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Abstract 1 

Creative approaches to identifying umbrella species hold promise for devising effective 2 

surrogates of ecological communities or ecosystems. However, mechanistic niche models that 3 

predict range or habitat overlap amongst species may yet lack development. We reviewed 4 

literature on taxon-centered Bayesian belief network (BBN) models to explore a novel approach 5 

to identify umbrella taxa identifying taxonomic groups that share the largest proportion of habitat 6 

requirements (i.e., states of important habitat variables) with other wetland-dependent taxa. We 7 

reviewed and compiled published literature to provide a comprehensive and reproducible 8 

account of the current understanding of habitat requirements for freshwater, wetland-dependent 9 

taxa using BBNs. We found that wetland birds had the highest degree of shared habitat 10 

requirements with other taxa, and consequently may be suitable umbrella taxa in freshwater 11 

wetlands. Comparing habitat requirements using a BBN approach to build species distribution 12 

models, this review also identified taxa that may not benefit from conservation actions targeted 13 

at umbrella taxa by identifying taxa with unique habitat requirements not shared with umbrellas. 14 

Using a standard node set that accurately and comprehensively represents the ecosystem in 15 

question, BBNs could be designed to improve identification of umbrella taxa. In wetlands, expert 16 

knowledge about hydrology, geomorphology and soils could add important information 17 

regarding physical landscape characteristics relevant to species. Thus, a systems-oriented 18 

framework may improve overarching inferences from BBNs and subsequent utility to 19 

conservation planning and management. 20 

 21 

Keywords: BBN, species distribution model, translational science, Netica, expert knowledge 22 

 23 



1. Introduction 24 

Biological conservation relies on identifying and connecting species with the habitat 25 

requirements important for the successful completion of life cycles. Species distribution models 26 

(SDMs) are increasingly relied upon to identify habitat elements important for conservation 27 

(Dibner et al., 2017; Phillips et al., 2017). Predictive SDMs are particularly needed for 28 

understanding how species will respond to ongoing environmental change (Wood et al., 2018). 29 

Increased access to, and advances in technology have improved our ability to understand 30 

associations between species and their habitats (Elith and Leathwick, 2009). Technological 31 

advances include Geographic Information Systems (GIS) and remote sensing technology, paired 32 

with increased computing power and the development of spatial statistical models (e.g., Guisan 33 

and Thuiller, 2005). Examples of this approach include Gap Analysis Program (GAP) models 34 

mapping land cover and predicted distributions of species, bioclimatic envelopes, habitat 35 

suitability indices, maximum entropy models (MAXENT), and genetic algorithm for rule-set 36 

prediction (GARP; Elith et al., 2006; Guisan and Zimmermann, 2000; Sowa et al., 2007). The 37 

results of SDMs are commonly used to build species-specific Habitat Suitability Indices (HSIs) 38 

that estimate the probability of species presence across a landscape and have been used 39 

extensively in conservation planning (Zajac et al., 2015). Thus, identifying the key elements of 40 

habitat for species of conservation concern is important for informing conservation actions (Lin 41 

et al., 2018). 42 

Bayesian belief networks (BBNs) represent one form of SDM that offers a unique modeling 43 

approach by identifying explicit causal relationships among organisms and their habitats, as well 44 

as incorporating measures of uncertainty. In the ecological literature, BBNs go beyond species-45 

habitat correlations because they explicitly consider discrete processes that influence occupancy 46 



across space and time (i.e., access and selection; Jones, 2001). BBNs consist of input, 47 

intermediate and output nodes that are linked together via conditional probability tables (CPTs) 48 

according to hypothesized causal relationships (Figure 1; Drew and Collazo, 2014). As 49 

graphically based probabilistic models (i.e., influence diagrams), BBNs may incorporate 50 

information gleaned from literature reviews, expert opinions and monitoring efforts to examine 51 

how all possible values of environmental variables may influence the occurrence or distribution 52 

of individuals. Bayesian belief networks approach SDMs by exhaustively exploring potential 53 

ecological variables defining a species’ niche while simultaneously incorporating metrics of 54 

uncertainty surrounding estimates of habitat requirements (Marcot et al., 2006; Uusitalo et al., 55 

2015). The inclusion of measures of uncertainty is important as many conservation decisions 56 

must be made in the absence of complete information. Thus, a BBN modeling approach can be 57 

used to inform decisions made using an adaptive management approach to reduce uncertainty 58 

(Drew and Collazo, 2014). 59 

The umbrella species concept (Wilcox, 1984) can enhance conservation for suites of species 60 

with similar habitat requirements by countering incomplete biodiversity surveys that lack time, 61 

financial support, or adequate methods. The umbrella species concept provides a framework to 62 

improve the effectiveness of conservation action while reducing the complexity of quantifying 63 

species-specific outcomes. Umbrella species are unique in that they represent an ecologically-64 

defined role in conservation as managing for their life history needs is expected to serve other 65 

species that co-occur or rely on the same set of resources (Roberge and Agelstam, 2004). As 66 

such, umbrella species are habitat specialists with large ranges sizes, and that are often sensitive 67 

to environmental disturbance (Kalinkat et al., 2017). Creative approaches to identifying umbrella 68 

species hold promise for devising effective surrogates of ecological communities or ecosystems 69 



(Sattler et al., 2014), but mechanistic niche modelling for predicting overlap of species’ ranges 70 

and habitat requirements can be developed by narrowing gaps in our understanding of species 71 

ecology (Kearney and Porter, 2009).  72 

Efforts to quantitatively identify umbrella species from among multiple candidate taxa (Caro 73 

and O’Doherty, 1999; Fleishman et al., 2000; Maslo et al., 2016; Stewart et al., 2017) often focus 74 

solely on contrasting spatial overlap identified using potentially incomplete sets of 75 

environmental predictors (Andelman and Fagan, 2000; Seddon and Leech, 2008). Despite the 76 

past mixed success of umbrella species for conservation planning (e.g., successful: Fleishman et 77 

al., 2000; Roth and Weber, 2007; Suter et al., 2002, unsuccessful: Launer and Murphy, 1994; 78 

Ozaki et al., 2006), the concept continues to improve by broadening to encompass both 79 

taxonomic and functional diversity (Sattler et al., 2014). Typical approaches to identifying 80 

umbrella species have used SDMs that lacked explicit mechanistic reasoning to identify spatial 81 

ranges (i.e., beyond spatial overlap to encompass responses to similar environmental conditions) 82 

(Cayuela et al., 2009; Elith and Leathwick, 2009). As the umbrella approach to wider species 83 

conservation holds promise for identifying effective surrogate taxa (Sattler et al., 2014), we 84 

present a method to identify umbrella taxa informed by suites of BBN models that represent 85 

spatial ranges with causal reasoning.  86 

Given the ability of BBNs to generate spatially-explicit predictions based on 87 

functionally-defined species-habitat relationships, they represent a potentially valuable approach 88 

to evaluate a species’ expected performance as an umbrella species. Therefore, we took a case 89 

study and meta-analysis approach to identify potential umbrella taxa within an ecosystem using 90 

BBN models. Restricting our research to freshwater wetland ecosystems, undertook a systematic 91 

literature review to quantify the categorical overlap of habitat requirements for freshwater 92 



wetland-dependent species among existing BBNs. We reviewed existing taxon-centered BBN 93 

models to: 1) assess how BBNs were constructed, 2) describe how BBNs were used to inform 94 

biological conservation and identify the extent BBNs appeared to be used by those making 95 

biological conservation decisions, and 3) identify candidate umbrella taxa. 96 

We chose freshwater wetlands because of the important role they play for a large number of 97 

species and the widespread concern for their conservation (Dudgeon et al., 2006). Despite the 98 

numerous ecosystem services provided by wetlands, greater than 50% of wetland area in the 99 

contiguous United States (US) has been converted to agricultural and urban land use (Horvath et 100 

al., 2017). There is a growing recognition of the difficulties of wetland restoration to renew lost 101 

biodiversity and ecosystem function (Meli et al., 2014; Zedler, 2000). Multiple factors including 102 

habitat fragmentation, hydrological changes, the introduction of exotic species, and 103 

overpopulation of other native species combined with wetland loss are correlated with declines 104 

in wetland flora and fauna (Adams, 1999; Bunn and Arthington, 2002; Findlay and Houlahan, 105 

1997; Kerbes et al., 1990; Knutson et al., 1999; Quesnelle et al., 2013; Wettstein and Schmid, 106 

1999). Substantial wetland loss (Ramsar Convention Secretariat, 2013) and a paucity of 107 

restoration studies conducted in freshwater wetlands (Brudvig, 2011) further drive an urgency to 108 

identify conservation and restoration strategies that provide habitat for the breadth of wetland-109 

dependent species (Galat et al., 1998; Lehtinen and Galatowitsch, 2001). Thus, approaching 110 

wetland conservation using a bottom-up framework to identify umbrella taxa in freshwater 111 

wetland ecosystems may creatively provide restoration targets (i.e., shared habitat requirements) 112 

to maximize the restoration of biodiversity in wetlands.  113 

2. Methods 114 



We systematically searched for and reviewed published literature to provide a comprehensive 115 

and reproducible overview of habitat requirements for freshwater wetland-dependent taxa using 116 

BBNs. We evaluated the scope of available peer-reviewed literature concerning habitat needs of 117 

freshwater wetland-dependent taxa, including identifying the presence of overlapping habitat 118 

requirements among taxa as well as collective sources of uncertainty. To do so, we searched the 119 

Google Scholar literature database using an ‘abstract’ search and with the publication date 120 

criteria set to ‘anytime’ (search undertaken in January 2018). We initially examined all English-121 

language literature pertaining to freshwater wetland-dependent taxa, using the phrase “(wetland 122 

species AND Bayesian Belief Network AND species distribution model AND conditional 123 

probability table AND node)” (460 articles), to identify articles with published network models 124 

which we could compare. We then refined the search by including only publications that 125 

explored the distributions of species, rather than ecosystem or landscape-feature approaches. Our 126 

synthesis of the resulting publications consisted of four steps. 127 

First, we summarized how BBNs were constructed. We compiled information on model type 128 

which included alpha-level (i.e., based on a literature review), beta-level (i.e., incorporated 129 

expert opinion), and gamma-level BBNs (i.e., included fieldwork to validate model predictions 130 

(gamma-level BBN). We also compared model features including the number of nodes (i.e., 131 

BBN complexity), the sources and amount of uncertainty. Finally, we classified each BBN as 132 

either a process model (species-habitat relationships estimated for a single season or generalized 133 

across a life cycle) or dynamic model (relationships could vary from one time-period to another).  134 

Then, we describe how BBNs were used to inform biological conservation and identified the 135 

extent to which BBNs appeared to be used by those making biological conservation decisions. 136 

There has been a recent call for translational science; translating what is learned from empirical 137 



research on species-habitat relationships into conservation action by developing tools accessible 138 

to decision makers such as resource managers (Littell et al., 2017). Given the emphasis on 139 

translational science and the promotion of BBNs as easy to understand models, one might expect 140 

use of BBN models in natural resource management to be common. To determine if this was the 141 

case, we compiled data for each publication on: publication type (journal vs report), journal 142 

category (applied or method development), and funding source. If BBNs are easily 143 

comprehensible due to their graphical nature, (Sarah J Douglas and Newton, 2014), we expected 144 

to find evidence of their use as decision-support tools. By collecting these general criteria, we 145 

sought to identify potential gaps in the translation (i.e., from development to deployment) of the 146 

BBN approach in conservation. 147 

Lastly, we examined the potential to identify umbrella species using BBNs. To do so, we 148 

identified important states of nodes (i.e., habitat requirements) shared across models to help 149 

identify potential umbrella taxa. Then, we summarized the BBN models that captured species-150 

specific, mechanistically derived habitat requirements (sensu O’Hagan, 2012) to identify 151 

taxonomic groups that shared the largest proportion of habitat requirements.  The taxonomic 152 

group that had the largest amount of overlap with the other taxonomic groups was considered a 153 

candidate umbrella taxa. 154 

3. Theory 155 

The taxon-centered BBN models used to inform our umbrella taxa investigation mechanistically 156 

identify specific habitat requirements across taxa in a given ecosystem. This approach supports 157 

future research to quantitatively distinguish priority habitat for the focus of conservation 158 

planning, as well as identifies taxa with unique habitat requirements or unique habitat types that 159 

may not benefit from conservation actions targeted at umbrella taxa. 160 



4.  Results 161 

4.1 BBN model construction 162 

The majority of studies followed the same three-step trajectory. The first step created an alpha-163 

level BBN through a literature review, although few studies provided details on their literature 164 

review (n=5 studies provided literature review details). Next, all but one study elicited expert 165 

knowledge in a two-step process to refine and modify the alpha structures and build beta-level 166 

models.  For the third step, over half of studies (n=26) validated their beta-level models with 167 

field data, completing the study with a published gamma-level model. The primary output nodes 168 

(i.e., response variable) for these studies were either abundance of the taxa in question or habitat 169 

suitability for the taxa in question. Nearly all studies used process models; only a single study 170 

used a dynamic model. The one temporally dynamic model (Chee et al., 2016) was also the only 171 

study to use any type of spatial statistical framework (geospatially explicit resampling between 172 

time periods). A habitat suitability response was typically represented as a binary categorical 173 

variable of suitable versus not suitable.  174 

Few articles (n=7) discussed sources or levels of uncertainty. Articles that did estimate 175 

uncertainty surrounding the nodes that contributed the highest uncertainty in species outcomes 176 

identified the following sources: amount of flooded area, connectivity of different wetland 177 

patches, flood duration, maximum water temperature, interspecific competition, predation, and 178 

blood mercury measurements. Despite low reporting on any estimates of uncertainty (due to 179 

either data uncertainty or structural uncertainty), authors emphasized refining variable definitions 180 

if they could be interpreted in different ways by experts (i.e., structural uncertainty). Some 181 

examples of poorly defined variables included ‘water quality’ variables, determining the state of 182 



an individual plant or animal when two states are very similar, and the precise definition of 183 

outcomes following restoration.  184 

 185 

4.2 BBNs as tools for biological conservation of freshwater wetlands 186 

We identified a total of 53 articles with ecological BBNs for freshwater wetland-dependent taxa; 187 

consisting of 33 peer-reviewed articles, 9 reports or conference proceedings, 10 master of 188 

science theses or doctoral dissertations, and 1 book chapter (Appendix 1). The sources of peer-189 

review articles were primarily ecological journals (e.g., Ecological Indicators), the modelling 190 

journal, Environmental Modelling & Software (n=6), and conservation journals such as 191 

Biological Conservation (n=2) and Conservation Biology (n=1). Lead authorship on peer-192 

reviewed articles and reports was rarely by graduate students or early-career scientists such as 193 

postdoctoral researchers (26%), and more commonly by research fellows or senior researchers at 194 

the time of publication (Appendix 2).  195 

The earliest evidence we found of BBNs being used to model habitat requirements of 196 

freshwater wetland species was from 2003, with an accelerated rate of increase in peer-reviewed 197 

literature using BBNs to explore habitat relationships of wetland taxa as years have gone on 198 

(Figure 2). The majority of articles focused on Australasian wetlands (including Australia, 199 

Tasmania, Papua New Guinea, and New Zealand; 42%), but wetlands from all continental 200 

regions (excepting Antarctica) have been represented by BBNs in the peer-reviewed literature. 201 

(Appendix 1).  202 

The most common taxonomic subjects were fish (Actineropterygii; n=15 models), 203 

followed by macroinvertebrates (e.g., Amphipoda, Coleoptera, Gryllidae, Lepidoptera, etc.; n=10 204 

models) and birds (e.g., Ardeidae, Aythya affinis, Bucephala islandica, Dolichonyx oryzivorus, 205 



Grus canadensis, Hydrophasianus chirurgus, Megaceryle alcyon, Rallus elegans, Tympanuchus 206 

cupido, Tympanuchus phasianellus, Thryothorus ludovicianus; n=10 models). In order of 207 

abundance, articles also included wetland plants (e.g., Galaxiella pusilla, Pilularia globulifera, 208 

Salicaceae, etc.; n=9 models), bacteria (e.g., Escherichia coli; n=5 models), fungi (e.g., 209 

Batrachochytrium dendrobatidis, Bridgeoporus nobilissimus, and Poronia punctata; n=3 210 

models), mammals (e.g., Corynorhinus townsendii, Lutrinae, Sus scrofa etc.,; n=3 models), 211 

amphibians (i.e., Anura; n=2 models), reptiles (i.e., Testudines etc.,; n=2 models), and viruses 212 

(e.g., West Nile, malaria, etc.; n=2 models). Four additional studies modeled habitat 213 

requirements for invasive species found in wetlands. Articles took the form of either single- or 214 

multi-species BBNs of predominantly data-poor species, with multi-species models developed if 215 

the environmental drivers of occupancy were shared across taxa.  216 

Articles failed to identify a specific wetland type in 43% of the literature we reviewed 217 

(21/49 studies), instead simply referring to ‘wetlands’. Ten out of 49 studies identified the 218 

modeled system as floodplain wetlands. In all these cases, the primary source of floodwaters was 219 

natural river connections rather than intentionally inundated through pumped water or other 220 

irrigation systems. Emergent wetlands were identified in 4/49 studies, and riparian wetlands were 221 

referred to in 3/49 studies. Other descriptive terminology used to classify wetlands included 222 

slackwater, claypan, forested (including seeps), wet meadows, polders, artificial and temporary 223 

(2% or one article, each). We found no patterns between taxonomic group and the distinction of 224 

wetland types. That is, none of the taxonomic groups had BBNs built in single wetland types that 225 

could potentially have led to the identification of an overabundance of unique habitat 226 

requirements.  227 



Based on information in the acknowledgements sections, the majority of peer-reviewed 228 

articles were funded through government agencies with a primary mission to support applied 229 

research to improve natural resource management, such the National Climate Change Adaptation 230 

Research Facility (Australia), the United States Fish and Wildlife Service (USA), and the United 231 

States Geological Survey (USA) (Appendix 2). There were fewer instances of funding from 232 

government agencies with a primary mission to advance science theory, such as the National 233 

Science Foundation (USA), the National Science Council (China) or the Natural Sciences and 234 

Engineering Research Council (Canada). Very few articles cited funding from nongovernmental 235 

organizations concerned with ecological restoration or biological conservation.  236 

 237 

4.3 Using BBNs to identify candidate umbrella taxa 238 

We found 38 habitat requirements reported for wetland-dependent taxa in our literature review 239 

(Table 1). The most frequent habitat requirement was presence of or persistence of water. 240 

Persistent water during the study period was identified as an important variable driving 241 

occurrence/abundance patterns in 24% of models (n=12 models), spanning various taxonomic 242 

groups including amphibians, birds, fish, macroinvertebrates, mammals, and plants. The next 243 

most common habitat requirement was the appropriate timing (or “regularity”) of seasonal 244 

flooding, by river inundation, rainfall or by irrigation (n=10 models). Appropriate timing of 245 

seasonal flooding was required by amphibians, bacteria, fish, macroinvertebrates, plants, and 246 

viruses, although was not included in models of birds, fungi, mammals or reptiles. Other 247 

common habitat requirements (each found in n=8 models) included deferment of effluent 248 

irrigation or pollution, total flooded area available, predictability of flood timing, extent, duration 249 



and frequency, and presence of a wooded border around wetlands. Less frequent habitat 250 

variables are listed in Table 1, along with those mentioned above.  251 

 The responses of bird species to environmental variables were the most complex, being 252 

sensitive to the broadest set of habitat variables (n=20/38 habitat requirements were identified for 253 

bird species; Figure 3). Both the variables themselves and the states associated with the 254 

highest/best response value overlapped with variables identified as important and their states as 255 

required for other taxa. The habitat requirements for birds (variable states) completely 256 

overlapped with those identified for mammals (n=6), and almost entirely for amphibians (n=8 in 257 

common out of 9 identified requirements for amphibians). While fish were the most common 258 

focus of BBNs in freshwater wetlands (i.e., floodplain wetlands, wet meadows, polders, and 259 

ponds), they were also the taxa with the greatest number of unique habitat requirements (n=4 260 

variables unidentified in studies of other taxa as important).  261 

 262 

5. Discussion 263 

5.1 Using BBNs to identify candidate umbrella taxa 264 

The taxon-centered BBN models used to inform our umbrella taxa investigation for wetland 265 

conservation identified important habitat features (variables and states of variables) for 266 

freshwater wetland-dependent taxa. These shared habitat requirements across taxonomic groups 267 

can be used to leverage conservation choices that would benefit multiple species. For example, 268 

the models in our review indicated that maintaining appropriate hydrologic regimes and natural 269 

buffer areas surrounding wetlands would benefit multiple taxa. However, the top habitat features 270 

amongst taxon-centered BBNs were drawn from models built independently from one another to 271 

address specific local problems. The present lack of clarity in terminology and definitions makes 272 



it difficult to draw conclusions across taxa (e.g., Is the ‘regular flooding or irrigation’ node for 273 

one taxa equivalent to the ‘predictable timing, extent, duration and frequency of flooding’ node 274 

for another taxa?). Thus, to identify ecosystem-wide umbrella taxa, it would be beneficial to 275 

develop a standard node set with consistency of variable states that accurately represents the 276 

ecosystem in question.  277 

In support of their use as umbrella taxa in freshwater wetland ecosystems, we found that 278 

birds had the greatest degree of overlap among habitat requirements shared with other species. 279 

Characteristics that indicate wetland birds make strong candidates for umbrella taxa representing 280 

wetland conservation include their status as habitat specialists with large ranges sizes, and that 281 

they are moderately sensitive to human disturbance (Caro, 2010; Green et al., 2002; Kalinkat et 282 

al., 2017; King et al., 2006; Roberge and Agelstam, 2004). For example, multiple bird species 283 

show sensitivity to human-caused disturbance that drives behavioral responses in vigilance, 284 

fleeing, habitat selection, mating displays and parental investment which can have population 285 

and community-wide impacts (Frid and Dill, 2002). As many wetland birds are migratory (e.g., 286 

Ma et al., 2009; Skagen, 1997), leveraging conservation efforts across entire annual ranges of 287 

wetland birds could maximize restoration of wetland biodiversity under an umbrella taxa 288 

approach.  289 

The adoption of an umbrella taxa approach to conservation plans should, however, be made 290 

with caution as even under circumstances when umbrella taxa overlap spatially with rare or 291 

unique species, management decisions centered on umbrella taxa can cause unintended loss of 292 

non-target biodiversity (Severns and Moldenke, 2010). Although we did not consider issues of 293 

scale in our review, we recommend considering it when selecting umbrella species using BBNs 294 

or other methods to identify umbrella taxa. Unique landscape features important at regional 295 



scales continue to warrant the investigation of locally appropriate umbrella taxa  (e.g., migratory 296 

fishes; Agostinho et al., 2005). Furthermore, the existence of species with unique habitat 297 

requirements or small ranges that do not overlap with umbrella taxa necessitate that conservation 298 

approaches maintain a breadth of strategies including programs surrounding focal taxa 299 

representative of unique habitats with specific threats (Lambeck, 1997). 300 

 301 

5.2 BBN model construction 302 

Bayesian belief network models are unique in their ability to incorporate expert opinion and 303 

refine the identification of sources of uncertainty by developing gamma models. If models rely 304 

heavily on expert opinion there is a danger that they do not adequately reflect reality due to 305 

linguistic uncertainty (when words have imprecise or different meanings to different people), 306 

overemphasis of rare cases stemming from specific memorable experiences by experts, or simply 307 

the reliance on memories and not empirical data (Meyer and Booker, 1991; Morgan and Henrion, 308 

1990). A strength of BBNs is that they are also able to incorporate missing values in input data 309 

and perform accurate predictions with the model built from them (although not a unique to 310 

BBNs; Uusitalo, 2007). The development of gamma models (incorporating data to validate alpha 311 

or beta models) provides the opportunity to support or refute our understanding of relationships 312 

between species and their environment. Gamma models also enable refinement of identifying 313 

sources of uncertainty in resultant SDMs. To this end, we found that over half of the articles we 314 

reviewed validated their models with data. Through an iterative process of developing and 315 

updating BBN models with monitoring data, BBNs can provide an ideal modeling approach to 316 

facilitate adaptive management (Henriksen and Barlebo, 2008; Nyberg et al., 2006). Thus, a 317 



BBN approach to understanding species distributions can be powerful due to improved accuracy 318 

in modeling species habitat relationships.  319 

As all models we reviewed were process models (with the exception of one dynamic model), 320 

seasonal processes are currently inadequately represented for the comparison of BBN models 321 

either within or among wetland types. Wetlands are, by definition, a hydrologically dynamic 322 

ecosystem defined by seasonal hydroperiod (Cowardin et al., 1979). The use of dynamic models 323 

that track habitat requirements across seasons may thus be more appropriate than the commonly 324 

used process models. However, there is an innate problem in finding convergence using Markov 325 

chains employed in dynamic BBN models which requires limiting the number of times the model 326 

can be updated (Wu et al., 2018). Further research developing BBNs as seasonal dynamic 327 

models could improve their utility in biological conservation.  328 

Our review identified an overall lack of spatial statistical frameworks. In the absence of using 329 

spatial statistics, it may be difficult to identify when and where habitat is most likely needed to 330 

fulfill the life history needs of species within an ecosystem. Most wetland management 331 

initiatives focus on individual wetland creation, although strategic restoration planning may yield 332 

the greatest benefit using state-wide or watershed-wide perspectives (Horvath et al., 2017). Many 333 

challenges to wetland conservation planning could benefit from a spatially explicit, BBN 334 

approach. For example, wetland management remains challenging due to limited resources for 335 

acquiring new data (Margules et al., 2002), large areas of managed wetlands (Semlitsch and 336 

Bodie, 1998), limited ecological data on wetland characteristics and seasonal conditions (Zedler, 337 

2000), and responses to changes in flow regimes in channelized river systems (Bunn and 338 

Arthington, 2002). Each of these issues could benefit from a spatially explicit risk assessment, to 339 

ease economic strain and use limited funds in the locations with the best cost-benefit ratio. 340 



However, many small-scale species requirements remain unavailable in spatial format (e.g., 341 

topographic, geomorphic, edaphic) and so are omitted from typical SDMs (Sinclair et al., 2010). 342 

Exclusions of these species can lead to error in SDMs, and few studies quantify the uncertainty 343 

generated by these incomplete data (Beale and Lennon, 2012; Elith and Leathwick, 2009).  344 

Approaches to identifying umbrella taxa that employ a spatial statistical framework (e.g., 345 

clustering analyses such as calculating Ripley’s K statistic, or other statistics for point processes) 346 

could improve the development of finer-scale range maps that can be used to aid in identifying 347 

areas of conservation priority. The use of a spatial statistical framework in a BBN approach 348 

would include node-specific estimates of uncertainty in probabilities of species occurrence with 349 

respect to environmental data gathered from a variety of sources (e.g., expert opinion from 350 

systems experts and curated GIS layers). Some new computational tools for calculating risk 351 

assessments of alternative conservation actions; including spatial statistical approaches for 352 

identifying important areas for conservation; are currently in beta testing through the GeoNetica 353 

(GeoNeticaTM, Norsys Software Corporation) plug-in of the popular BBN computational tool, 354 

Netica (Netica 6.0, Norsys Software Corporation).  355 

Building spatially scalable wetland models that can accommodate the seasonal ranges in 356 

hydrological nodes, as well as differences in mobility of wetland taxa (e.g., pollinator vs. 357 

amphibian vs. riverine fish vs. migratory bird) may also aid in efforts to identify umbrella taxa in 358 

seasonal ecosystems. The complexity of seasonally fluctuating ecosystems, such as wetlands, 359 

therefore requires either the logical integration of multiple process models, or small dynamic 360 

BBN models (e.g., four seasons) equipped with scalability options to inform conservation plans 361 

appropriate for each season and location.  362 



Although alpha models in our review were appropriately developed using empirical 363 

literature and combined with information provided by taxonomic experts to create beta models, 364 

ecological BBNs may benefit from also interviewing ecosystem experts. Particularly in wetlands, 365 

experts knowledgeable of hydrology and geomorphology could provide information regarding 366 

systems processes that likely influence physical habitat characteristics. For example, the 367 

frequency and timing of flooding in wetlands was important in many of the BBN models that we 368 

reviewed but there was little reference to the source of floodwaters. It was unclear whether 369 

floodwater resulted from rainfall (as in playa wetlands, ombrotrophic bogs or pocosins), river 370 

connection (as in alluvial swamps, montane or streamside wetlands), groundwater discharge (as 371 

in discharge wetlands such as prairie potholes, or fens) or whether water pumped into wetlands 372 

from a municipal source was sufficient (wetland hydrological characteristics from Brinson, 373 

1993). Similarly, pedologists or edaphologists would know the types of plants best suited to soil 374 

characteristics and identify potential wetland areas for restoration given regional soil 375 

characteristics. The current lack of distinction amongst similar nodes across taxon-centered BBN 376 

models of freshwater wetlands is a major caveat because we lack relevant take-away actions for 377 

wider conservation planning. Including systems experts in the design of ecological BBN models 378 

may improve the use of BBNs as decision-support tools for conservation planning as they would 379 

enable higher accuracy in distinguishing relevant landscape variables at the ecosystem scale.  380 

 381 

5.3 BBNs as tools for biological conservation of freshwater wetlands 382 

Our review produced mixed results with respect to the integration of BBNs into biological 383 

conservation. On the one hand, the majority of peer-reviewed articles were funded by 384 

government agencies with a primary mission to support applied research. On the other hand, the 385 



majority of literature sources appeared in journals contributing to conservations among 386 

modellers, not in journals likely to inform wetland management and conservation communities. 387 

In general, even when the primary purpose of developing taxon-centered BBN models is for use 388 

as a decision-support tool for conservation planning, few studies fully transition from pilot to 389 

implementation. The majority of management decisions are not developed using decision-390 

support tools, even when the primary purpose of developing taxon-centered BBNs is for future 391 

use as a decision-support tool for conservation planning. Although there have been consistent 392 

calls in the conservation literature for mechanistic models in defining species-habitat 393 

associations (i.e., those that test a specific mechanism driving species ooutcomes; Landuyt et al., 394 

2013; McCann et al., 2006; Nyberg et al., 2006), this failure is not unique to BBNs. In a survey 395 

of over 1000 protected areas in Australia, Cook et al. (2010) found that approximately 60% of 396 

management decisions relied primarily on experience-based information. Sutherland et al. (2004) 397 

found that only 2% of conservation actions undertaken in an English wetland were based on 398 

verifiable evidence, while 77% of actions were based entirely on experience. A major hurdle 399 

supported by statements in almost all articles in our review was that taxon-centered BBNs were 400 

not adopted as support tools by land managers responsible for conservation. 401 

Conservation planning may understandably dismiss species-specific BBNs due to a 402 

misguided assumption (from a modelling perspective) that BBNs are built considering the 403 

inappropriate landscape settings and may fail to include relevant dynamic physical features of 404 

the ecosystem if they are built exclusively through a taxonomic lens. Disconnection between the 405 

scientific research community and area managers occurs when scientific information is acquired 406 

and assembled without consideration of management implications, the results are not easily 407 

accessible or applicable to area managers (Bouska et al., 2016; Cook et al., 2012; Pullin and 408 



Knight, 2005), or there are perceived conflicts between single taxa model recommendations and 409 

the needs of multiple species in a complex system. Some attribute the limited adoption of 410 

decision-support tools by conservation planners to a lack of engagement between researchers and 411 

managers across multiple studies (Gawne et al., 2012; Goosen et al., 2007; Kroon et al., 2009), 412 

although adaptive resource management through collaborative efforts has been adopted in some 413 

areas (King et al., 2010; Richter and Thomas, 2007). Wetland restoration is thought to be 414 

effective at restoring both biodiversity and ecosystem services (Meli et al., 2014). Thus, the 415 

development of decision-support tools, such as BBNs, that synergize empirical data with expert 416 

knowledge from within a hypothesis-testing framework have the potential to drive critical gains 417 

in selecting effective criteria for conservation action if they were framed for more widespread 418 

utility.  419 

 420 

5.4 Conclusion 421 

The adoption of a systems-oriented BBN approach to conservation planning could aid the 422 

identification of effective umbrella taxa. The identification of umbrella taxa is often hindered by 423 

inconsistent methods for determining habitat requirements in species distribution models as well 424 

as inadequate prior knowledge of biotic and abiotic landscapes. As BBNs can include expert 425 

knowledge, they may provide a more robust assessment of ecosystems and improve conservation 426 

planning. As a decision-support tool for conservation planning, BBNs can be updated via 427 

monitoring to minimize uncertainties over time to achieve more rapid restoration success. 428 

Although an umbrella approach to conservation may not protect habitat requirements for 429 

all species, comparing habitat requirements using a BBN approach to building species 430 

distribution models, as discussed here, allows for the identification of umbrella species. A BBN 431 



approach to identifying umbrella taxa can also quantitatively estimate which taxa may not 432 

benefit from conservation action targeted at umbrella taxa by identifying those with unique 433 

habitat requirements not shared with umbrellas. Thus, using a BBN approach to building SDMs 434 

has the potential to improve our capacity for effective biological conservation.  435 

As BBNs are relatively easy to construct and understand due to their visual nature 436 

(Douglas and Newton, 2014), they have the potential to substantially improve coordinated efforts 437 

translating empirical research on species distributions into useable outputs in the hands of 438 

conservation planners. BBNs are flexible in their applicability and are particularly useful to build 439 

SDMs of data-poor species through the incorporation of expert knowledge (e.g., Drew and 440 

Collazo, 2014). Comparing important nodes and measures of uncertainty from multiple network 441 

models is a new methodology to identify critical habitat criteria shared across taxa. Using BBNs 442 

to identify taxa that have the highest degree of overlap in habitat requirements within an 443 

ecological community also enables a quantitative assessment of potential umbrella taxa which 444 

can then be the focus of conservation in an adaptive resource management framework.  445 

 446 
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Figures  

 

Figure 1. An illustration of a simple Bayesian Belief Network (BBN). The links between input, intermediate and output nodes 

(ellipses) indicate a mechanistic relationship in the direction of the arrow (i.e., the state of the input node variable drives the state of 

the intermediate node variable etc.). Input nodes are defined by marginal (unconditional) probability distributions defined by the range 

of states found in nature. Intermediate and output nodes are defined by conditional probability tables, with the probability for the node 

being in a specific state given by the configuration of the states of “parent” nodes. In the bottom part of the figure we demonstrate a 

hypothetical landscape with equal probabilities of encountering each type of habitat. In bold we represent that where there is semi-

permanently flooded habitat with shrub-scrub vegetation, there is a 20% probability of finding suitable habitat (intermediate node) for 

an imaginary taxa. As the habitat is suitable, there is a 50% probability that the chances of encountering one individual of the species 

is low, a 40% probability that the chances of encountering one individual of the species is moderate, and a 10% probability that the 

chances of encountering one individual of the species is high.  In this simplistic example, we show that the range of the probability of 

encountering the species (output node) changes based on the state at the input node. 



 

 Figure 2. Distribution of article frequency, publication date, article type, and continent that BBNs were modeling based on our literature 

review. A book chapter published in 2008 which was theoretical in nature, and thus not affiliated with any continent, was omitted from 

this figure (see Appendix 1). Contributions from member countries to BBNs from each continent are as follows: Africa (Af) constituted 

a paper with research throughout sub-Saharan Africa; Asia (As) from Burma (Myanmar), Cambodia, China, the Lao PDR, Taiwan, 

Thailand, and Vietnam; Australia (Au) from Australia, Papua New Guinea, and Tasmania; Europe (E) from Belgium, England, France, 

Norway, Romania, Scotland, and Spain; North America (N) from Canada and the USA; and South America (S) from Chile.  

 

 



 

Figure 3. Venn diagram showing the proportional overlap of habitat requirements amongst freshwater wetland taxonomic groups. 

Lists of important habitat requirements were compiled from our review of species-specific BBN model literature (n = 38 habitat 

features from 50 studies; Table 1; Appendix 1).  

 



Appendix 1 
 
Literature summarized by this review. 
 
Table 1. Peer-reviewed sources. 

 Reference Title Journal Country Taxa 
1 (Bino et al., 2014) Maximizing colonial waterbirds’ breeding events using 

identified ecological thresholds and environmental flow 
management 

Ecological 
Applications 

Australia 10 colonial waterbirds species 

2 
 

(Boets et al., 2015) Evaluation and comparison of data-driven and 
knowledge-supported Bayesian Belief Networks to assess 
the habitat suitability for alien macroinvertebrates 

Environmental 
Modelling & 
Software 

Belgium Alien gammarids (amphipod/aquatic 
macroinvertebrate) 

3 (Bower et al., 2017) Using a Bayesian network to clarify areas requiring 
research in a host-pathogen system 

Conservation Biology Australia Batrachochytrium dendrobatidis (Chytrid 
fungus) 

4 (Burgman et al., 2010) Reconciling uncertain costs and benefits in Bayes nets for 
invasive species management 

Risk Analysis Australia Red Imported Fire Ants 

5 (Chan et al., 2012) Bayesian network models for environmental flow 
decision making in the Daly River, Northern Territory, 
Australia 

River Research and 
Applications 

Australia Barramundi (Lates calcarifer) and sooty 
grunter (Hephaestus fuliginosus) 

6 (Chee et al., 2016) Modelling spatial and temporal changes with GIS and 
spatial and dynamic Bayesian networks 

Environmental 
Modelling & 
Software 

USA Invasive willow (Salix caroliniana) 

7 (Couture et al., 2017) Simulating water quality and ecological status of Lake 
Vanjo, Norway, under land-use and climate change by 
linking process-oriented models with a Bayesian network 

Science of the Total 
Environment 

Norway Cyanobacteria biomass 

8 (Douglas and Newton, 2014) Evaluation of Bayesian networks for modelling habitat 
suitability and management of a protected area 

Journal for Nature 
Conservation 

England Plants: Wild chamomile (Chamaemelum 
nobile), slender marsh-bedstraw (Galium 
constrictum), wild gladiolus (Gladiolus 
illyricus), pillwort (Pilularia 
globulifera); Butterflies: silver-stubbed 
blue (Plebeius argus), grayling 
(Hipparchia semele); Orthopteran: wood 
cricket (nemobius sylvestris); Fungus: 
nail fungus (Poronia punctata) 

9 (Ethier and Nudds, 2017) Complexity of factors affecting Bobolink population 
dynamics communicated with directed acyclic graphs 

Wildlife Society 
Bulletin 

Canada Bobolink (Dolichonyx oryzivorus) 

10 (Froese et al., 2017) Modelling seasonal habitat suitability for wide-ranging 
species: Invasive wild bits in northern Australia 

PLoS ONE Australia Wild pigs (Sus scrofa) 

11 (Gawne et al., 2012) A Bayesian belief network decision support tool for 
watering wetlands to maximise native fish outcomes 

Wetlands Australia Introduced fish: common carp (Cyprinus 
carpio); native fish: carp gudgeon 
(Hypseleotris spp.), Australian smelt 
(Retropinna semoni), golden perch 
(Macquaria ambigua). 

12 (Horne et al., 2017) Using optimization to develop a “designer” 
environmental flow regime 

Environmental 
Modelling & 
Software 

Australia Native fish: Australian Grayling 
(Prototroctes maraena), and River 
Blackfish (Gadopsos marmoratus) 

13 (Jellinek et al., 2014) Modelling the benefits of habitat restoration in socio- Biological Australia Native reptile (n=22) and beetle (n=97) 



ecological systems Conservation species 

14 (Kachergis et al., 2013) Tools for resilience management: Multidisciplinary 
development of state-and-transition models for Northwest 
Colorado 

Ecology and Society USA Shrub-derived habitat types 

15 (Kath et al., 2016) Using a Bayesian network model to assess ecological 
responses to hydrological factor interactions 

Ecohydrology Australia Riparian tree (Eucalyptus camaldulensis) 

16 (Kragt et al., 2011) An integrated approach to linking economic valuation 
and catchment modelling 

Environmental 
Modelling & 
Software 

Tasmania, 
Australia 

Rare native animal and plant species, and 
native riparian vegetation 

17 (Le Dee et al., 2011) Envisioning the future of wildlife in a changing climate: 
Collaborative learning for adaptation planning 

Wildlife Society 
Bulletin 

USA Greater Prairie-chicken (Tympanuchus 
cupido), Wood Frog (Lithobates 
sylvaticus), and Karner Blue Butterfly 
(Plebejus melissa samuelis) 

18 (Li et al., 2018) Predicting the effect of land use and climate change on 
stream macroinvertebrates based on the linkage between 
structural equation modeling and Bayesian network 

Ecological Indicators China Macroinvertebrates (Emphemeroptera, 
Plecoptera, and Trichoptera) 

19 (Liedloff et al., 2013) Integrating indigenous ecological and scientific hydro-
geological knowledge using a Bayesian Network in the 
context of water resource development 

Journal of Hydrology Australia Native fish: Barramundi, Sawfish, Black 
Bream 

20 (Liu et al., 2015) Using fuzzy logic to generate conditional probabilities in 
Bayesian belief networks: a case study of ecological 
assessment 

International Journal 
of Environmental 
Science and 
Technology 

Taiwan, China Pheasant-tailed Jacanas (Hydrophasianus 
chirurgus) 

21 (Mantyka-Pringle et al., 2016) Prioritizing management actions for the conservation of 
freshwater biodiversity under changing climate and land-
cover 

Biological 
Conservation 

Australia Macroinvertebrates and fish 

22 (Marcot, 2006) Characterizing species at risk I: Modeling rare species 
under the Northwest Forest Plan 

Ecology and Society USA Fungus: Fuzzy Sandozi (Bridgeoporus 
nobilissimuus) 

23 (McDonald et al., 2016) An ecological risk assessment for managing and 
predicting trophic shifts in estuarine ecosystems using a 
Bayesian network 

Environmental 
Modelling & 
Software 

Australia Bacteria: Chlorophyta, Bacilliariophyta, 
and Cyanobacteria 

24 (Morrison and Stone, 2014) Spatially implemented Bayesian network model to assess 
environmental impacts of water management 

Water Resources 
Research 

USA Cottonwood and Willow tree species 

25 (Murray et al., 2012) Predicting the potential distribution of a riparian invasive 
plant: the effects of changing climate, flood regimes and 
land-use patterns 

Global Change 
Biology 

Australia Invasive riparian species of lippia (Phyla 
canescens) 

26 (Pollino et al., 2009) Modelling ecological risks from mining activities in a 
tropical system 

Australasian Journal 
of Ecotoxicology 

Papua New 
Guinea 

Fish: Lates calcarifer, Nematalosa sp., 
Neosilurus ater, Arius sp., other 

27 (Semakula et al., 2017) Prediction of future malaria hotspots under climate 
change in sub-Saharan Africa 

Climatic Change Sub-saharan 
Africa 

Malaria (Plasmodium spp.) 

28 (Shenton et al., 2011) Bayesian network models for environmental flow 
decision-making: 1. Latrobe River Australia 

River Research and 
Applications 

Australia Native fish: Australian Grayling and 
River Blackfish 

29 (Shenton et al., 2013) A Bayesian network approach to support environmental 
flow restoration decisions in the Yarra River, Australia 

Stochastic 
Environmental 
Research and Risk 
Assessment 

Australia Native fish: Australian Grayling 

30 (Smith et al., 2017) Operationalising ecosystem service assessment in 
Bayesian belief networks: Experiences with the 
OpenNESS project 

Ecosystem Services Romania, 
Scotland 

Native fish, brown trout 



31 (Tantipisanuh et al., 2014) Bayesian networks for habitat suitability modeling: a 
potential tool for conservation planning with scarce 
resources 

Ecological 
Applications 

Thailand Otter 

32 (Turschwell et al., 2017) Riparian restoration offsets predicted population 
consequences of climate warming in a threatened 
headwater fish 

Aquatic 
Conservation: Marine 
and Freshwater 
Ecosystems 

Australia River Blackfish 

33 (Vilizzi et al., 2013) Model development of a Bayesian belief network for 
managing inundation events for wetland fish 

Environmental 
Modelling & 
Software 

Australia Three native fish: Golden Perch 
(Macquaria ambigua), Carp Gudgeon 
(Hypseleotris spp.), and Australian Smelt 
(Retropinna semoni); one alien fish: 
Common Carp (Cyprinus carpio carpio) 

 
 
 
Table 2. Reports and Conference Proceedings. A star (*) indicates that this reference was duplicated in peer-review; The reference 

maintained but the content was not replicated.  
 Reference Title Contributed to Country Taxa 

1 (Baran et al., 2003) Bayfish: A model of environmental 
factors driving fish production in the 
Lower Mekong Basin 

Second International Symposium on 
Large Rivers for Fisheries 

China, Burma (Myanmar), the 
Lao PDR, Thailand, Cambodia 
and Vietnam 

110 fish species 

2 (Barmuta et al., 2012) Joining the dots: Hydrology, freshwater 
ecosystem values and adaptation options 

National Climate Change Adaptation 
Research Facility 

Tasmania Frogs and Dwarf galaxias (Galexiella 
pusilla) 

3 (Bino et al., 2013) Adaptive management of Ramsar 
wetlands 

National Climate Change Adaptation 
Research Facility 

Australia Colonial waterbirds* 

4 (Collier et al., 2014) Potential science tools to support 
Mahinga Kai decision-making in 
freshwater management 

Environmental Research Institute, 
University of Waikato 

Australia Mahinga kai, indigenous freshwater 
species that have traditionally been used as 
food, tools or other resources 

5 (Drew and Collazo, 2014) Bayesian networks as a framework to 
step-down and support Strategic Habitat 
Conservation of data-poor species: A 
case study with King Rail (Rallus 
elegans) in Eastern North Carolina and 
Southeastern Virginia 

United States Fish and Wildlife 
Service Raleigh Field Office 

USA King Rail (Rallus elegans) 

6 (Dyer et al., 2013) Predicting water quality and ecological 
responses 

National Climate Change Adaptation 
Research Facility 

Australia Macroinvertebrates and six native fish 
species 

7 (Liu et al., 2012) Using Bayesian belief networks for 
ecological assessment in EIA 

International Conference on 
Environment Science and 
Biotechnology 

Taiwan, China Pheasant-tailed Jacanas (Hydrophasianus 
chirurgus) * 

8 (Morgan, 2011) Standardized occupancy maps for 
selected wildlife in Central British 
Columbia 

BC Journal of Ecosystems and 
management 

Canada Grizzly, Barrow’s Goldeneye, Lesser 
Scaup, Long-tailed Weasel, Great Blue 
Heron, Sandhill Crane, Moose, Sharp-
tailed Grouse, Townsend’s Big-eared Bat 

9 (Widén, 2008) Evaluation of alternative discharge 
points from Valdivia Cellulose Plant by 
using Bayesian belief network system 
for environmental risk management 

Department of Fire Safety 
Engineering and Systems Safety, 
Lund University, Sweden 

Chile Biodiversity/Black-necked Swans 



 
 
 
Table 3. Theses and dissertations. A star (*) indicates that this reference was duplicated in peer-review; the reference maintained but 

the content was not replicated. 
 

 Reference Title University Country Taxa 
1 (Douglas, 2009) Habitat suitability modelling in the 

New Forest National Park 
Bournemouth University, UK England Plants: Wild chamomile (Chamaemelum nobile), slender 

marsh-bedstraw (Galium constrictum), wild gladiolus 
(Gladiolus illyricus), pillword (Pilularia globulifera); 
Butterflies: silver-stubbed blue (Plebeius argus), grayling 
(Hipparchia semele); Orthopteran: wood cricket 
(nemobius sylvestris); Fungus: nail fungus (Poronia 
punctata)* 

2 (Ethier, 2016) Factors affecting the abundance of a 
declining grassland bird: Implications 
for recovery strategy planning and 
implementation 

University of Guelph, Canada Canada Bobolink (Dolichonyx oryzivorus) * 

3 (Graham, 2016) Predicting risk to estuary water quality 
and patterns of benthic environmental 
DNA in Queensland, Australia using 
Bayesian networks 

Western Washington University, USA Australia Photosynthetic and heterotrophic benthos (environmental 
DNA) 

4 (Gronewold, 2009) Water quality models for supporting 
shellfish harvesting area management 

Duke University, USA USA Bacteria (E. coli) 

5 (Johns, 2014) Calculating risk change with 
management actions using Bayesian 
networks for the South River, 
Virginia, USA 

Western Washington University, USA USA Smallmouth Bass (Micropterus dolomieu), White Sucker 
(Catostomus commersonii), Belted Kingfisher 
(Megaceryle alcyon) and Carolina Wren (Thryothorus 
lucovicianus) 

6 (Kashuba, 2010) Bayesian methods to characterize 
uncertainty in predictive modeling of 
the effect of urbanization on aquatic 
ecosystems 

Duke University, USA USA Macroinvertebrates: Coleoptera, Diptera, Chironomidae, 
Gastropoda, Oligochaeta, Other 

7 (Meyer, 2014) Parasite diversity within native and 
invasive terrapins: Implications for 
conservation 

North-West University and University of 
Perpignan 

France and 
Spain 

Mediterranean Pond Terrapin (Mauremys leprosa) 

8 (Summers, 2012) The use of a Bayeian network to 
calculate the risks of mercury 
contamination to fish and birds of the 
South River, Virginia 

Western Washington University, USA USA Fish: Smallmouth bass, White sucker; Birds: Belted 
Kingfisher, Carolina Wren 

9 (Wiest, 2015) Tidal marsh bird conservation in the 
Northeast, USA 

University of Delaware USA Clapper Rail (Rallus crepitans), Willet (Tringa 
semipalmata), Nelson’s Sparrow (Ammodramus nelsoni), 
Saltmarsh Sparrow (A. caudacutus), Seaside Sparrow (A. 
maritimus) 

10 (Zavaleta, 2003) Integrative risk analysis of vector-born 
disease 

Oregon State University USA West Nile Encephalitis 

 



 
 
Table 4. Book Chapters 

 Reference Title Country Taxa 
1 (Orme-Zavaleta and Munns, 2008) Chapter 38: Integrating Human and Ecological Risk Assessment: Application to the 

Cyanobacterial Harmful Algal Bloom Problem 
aspatial Cyanobacteria 
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