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how you can disappoint them if you betray some secret 
too early? Twelve year olds are different; they got used to 
imposed solutions, they ask for solutions without trying. 
(Freudenthal 1971, p. 424).

1  Objective

The didactical metaphor of scaffolding has become so ubiq-
uitous in the rhetoric of education researchers and practi-
tioners, that its meaning has become diffuse, its theoretical 
rationale unquestioned, and its pedagogical operationaliza-
tion vague (Pea 2004). We submit that scaffolding is a vic-
tim of its own popularity: its adoption by multifarious and 
even competing theories of learning has rendered unten-
able any consistent definition of what exactly scaffolding 
means. And yet precisely due to its consequent murkiness, 
the idea of scaffolding might serve as a prism onto a range 
of educational theories: If all educational scholars would 
each define what they mean when they say “scaffolding”, 
we may get a rainbow of clearly juxtaposed theories of 
learning.

Still, we suspect, not all theorists have ready defini-
tions for scaffolding. We certainly did not. Yet by way of 
implementing our own ill-defined notion of scaffolding 
in the form of well-defined learning activities, we could 
begin to ascend from intuitive to articulated notions of 
“scaffolding”. This exercise led us to realize that our own 
conceptualization of scaffolding differs from the standard 
conceptualization in ways that might be pedagogically 
significant. We came to call our own conceptualization 
“reverse scaffolding”.

The idea of reverse scaffolding was conceived as a 
response to what we view as an enduring dilemma in 
mathematics education. On the one hand, it is harmful to 

Abstract Scaffolding is the asymmetrical social co-
enactment of natural or cultural practice, wherein a more 
able agent implements or performs for a novice elements of 
a challenging activity. What the novice may not learn, how-
ever, is how the expert’s co-enactments support the activity. 
Granted, in many cultural practices novices need not under-
stand underlying process. But where process is content, 
such as mathematics, scaffolding is liable to undermine 
tenets of reform-oriented pedagogy. We point to tensions 
between traditional conceptualizations of scaffolding and 
discovery-based pedagogical methodology for mathematics 
education. Focusing on co-enactment as a critical feature of 
scaffolding activities, we introduce “reverse scaffolding”, 
wherein experts enact for novices only what they know to 
do rather than what they do not know to do. We demon-
strate our approach by discussing a novel technological 
learning activity, Giant Steps for Algebra, wherein students 
construct models of realistic narratives. We argue for the 
method’s potential via reporting on findings from mixed-
methods analyses of a quasi-experimental implementation 
with 40 students.
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show a child how to solve a problem (Kamii and Dominick 
1998). Imposed methods are liable to remain opaque to a 
child who has not had opportunities to explore the problem 
space, recognize the limitations of familiar methods, and 
determine relevant embedded properties, patterns, interme-
diary states, and goal functions that would satisfy solution 
criteria. On the other hand, once students have reinvented 
critical principles of cultural-historical techniques, educa-
tors may intervene by introducing artifacts that implement 
those principles more efficiently, thus relieving the student 
to pursue more advanced problems. By way of enabling 
the student to arrive at the principles themselves, the cul-
tural tools that implement these principles could become 
transparent to the child rather than opaque. These artifacts 
would thus implement for the students’ what they already 
know to do, not what they do not know to do. Thus whereas 
in direct scaffolding cultural mediation fades out, in reverse 
scaffolding it fades in (see Fig. 1).

This paper presents and discusses findings from an 
empirical evaluation study designed to investigate whether 
reverse scaffolding might effectively serve as a pedagogi-
cal design framework for discovery-based learning. Our 
empirical context of inquiry into this research problem is 
the comprehensive process of developing and evaluating 
a technological environment for early, presymbolic alge-
bra, Giant Steps for Algebra (GS4A). Our design solution 
was to create conditions for students to reinvent, acknowl-
edge, and articulate principles of early algebra in the con-
text of constructing diagrammatic models for story-based 

word problems that involve some unknown variable. Only 
later would the environment “take over” by automating the 
implementation of these discovered principles. For exam-
ple, the child who is constructing a model of an algebra 
story might make evident that she is toiling to keep constant 
the size of the variable quantity across all its appearances in 
the model. In response, the system elicits from the child an 
articulation of this principle and thereafter keeps this vari-
able constant, relieving the child of this “busy work”. As 
we later elaborate, this particular construction principle, 
namely that a variable quantity should be of consistent size 
across all its appearances in a diagrammatic model, is both 
foundational and implicit to any algebraic solution proce-
dure. We have identified three such principles and marked 
them as necessary proto-conceptual knowledge en route 
to adopting normative algebraic practices. We name these 
emerging principles “situated intermediary learning objec-
tives” (SILOs).

The research design of this evaluation study was to com-
pare the learning gains of students who participated in two 
instructional conditions for GS4A, reverse scaffolding as 
an experimental condition and a baseline condition as a 
control. We envisioned the study as potentially contributing 
to an increasing body of empirical work that both suggests 
the effectiveness of pedagogical practices oriented on hav-
ing students discover subject matter content and outlines 
heuristics for implementing these practices using tech-
nology (Holmes et al. 2014; Kapur 2014; Schneider et al. 
2015). More broadly, we hope to contribute to an ongoing 
dialogue between scholars who support discovery-based 
learning and those who pooh-pooh its viability (Alfieri 
et al. 2011; Kirschner et al. 2006).

1.1  Introduction of theoretical constructs

The reverse-scaffolding pedagogical architecture emerged 
in the context of conducting an educational design-based 
research project that investigated mathematical cognition, 
teaching, and learning through developing and evaluating 
a new form of activity for early algebra (Abrahamson et al. 
2014). Central to the rationale of reverse scaffolding is the 
construct of transparency, which we now elaborate.

The construct of transparency captures the psychologi-
cal relation between an individual and an artifact s/he is 
using toward the accomplishment of some goal, be it a bicy-
cle, an abacus, or a quadratic equation. More precisely, we 
say that an artifact is transparent to an individual when he 
or she has developed an understanding for how embedded 
features of an artifact function to promote the accomplish-
ment of the goal (Meira 1998). Transparency is cited most 
often in the case of concrete mechanisms, such as appreci-
ating how gears work. Yet transparency equally obtains in 
the case of formal procedures for handling non-substantive 

Fig. 1  Fade out vs. fade in: in direct scaffolding, the mediating cul-
tural agent or artifact enacts for learners what they do not know to do. 
In reverse scaffolding, the agent performs what they do know to do
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objects, such as protocols for generating and manipulat-
ing symbolic notation. Algorithms, like gears, enable the 
implementation of their normative purpose through a con-
catenation of interrelated functions. Understanding an algo-
rithm thus consists of rendering transparent each of these 
functions as well as their systemic interrelations. The peda-
gogical architecture of reverse scaffolding was envisioned 
with the purpose of creating opportunities for students to 
develop transparency for the algebraic conceptual system.

In our experimental activity, students would develop 
transparency for algebra by working in a computer microw-
orld, where they use non-symbolic virtual elements to 
model word problems. The world problems comprise a pro-
tagonist (a giant) who travels along a straight path from a 
designated point of departure to a destination point where 
she buries treasure. Her travel consists both of “giant steps” 
(the unknown variable) and meters (the known unit). The 
giant travels twice from the point of departure to the treas-
ure site, but these two journeys consist of different combi-
nations of “steps” and meters, thus setting up what amounts 
to a diagrammatic representation of an algebraic set of two 
equations with one variable. Students are to solve this sys-
tem through diagrammatic reasoning.

As they engage in the modeling task, the students are to 
figure out a set of construction heuristics, such as recogniz-
ing that all giant steps are equal in size. As we will explain, 
this system of construction heuristics bears an interesting 
epistemological status. The heuristics are informal, context-
bound, pragmatic know-how bearing potential for generali-
zation as formal mathematical rules. We came to articulate 
these principles through applying methods of interaction 
analysis (Jordan and Henderson 1995) and grounded theory 
(Strauss and Corbin 1990) to data gathered in a pilot study 
(Abrahamson et al. 2014; Abrahamson and Chase 2015). 
We named these construction heuristics “situated interme-
diary learning objectives” (SILOs). SILOs, within GS4A, 
are the rules that participants must follow and integrate, 
first implicitly and later explicitly, in order to solve the situ-
ated problems. SILOs make algebra transparent—SILOs 
are what we believe a person knows when we say that the 
person knows early, presymbolic algebra. Thus, for students 
to develop subjective transparency of the GS4A model, they 
must implement and acknowledge the SILOs that make 
this model work. Though SILOs are not concepts, they are 
proto-conceptual—the constellation of SILOs embodies the 
meaning indexed by mathematical concepts.

GS4A was designed for students to develop transpar-
ency for diagrammatic algebra solution processes. And yet 
the GS4A activity flow does not follow regular scaffolding 
methodology but rather what we are calling reverse scaf-
folding. We propose reverse scaffolding (RS) as a peda-
gogical technique for guided reinvention of mathematical 

concepts in technological environments, where instruc-
tional-interaction decisions are implemented in software 
procedures. RS design architecture presents students with 
a situation bearing a problem and encourages the students 
to solve the problem by building a model of the situa-
tion. In the course of constructing these models, students 
are steered to reflect on structural properties of the model. 
Once students figure out how to generate and manage a 
structural property of a model, the software “takes over” 
by automatically enacting and maintaining this property for 
the students, so as to simplify the students’ further inquiry 
and problem solving of more demanding items. Crucially, 
RS design performs for students only what they already 
know to do. RS interface actions are thus designed to pro-
mote student agency in constructing transparent conceptual 
systems. The purpose of the study reported in this paper 
was to evaluate RS empirically.

We hypothesized that students who participated in RS 
activities, would have to determine the SILOs themselves 
and would thus develop transparency for the algebra con-
ceptual system. The empirical study reported herein evalu-
ated whether they would better develop transparency as 
compared to students for whom the SILOs were pre-imple-
mented in software as automatic, undisclosed interface sup-
ports. After a theoretical overview of scaffolding, below, 
we will describe a study that evaluated this hypothesis.

Section 2, below, will outline the history of scaffolding 
as a general approach to educational practice and then elab-
orate further on transparency. Section 3 will present our 
design for early algebra, GS4A. Following Sect. 4, Meth-
ods, Sect. 5 offers Results and discussion, and we end with 
Sect. 6, Conclusions and Sect. 7, Implications.

2  Theoretical approach

“Scaffolding” was initially adopted by educational 
researchers as a metaphor that aims to clarify the nature 
of certain actions that experts perform during didactical 
interactions with novices: “scaffolding” would describe 
and categorize the various forms of supportive strategies 
that instructors employ during problem-solving sessions. 
And yet it was understood early on that the practice of 
scaffolding had not been invented by professional educa-
tors. Instead, the didactical practice of scaffolding drew on 
ubiquitous ethnographic observations of adult–child inter-
actions in naturalistic settings, where the adult was act-
ing compassionately and unreflectively to help the child 
achieve a goal and thus eventually learn to do so indepen-
dently. What was viewed as ecologically authentic and 
culturally sanctioned out of school would be captured and 
implemented within school.
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2.1  “Scaffolding”: historical evolution of a pedagogical 
construct

Although Vygotsky never quite used the metaphor of a 
scaffold, it is often attributed to him, perhaps due to an 
association of scaffolding with his construct, the zone of 
proximal development. ZPD is oft quoted as “the distance 
between the actual developmental level as determined 
by independent problem solving and the level of poten-
tial development as determined through problem solving 
under adult guidance, or in collaboration with more capa-
ble peers” (Vygotsky 1978, p. 86). Whereas Bruner (1986) 
generally disagreed with Vygotsky’s thesis on knowledge 
acquisition, he did agree “that there is at least one deep 
parallel in all forms of knowledge acquisition—precisely 
the existence of a Zone of Proximal Development and the 
procedures for aiding the learner in entering and process-
ing across it” (p. 78). It was Wood et al. (1976) who first 
called this activity “scaffolding” in their report on a labora-
tory study of adults helping young children build pyramids 
out of chinked blocks.

Since then, numerous researchers have investigated scaf-
folding within educational contexts. Cazden (1981) exam-
ined teacher–pupil scaffolding interactions, focusing on the 
use of interrogation to guide learning. Smit et al. (2013) 
found additional scaffolding tactics, specific to those con-
texts, enumerating didactical efforts to hand over agency to 
the learner. Holton and Clarke (2006) discovered that self-
scaffolding strategies increase and sustain student agency. 
In summary, scaffolding is the asymmetrical social co-
enactment of natural or cultural practice, wherein a more 
able agent implements or performs for a novice elements of 
a challenging activity.

The notion of scaffolding is not exclusively inherent to 
the actions of a co-present teacher. Rather, aspects of the 
instructional rationale and interactions that scaffold learn-
ing may be cumulatively layered and distributed onto other 
classroom instructional infrastructure, such as technologi-
cal resources. In particular, scaffolding practices are dis-
tributed over informative, functional, and interactive tools 
or media that complement, emulate, and possibly enhance 
the variety of customized supports that co-present human 
agents provide (Meira 1998).

As such, when educators invest and distribute their 
pedagogical efforts into a variety of interactive ele-
ments within a technological learning environment, we 
might still conceptualize these concrete or virtual fea-
tures as bona fide scaffolds—scaffolds that are embod-
ied, embedded, and latent to the artifacts until students 
engage, mobilize, and leverage them (Barab et al. 2007). 
In these environments, it may not be the direct “live” 
actions of an adult that scaffold the child’s assigned task 
by co-enacting it but rather elements of the artifacts that 

mediate the co-enactment “remotely” (Quintana et al. 
2004; Reiser 2004). Looking closer at the variety of 
technological artifacts bearing the potential to scaffold 
the learning process, we will now focus on symbolic 
elements, because these are important to processes of 
mathematization.

In their analyses of educational technology, Quintana 
et al. (2004) located scaffolding affordances in represen-
tations, specifically in features of the learning environ-
ment that highlight for learners how certain interactive 
features function. For example, selectable hints would 
appear on a computer monitor to suggest the meanings of 
symbolic notations and animated procedures. Here, “scaf-
folding” is taken to mean that the software both structures 
and problematizes the situation, stewarding the students 
toward discovering the instructional unit’s target content 
(Reiser 2004). In discussing the automated behaviors of a 
computer-based algebraic tool, Pedemonte and Chiappini 
(2008) emphasize that students should be supported in 
understanding the underlying structural properties of these 
tools. Once they do, the tools may reduce the users’ cogni-
tive load. These systems scaffold discovery. Thus, construc-
tivist parlance appears to have usurped the sociocultural 
term without adhering to its ideological underpinnings.

Whereas by no means have we exhausted the differ-
ent contexts in which notions of “scaffolding” have been 
applied, we hope to have demonstrated how widespread, 
varied, and pervasive the term of scaffolding has become 
(for a broader review see Smit et al. 2013; Pea 2004). 
“Scaffolding” is now used almost synonymously with 
“supporting” or just “teaching”. As Pea (2004) aptly noted, 
“the concept of scaffolding has become so broad in its 
meanings in the field of educational research and the learn-
ing sciences that it has become unclear in its significance” 
(p. 272). Pea goes on to discuss how this dilution in the 
meaning of scaffolding has created so much variance that 
establishing empirical boundaries has become difficult. He 
summarizes

The goals of scaffolding research going forward 
should be to study how scaffolding processes—
whether achieved in part by the use of software fea-
tures, human assistance, or other material supports—
are best conceived in ways that illuminate the nature 
of learning as it is spontaneously structured outside 
formal education and as it can most richly inform 
instructional design and educational practices. (p. 446)

Indeed, views of learning outside of the mathematics 
classroom suggest types of authentic instructional meth-
odologies that flout the very rationale of scaffolding. For 
example, Reed and Bril (1996), cultural anthropologists 
of skill acquisition, have documented a pervasive par-
enting practice in which mothers create for their infants 
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opportunities to develop new motor-action coordinations. 
Rather than model, explain, or directly help the infants 
achieve the target skill, the mothers instead create for 
the infants what the researchers call a “field of promoted 
action”, in which the infants discover for themselves how 
to negotiate the challenging situation into which they have 
been thrust. As such, the infants develop effective motor-
action responses customized to their own musculoskeletal 
complex. From a distant yet complementary perspective, 
sports scientists informed by Nikolai Bernstein’s theo-
ries of kinesiology and biomechanics have put forth the 
hypothesis that athletes learn better when they must each 
invent for themselves their personal solutions to motor-
action problems (Chow et al. 2007). It would make little 
sense to name these various cultural practices as “scaf-
folding”, because they are founded on the principle of not-
helping rather than helping—in each of these practices the 
learner is set in a dedicated micro-ecology geared to pro-
mote the personal discovery of new affordances for spe-
cific actions.

Given the numerous operationalizations and pedagogi-
cal commitments of “scaffolding” as well as the conflict-
ing precedents of non-scaffolding cultural practices, what 
form of scaffolding should we implement in educational 
software programs? Our concern is that wherever tutor or 
tool performs for the learner aspects of the learning activ-
ity, these scaffolding actions may not be transparent to the 
learner.

2.2  Transparency

The theoretical construct of transparency captures relations 
between, on the one hand, artifacts inherent to a cultural 
practice and, on the other hand, a social agent’s understand-
ing of how features of these artifacts mediate the accom-
plishment of a particular practice (Meira 1998). In general, 
sophisticated artifacts bear information structures, logical 
relations, and activity constraints that enable competent 
users implicitly to offload their intentionality onto external 
entities in their work environment and thus promote their 
goals (Kirsh 2010). However, artifacts that are used for fos-
tering content learning, it has been argued, should be trans-
parent, because figuring out how they work is tantamount 
to understanding the embedded content (e.g., compare a 
calculator, which obscures the calculation to a novice user, 
to an abacus that may render the process transparent). And 
yet figuring out how an artifact works—that is, making 
sense of its embedded mechanisms and their functionali-
ties—is a subjective process, and so Meira (1998) speaks 
about students developing subjective transparency of an 
artifact.

The theory of transparency is important for education, 
because we must make detailed choices regarding which 

specific logico-mathematical operations our pedagogical 
artifacts should “blackbox” vs. “glassbox” (Goldstein and 
Papert 1977). For example, careful consideration must be 
given in deciding how a digital learning tool automates 
aspects of students’ modeling activity, responds to their 
input, and provides feedback. These design decisions may 
bear critical consequences for the students’ chances of 
developing subjective transparency for those targeted con-
ceptual structures that should emerge via interacting with 
these artifacts.

2.3  Summary and research questions

This study used a technological learning environment of 
our own design to create an empirical context in which we 
could revisit the pedagogical notion of scaffolding in light 
of the cognitive construct of transparency. The design is 
inspired by the reform-oriented didactical principle that 
instructors should foster student reinvention of mathemati-
cal practices (Gravemeijer 1999). We thus seek to gain 
insight into the following:

•	 Does the reverse scaffolding activity architecture bear 
pedagogical utility? In particular, does this architecture 
enable student development of subjective transparency 
for targeted mathematical notions? What is the qualita-
tive character of learning in RS designs?

To address this research question, we sought to create as 
our empirical context a learning environment wherein par-
ticipants would re-invent situated practices that we view as 
formative of our target domain knowledge, early algebra. 
We soon realized that we ourselves would need to design 
our empirical context, because we could not find any exist-
ing environment that agreed with our thesis as to the poten-
tial impact of reverse scaffolding. Indeed, whereas many 
learning artifacts scaffold the enactment of what students 
do not yet know to do, the artifact we created reverse-
scaffolds in the sense that it relieves students of what they 
know to do. The design principle of reverse scaffolding for 
conceptual transparency is elaborated in the next section, 
where we describe our design for early algebra.

3  Giant Steps for Algebra: an experimental design 
solution for students to develop subjective 
transparency of early algebraic structures 
and solution procedures

The investigation reported in this paper was conducted as a 
design-based research study (Confrey 2005). The instruc-
tional activity at the core of this study revolved around a 
problematic realistic situation. The situation consisted of 
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several narratives describing the location of buried treasure, 
which the student is then tasked to locate. We gave the par-
ticipants a set of materials with which to model the situ-
ation and thus solve the problem of locating the treasure. 
It was conjectured that algebraic knowledge could emerge 
from this activity as pre-formal knowledge (van Reeuwijk 
1995). In particular, we expected students to apply and 
articulate a set of simple heuristics by which to monitor the 
quality of their model. These would be hands-on construc-
tion know-how, that is, implicit technical criteria for evalu-
ating whether the virtual model they are building preserves 
relevant information structures embedded in the problem 
narrative. Whereas—or perhaps because—these heuristics 
are at best intermediary bits of pragmatic knowledge solic-
ited from naïve worldly aptitudes and applied in a highly 
specified context of a realistic problem, they could poten-
tially constitute kernels of informal symbol sense from 
whence formal algebraic knowledge would later sprout 
(Arcavi 1994; Bartolini Bussi and Mariotti 2008; Noss and 
Hoyles 1996; Radford 2003). Our design emphasis on hav-
ing children construct knowledge by constructing artifacts 
is also inspired by earlier work on the relation between 
mechanical bricolage and conceptual learning (Papert 
1980).

In a pilot study comprising activities with concrete 
materials (Abrahamson et al. 2014) we engaged students in 
the guided solution of our problem set. We collected and 
analyzed data in an attempt to find patterns in students’ 
model constructions and verbal utterances. In line with our 
hypothesis, students’ modeling actions appeared to make 
manifest certain proto-algebraic logico-quantitative con-
struction heuristics or principles. These situated and inter-
mediary learning objectives (SILOs) that students appar-
ently developed became our “blueprint” for articulating 
an emerging pedagogical perspective, because we realized 
that our didactical efforts—including design, facilitation, 
assessment, and evaluation—could all focus on nurturing 
these SILOs (Abrahamson and Chase 2015). In this section, 
we will explain the design problem, rationale, and solution.

3.1  Design problem: rethinking visualizations 
for algebraic equivalence

When teachers begin to introduce algebraic problem solv-
ing into mathematics classrooms, they very often rely 
on natural phenomena or cultural artifacts to evoke and 
exemplify new concepts (Jones 2010). The most common 
notion used in early algebra is the balance-scale (Vlassis 
2002). The balance-scale evokes the embodied felt sense 
and inferential logical structure of two commensurate 
weights resting on a beam on either side of a fulcrum, at 
equal distances. These phenomenological resources are 
offered to students as the normative means of visualizing 

the symbolic algebraic proposition, that is, as the relational 
equivalence of two expressions across the equal sign (Her-
scovics and Linchevski 1994; Jones et al. 2012; Molina and 
Ambrose 2008). By adding to, or removing from both sides 
of the scale the same weight tokens, students are further to 
visualize what will later become the standard procedure to 
solve for x, that is, manipulating algebraic propositions to 
determine the values of unknown variables.

The general appeal of this model notwithstanding, stu-
dents continue to struggle to demonstrate proficiency in 
algebra courses (Oakes et al. 2004), so that algebra has 
been referred to in the USA as the “gate-keeper” course 
for college admittance and completion (Moses and Cobb 
2001). We therefore wondered whether the balance-scale 
is a useful manipulative for developing subjective transpar-
ency for algebraic problem solving, and our design prob-
lem became to search for alternative experiential entry 
points into algebra content.

3.2  Design solution: a storyline model of algebraic 
equivalence

Dickinson and Eade (2004) proposed a two-sided number 
line as a preferred entry model into algebraic reasoning 
(see Fig. 2). This alternative visualization of equivalence 
between two algebraic expressions appears to bear certain 
useful affordances for making sense of the algebraic ration-
ale and solution procedures. Specifically, the visualization 
bears inherent logico-figural constraints, such as mirroring 
equal yet unknown variable quantities above and below the 
common line, that facilitate an offloading of source infor-
mation in forms conducive to reducing complexity. This 
model, we assumed, could create opportunities for students 
to develop subjective transparency for algebraic proposi-
tions, because the number-line model renders highly sali-
ent the logical relations between variable and integers, both 
within- and between expressions (we invite the reader to 
try the problem in Fig. 3 so as to appreciate the model’s 
appeal). A student’s activity of generating and solving 
number-line models would necessitate and thus implicate 
an evolving skill of performing core algebra operations, 
such as maintaining the variable’s consistent quantity 
across the diagrammatic display or expressing the value of 

Fig. 2  Number-line instantiation of “3x + 14 = 5x + 6” (Dickinson 
and Eade 2004)
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this variable in terms of known unit quantities. We there-
fore chose to use this number-line algebra visualization for 
our experimental instructional unit.

The activity includes a story problem as well as 
resources for modeling the story toward solving the prob-
lem (Walkington et al. 2013). Per the embodied-design 
framework (Abrahamson 2009, 2014), the design solution 
seeks to engage and leverage students’ tacit knowledge 
about simple ambulatory motion (walking) as well as their 
naïve sense for spatial relations. Figure 3 shows a sample 
narrative (on the left) and a model of this narrative in the 
computer microworld (on the right). We call this microw-
orld “Giant Steps for Algebra” (GS4A).

“A giant has stolen the elves’ treasure. Help the elves 
find their treasure! Here is what we know. On the first 
day, a giant walked 3 steps and then another 2 meters, 
where she buried treasure. On the next day, she began 
at the same point and wanted to bury more treasure 
in exactly the same place, but she was not sure where 
that place was. She walked 4 steps and then, feeling 
she’d gone too far, she walked back one meter. Yes! 
She found the treasure!”

In designing GS4A, our goal was to provide a learning 
activity that would introduce students to the ‘nuts and bolts’ 
of pre-formal algebra. GS4A would leverage students’ 
existing mathematical know-how in creating opportunities 
to reinvent procedural strategies that render algebraic struc-
tures transparent. At present, GS4A does not extend into 
activities that employ symbolic notations.

3.3  Rationale for technological implementation 
and learning assessment

Earlier, we introduced the idea of a SILO (situated interme-
diary learning objective).

A SILO is a form of pragmatic know-how, an implicit 
construction skill that people develop as they engage in 
goal-oriented practices using resources in their environ-
ment. In the case of designed learning environments, 

students can be steered to achieve particular SILOs that 
will later form the cognitive basis of curricular domain 
content—SILOs then serve as referents of formal rules, 
grounding schemas of mathematical concepts.

In GS4A, students tinker with virtual resources to build 
diagrammatic models of problematic situations that are 
communicated to them textually. These pictorial and often 
imprecise models that students build on the screen may 
appear naïve. However the models are proto-algebraic, in 
the sense that they reify a coordinated system of construc-
tion skills that serve to express relations among known and 
unknown quantities ultimately to determine the value of 
the unknown quantities. As such, the models bear algebraic 
structure and may thus foster algebraic practice.

And yet SILOs are therefore only proto-conceptual, 
in the sense that they have not yet been articulated and 
expressed in formal semiotic register and have not as yet 
been generalized as an all-encompassing system of reason-
ing about known relations between unknown quantities. 
Hence SILOs are situated, intermediary learning objectives.

Pilot studies (Abrahamson et al. 2014) had suggested the 
following three SILOs for GS4A:

1. Consistent measures. All variable units (giant steps) 
and all fixed units (meters) are respectively uniform in 
size both within and between expressions (days);

2. Equivalent expressions. The two expressions (Day 1 
and Day 2) are of identical magnitude—they share the 
“start” and the “end” points, so that they subtend pre-
cisely the same linear extent (even if the total distances 
traveled differ between days, e.g., when a giant over-
steps and then goes back);

3. Shared frame of reference. The variable quantity (giant 
steps) can be described in terms of the unit quantity 
(meters).

Moving from the earlier pilot design cycle into the larger 
cycle reported herein, we hypothesized that it could be 
worthwhile to use these three SILOs to inform the design of 
the students’ learning progression through an activity. The 
design principle was to allow learners to progress through 
an activity sequence while enabling them to achieve each 
SILO along the way. Borrowing the notion of “levels” 
from popular computer games—the gradual rewarding of 
manifest competence with increased power that is linked 
to increased skill—in GS4A we level transparency. With 
each new level the computer takes over the maintenance of 
a specific SILO, relieving the user of enacting this specific 
SILO. It is thus that our pedagogical architecture is reverse 
scaffolding. The learning environment provides a form of 
scaffolding, in the sense that it motivates, parses, and levels 
students’ learning progression toward enacting a goal cul-
tural practice. But it is reverse, because the technological 

Fig. 3  A sample narrative in the GS4A instructional activity (on the 
left) and its virtual model (on the right). On both Day 1 (above-the-
line) and Day 2 (below the same line), the giant travels from the flag 
(on the left) toward a treasure site (on the right). Large red loops rep-
resent giant steps, small green loops represent meters (color figure 
online)
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supports fade in rather than fade out. Students are not given 
training wheels—rather, they have to reinvent the wheels.

Table 1 presents the GS4A set of SILOs in relation to 
the interaction features of their corresponding activity 
level. Participants playing GS4A transition from each inter-
action level to the next upon demonstrating, via electronic 
actions, mastery over one of the SILOs. At each new level, 
the technology offloads the enactment of a SILO from the 
user. That is, the microworld automatically generates and 
maintains for the student the specific technical details and 
functional relations corresponding to that specific SILO. 
For example, when a participant determines that meters 
should be of uniform length in the model, we evaluate that 
he has achieved SILO 1, Consistent Measures. The partici-
pant then enters Level 2, in which the computer generates 
and maintains uniform meters. Leveling transparency is 
thus an activity-sequencing mechanism for operationaliz-
ing our pedagogical framework of reverse scaffolding.

Our evaluation study was a quasi-experimental research 
design, in which we compared learning gains of student 
groups participating in essentially the same activity (same 
materials, same sequence of word problems) only that the 
technology was set up to offer either reverse scaffolding or 
baseline conditions. In the baseline condition, our control, 
the interface automates construction operations from the 
outset—the very operations that reverse-scaffolding stu-
dents must discover on their own are proffered in the base-
line ab initio as intact interaction features. For example, 

meters appear in uniform size as do giant steps; when stu-
dents stretch or shrink one of the giant steps, all steps auto-
adjust their length accordingly across the entire model, thus 
resuming uniform size. Therefore, students participating in 
the baseline condition need never struggle to achieve the 
SILOs. They would use these features of an automatically 
functioning algebraic system without knowing what they 
are, and consequently the features would remain opaque to 
the students. According to the theory of transparency, these 
students would never understand the conceptual system 
embodied in the interface.

We hypothesized that students participating in the 
reverse-scaffolding condition would demonstrate greater 
learning gains than those in the baseline condition. The 
quasi-experimental study design would include assess-
ment items for gathering data relevant to evaluating this 
hypothesis.

4  Methods

4.1  Participants

Twenty Grade 4 students (9.5–11.3 years old; 9 male, 11 
female) and twenty Grade 9 students (14.4–16.1 years old; 
9 male, 11 female) volunteered to participate individu-
ally in our task-based semi-structured interviews (Clem-
ent 2000; Ginsburg 1997)—21 in the experimental group 

Table 1  Leveling transparency: matched SILOs and levels in the Giant Steps for Algebra technological design under the reverse-scaffolding 
study condition

Level System constraints, user activity, behavior criterion, 
questions

Interface SILO achieved

1. Free form System offers no support in coordinating units  
or expressions

1. Consistent measures

 Activity User builds all parts of the model manually

 Criterion User expresses frustration in equalizing units

 Questions 1–3

2. Fixed meters System generates meter units in predetermined size  
and maintains uniform size automatically

2. Equivalent expressions

 Activity User builds variables manually

 Criterion User models uniform variable units within and  
between Days 1 and 2

 Questions 4–6

3. Stretchy System monitors for manual adjustment to the size  
of any of the variable-unit instances and accordingly 
adjusts the size of all variable units

3. Shared frame of reference

 Activity User adjusts size of variable unit to equalize the two 
propositions

 Criterion User reads off the value of a variable unit in terms  
of the number of known units (meters) it subtends, 
e.g., one giant step is 2 m long

 Questions 7–9
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(reverse scaffolding) and 19 in the control group (baseline). 
In discreet consultation with their teachers, students were 
each assigned either a “low”, “middle”, or “high” mark 
to characterize their prior mathematics achievement, and 
this served to control for mathematical proficiency across 
conditions.

4.2  Research design and assessment items

The rationale of the experimental design was to measure 
and compare learning under two conditions: reverse scaf-
folding (experimental group) and baseline (control group). 
Participants in the experimental group worked on problems 
according to the “leveling transparency” architecture, in 
which they had to “earn” automatic interface functionalities 
(see Table 1). In contrast, participants in the control group 
engaged the same problems with all automatic functionali-
ties from the outset.

Upon completing the activity, all participants responded 
to five post-activity assessment items. These items were 
designed to evaluate participants’ subjective transparency 
of pre-formal algebra concepts, as operationalized in the 
three SILOs. The assessment items fall into two categories: 
(a) New-Context problems, in which we measured for the 
application of learned skills (transfer; see Fig. 4); and (b) 
In-Context problems that targeted the three SILOs directly 
within the familiar GS4A setting (see below).

New-Context assessment item “Turtle Years”, which 
built on the cultural notion of “dog years”, required of par-
ticipants to compare time units (see Fig. 4a). New-Con-
text problem “Two Buildings” used spatial units as in the 
GS4A context yet differed in that the modeled quantities 
here were oriented vertically rather than horizontally (see 

Fig. 4b). These items were designed to measures partici-
pants’ application of the SILOs in new problem contexts.

In-Context assessment items consisted of three screen-
shots from the familiar GS4A context. The screenshots 
showed work-in-progress of some hypothetical student. 
Each of the three images explicitly violated one or more 
of the SILOs. Participants were told that the hypothetical 
student had failed to complete the problem, and they were 
asked to determine why. These test items were designed to 
measure participants’ achievement of each SILO. We then 
calculated a Total post-activity assessment score by sum-
ming the New-Context and In-Context results.

4.3  Data collection procedures

The experiments took place on the school’s campus. All 
participants agreed to be videotaped for the duration of 
the intervention and post-activity assessment items, last-
ing approximately 1 h. All participants answered the same 
series of questions. In both activities, first the intervention 
and then the post-activity assessment, the researcher–inter-
viewer followed a pre-designed semi-structured interview 
protocol to interact with the participant (Ginsburg 1997). 
Specifically, the interviewer often asked the participants to 
explain their models so that their reasoning could be made 
explicit.

4.4  Data analysis

Data analysis consisted of first evaluating for a main effect 
of the intervention by comparing post-intervention achieve-
ments of the experimental and control groups (see Sect. 
4.4.1, below). Once we had determined a main effect and 

Fig. 4  Two New-Context 
items were used in the post-
intervention assessment of all 
participants: a Turtle years; and 
b Two buildings. Participants 
received these texts. The images 
were created by the first author 
for the purpose of this figure to 
illustrate correct responses
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wished better to understand how the experimental condi-
tion led to higher achievement, we further performed quali-
tative analyses (see Sect. 4.4.2, below).

4.4.1  Post-intervention quantitative analysis

We scored all participants’ responses to the post-activity 
assessment items. In order to create the coding scheme, the 
first author applied micro-genetic analysis techniques (Siegler 
2006) to review the entire corpus of video footage of partici-
pants working on the post-activity assessment items. The ana-
lyst identified moments during the problem-solving process 
in which the participants demonstrated, either through their 
utterances, their drawings, or their gestures one or more of the 
SILOs. A coding scheme was compiled for measuring partici-
pants’ achievement of each SILO (see Table 2).

The New-Context assessment items—Turtle Years and 
Two buildings—were each scored on a scale of 0–4. There-
fore, individual students’ total scores in the two New-Con-
text category ranged from 0 to 8. The In-Context assessment 
items—the SILO violation problems—were each scored on 
a scale of 0–3. Therefore, individual students’ total scores in 
the three In-Context category ranged from 0 to 9. The com-
posite Total score, therefore, ranged from 0 to 17.

A second analyst independently scored 21 % of this 
data corpus. Results from an inter-rater reliability test were 
Kappa = 0.822 (p < 0.001), 95 % CI (0.646, 0.998), almost 
perfect agreement. All remaining disagreements between 
the raters were resolved.

Next, we conducted an ANOVA to determine whether 
there were a difference between study- and control-group 
scores in each category (New-Context, In-Context, Total).

4.4.2  Intervention qualitative analysis

Having completed an evaluation of the study’s main effect, we 
turned to the corpus of video data from the intervention itself 
(a total of approximately 50 h). We watched all video foot-
age with the goal of identifying and characterizing moments 
during the intervention activity in which participants achieved 
one of the SILOs. Our rationale was that observing consistent 
behavioral patterns across the study conditions would help us 
understand how differences in the conditions led to the dif-
ferent learning gains. In particular, we hoped to evaluate our 
research hypothesis that RS bears pedagogical value.

The qualitative analysis reported herein focuses on two 
participants, one from each study group, who were consid-
ered by their teacher as high performing. This choice was 
informed by the observation that these students, while rep-
resentative of their groups, were particularly articulate and 
therefore enabled us better to capture nuanced differences 
between the groups with respect to student development of 
subjective transparency.Ta
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5  Results and discussion

5.1  Main effect and discussion

The ANOVA revealed significant differences between mean 
group scores for the three post-activity assessment items 
(New-Context items, In-Context, and Total items) across 
reported math ability levels. An ANCOVA that controlled 
for math ability levels was then conducted to compare these 
results across the experimental and control conditions. This 
test found a significant difference between the RS and base-
line conditions (see Table 3). The results show that for the 
New-Context and In-Context categories, respectively 19 % 
(Adjusted R2 = 0.19) and 15 % (Adjusted R2 = 0.15) of the 
difference is due to condition, and this is significant at the 
level p = 0.05. For the Total, 27 % (Adjusted R2 = 0.27) is 
due to condition, and this is significant at the level p = 0.01.

Whereas this study should be replicated in similar and 
new domains, these findings at the very least suggest the 
plausibility of the reverse-scaffolding design architecture 
as an instructional methodology. Further studies could 
continue to investigate the hypothetical construct of SILO 
so as better to understand its emergent mediating effect 
on student performance in mathematical tasks as well as 
implications of this effect for the design of instruction and 
assessment.

5.2  Data excerpts: qualitative analysis of the emergence 
of SILOs in guided problem‑solving interactions 
with educational technology

Qualitative analyses of the videotapes enabled the research 
team to develop deeper understandings of the experimental 
activity. In this subsection we present excerpts from two 
contrasting sample interviews, one with Lucy (experimen-
tal group: reverse scaffolding), and one with Mary (control 
group: baseline). (Both names are pseudonyms). These sam-
ples are arguably comparable in that the participants were 
of similar age (9 [9], 9 [11]) and both were considered by 
their teacher as being on the high end of proficiency. Fur-
thermore, these students scored similarly on the post-activ-
ity assessment items, with Lucy scoring a Total of 15 points, 
and Mary a Total of 14. We will present the emergence of 
SILO 1, Consistent Measures, for each participant, with a 
focus on the specific case of the integer unit “meter”.

Lucy (reverse-scaffolding study condition) is working 
within the instructional phase on Question 2. This item is 
composed of a Day-1-and-Day-2 narrative correspond-
ing to the formal proposition “3x − 3 = 2x + 2”. Lucy 
is at Level 1 of the activity regime, and so the software is 
not yet providing her with any automation for the SILOs. 
With respect specifically to SILO 1, Consistent Measures, 
at Level 1 Lucy must proactively build and maintain con-
sistent measures herself as she interacts with the interface. 
In just over 4 min, Lucy has completed modeling both the 
Day 1 and Day 2 travel narratives (see Fig. 5).

Figure 5 shows a screenshot from Lucy’s work in pro-
gress. Note that the steps and meters are respectively of 
equal size both within- and between-days. At this point 
Lucy realized a problem. Whereas the narrative describes 
the giant as arriving at the same destination on both days, 
the diagram currently depicts Day 1 and Day 2 journeys as 
arriving at different destinations. In particular, note how the 
“2x + 2” model fragment (Day 2, below the line) extends 
farther to the right as compared to the “3x − 3” model 
fragment (Day 1, above the line). Lucy believed she could 
amend this violation by adjusting the sizes either of the 
giant steps or the meters.

In the transcription below, parenthetical texts, such as 
“(Day 1)” serve to clarify for the reader the interlocutors’ 
communicative intent as suggested by their non-verbal 
multi-modal utterance, including screen actions as well as 
various deictic gestures (e.g., pointing toward elements on 
the shared visual display).

Lucy began by adjusting the meters on Day 2.

Res.:  Well I noticed that you made meters smaller on 
this day (Day 2).

Lucy:   Yeah. So I should make them smaller on this day 
(Day 1) too probably.

Res.:   Yeah? Why don’t you try that. I think that could 
probably make sense. Why do you think that you 
should probably do that?

Table 3  ANCOVA results

df F Adjusted R2 P

New-context 1 3.99 0.19 0.05

In-context 1 3.92 0.15 0.05

Total 1 6.57 0.27 0.01

Fig. 5  Screenshot from Lucy’s work-in-progress on the 
“3x − 3 = 2x + 2” narrative. Day 1, above the line, models “3x − 3” 
as running from left to right with three large red arcs (3x) and then 
retracing toward the left with three small green arcs (“−3”). Day 2, 
below the line, models “2x + 2” as two large red arcs (2×) followed 
by two small green arcs (“+2”) (color figure online)
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Lucy:   Because then they will all be the same size, and 
then you will be, umm… I’ll be able to the see 
whether it’s still on that point (Lucy points to 
where she expects the treasure flag will be after 
the adjustments, a point on the screen slightly to 
the right of its current location, see Fig. 6).

We interpret Lucy’s multimodal utterances as indicat-
ing an achievement of SILO 1—she apparently knows that 
meters should be of consistent size both within and across 
days. Lucy has thus constructed this function for a purpose: 
By repairing the model in accord with the SILO she will 
have access to information pertinent to solving the problem 
at hand. To Lucy, the structural feature of consistent meas-
ures is an essential property of her model bearing purpose-
ful function.

We now turn to Mary, a participant in the baseline 
condition. Mary is working on the same item as Lucy, 
“3x − 3 = 2x + 2”. However, Mary’s interface a priori pro-
duces meters of fixed size that are therefore automatically 
consistent both within and across Day 1 and Day 2, and 
the interface also recalibrates all giant steps when any of 
them is resized. Mary has been working on this problem for 
almost 10 min. She has built both Day 1 and Day 2 model 
fragments yet is unable to determine a solution (see Fig. 7). 
Mary has just erased her diagram and is starting over. We 
join the researcher–student dyad as Mary begins modeling 
the first 3 giant steps (large red arcs) and is adjusting their 
size: she stretches, shrinks, and finally leaves them slightly 
extended as compared to her erased diagram.

Mary:  Maybe the giant got bigger (as compared to the 
Question 1).

Res.:  Yeah, maybe the giant got bigger, or smaller, 
I don’t know. It’s a different giant, that’s all I 
know.

Mary:  So Day 1 and Day 2 are different giants?
Res.:   No no no, it’s a different giant from Question 1.
Mary:  (Slightly stretches the giant steps again, then cre-

ates three small green arcs running back toward 
the left for the “−3”, see Fig. 8) Ohhh, so… 

Res.:  What happened?
Mary:   So the meters are always the same.
Res.:   Does that make sense?
Mary:   Yeah, so the meters are always the same, you can 

move the giant steps but not the meters.

Recall that Mary is working under a condition where 
all measures are always uniform in size—all giant steps 
are always equal to each other, and all meters are always 
equal to each other—only that whereas the giant steps are 
adjustable (they all adjust simultaneously) the meters are 
not adjustable (they are of fixed size). Mary’s insight into 
the consistent measure of the fixed meters unit in this inter-
face is apparently facilitated by way of juxtaposition with 
the variable size of the giant-step. Her inflection indicates 
surprise at this discovery, and she reiterates her discovery 
thrice, as if memorizing it as a new rule. To Mary, the fea-
ture of consistent measures is not an essential property of 
the model bearing a purposeful function—it is a feature per 
se.

In each of the episodes the participant has arrived at 
the conclusion that meters, within this microworld, should 

Fig. 6  Lucy indicates on the computer monitor where she antici-
pates Day 1 and Day 2 travel destinations will be co-located once she 
adjusts the meters

Fig. 7  Working on “3x − 3 = 2x + 2”, Mary has modeled the Day 1 
and Day 2 narratives as diagram fragments. The two journeys do not 
end at the same location, and so Mary has not solved the problem

Fig. 8  Mary is still working on modeling the “3x − 3 = 2x + 2” 
story. She has now stretched the giant steps arbitrarily, so that they 
have each become 3 microworld meters in length, whereas the correct 
solution is 5 m



1207Reverse-scaffolding algebra: empirical evaluation of design architecture

1 3

remain consistent in size both within and across days. What 
differs between the two episodes is how this knowledge 
surfaces, and how it is used. Lucy constructs a model in 
which her meters are fairly consistent. When she is unable 
to determine a solution, she can imagine how adjusting the 
meters uniformly will solve the problem without violat-
ing her established measuring practice. Through exercis-
ing agency in ensuring that corresponding measure units 
are equal, Lucy has developed subjective transparency 
for a goal structural property of effective constructions in 
this microworld: She discovered that corresponding units 
should be of uniform size.

Mary, too, is reasoning about the consistency of meter 
units, and yet she does so only as a feature of the inter-
face—not as how things should be but how things just are. 
Mary, like Lucy, appreciates that the meter units behave 
differently from the variable units, and yet she conceptu-
alizes the relation between meters and variables not as an 
instrumental function advancing the solution process but 
as some arbitrary interface feature she has detected. Thus 
Mary did not experience an opportunity to appreciate 
the potential utility of this embedded feature; she did not 
develop subjective transparency for this received feature. 
Per Freudenthal, Mary is a victim of a didactical crime: by 
giving Mary all the tools she would need to solve a prob-
lem, she never understood the rationale of these tools. In 
fact we robbed Mary of an opportunity for discovery by 
imposing upon her an opaque mathematical artifact.

6  Conclusions

Students can reinvent mathematical knowledge through 
engaging in modeling-based activities. To do so, they 
should attend to the structure of their own constructions; 
they should apprehend this structure as reifying their tacit 
knowledge—knowledge that is brought forth as mate-
rial form through the dialectics of shaping construction 
resources to tell a story; they should come to see latent 
structural features of their own spontaneous models of 
problem situations as properties of purposeful functions. 
Tasks, construction resources, facilitation, and activity 
flow can and should be designed to enable this apprehen-
sion of structure. In particular, students can develop sub-
jective transparency of mathematical concepts by creating, 
articulating, and generalizing the structural properties of 
the models they use to solve situated problems. Our find-
ings support previous arguments for learning through 
discovery (Martin and Schwartz 2005; Noss and Hoyles 
1996; Radford 2003) and raise questions for skeptics (Alfi-
eri et al. 2011; Kirschner et al. 2006). Moreover, we have 
offered and validated a pedagogical design architecture 
for discovery-based mathematics learning in technological 

environments (see also Holmes et al. 2014; Schneider et al. 
2015).

We set out to investigate whether students can learn 
mathematical content under conditions where we assign 
them a task and provide them with relevant resources but do 
not tell them how these resources should all come together 
to get the task done. We called this minimal-interventional 
approach “reverse scaffolding”. The phrase “reverse scaf-
folding” implies a form of instruction in which the expert 
does not perform for the novice what the novice cannot yet 
do but only what the novice can already do.

To evaluate our proposed reverse scaffolding, we con-
ducted an empirical study that compared the implementa-
tion of an instructional activity under both reverse-scaffold-
ing and control protocols. Statistical analyses of the two 
groups’ mean scores on post-intervention assessments dem-
onstrated a positive main effect: participants in the reverse-
scaffolding condition significantly outperformed those in 
the control condition.

Qualitative analyses of the intervention process impli-
cated psychological mechanisms apparently causative of 
the main effect: reverse-scaffolding students struggled 
more than baseline students to manage structural properties 
of the modeling system, so that these properties became 
evident to them—they developed more transparent struc-
tural understanding of the modeling procedure as well as 
greater facility in articulating the emerging conceptual sys-
tem. In particular, we submit, the construction principles 
that students discovered by tinkering with elements of the 
virtual models were tantamount to the core mathematical 
content of the instructional design.

Our results must be considered only as a preliminary 
proof of concept within the context of a larger ongo-
ing design-based research process. Additionally, whereas 
our experimental technology embeds some of the human 
tutor’s facilitation actions in the form of “intelligent” inter-
active software, our current build cannot as yet eliminate 
the human tutor—we still rely heavily on a human tutor to 
monitor that the participants indeed build subjective trans-
parency as they progress through the activity levels. In the 
interest of eventually scaling up the project, that is, creating 
empirically evaluated and internationally accessible online 
learning tools for early algebra, it would be necessary to 
continue refining the software’s interactions as well as to 
extend students’ work into the symbolic semiotic register.

7  Implications

We have put forth a framework for building educational 
technology that facilitates students’ development of subjec-
tive transparency—the framework calls to embed within 
the interactive technology an activity sequence designed to 
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foster incremental development of transparency. Leveling 
transparency, as an activity-design principle for creating 
technology-based learning activities, could stand to signifi-
cantly inform the design of pedagogical tools for discov-
ery-based learning.
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