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Abstract

We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at
the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity
newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy
in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and
temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two
interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators
that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity
patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this review is to study the energy consumption of the brain in the framework of the dissipative many-
body model [1–3] and the generalized Carnot cycle model [4]. We focus our attention on the expenditure of energy
to facilitate the emergence of patterns and dissipation of so-called “dark energy” in knowledge retrieval. The general
picture of the process by which brains construct knowledge from information and how the generalized Carnot cycle
describes it is presented in the following subsections. In Section 2 we consider the interplay between the macroscop-
ically observed high energy need of the brain and the many-body dynamics underlying the brain functional activity.
Conclusions are presented in Section 3. In Appendix A the brain metabolic need of high energy density in conjunc-
tion with its dark energy dissipation is described. In Appendix B a brief summary of essential formal features of the
dissipative many-body model is presented.

1.1. Knowledge, information and energy

Brains are thermodynamic systems that use chemical energy to construct knowledge from information [5,6]. The
oxidative metabolism of glucose provides the energy, as measured by oxygen depletion and carbon dioxide production.
The sensory receptors in the body and on the body surface provide the information by absorbing energy of various
types impinging from the internal and external environments [7]. Each sensory receptor converts a stimulus, which
is a local quantity of energy (light, heat, sound, concentration of a chemical), first to an ionic current (known as its
receptor potential) and then to a train of pulses (action potentials, units, spikes) on its axon. Each pulse expresses
a quantity of information by its location in time and space. The pulse train constitutes a point process. The sensory
energy is weak [8], often a few molecules of scent, a few photons in a flash. Detection is facilitated by large arrays
of equivalent receptors (107–108). The arrays form sheets on the body surfaces, which send bundles of axons into the
brain. A stimulus is a configuration of energy in a pattern that is transmitted as information by the pulse intervals,
frequencies and delivery sites by stages to the sensory cortices. A conditioned stimulus is a stimulus that has been
paired with a painful or pleasurable unconditioned stimulus in reinforcement learning. It is in sensory cortex that the
sensory information is organized at high density as knowledge and accumulated over the lifetime of an individual as
memories.

In an act of recognition a conditioned stimulus triggers an operator, a Hebbian nerve cell assembly, that abstracts,
amplifies and generalizes to the category of a stimulus [9]. The assembly forms by repeated samples of information in
reinforcement learning according to the Hebb rule: neurons that fire together wire together. The conditioned stimulus
ignites the entire assembly, so the output signals the category of the stimulus and not the stimulus per se. The associa-
tions learned under reinforcement convert the input of sensory information to the output of a fragment of knowledge.
The assembly provides the bolus of energy required to generate a structured liquid-like phase (low entropy) out of
a formless gas-like phase of random activity (high entropy), with a vanishing change in the free energy F , dF = 0.
Such a process of phase transition is by spontaneous breaking of the symmetry of the gas-like phase [3], in the sense
that the pre-stimulus phase is featureless in all directions, whereas the pattern of the post-stimulus phase cannot be
rotated or translated into itself.

The conditioned stimulus ignites the entire assembly, so the output signals the category of the stimulus and not
the stimulus per se. The assembly provides the bolus of energy required to initiate a phase transition from a formless
gas-like phase of random activity to a structured liquid-like phase. The phase transition is by spontaneous breaking of
the symmetry of the random phase [3].

The fragment of knowledge consists of the (low entropy) ordered pattern generated from broken symmetry. It is
expressed in two interactive fields of neural activity, which spread over the entire sensory cortex. The dendrites of the
neurons generate a high-energy-density field of electric current that synchronizes cortical activity in a narrow-band
oscillation. The knowledge content is expressed in the spatial pattern of amplitude modulation (AM) [7,9,10]. In the
biological model these AM patterns are generated by attractors that are structured by modified synapses constituting
memories formed by learning in consolidation. The spread over the cortex is documented by a spatial pattern of the
phase defined at the carrier frequency. The phase pattern has the form of a cone [10]; the phase gradient and velocity
are determined by the carrier frequency and the conduction velocities of intracortical axons; the location and sign of
the apex (phase lead or lag) vary randomly from each wave packet to the next regardless of contents. The inward phase



JID:PLREV AID:320 /REV [m3SC+; v 1.155; Prn:17/01/2013; 15:48] P.3 (1-10)

A. Capolupo et al. / Physics of Life Reviews ••• (••••) •••–••• 3
Fig. 1. (A) An ideal Carnot cycle is illustrated with four isoclines for a heat engine. (B) The upper inset illustrates a sequence of three Carnot cycles
carrying AM patterns in the superimposed filtered ECoGs from 64 electrodes. The variables representing temperature and entropy are replaced with
indices derived from multichannel EEG recording. We start the cycle (1) at minimal mean power, A2(t), and maximal chaotic disorder, De(t). At
the other extreme (3) the power and information are maximal (the disorder is minimal). The knowledge increment is estimated from the area in the
rectangle, which defines the pragmatic information [15]. From Freeman and Quian Quiroga [6].

gradient to maximum lag at the apex indicates that the AM pattern and phase cone are fixed at burst onset before they
unfold.

In the dissipative many-body model, the attractors (and the AM patterns) are represented by the ordered ground
states towards which the system naturally evolves (is “attracted”). Ordering is generated by the long range neuronal
correlation sustained at quantum level by the electric dipole quanta A of the water matrix in which neurons and glia
cells are embedded. These quanta are the so-called Nambu–Goldstone (NG) quanta whose existence is required by
the NG theorem in the hypothesis that spontaneous symmetry breakdown occurs; they are the quanta carrying the
ordering information through the system volume; for an extended discussion on this point see [1–3,12].

The axons generate a low-energy-density pulse cloud, a field of action potentials, which mediates the interactions
among the dendrites in circular causality, thus reading out the high-energy-density field of electric current synchroniz-
ing the cortical activity. Axonal pulse clouds find their counterpart at quantum level in the field of Ã quanta duplicating
the quanta A since they are coupled with dendritic current fields always in pairs. These axonal pulse clouds (and the Ã

quanta in terms of which they are described) are crucial in balancing the high-energy-density field of electric current
thus avoiding, from one side, exploding run-away activity and, from the other side, synchronizing the cortical activity.
This is why the A and the Ã quanta occur always in pairs. We thus have the double set of quantum modes A and Ã and
a continuously balanced exchange of energy flows between the two sets. The synchronization of the cortical activity
and its in phase occurrence with the pulse cloud field are the manifestation of the many-body coherence of the A–Ã

condensate (see Section 2 and Appendix B). The pulse cloud is down-sampled [6] to transmit cortical output needed
for the central integration, which thus appears as the overall result of the many-body coherence. The oscillation is
terminated (dissipates) after 3–5 cycles by an operator based in the bandwidth of the carrier frequency, thus requiring
to incorporate dissipation [1] in the many-body model of brain [13]. This operator has been modeled using Rician
statistics of extreme values [9] (see [14]). We stress that in the dissipative many-body model, neurons, EEG potential
fields, pulse clouds, glia cells, dendrites, axons and other biological units are classical objects; the quantum variables
are the ones associated to the quanta, A and Ã, of the electric dipole field of the water molecules and other molecules.

1.2. Modeling knowledge construction with the Carnot cycle

The thermodynamic process of creating knowledge from information in a sensory cortex is cyclic. We have mod-
eled the process using the generalized Carnot cycle [4], in which entropy is reduced by the expenditure of energy
to facilitate the emergence of patterns (Fig. 1). We have observed the patterns in trained animals by using arrays of
electrodes to record the electroencephalogram (EEG, technically the electrocorticogram, ECoG, from the surfaces of
the visual, auditory, somatic and olfactory cortices) as the animals respond to conditioned stimuli [11].
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Each cycle has four steps. A cycle begins with a sensory cortex in a basal state of random background activity
with low analytic power, A2(t), that is symmetric in having 1/f power spectral density (PSD) and no spatial or tem-
poral pattern. The arrival of a stimulus-evoked sensory volley of pulses breaks the symmetry by initiating a narrow
band oscillation that synchronizes the background pulse firings without increasing mean rates (isothermal compres-
sion), which causes a peak on the PSD and creates a spatial pattern of amplitude modulation (AM) in the EEG. We
measured the AM patterns and deduced from the space–time changes the rate of entropy production, De(t) (also in-
formation increase, 1/De(t)). Each digitizing step increases the certainty of the AM pattern, hence adding increments
of information.

In step two the AM pattern is fixed, and the analytic power continues to rise, not by synchronization but by ex-
penditure of energy in transmission of the AM pattern (adiabatic heating), leading to maximal power and minimal
entropy, with maximal classification of EEG patterns with respect to the conditioned stimuli containing informa-
tion.

In step three the AM pattern dissolves as the firing rates diminish owing to the refractory periods of the neurons,
and the strength of synaptic coupling wanes (isothermal expansion). In step three the AM pattern dissolves as the firing
rates diminish owing to the refractory periods of the neurons, and the strength of synaptic coupling waves (isothermal
expansion). In step four the synchronization is annihilated as the distribution of characteristic frequencies in the PSD
spectral peak go out of phase and cancel (adiabatic cooling). We define the area enclosed by the loop as a measure
of pragmatic information [15], which is the ratio of the rate of energy dissipation (power) to the rate of decrease in
entropy (increase in information).

The transition from step four to step one requires not only the emergence of a new AM pattern but the rapid and
reliable extinction of the commitment of energy to an attractor. Our experimental data suggest that a singularity [5,9]
is involved that appears during the temporal minima of analytic power. Cinematic display of log10 A2(t) reveals brief,
sharply localized minima denoted as null spikes (Fig. 2B), at which the power may decrease from the mean levels
by 6 orders of magnitude or more, coinciding with a temporal discontinuity in the analytic phase, and perhaps with
the apex of phase cones and the centers of rotation of vortices [6,16], though these relations have not been proven
experimentally.

2. Macroscopic fields and many-body dynamics

The activated knowledge in each cycle consists of the concomitant and coincident fields of activity, the high-
energy-density field of dendritic currents (sustained at the quantum level by the A quanta) and the low-energy-density
cloud of axonal pulses (sustained at the quantum level by the Ã quanta), respectively. Both are synchronized (A–Ã

coherence) in the same narrow band carrier frequency of the wave packet. The contents of the activated knowledge
in each sensory cortex are observed and measured in the spatial AM pattern of the EEG manifesting the dendritic
current density, which controls the intervals between pulses and thereby determines a pattern of pulse density in the
cloud. The pulse cloud determines the current densities in circular causality, and it down-samples and transmits the
information content of the AM pattern. Owing to sampling limitations the pattern in the cloud cannot be measured
directly, so the conceptual contents are inferred from the macroscopic dendritic potentials [17] and confirmed through
ensemble averages of pulse trains from selected neurons [18–20].

We infer that the dendritic AM pattern is transmitted by the pulse cloud covering the whole of each sensory cortex.
The memory bank and the sensory information exist at a microscopic level of single neurons and synapses, comparable
to atoms and molecules and their attachment sites. The active memory is a macroscopic collective field of energy that
is sustained by the interactions of millions of neurons and billions of synapses. We postulate that the background
activity prior to a stimulus trigger is sparse, random firing of neurons in low-density comparable to a gas-like phase,
and that the recollection of a memory fragment forms by a phase transition of the cortex as it condenses to a patterned
liquid-like phase. Macroscopic signals are transmitted by time multiplexing of seemingly random pulse trains in each
local neighborhood [6]. After transmission of the wave packet the activity evaporates (dissipates), and the cortex
irretrievably annihilates the initiating information and its context.

The cycle is exceedingly energy-intensive, almost equally in the two alternating phases of reception and transmis-
sion. The metabolic processes involved in the energy collection and consumption are described in Appendix A. In the
following we focus our attention on the energy requirements for criticality and phase transitions. Indeed, a further de-
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Fig. 2. (A) The four steps that comprise the generalized Carnot cycle are shown in a domain of criticality maintained by neural avalanches (see
Section 6.9 in Freeman and Quian Quiroga [6]). The gas and liquid phases coexist in varying degrees. In this formulation energy is put in by heating
in (2–3) and removed as waste heat in cooling (4–1). (B) We conceive the operation of cortex as using information from step (1) to select, construct,
and transmit knowledge in step (3). The height of the cycle (2–3) is determined by the degree of arousal as indexed by the asymptotic maximum
of axonal gain, Qm [27]. Average brain temperature is homeostatically regulated by blood circulation, but local fluctuations, T, are widespread and
closely related to analytic power. Free energy is derived from oxidative metabolism and is dissipated as heat in all four steps. Adapted from [28] in
Freeman and Quian Quiroga [6].

mand for energy is imposed by the requirement for background activity in resting neuropil1 in living brains. The steady
state random activity is governed by a non-convergent ‘chaotic’ attractor, which is sustained by the positive feedback
by which the excitatory neurons continually excite each other, restrained from excessive firing by their refractory peri-
ods [21]. The mutual excitation maintains a steady state of criticality [6] far from thermodynamic equilibrium (Fig. 2),
expressed by neural avalanches.2 Criticality sustains a high-energy state of readiness for phase transition to meet the
exigencies of an unpredictable and dangerous world, which adds to the losses of energy by leakage, thus constantly
dissipating energy in self-sustained clouds of axonal action potentials and dendritic currents. The many-body dissipa-
tive model allows us to compute the condensate energy supplying the energy requirements for criticality and phase
transitions. Thus we present such a computation in the following.

Essential aspects of the formalism of the dissipative model are very briefly summarized in Appendix B (details can
be found in [1,3]). In the notation there introduced, |0〉 and |0(θ)〉N denote states of the brain activity corresponding
to the absence of quanta Ak and Ãk (the vacuum |0〉) and the condensate state of condensation density NAk

(and N
Ãk

),
respectively.

We observe that for the inner products (the overlaps) of these states the relations hold: limV →∞〈0|0(θ)〉N = 0
and limV →∞ N 〈0(θ)|0(θ)〉N ′ = 0, for any N and any N ′ �= N . These relations signal that in the limit of infinitely
many degrees of freedom (the infinite volume limit of quantum field theory) the process of condensation of the A

and Ã modes is a phase transition process: the states |0〉 and |0(θ)〉N , for any N , represent ‘distinct’ phases in the
brain activity since no overlap exist among them for different values of N . These relations also express the criticality
present in the brain background activity since their meaning is that no unitary transformation exists able to lead
from one phase coded by N to another phase coded by N ′, with N ′ �= N : they are ‘unitarily inequivalent phases’
and transitions from phase to phase are critical transition processes. The criticality here identified is characterized
by chaotic, scale-free behavior and power laws, as indeed laboratory observations show [18,29], which are features

1 The noun ‘neuropil’ denotes an exceedingly dense network of interwoven glial filaments, unmyelinated nerve axons, dendrites, and their
branches and synapses, together with the supporting cell bodies and capillaries supplying nutrients and removing waste products. Neuropil extends
throughout the brain and spinal cord, embedding the nuclear masses. Reticular neuropil occupies the core of the brain stem and spinal cord.
Laminated (layered) neuropil forms the cerebral cortex, the colliculi in the midbrain, and outer parts of the spinal cord as the substantia gelatinosa,
where its properties have been analyzed in greatest detail [22,23].

2 The phrase ‘neural avalanches’ denotes the occurrence in resting neuropil of myriad brief bursts of pulse firing and dendritic oscillations in
analogy to the model of self-organized criticality [21,24–26], in which a sand pile with steady input maintains a critical angle by avalanches
having power-law distributions of amplitude, duration and interval. The model suffices to simulate the maintenance of a steady state level of neural
background activity in the face of continuous bombardment by input, but it does not support modeling of the phase transitions we observe in cortical
electrical activity [4].
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implied by the model since phase transition processes turn out to be described by chaotic “trajectories” from phase to
phase [30], and coherent states such as |0(θ)〉N have been shown to be characterized by scale-free, power law features
[31–33].

Next, the condensate density in the state |0(θ, t)〉N , the time evolved at time t of |0(θ)〉N , is given by [1]

NAk
(t) = N

〈
0(θ, t)

∣∣A†
kAk

∣∣0(θ, t)
〉
N

= sinh2(Γkt + θk) = 1

eβ(t)Ek − 1
, (1)

where Γk denotes the life-time constant of the k-mode Ak (the NG quantum of momentum k) and β(t) is assumed
to be slowly varying in time in order to ensure that quasi-stationary conditions be satisfied at any time t . We finally
compute the energy contribution of the (vacuum) condensation density (1) (the brain ‘dark energy’) to the energy
requirements for criticality and phase transitions. In a standard fashion, the energy density of the condensate, at a
given time t , is given by

ρ =
∫

d3k ωkN

〈
0(θ, t)

∣∣ : A†
kAk : ∣∣0(θ, t)

〉
N

(2)

where : . . . : denotes the normal ordering with respect to the vacuum |0〉. Then

ρ = 4π2

∞∫

0

dk k2ωk sinh2(Γkt + θk) = 4π2

∞∫

0

dk k2 ωk

eβ(t)Ek − 1
. (3)

Setting the phase velocity vp = 1 and h̄ = c = kB = 1, for massless fields, such as NG fields, ωk = k, the above
integral becomes

ρm=0 = 4π2

∞∫

0

dk
k3

eβ(t)Ek − 1
= 4

15
π6T 4(t). (4)

Boundary effects and impurities, however, may contribute to give a non-vanishing effective mass to the NG fields
[12,16]. In such a case of massive fields, the integral in Eq. (3) can be solved numerically. It converges and its upper
bound is given by Eq. (4).

From the minimization of the free energy FA of the A quanta, dFA = dEA − (1/β)dSA = 0 one recognizes that
EA ≡ ∫

d3k ωkNAk
is the internal energy of the system. SA is the entropy and as usual heat is dQ = dSA/β . Thus the

change in time of condensate, dNAk
/dt , turns out into heat dissipation dQ. dFA = 0 expresses the first principle of

thermodynamics for a system coupled with environment at constant temperature and in absence of mechanical work.
The non-equilibrium dynamics has been studied in detail by use of the Ginzburg–Landau (GL) time dependent equa-
tion in Freeman, Livi, Obinata and Vitiello [34]. It happens that for any t �= t ′ it is limV →∞ N 〈0(θ, t)|0(θ, t ′)〉N = 0,
which shows that brain activity is far from the equilibrium and characterized by criticality at any time t . Time evolu-
tion of the phase coded by same N appears to be a far from the equilibrium critical process (|0(θ, t)〉N and |0(θ, t ′)〉N
are unitarily inequivalent phases). In the case of non-stationary regime, one is interested in the non-vanishing dF

expressing the rate at which the system approaches the stationary regime at the minimum of the free energy. In [34]
the time-dependent GL equation is obtained and it is shown that the rate of change of the condensate dNA/dt in the
non-stationary regime, named the critical GL regime, is proportional to the relaxation term Rdiss ≡ −ΓRNA, with
the ‘damping’ ΓR ≡ Γ1 + Γ2, where Γ1 depends on the diffusion coefficient DGL ≡ ξ2

GL/τGL (ξGL and τGL are the
GL correlation length and the GL relaxation life-time, respectively). Γ2 depends on non-homogeneities. The picture
one obtains [34] is the one of the non-stationary hydrodynamics (liquid-like regime, indeed). In the brain activity, the
brain is continuously moved out from its ground state activity entering a non-stationary dynamical regime. During
such a non-equilibrium phase transition process, the system dynamics turns out to be characterized by topologically
non-trivial structures (vortices), which are described by non-homogeneous boson condensation processes. The size,
life-time and number of these topological structures appearing in the phase transition process have been estimated and
discussed [34].

In conclusion, from our results and from hemodynamic studies it appears that brains store an immense amount of
energy in the transmembrane ionic gradients of Na+, K+ and other ions, which are replenished by metabolic activity
at more leisurely background rates. The reservoir meets the energy requirements for criticality and phase transitions
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and may be considered to provide immediate access to energy for the exchanges in the Carnot-like cycle discussed
above.

3. Discussion and conclusion

The property of brains we address in this review is the complexity of associations that we experience in flashes
of recognition in recall induced by sensory stimuli. Three outstanding structural features of the neuropil explain the
richness of detail. One is the high divergence and convergence among axons and dendrites in neuropil [36], with
power-law distributions of connection distances that facilitate scale-free neurodynamics [28]; another is the extreme
packing density of cells and fibers, which brings enormous numbers of neurons and synapses within the correlation
range for synchronization of neuronal activity; a third is the maintenance of the neuropil in a state of criticality [20], a
readiness for abrupt change by phase transitions from expectancy to realization and back again repeatedly in tracking
changes in the environment [6].

These features can readily explain the observations of the ‘dark energy’ at high density and rate of dissipation by
neuropil, which have their greatest values in the human brain at the pinnacle of biological intelligence. What is to be
modeled and explained is the mobilization of the myriad microscopic details that are stored in the modified synapses
among the interconnected neurons into the macroscopic order that is expressed by the pulse cloud and its controlling
field of dendritic currents, which we observe in the EEG and experience in flashes of insight.

What is unclear is the extent to which the active states established in excitatory and inhibitory neurons spread into
the tips of active dendrites. On the one hand, the fine tips may only provide additional surface area to the dendritic
trees for new synapses on excitatory and inhibitory neurons by supporting the growth of the dendritic trees for new
synapses but with no direct contributions to interactions. On the other hand, they may interact by ephapsis3 to the ionic
currents from their neighbors densely packed in the neuropil. Ephaptic transmission has been thoroughly documented
to occur in the substantia gelatinosa, a form of laminated neuropil that resembles cortex in the sensory gray matter of
the spinal cord [22,37]. It occurs only with states of intense excitation or extreme sensitivity, such as in pain [23], so
it is generally regarded as pathological. It has also been reported to mediate remarkable increases in synchronization
of neural firing in vivo in cortical slices [38].

Our data from EEG recording suggest that ephapsis may play a role in the phase transition by which the low-density
background activity rapidly changes to high-density activity with synchronization with emergence of an AM pattern,
provided that the cortex is in criticality, and that there is a source of a bolus of transition energy. Our thermodynamic
model is based on a generalization of the Carnot cycle, the Rankine cycle (Fig. 2), which is embedded in a critical
domain, such that with increasing density of interactions the neural activity condenses into the liquid-like phase, and
it evaporates by uncoupling into the gas-like phase. In the dissipative many-body modeling of brain, we argue that
the condensation requires an operator that creates the AM pattern by sequestering a large quantity of energy in the
high-density state, and that the energy is relinquished as heat on return to the basal state through annihilation of the
AM pattern by a second operator. It is these operators that bring microscopic information stored in memory into
macroscopic knowledge on-line and then expunge it immediately after down-sampling to the microscopic level for
transmission.

What role does ephapsis play in sustaining a wave packet? There is a threshold of energy density for induction
of ephaptic transmission by direct electrical interaction among all fiber terminals, which promotes synchronization
of firing of neurons in neuropil [38]. Dendritic current fields are coupled with axonal pulse clouds always in pairs.
We postulate that interaction by ephapsis qualitatively distinguishes the liquid-like phase from the gas-like phase,
because it increases the density of interaction to include the maximum of information retrieval under the guidance
of axodendritic synaptic transmission in the shaping of AM patterns occupying very large areas of cortex. No one
knows exactly how ephaptic transmission works, because the packing density is too great to allow use of existing
electrophysiological methods. Candidate mechanisms may include coupling through water dipoles [16], because both
the intracellular and extracellular compartments are weak ionic solutions comprising more than 80% water with high
electrical conductivity on either side of the lipid bilayers. The condensate of dipole wave quanta A and Ã may indeed
provide the proper dynamical environment and the necessary energy to promote direct, non-synaptic, point coupling

3 Ephapsis from the Greek word for ‘touch’ denotes action of a neuron on others in apposition that is mediated by local chemical and/or electrical
fields and not by chemical or electrical synapses [35].
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between neighboring axons and dendrites. Ephaptic coupling and transmission among fiber terminals may then result
to be another macroscopic manifestation of the many-body dynamics. The computation of the energy contribution
coming from the brain background activity state presented in the present review may represent a step forward in the
understanding of the ephaptic coupling.

Appendix A. Brain dark energy and the need for high energy density

In comparison to other tissues the human brain has 2% of body mass but dissipates 20–25% of resting energy (2–
8% in most vertebrates, 10–15% in lesser primates), as measured by oxygen depletion in the venous return from the
brain, compared with total body consumption of oxygen. Imaging of blood oxygen levels of depletion (BOLD) with
O15 and positron emission tomography (PET) in various regions has shown that the neurons in cerebral cortex are
most demanding [36], followed in descending order by those in basal ganglia, brain stem and white matter [39–41],
which have rates comparable to those for heart, liver and kidney, still above the resting rates for most tissues of the
body. The ten-fold discrepancy for human cortex above the whole body has led to the sobriquet ‘dark energy’, in
analogy to dark matter in astrophysics [42].

The high energy density and dissipation are imposed by the immense connectivity among neurons that is required to
interconnect manifold information into knowledge at high density. What most distinguishes neurons from other cells is
their unique shape. The long axonal filaments with multiple branches provide the basis for the strong divergence from
each neuron to ∼ 104 other neurons [43]. The radiating dendritic trees provide the immense surface area required for
the converging synapses from roughly 104 other neurons, each of which must have a current path to the trigger zone.
The density of cells is exceedingly high: 105/mm3. The embedding glial cells outnumber the neurons 10 : 1 in humans
and contribute their filaments to the neuropil. The cell bodies of most cortical neurons are aligned in layers, and the
dendrites and axons tend to be oriented parallel or perpendicular to the cortical surface, often in bundles [44]. The
cortex is a thin layer, in humans 2–4 mm in depth and 2–3 × 105 mm in area. The resulting small volume compared
to the large area drives the wrinkling of the cortical surface into the gyri and sulci. A network of capillaries provides
nutrients and O2 and removes CO2; it also provides a low resistance extracellular path for dendritic currents. The
dense mix of filaments in cortical tissue resembles the pile of a rug; hence the anatomical term: ‘laminated neuropil’.

The fineness of compartmentalization of the neuropil by neural membranes of the fibers far exceeds that of any
other tissue. Most filaments are so small that they can only be seen by electron microscopy; the minimum diameter is
0.1 µm; the median diameter in cross-section being 0.11–0.2 µm [45]. To receive and transmit information each fiber
maintains the transmembrane gradients of Na+ and K+ required for the resting membrane potential by ionic pumps
that are fueled by ATP from mitochondria. The rate of passive leakage of Na+ and K+ ions is proportional to the
surface areas of the external membranes encasing the neurons and of passive H+ ions due to the gradients across the
internal membranes of the mitochondria. Hence the ultrastructure of cortex required for dense connectivity imposes
intensive dissipation of chemical energy by brains both at rest and engaged in cognition.

According to the membrane pacemaker theory of metabolism [46], the differences in metabolism between cerebral
and non-cerebral tissues are caused by differences both in membrane chemical composition and in ionic pumps. The
polyunsaturated fatty acids that are characteristic of neuronal membranes have distinctive physical properties of flex-
ibility that cause the proteins in the membranes such as the voltage-dependent ionic channels to have high molecular
activity [47], which results in higher rates of metabolism. The long axons impose communication by Na+ action po-
tentials, so that only in neuropil (and to a lesser extent in kidney) does Na+/K+-ATPase dominate energy production
from glucose [36,48], constituting 40–47% of brain basal metabolic rate. Only neuropil has the supportive glial cells
maintaining the blood–brain barrier, which sustains the necessary constancy of the fluid environment surrounding
neurons by myriad biochemical reactions that cost energy, which cannot be estimated reliably, so inseparable are neu-
rons and glia in normal function [49]. Only neurons sum excitatory and inhibitory synaptic potentials with subtraction
to near-zero voltage, but with addition of the costs in metabolic energy.

Appendix B. Essential formal features of the dissipative many-body model

A full account of the dissipative many-body model of brain and its formalism is presented in [1–3]. Here we only
present some formal features finalized to a better understanding of some remarks in the main text and in order to
introduce notations there used.
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As mentioned in Section 1.1, the NG quanta Ak and their condensation in the ground state are dynamically gener-
ated through the spontaneous breakdown of the symmetry triggered by the external stimuli. The NG theorem predicts
that the NG quanta or modes have zero mass and thus they can span the whole system volume without inertia. More-
over, in the quantum formalism, to each quantum or particle one may associate a corresponding wave, and vice-versa.
So, we may think of the Ak’s as the quanta of the (electric) dipole wave spanning the whole system. The NG quanta
thus appear as collective modes since they express the collective dynamical interaction among the system quantum
constituents in the regime of symmetry breakdown. Again, we stress that in the dissipative many-body model the
quantum constituents are the electric dipole field quanta associated to the quantum fluctuations of the electric dipole
field of water molecules and other molecule in the system. Neurons, glia cells, dendrites, axons and other biological
units are classical objects.

By considering also the mirror quanta Ãk (cf. Section 1.1), let |0〉 denote the state without Ak and Ãk quanta (the
vacuum state for the Ak and Ãk quanta), namely the state which is annihilated by Ak and Ãk , Ak|0〉 = Ãk|0〉 = 0,
for any k, |0〉 ≡ |NAk

= 0,N
Ãk

= 0〉, with NAk
and N

Ãk
denoting the number of Ak and Ãk , respectively. We use for

simplicity only one index k specifying the quantum numbers, e.g. the momentum, of the A and Ã operators.
The dynamical generation and the condensation of the NG modes, say at time t0 = 0, leads to the new state

|0(θ)〉N ≡ |NAk
= N

Ãk
�= 0; ∀k〉, with N ≡ {NAk

= N
Ãk

�= 0,∀k, at t0 = 0}.
Note that equal numbers (couples) of Ak and Ãk , for any k, are condensed in |0(θ)〉N . Since the NG modes (and

their mirror modes Ã) are massless, the condensation of a number of them with vanishing momentum in the system
ground state does not add energy to such a state. Thus, (infinitely) many condensed θ -states |0(θ)〉N , degenerate in
the energy, are obtained, differing among themselves solely for the different value of the number N of condensed Ak

and Ãk couples: N acts as a code labeling these degenerate states.
At finite volume V , |0(θ)〉N turns out to be a two-mode coherent state and can be represented as |0(θ)〉N =

exp(−iG(θ))|0〉 with G(θ) = −i
∑

k θk(A
†
kÃ

†
k − AkÃk). Here A

†
k and A

†
k denote the creation operators.

Through Bogoliubov transformations, one may introduce also the annihilation (and creation) operators Ak(θk) and
Ãk(θk) for the state |0(θ)〉N . By minimizing the free energy functional for such a state one then finds the condensation
density N 〈0(θ)|A†

kAk|0(θ)〉N = NAk
= sinh2 θk = 1/(eβEk − 1) (and similar expression for N

Ãk
), namely the Bose–

Einstein distribution for Ak (and Ãk). Here β = 1/T , with T the temperature, and Ek ≡ ωk (we use the Boltzmann
constant KB = 1 and h̄ = 1 = c). This relation shows the link between the condensate density (and thus the code N )
and the set of θk parameters. Sets made by different θk values correspond to different condensation densities (different
codes N , different ways or degrees of symmetry breaking, different memories).
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