicol Pathol 43(4):546–557, PMID: 25326589, https://doi.org/10.1177/0192623314551841.
- Son HY, Kim SH, Shin HI, Bae HI, Yang JH. 2008. Perfluorooctanoic acidinduced hepatic toxicity following 21-day oral exposure in mice. Arch Toxicol 82(4):239–246, PMID: 17874065, https://doi.org/10.1007/s00204-007-0246-x.
- 108. Tan X, Xie G, Sun X, Li Q, Zhong W, Qiao P, et al. 2013. High fat diet feeding exaggerates perfluorooctanoic acid-induced liver injury in mice via modulating multiple metabolic pathways. PLoS One 8(4):e61409, PMID: 23626681, https://doi.org/10.1371/journal.pone.0061409.
- Wang G, Pan R, Liang X, Wu X, Wu Y, Zhang H, et al. 2021. Perfluorooctanoic acid-induced liver injury is potentially associated with gut microbiota dysbiosis. Chemosphere 266:129004, PMID: 33279240, https://doi.org/10.1016/j. chemosphere.2020.129004.
- 110. Yang B, Zou W, Hu Z, Liu F, Zhou L, Yang S, et al. 2014. Involvement of oxidative stress and inflammation in liver injury caused by perfluorooctanoic acid exposure in mice. Biomed Res Int 2014:409837, PMID: 24724082, https://doi.org/10.1155/2014/409837.
- 111. Zou W, Liu W, Yang B, Wu L, Yang J, Zou T, et al. 2015. Quercetin protects against perfluorooctanoic acid-induced liver injury by attenuating oxidative stress and inflammatory response in mice. Int Immunopharmacol 28(1):129– 135, PMID: 26054880, https://doi.org/10.1016/j.intimp.2015.05.043.
- 112. Owumi S, Bello T, Oyelere AK. 2021. N-acetyl cysteine abates hepatorenal toxicities induced by perfluorooctanoic acid exposure in male rats. Environ Toxicol Pharmacol 86:103667, PMID: 33933708, https://doi.org/10.1016/j.etap. 2021.103667.
- Curran I, Hierlihy SL, Liston V, Pantazopoulos P, Nunnikhoven A, Tittlemier S, et al. 2008. Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ Health A 71(23):1526–1541, PMID: 18923995, https://doi.org/10.1080/ 15287390802361763.
- 114. Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Butenhoff JL. 2012. Hepatocellular hypertrophy and cell proliferation in Sprague–Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/ PXR. Toxicology 293(1–3):16–29, PMID: 22245121, https://doi.org/10.1016/j.tox. 2011.12.014.
- 115. Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Noker PE, et al. 2012. Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four days following seven days of dietary exposure to

potassium perfluorooctanesulfonate. Toxicology 293(1–3):30–40, PMID: 22239858, https://doi.org/10.1016/j.tox.2011.12.015.

- 116. Han R, Hu M, Zhong Q, Wan C, Liu L, Li F, et al. 2018. Perfluorooctane sulphonate induces oxidative hepatic damage *via* mitochondria-dependent and NFκB/TNF-α-mediated pathway. Chemosphere 191:1056–1064, PMID: 28939271, https://doi.org/10.1016/j.chemosphere.2017.08.070.
- 117. Han R, Zhang F, Wan C, Liu L, Zhong Q, Ding W. 2018. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF-κB/TNF-α/IL-6-dependent pathway. Chemosphere 200:283– 294, PMID: 29494909, https://doi.org/10.1016/j.chemosphere.2018.02.137.
- 118. Kim HS, Jun Kwack S, Sik Han E, Seok Kang T, Hee Kim S, Young Han S. 2011. Induction of apoptosis and CYP4A1 expression in Sprague-Dawley rats exposed to low doses of perfluorooctane sulfonate. J Toxicol Sci 36(2):201– 210, PMID: 21467747, https://doi.org/10.2131/jts.36.201.
- 119. Lv Z, Li G, Li Y, Ying C, Chen J, Chen T, et al. 2013. Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol 28(9):532–542, PMID: 23983163, https://doi.org/10.1002/tox. 20747.
- Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, et al. 2003. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183(1–3):117–131, PMID: 12504346, https://doi.org/10.1016/ S0300-483X(02)00511-5.
- 121. Wan C, Han R, Liu L, Zhang F, Li F, Xiang M, et al. 2016. Role of miR-155 in fluorooctane sulfonate-induced oxidative hepatic damage via the Nrf2-dependent pathway. Toxicol Appl Pharmacol 295:85–93, PMID: 26844784, https://doi.org/ 10.1016/j.taap.2016.01.023.
- Butenhoff JL, Olsen GW, Chang S. 2017. Toxicological response of Sprague Dawley rats from inhalation exposure to perfluorooctane sulfonyl fluoride (POSF). Toxicol Lett 271:38–49, PMID: 28242422, https://doi.org/10.1016/j.toxlet. 2017.02.017.
- 123. Bijland S, Rensen PCN, Pieterman EJ, Maas ACE, van der Hoorn JW, van Erk MJ, et al. 2011. Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-Leiden CETP mice. Toxicol Sci 123(1):290–303, PMID: 21705711, https://doi.org/10.1093/toxsci/kfr142.
- 124. Deng P, Wang C, Wahlang B, Sexton T, Morris AJ, Hennig B. 2020. Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicol Appl Pharmacol 409:115301, PMID: 33096110, https://doi.org/10.1016/j.taap.2020.115301.
- 125. Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, et al. 2021. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food Chem Toxicol 152:112175, PMID: 33838175, https://doi.org/10.1016/j.fct.2021.112175.
- 126. Huang T, Zhang Y, Zhang W, Lin T, Chen L, Yang B, et al. 2020. Attenuation of perfluorooctane sulfonate-induced steatohepatitis by grape seed proanthocyanidin extract in mice. Biomed Res Int 2020:8818160, PMID: 33457418, https://doi.org/10.1155/2020/8818160.
- Huck I, Beggs K, Apte U. 2018. Paradoxical protective effect of perfluorocctanesulfonic acid against high-fat diet-induced hepatic steatosis in mice. Int J Toxicol 37(5):383–392, PMID: 30134762, https://doi.org/10.1177/ 1091581818790934.
- Lai KP, Li JW, Cheung A, Li R, Billah MB, Chan TF, et al. 2017. Transcriptome sequencing reveals prenatal PFOS exposure on liver disorders. Environ Pollut 223:416–425, PMID: 28131474, https://doi.org/10.1016/j.envpol.2017.01.041.
- 129. Lv Z, Wu W, Ge S, Jia R, Lin T, Yuan Y, et al. 2018. Naringin protects against perfluorooctane sulfonate-induced liver injury by modulating NRF2 and NF-κB in mice. Int Immunopharmacol 65:140–147, PMID: 30316072, https://doi.org/10. 1016/j.intimp.2018.09.019.
- Marques ES, Agudelo J, Kaye EM, Modaresi SMS, Pfohl M, Bečanová J, et al. 2021. The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Toxicology 462:152921, PMID: 34464680, https://doi.org/10.1016/j.tox.2021.152921.
- 131. Pfohl M, Marques E, Auclair A, Barlock B, Jamwal R, Goedken M, et al. 2021. An 'omics approach to unraveling the paradoxical effect of diet on perfluorooctanesulfonic acid (PFOS) and perfluorononanoic acid (PFNA)-induced hepatic steatosis. Toxicol Sci 180(2):277–294, PMID: 33483757, https://doi.org/10. 1093/toxsci/kfaa172.
- 132. Qazi MR, Hassan M, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2013. Both sub-acute, moderate-dose and short-term, low-dose dietary exposure of mice to perfluorooctane sulfonate exacerbates concanavalin A-induced hepatitis. Toxicol Lett 217(1):67–74, PMID: 23237827, https://doi.org/10.1016/j.toxlet.2012.12.001.
- 133. Qin Y, Gu T, Ling J, Luo J, Zhao J, Hu B, et al. 2021. PFOS facilitates liver inflammation and steatosis: an involvement of NLRP3 inflammasomemediated hepatocyte pyroptosis. Preprint posted online October 23, 2021. J Appl Toxicol, PMID: 34687223, https://doi.org/10.1002/jat.4258.

- Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, et al. 2021. Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. Environ Int 157:106843, PMID: 34479135, https://doi.org/10. 1016/j.envint.2021.106843.
- 135. Su M, Liang X, Xu X, Wu X, Yang B. 2019. Hepatoprotective benefits of vitamin C against perfluorooctane sulfonate-induced liver damage in mice through suppressing inflammatory reaction and ER stress. Environ Toxicol Pharmacol 65:60–65, PMID: 30551094, https://doi.org/10.1016/j.etap.2018.12.004.
- 136. Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CKC. 2012. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochim Biophys Acta 1820(7):1092–1101, PMID: 22484034, https://doi.org/10. 1016/j.bbagen.2012.03.010.
- 137. Wang G, Sun S, Wu X, Yang S, Wu Y, Zhao J, et al. 2020. Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. Ecotoxicol Environ Saf 197:110590, PMID: 32283409, https://doi.org/10.1016/j.ecoenv.2020.110590.
- Xing J, Wang G, Zhao J, Wang E, Yin B, Fang D, et al. 2016. Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models. Environ Pollut 210:388–396, PMID: 26807985, https://doi.org/10. 1016/j.envpol.2015.12.008.
- 139. Marques E, Pfohl M, Auclair A, Jamwal R, Barlock BJ, Sammoura FM, et al. 2020. Perfluorooctanesulfonic acid (PFOS) administration shifts the hepatic proteome and augments dietary outcomes related to hepatic steatosis in mice. Toxicol Appl Pharmacol 408:115250, PMID: 32979393, https://doi.org/10. 1016/j.taap.2020.115250.
- 140. Zhang L, Krishnan P, Ehresman DJ, Smith PB, Dutta M, Bagley BD, et al. 2016. Perfluorooctane sulfonate–choline ion pair formation: a potential mechanism modulating hepatic steatosis and oxidative stress in mice. Toxicol Sci 153(1):186–197, PMID: 27413108, https://doi.org/10.1093/toxsci/kfw120.
- Liang X, Xie G, Wu X, Su M, Yang B. 2019. Effect of prenatal PFOS exposure on liver cell function in neonatal mice. Environ Sci Pollut Res Int 26(18):18240– 18246, PMID: 31041707, https://doi.org/10.1007/s11356-019-05245-4.
- 142. Wang J, Yan S, Zhang W, Zhang H, Dai J. 2015. Integrated proteomic and miRNA transcriptional analysis reveals the hepatotoxicity mechanism of PFNA exposure in mice. J Proteome Res 14(1):330–341, PMID: 25181679, https://doi.org/10.1021/pr500641b.
- 143. Zhang Y, Zhang Y, Klaassen CD, Cheng X. 2018. Alteration of bile acid and cholesterol biosynthesis and transport by perfluorononanoic acid (PFNA) in mice. Toxicol Sci 162(1):225–233, PMID: 29112762, https://doi.org/10.1093/toxsci/kfx237.
- 144. Fang X, Gao G, Zhang X, Wang H. 2015. Perfluorononanoic acid disturbed the metabolism of lipid in the liver of streptozotocin-induced diabetic rats. Toxicol Mech Methods 25(8):622–627, PMID: 26056853, https://doi.org/10.3109/ 15376516.2015.1053649.
- 145. Fang X, Zou S, Zhao Y, Cui R, Zhang W, Hu J, et al. 2012. Kupffer cells suppress perfluorononanoic acid-induced hepatic peroxisome proliferatoractivated receptor α expression by releasing cytokines. Arch Toxicol 86(10):1515–1525, PMID: 22648072, https://doi.org/10.1007/s00204-012-0877-4.
- 146. Chang S, Butenhoff JL, Parker GA, Coder PS, Zitzow JD, Krisko RM, et al. 2018. Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice. Reprod Toxicol 78:150–168, PMID: 29694846, https://doi.org/10.1016/j.reprotox.2018.04.007.
- 147. Butenhoff JL, Chang SC, Ehresman DJ, York RG. 2009. Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats. Reprod Toxicol 27(3–4):331–341, PMID: 19429404, https://doi.org/10.1016/j.reprotox.2009.01.004.
- 148. Kim SC, Hong JT, Jang SJ, Kang WS, Yoo HS, Yun YP. 1998. Formation of 8oxodeoxyguanosine in liver DNA and hepatic injury by peroxisome proliferator clofibrate and perfluorodecanoic acid in rats. J Toxicol Sci 23(2):113–119, PMID: 9644651, https://doi.org/10.2131/jts.23.2_113.
- 149. Foreman JE, Chang SC, Ehresman DJ, Butenhoff JL, Anderson CR, Palkar PS, et al. 2009. Differential hepatic effects of perfluorobutyrate mediated by mouse and human PPAR-α. Toxicol Sci 110(1):204–211, PMID: 19359353, https://doi.org/10.1093/toxsci/kfp077.
- Weatherly LM, Shane HL, Lukomska E, Baur R, Anderson SE. 2021. Systemic toxicity induced by topical application of heptafluorobutyric acid (PFBA) in a murine model. Food Chem Toxicol 156:112528, PMID: 34474067, https://doi.org/ 10.1016/j.fct.2021.112528.
- 151. Ding L, Hao F, Shi Z, Wang Y, Zhang H, Tang H, et al. 2009. Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabonomic and transcriptomic studies. J Proteome Res 8(6):2882–2891, PMID: 19378957, https://doi.org/10.1021/pr9000256.
- 152. Kato H, Fujii S, Takahashi M, Matsumoto M, Hirata-Koizumi M, Ono A, et al. 2015. Repeated dose and reproductive/developmental toxicity of perfluorododecanoic acid in rats. Environ Toxicol 30(11):1244–1263, PMID: 24753098, https://doi.org/10.1002/tox.21996.

- 153. Luo M, Tan Z, Dai M, Song D, Lin J, Xie M, et al. 2017. Dual action of peroxisome proliferator-activated receptor alpha in perfluorodecanoic acid-induced hepatotoxicity. Arch Toxicol 91(2):897–907, PMID: 27344344, https://doi.org/10. 1007/s00204-016-1779-7.
- 154. Wang D, Gao Q, Wang T, Kan Z, Li X, Hu L, et al. 2020. Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome activation. Food Res Int 127:108628, PMID: 31882076, https://doi.org/10. 1016/j.foodres.2019.108628.
- 155. Chengelis CP, Kirkpatrick JB, Radovsky A, Shinohara M. 2009. A 90-day repeated dose oral (gavage) toxicity study of perfluorohexanoic acid (PFHxA) in rats (with functional observational battery and motor activity determinations). Reprod Toxicol 27(3–4):342–351, PMID: 19429405, https://doi.org/10. 1016/j.reprotox.2009.01.006.
- 156. Takahashi M, Ishida S, Hirata-Koizumi M, Ono A, Hirose A. 2014. Repeated dose and reproductive/developmental toxicity of perfluoroundecanoic acid in rats. J Toxicol Sci 39(1):97–108, PMID: 24418714, https://doi.org/10.2131/jts.39.97.
- 157. Wang J, Wang X, Sheng N, Zhou X, Cui R, Zhang H, et al. 2017. RNA-sequencing analysis reveals the hepatotoxic mechanism of perfluoroalkyl alternatives, HFP02 and HFP04, following exposure in mice. J Appl Toxicol 37(4):436–444, PMID: 27553808, https://doi.org/10.1002/jat.3376.
- 158. Chappell GA, Thompson CM, Wolf JC, Cullen JM, Klaunig JE, Haws LC. 2020. Assessment of the mode of action underlying the effects of GenX in mouse liver and implications for assessing human health risks. Toxicol Pathol 48(3):494–508, PMID: 32138627, https://doi.org/10.1177/019262332090 5803.
- 159. Caverly Rae JM, Craig L, Slone TW, Frame SR, Buxton LW, Kennedy GL. 2015. Evaluation of chronic toxicity and carcinogenicity of ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in Sprague–Dawley rats. Toxicol Rep 2:939–949, PMID: 28962433, https://doi.org/10.1016/j.toxrep.2015.06.001.
- 160. Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, et al. 2019. Mechanisms of environmental contributions to fatty liver disease. Curr Environ Health Rep 6(3):80–94, PMID: 31134516, https://doi.org/10.1007/s40572-019-00232-w.
- 161. Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD. 2008. Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicol Sci 106(1):162– 171, PMID: 18713766, https://doi.org/10.1093/toxsci/kfn166.
- Behr AC, Plinsch C, Braeuning A, Buhrke T. 2020. Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol In Vitro 62:104700, PMID: 31676336, https://doi.org/10.1016/j.tiv.2019.104700.
- 163. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. 2006. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferatoractivated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol Sci 92(2):476–489, PMID: 16731579, https://doi.org/10.1093/toxsci/kfl014.

- 164. Filgo AJ, Quist EM, Hoenerhoff MJ, Brix AE, Kissling GE, Fenton SE. 2015. Perfluorooctanoic acid (PFOA)-induced liver lesions in two strains of mice following developmental exposures: PPARα is not required. Toxicol Pathol 43(4):558–568, PMID: 25398757, https://doi.org/10.1177/0192623314558463.
- 165. Gilliland FD, Mandel JS. 1996. Serum perfluorooctanoic acid and hepatic enzymes, lipoproteins, and cholesterol: a study of occupationally exposed men. Am J Ind Med 29(5):560–568, PMID: 8732932, https://doi.org/10.1002/ (SICI)1097-0274(199605)29:5<560::AID-AJIM17>3.0.CO;2-Z.
- 166. Blake BE, Pinney SM, Hines EP, Fenton SE, Ferguson KK. 2018. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ Pollut 242(pt A):894–904, PMID: 30373035, https://doi.org/10.1016/j.envpol.2018.07.042.
- 167. Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. 2010. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect 118(5):686–692, PMID: 20089479, https://doi.org/10.1289/ehp.0901584.
- 168. Braun JM, Gennings C, Hauser R, Webster TF. 2016. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect 124(1):A6–A9, PMID: 26720830, https://doi.org/10. 1289/ehp.1510569.
- 169. Attanasio R. 2019. Association between perfluoroalkyl acids and liver function: data on sex differences in adolescents. Data Brief 27:104618, PMID: 31687437, https://doi.org/10.1016/j.dib.2019.104618.
- Cui R, Li C, Wang J, Dai J. 2019. Induction of hepatic miR-34a by perfluorooctanoic acid regulates metabolism-related genes in mice. Environ Pollut 244:270–278, PMID: 30342367, https://doi.org/10.1016/j.envpol.2018.10.061.
- 171. Guo H, Chen J, Zhang H, Yao J, Sheng N, Li Q, et al. 2021. Exposure to GenX and its novel analogs disrupts hepatic bile acid metabolism in male mice. Environ Sci Technol Preprint posted online August 24, 2021, PMID: 34427428, https://doi.org/10.1021/acs.est.1c02471.
- 172. Shao W, Xu J, Xu C, Weng Z, Liu Q, Zhang X, et al. 2021. Early-life perfluorooctanoic acid exposure induces obesity in male offspring and the intervention role of chlorogenic acid. Environ Pollut 272:115974, PMID: 33218772, https://doi.org/10.1016/j.envpol.2020.115974.
- 173. Shi L, Pan R, Lin G, Liang X, Zhao J, Zhang H, et al. 2021. Lactic acid bacteria alleviate liver damage caused by perfluorooctanoic acid exposure via antioxidant capacity, biosorption capacity and gut microbiota regulation. Ecotoxicol Environ Saf 222:112515, PMID: 34293584, https://doi.org/10.1016/j.ecoenv.2021.112515.
- 174. Wu X, Liang M, Yang Z, Su M, Yang B. 2017. Effect of acute exposure to PFOA on mouse liver cells in vivo and in vitro. Environ Sci Pollut Res Int 24(31):24201–24206, PMID: 28887612, https://doi.org/10.1007/s11356-017-0072-5.
- 175. Yan S, Zhang H, Wang J, Zheng F, Dai J. 2015. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate. Free Radic Biol Med 87:300–311, PMID: 26159507, https://doi.org/10.1016/j.freeradbiomed.2015.06.043.