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ABSTRACT
BACKGROUND: Substantial evidence indicates that a microdeletion on human chromosome 16p11.2 is linked to
neurodevelopmental disorders, including autism spectrum disorder (ASD). Carriers of this deletion show divergent
symptoms besides the core features of autism spectrum disorder, such as anxiety and emotional symptoms. The
neural mechanisms underlying these symptoms are poorly understood.
METHODS: We used mice heterozygous for a deletion allele of the genomic region corresponding to the human
16p11.2 microdeletion locus (i.e., 16p11.2 del/1 mice) and their sex-matched wild-type littermates for the study and
examined their anxiety-related behaviors, auditory perception, and central amygdala circuit function using behavioral,
circuit tracing, and electrophysiological techniques.
RESULTS: Mice heterozygous for a deletion allele of the genomic region corresponding to the human 16p11.2
microdeletion locus (i.e., 16p11.2 del/1 mice) had sex-specific anxiety-related behavioral and neural circuit changes.
Specifically, we found that female, but not male, 16p11.2 del/1 mice showed enhanced fear generalization—a
hallmark of anxiety disorders—after auditory fear conditioning and displayed increased anxiety-like behaviors after
physical restraint stress. Notably, such sex-specific behavioral changes were paralleled by an increase in activity
in central amygdala neurons projecting to the globus pallidus in female, but not male, 16p11.2 del/1 mice.
CONCLUSIONS: Together, these results reveal female-specific anxiety phenotypes related to 16p11.2 microdeletion
syndrome and a potential underlying neural circuit mechanism. Our study therefore identifies previously
underappreciated sex-specific behavioral and neural changes in a genetic model of 16p11.2 microdeletion
syndrome and highlights the importance of investigating female-specific aspects of this syndrome for targeted
treatment strategies.

https://doi.org/10.1016/j.bpsgos.2021.01.001
Autism spectrum disorder (ASD) is a spectrum of neuro-
developmental conditions defined by two major diagnostic
criteria: “persistent deficits in social communication and social
interaction across multiple contexts” and “restricted, repetitive
patterns of behavior, interests, or activities” (1). Patients with
ASD commonly have one or more comorbid conditions,
including intellectual disability (2–4), attention-deficit/
hyperactivity disorder (5–8), obsessive-compulsive disorder
(9,10), anxiety (11–13), and depression (13–16), and are at
increased risk for suicidality, particularly female patients
(17–19).

It is well documented that ASD is about 4 times more
common in males than in females with an exception for X-
linked syndromes, such as Rett syndrome, which is more
common in females (20). There is significant evidence of
divergence among core symptoms of ASD based on sex.
Specifically, many studies have found reduced severity of re-
petitive and/or stereotyped behaviors in females with ASD
compared with males (21–25). In contrast, females show
different social impairments than males (22,26–29). These tend
1 THE AUTHORS. Published by Elsevier Inc on behalf of the Society of
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toward more internalizing symptoms and emotional distur-
bance (30–34). Females with ASD also show increased risk of
eating disorders (35), sensory impairments (36), sleep distur-
bances (37), epilepsy, and learning disorders (38). It has been
suggested that females may camouflage their autism pheno-
types better than males owing to fewer social impairments and
better executive functioning (39) as well as reduced external-
izing symptoms (29). One way that emotional phenotypes often
manifest is as anxiety disorders. In the general population,
females have an increased prevalence of stress-related dis-
orders, such as anxiety, depression, and posttraumatic stress
disorder (40–43). Therefore, it is possible that anxiety-like
phenotypes may present differently in males and females
with ASD.

A major limitation of much of the research in ASD has been
its emphasis on males. This is not exclusive to ASD research,
as most research is done in male subjects (44). Among
neuroscience studies in general, the sex bias of human sub-
jects is approximately 5.5 males for every female and with a
ratio much higher among animal studies (45). This bias
Biological Psychiatry. This is an open access article under the
D license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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precludes our understanding of autism in females and limits
our development of effective treatment strategies. Therefore,
we sought to examine whether sex differences exist in stress-
related behaviors in a mouse model of ASD. To this end, we
used a model that mimics a microdeletion on human chro-
mosome 16p11.2. Notably, this deletion is one of the most
common genetic variations found in ASD, accounting for
approximately 1% of ASD cases (46–51). Patients with this
deletion show repetitive behaviors, hyperactivity, intellectual
disability, motor and speech/language delay, and anxiety
symptoms (52–56). Of note, individuals carrying the 16p11.2
deletion, including carriers without ASD, often receive di-
agnoses of anxiety disorders or other mood disorders (57).

The mouse model we used was generated by Horev et al. (58),
and is one of three independently generated mouse genetic
models that mimic the 16p11.2 microdeletion (58–60). These
models, which were created by deleting largely similar genomic
intervals in mouse chromosome 7 corresponding to the syntenic
16p11.2 microdeletion region in humans, exhibit overlapping
phenotypes (58–60). In particular, heterozygous deletion mice—
hereafter referred to as 16p11.2 del/1 mice—in each of these
lines share basic phenotypes, such as low body weight and
perinatal mortality, and, importantly, show behavioral phenotypes
related to the symptoms of human 16p11.2 microdeletion carriers.
These phenotypes include increased locomotor activity, stereo-
typed and repetitive behaviors, sleep deficits, recognition memory
deficits, reward learning deficits, and social deficits (58–66).

A few studies examined 16p11.2 del/1 mice for anxiety- or
fear-related behaviors, but with mixed results. When tested in
the open field test and elevated plus maze (EPM) test, assays
conventionally used to assess anxiety in rodents, these mice
do not appear different from wild-type mice (60,61,67) [how-
ever, see (68)]. The 16p11.2 del/1 mice were also examined in
fear conditioning paradigms. One study shows that 16p11.2
del/1 mice have impaired contextual fear conditioning (69),
whereas other studies show that 16p11.2 del/1 mice have
normal contextual fear conditioning and normal visually cued
fear conditioning (61,67).

Recent studies indicate that environmental factors can
exacerbate ASD symptoms and impairments in cognitive and
adaptive behaviors in 16p11.2 deletion carriers (70), and
16p11.2 del/1 mice show altered coping in response to stress
compared with wild-type littermates (61,71). In light of these
findings and studies showing that males and females can
exhibit very different behavioral responses to threats or stress
(72,73), we reasoned that under a stressful situation 16p11.2
del/1 mice may exhibit sex-specific behavioral changes.
However, a potential sex-specific effect of the 16p11.2 dele-
tion on anxiety- or fear-related behaviors in mice has not been
considered until recently (67). Furthermore, only simple assays,
such as the open field test and EPM test, have been used to
assess baseline anxiety in 16p11.2 del/1 mice, which may not
be sufficient to reveal potential changes in anxiety or fear
processing in response to stress in these mice.

To address these issues, in the current study we examined
anxiety-related behaviors under different stress conditions in both
male and female 16p11.2 del/1 mice and their wild-type litter-
mates. We found that female, but not male, 16p11.2 del/1 mice
showed enhanced fear generalization, a hallmark of anxiety dis-
orders (74), after auditory fear conditioning. Furthermore, although
60 Biological Psychiatry: Global Open Science June 2021; 1:59–69 ww
at baseline 16p11.2 del/1 mice were not different from their wild-
type littermates in the EPM test, consistent with previous studies
(60,61,67), we found that female, but not male, 16p11.2 del/1mice
showed enhanced anxiety in the EPM test after acute restraint
stress. Lastly, we found that these sex-specific behavioral
changes were paralleled by an increase in activity in the central
amygdala (CeA)—a major limbic structure that regulates anxiety in
rodents and primates (75–77)—of female, but not male, 16p11.2
del/1 mice. Together, our work suggests that 16p11.2 micro-
deletion differentially affects males and females and may dis-
proportionally disrupt brain functions related to stress regulation
in females. These findings provide insight into understanding
how ASD may present differently in females at behavioral and
neuronal levels and raise the question of whether changes to
treatment and diagnostic strategies based on sex should be
considered.

METHODS AND MATERIALS

Animals

To breed 16p11.2 del/1 mice, we used 16p11.2 del/1 male
mice and C57/B6 female mice purchased from the Jackson
Laboratory (Bar Harbor, ME) or similar breeders obtained from
Pavel Osten’s laboratory at Cold Spring Harbor Laboratory.
Breeders were housed with a cardboard Bio-Hut (Bio-Serv,
Flemington, NJ) under a 12-hour light/dark cycle (7 AM to 7 PM

light) with food and water available ad libitum. As 16p11.2 del/
1 mice exhibit postnatal lethality (58), in breeding cages only,
standard rodent chow (Purina LabDiet, Gray Summit, MO) was
supplemented with DietGel Boost (ClearH2O, Westbrook, ME),
a high-calorie liquid diet that increased survival of 16p11.2 del/
1 pups. Pups were weaned at 3 weeks of age and group
housed with wild-type littermates. Mice were genotyped for
16p11.2 microdeletion between 4 and 8 weeks of age with
primers provided by Alea Mills’ laboratory at Cold Spring
Harbor Laboratory.

Mice 2–4 months old were used for all behavioral experi-
ments. Mice 6–10 weeks old were used for all electrophysi-
ology experiments. All experimental mice were housed under a
12-hour light/dark cycle (7 AM to 7 PM light) in groups of 2–5
animals, containing both 16p11.2 del/1 mice and their wild-
type littermates. Food and water were available ad libitum.
All behavioral experiments were performed during the light
cycle. Littermates were randomly assigned to different groups
before experiments. All experimental procedures were
approved by the Institutional Animal Care and Use Committee
of Cold Spring Harbor Laboratory and performed in accor-
dance with the U.S. National Institutes of Health guidelines.

See Supplemental Methods for details on Behavioral Tasks,
Stereotaxic Surgery, and In Vitro Electrophysiology.

Data Analysis and Statistics

Statistical analyses were performed with Prism 7 (GraphPad
Software, La Jolla, CA). Normality was tested by D’Agostino-
Pearson or Shapiro-Wilk normality tests. Non-normal datasets
were log-transformed for normality before statistical testing. All
behavioral experiments were controlled by computer systems,
and data were collected and analyzed in an automated and
unbiased way. Virus-injected animals in which the injection site
w.sobp.org/GOS
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was incorrect were excluded. No other animals were excluded.
Sex was found to be a significant factor in percent freezing
during fear conditioning retrieval (F1,83 = 8.740, p = .0041, two-
way repeated measures analysis of variance) (Figure 1). Given
this, in addition to our a priori hypothesis that sex differences
would be present based on sex bias in the prevalence of hu-
man autism and anxiety disorders, all results have been
analyzed separately by sex.
RESULTS

Female-Specific Increase in Fear Generalization in
16p11.2 del/1 Mice

One hallmark of anxiety disorders is fear generalization (74).
Fear generalization can be assessed in mice using a fear
conditioning paradigm with a discrimination component (see
Supplemental Methods), in which mice are trained to associate
one auditory stimulus (conditioned stimulus [CS]) (CS1) with a
foot shock (unconditioned stimulus [US]), while a different
auditory stimulus (CS2) is presented without the shock. In a
fear retrieval test 24 hours following the conditioning, freezing
in response to the CS1 and freezing in response to the CS2
are measured and used to calculate a discrimination index,
which is the difference between an animal’s average freezing
to the CS1 and to the CS2, normalized to the sum of the two
measurements.

Interestingly, we found that during a habituation session
before the conditioning, female 16p11.2 del/1 mice showed a
small (10%–20%) but robust increase in freezing to the audi-
tory stimuli compared with their wild-type littermates
(Figure 1A, left). Male 16p11.2 del/1 mice did not show such a
change (Figure 1A, right). However, we did not observe a
significant difference in freezing during the first tone presen-
tation in the subsequent conditioning session (i.e., before mice
received any shocks) between genotypes for either the female
or the male mice (Figure 1B, D), suggesting that the enhanced
freezing in 16p11.2 del/1 female mice during habituation may
be related to the fact that the auditory stimuli were novel to the
animals.

After fear conditioning and on memory retrieval, both fe-
male and male 16p11.2 del/1 mice showed levels of freezing
similar to those of their wild-type littermates in response to
the CS1 (Figure 1B, D), consistent with previous findings that
16p11.2 del/1 mice have intact fear conditioning (61,67).
Surprisingly, however, female, but not male, 16p11.2 del/1
mice showed increased freezing to the CS2 compared with
wild-type littermates (Figure 1B, D), resulting in reduced
levels of fear discrimination in female, but not male, 16p11.2
del/1 animals (Figure 1C, E). In addition, we found that
female, but not male, 16p11.2 del/1 mice showed enhanced
reactions to foot shocks compared with wild-type mice, as
measured by enhanced movement velocity and distance
immediately following shocks of varying intensities (Figure 2).
These results suggest that female 16p11.2 del/1 mice have
enhanced fear generalization following fear conditioning,
which could result from heightened alertness (as indicated by
increased freezing during habituation) and/or an increase in
sensitivity to aversive stimuli (as indicated by increase reac-
tivity to foot shocks).
Biological Psychiatry: G
16p11.2 del/1 Mice Have Normal Auditory
Perception

An alternative explanation for the enhanced fear general-
ization in female 16p11.2 del/1 mice is that these mice have
an impairment in auditory processing, such that they cannot
effectively discriminate between a 4-kHz tone and a 12-kHz
tone, which were used as CS1 and CS2, respectively,
during fear conditioning. To test this possibility, we trained a
new cohort of mice, including 16p11.2 del/1 mice and their
wild-type littermates, in an auditory two-alternative choice
task that depended on discriminating between a 4-kHz tone
and a 12-kHz tone (Figure 3A) (see Supplemental Methods)
(78). Both female and male 16p11.2 del/1 mice learned the
two-alternative choice task at a rate similar to that of their
wild-type littermates (Figure 3B, C). In fact, male 16p11.2
del/1 mice tended to be faster than wild-type mice in
learning the task (Figure 3C), though this difference did not
reach significance. In addition, the performance of female
and male 16p11.2 del/1 mice in discriminating a series of
sounds with frequencies ranging from 4 to 12 kHz
(Figure 3D–F and H–J), or with different intensities
(Figure 3G, K), was indistinguishable from their wild-type
littermates. These results indicate that 16p11.2 micro-
deletion does not affect auditory perception in mice, ruling
out the possibility that the enhanced fear generalization in
female 16p11.2 del/1 mice is confounded by an impairment
in auditory processing in these mice.

Stress Induces an Increase in Anxiety in Female
16p11.2 del/1 Mice

In fear conditioning, mice receive electric shocks as the
aversive US, which is a significant stressor to animals.
Therefore, the enhanced fear generalization in female
16p11.2 del/1 mice after fear conditioning points to a
possibility that these animals are prone to stress-induced
anxiety. To further test this possibility, we sought to
examine anxiety-like behaviors in mice subjected to a
different stressor. For this purpose, we used physical re-
straint (see Supplemental Methods), a well-characterized
stress induction procedure in rodents that has been
shown to affect the function of the CeA (79,80). As
described previously (81), animals were physically
restrained in a well-ventilated 50-mL conical tube for 2
hours in a dark, sound-attenuated box. The animals were
tested 24 hours later in the EPM (see Supplemental
Methods). We found a significant interaction between sex
and genotype in the time spent in the open arms (Figure 4A)
and significant effects of sex on movement velocity
(Figure 4B) and distance traveled (Figure 4C). Post hoc
analysis revealed that the stressed female 16p11.2 del/1
mice spent significantly less time in the open arms of the
EPM compared with their female wild-type littermates
(Figure 4A). We did not find any change in time spent in the
open arms in male 16p11.2 del/1 mice.

We also examined anxiety levels in naïve mice using the EPM
test. Compared with naïve female or male wild-type littermates,
naïve female or male 16p11.2 del/1 mice did not show any
change in the time spent in the open arms (Figure 4D), move-
ment velocity (Figure 4E), or distance traveled (Figure 4F). This
lobal Open Science June 2021; 1:59–69 www.sobp.org/GOS 61
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Figure 1. Female 16p11.2 del/1 mice exhibit fear
generalization following fear conditioning. (A)
Freezing behavior of male and female 16p11.2 del/1
mice and their respective WT littermates in response
to CS1 and CS2 during habituation (female
[16p11.2 del/1, n = 15, WT, n = 16]: F1,29 = 6.023, p =
.0204; male [16p11.2 del/1, n = 28, WT, n = 28]:
F1,54 = 0.3433, p = .5604; *p , .05; two-way analysis
of variance with repeated measures). (B) Freezing to
each stimulus presentation during conditioning and
retrieval for female mice (conditioning: F1,29 = 1.419,
p = .2432; CS1 retrieval: F1,29 = 0.4314, p = .5165;
CS2 retrieval: F1,29 = 5.765, p = .0230; *p, .05; two-
way analysis of variance with repeated measures
and post hoc Sidak test). (C) Discrimination index
[(CS1 2 CS2)/(CS1 1 CS2)] for female mice (*p =
.0192, Mann-Whitney t test). (D) Freezing to each
stimulus presentation during conditioning and
retrieval for male mice (conditioning: F1,54 = 0.9938,
p = .3233; CS1 retrieval: F1,54 = 0.6327, p = .4298;
CS2 retrieval: F1,54 = 0.8779, p = .3530; two-way
analysis of variance with repeated measures). (E)
Discrimination index for male mice (p = .3742, Mann-
Whitney t test). Data are presented as mean 6 SEM.
CS, conditioned stimulus; n.s., not significant; WT,
wild-type.
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result is consistent with previous findings (60,61,67). Together,
our results indicate that female 16p11.2 del/1 mice have
increased susceptibility to stress-induced anxiety.
16p11.2 del/1 Mice Have CeA Dysfunction

Previous studies have revealed that the CeA is particularly
responsive to stress and is a major contributor to anxiety-related
behaviors (75–77). Therefore, we examined whether the 16p11.2
microdeletion affects CeA neuronal function in a sex-specific
manner. We recorded miniature excitatory postsynaptic currents
(mEPSCs)—a measurement of total excitatory synaptic drive onto
the recorded neurons—from CeA neurons in acute brain slices
prepared from female or male 16p11.2 del/1 mice as well as their
female or male wild-type littermates (Figure 5A). We found sig-
nificant effects of sex and genotype on mEPSC frequency in
randomly recorded CeA neurons (Figure 5B–D). Post hoc analysis
revealed that female mice with 16p11.2 microdeletion specifically
had increased mEPSC frequency compared with female wild-type
littermates. There was no difference in mEPSC amplitude be-
tween genotypes or sexes (Figure 5E). These results indicate that
female, but not male, 16p11.2 del/1 mice have enhanced excit-
atory synaptic drive onto CeA neurons.
62 Biological Psychiatry: Global Open Science June 2021; 1:59–69 ww
We recently identified a pathway from the CeA to the globus
pallidus externa (GPe) (82), which originates predominantly
from somatostatin-expressing CeA neurons that play an
essential role in fear learning and anxiety (75,83,84). This
pathway conveys information of the US and is critical for
learning in fear conditioning (82). Importantly, optogenetic
activation of the CeA-GPe pathway increases fear general-
ization whereby animals increase their freezing to CS2.
Therefore, we sought to determine whether the GPe-projecting
CeA neurons are affected by the 16p11.2 microdeletion. To
this end, we used a retrograde labeling strategy whereby flu-
orescently conjugated CTB (cholera toxin subunit B) was
injected in the GPe to label the GPe-projecting CeA neurons
(Figure 6A) (see Supplemental Methods). Three days after the
CTB injection, we recorded mEPSCs selectively from the CTB-
labeled GPe-projecting CeA neurons in acute brain slices
prepared from female or male 16p11.2 del/1 mice and their
respective wild-type littermates (Figure 6A, B). Again, we found
a significant interaction between sex and genotype whereby
females with 16p11.2 microdeletion exhibited increased
mEPSC frequency compared with wild-type littermates
(Figure 6D, E). Thus, our results indicate that the 16p11.2
microdeletion caused a female-specific enhancement of
w.sobp.org/GOS
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Figure 2. Female 16p11.2 del/1 mice show
enhanced reactivity to foot shock. (A) Distance
traveled during 2-second shock presentations for
female mice (F1,50 = 14.94, p = .0003; ***p , .001;
two-way ANOVA; 16p11.2 del/1, n = 4, WT, n = 8).
(B) Movement velocity during 2-second shock pre-
sentations for female mice (F1,50 = 2.596, p = .1135;
two-way ANOVA). (C) Distance traveled during 2-
second shock presentations for male mice (F1,50 =
1.410, p = .2407; two-way ANOVA; 16p11.2 del/1,
n = 7, WT, n = 5). (D) Movement velocity during 2-
second shock presentations for male mice (F1,50 =
0.1467, p = .7033; two-way ANOVA). Data are pre-
sented as mean 6 SEM. ANOVA, analysis of vari-
ance; WT, wild-type.
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excitatory synaptic drive onto CeA neurons and moreover
suggest dysfunction in the somatostatin-expressing CeA
neurons in the CeA-GPe pathway as a potential mechanism for
the increased stress susceptibility and fear generalization
identified in female 16p11.2 del/1 mice.
DISCUSSION

Our results indicate that female, but not male, 16p11.2 del/1
mice have increased susceptibility to anxiety-like phenotypes
following stressful life events, revealing a previously underap-
preciated sex-specific effect in the modulation of behavior by
16p11.2 microdeletion. Furthermore, we identify that CeA
dysfunction, in particular CeA dysfunction in the CeA-GPe
circuit, may underlie the female-specific behavioral pheno-
types caused by the 16p11.2 microdeletion. Notably, the CeA-
GPe pathway originates predominantly from somatostatin-
expressing CeA neurons (82), which have been shown to
have an essential role in fear learning and anxiety (75,83–86).
Our results thus pinpoint a precise cellular and circuit substrate
as a potential target of future therapeutics for anxiety
symptoms.

These findings are consistent with the vast literature that
females with ASD show distinct behavioral symptoms
compared with males (22,26–29), in particular, more inter-
nalizing symptoms and emotional disturbances (30–34).
Our findings are also consistent with the notion that in the
general population, females have an increased prevalence
of stress-related disorders, such as anxiety, depression,
and posttraumatic stress disorder (40–43). Our study thus
urges a careful examination of anxiety and other emotional
symptoms as well as functional changes in the amygdala–
Biological Psychiatry: G
basal ganglia circuits in 16p11.2 microdeletion carriers, in
particular in female carriers. In general, our study also
urges sex-specific diagnostic and treatment strategies for
ASD.

Three lines of evidence suggest that heightened alert-
ness or an increase in sensitivity to aversive stimuli, or to
the stimuli signaling potential threat, may underlie the
increased susceptibility to anxiety-like phenotypes in fe-
male 16p11.2 del/1 mice following stressful experiences.
First, 16p11.2 del/1 mice, especially females, show
increased freezing when they are exposed to an unfamiliar
sound, which is a sign of uncertainty or potential danger.
Second, female 16p11.2 del/1 mice have enhanced reac-
tivity to foot shocks. Third, CeA neurons in female 16p11.2
del/1 mice have enhanced sensitivity to excitatory inputs.
This enhanced sensitivity may lead to heightened alertness
or attention, as the CeA has been implicated in selective
processing of salient information (87,88).

The CeA has central roles in the generation of fear and
anxiety states (75–77,83,84,89–102). In parallel, amygdala
dysfunction has been implicated in the pathogenesis of
ASD. Abnormal developmental trajectory of the amygdala
has been observed in ASD (103). Brain imaging studies
indicate that the amygdala is enlarged precociously in
children with autism (104,105) and that amygdala
enlargement in autistic children is associated with anxiety
symptoms (106). In addition, cellular changes in the
amygdala have been reported in ASD (103). In a recent
study (82), we found that a subpopulation of neurons in the
CeA sends direct projections to the GPe, and the CeA-GPe
pathway conveys US information and controls learning
during fear conditioning. In the current study, we found
lobal Open Science June 2021; 1:59–69 www.sobp.org/GOS 63
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Figure 3. 16p11.2 del/1 mice have normal auditory perception. (A) Schematic of the behavioral task. (B) Performance levels across training for female mice
(F1,8 = 0.005112, p = .9448; two-way ANOVA; 16p11.2 del/1, n = 7, WT, n = 3). (C) Performance levels across training for male mice (F1,14 = 2.557, p = .1321;
two-way ANOVA; 16p11.2 del/1, n = 9, WT, n = 7). (D) Psychometric response curve for frequencies between 4 and 12 kHz (in log2 values) for female mice.
(E) Quantification of the slope of the psychometric curve (parameter p) for female mice (p = .5878, t test). (F) Quantification of the median threshold, X0, from the
psychometric function for female mice (p = .6465, t test). (G) Average performance levels at 4 and 12 kHz for stimuli volume between 40 and 60 dB for female
mice (F1,8 = 0.04474, p = .8378; two-way ANOVA with repeated measures). (H) Psychometric response curve for frequencies between 4 and 12 kHz (in log2
values) for male mice. (I) Quantification of the slope of the psychometric curve (parameter p) for male mice (p = .1713, t test). (J) Quantification of the median
threshold, X0, from the psychometric function for male mice (p = .8607, t test). (K) Average performance levels at 4 and 12 kHz for stimuli volume between 40
and 60 dB for male mice (F1,14 = 0.0173, p = .8972; two-way ANOVA with repeated measures). All data are presented as mean 6 SEM. ANOVA, analysis of
variance; WT, wild-type.
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Figure 4. Female 16p11.2 del/1 mice exhibit
enhanced stress-induced anxiety-like behavior. (A)
Time spent in the open arms of the EPM for female
mice 24 hours after stress exposure (p = .0266; *p ,

.05; Mann-Whitney t test; female 16p11.2 del/1, n =
10, female WT, n = 8). (B) Distance traveled in the
EPM for female mice 24 hours after stress exposure
(p = .4082; Mann-Whitney t test). Same mice as in
panel (A) were used. (C) Movement velocity in the
EPM for female mice 24 hours after stress exposure
(p = .4082; Mann-Whitney t test). Same mice as in
panel (A) were used. (D) Time spent in the open arms
of the EPM for male mice 24 hours after stress
exposure (p = .3154; Mann-Whitney t test; male
16p11.2 del/1, n = 8, male WT, n = 10). (E) Distance
traveled in the EPM for male mice 24 hours after
stress exposure (p = .0343; *p, .05; Mann-Whitney t
test). Same mice as in (D) were used. (F) Movement
velocity in the EPM for male mice 24 hours after
stress exposure (p = .0266; *p, .05; Mann-Whitney t
test). Same mice as in (D) were used. (G) Time spent
in the open arms of the EPM for female naïve mice
(p = .5629; Mann-Whitney t test; female 16p11.2 del/
1, n = 10, female WT, n = 13). (H) Distance traveled
in the EPM for female naïve mice (p = .7844; Mann-
Whitney t test). Same mice as in panel (G) were
used. (I) Movement velocity in the EPM for female
naïve mice (p = .1306; Mann-Whitney t test). Same
mice as in panel (G) were used. (J) Time spent in the
open arms of the EPM for male naïve mice (p =
.6522; Mann-Whitney t test; male 16p11.2 del/1, n =
11, male WT, n = 11). (K) Distance traveled in the
EPM for male naïve mice (p = .6522; Mann-Whitney t
test). Same mice as in panel (J) are used. (L)
Movement velocity in the EPM for male naïve mice
(p = .6522; Mann-Whitney t test). Same mice as in
panel (J) are used. Data are presented as mean 6
SEM. EPM, elevated plus maze; WT, wild-type.
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Figure 5. Female 16p11.2 del/1 mice have
increased excitatory synaptic transmission onto CeA
neurons. (A) Schematic of the experimental design.
(B, C) Representative mEPSC traces from CeA
neurons recorded from male and female 16p11.2 del/
1 (B) and WT (C) mice. (D) Quantification of mEPSC
frequency for CeA neurons in female mice (p = .0029;
**p , .01; Mann-Whitney t test; female 16p11.2 del/
1, n = 35 cells from 4 mice, female WT, n = 28 cells
from 3 mice). (E) Quantification of mEPSC amplitude
for CeA neurons in female mice (p = .7262; Mann-
Whitney t test). Data are from the same cells as in
panel (D). (F) Quantification of mEPSC frequency for
CeA neurons in male mice (p = .2596; Mann-Whitney
t test; male 16p11.2 del/1, n = 21 cells from 4 mice,
male WT, n = 14 cells from 3 mice). (G) Quantification
of mEPSC amplitude for CeA neurons in male mice
(p . .9999; Mann-Whitney t test). Data are from the
same cells as in panel (F). Data are presented as
mean 6 SEM. BA, basolateral amygdala; CeA, cen-
tral amygdala; CeL, lateral division of the CeA; CeM,
medial division of the CeA; LA, lateral division of the
BA; mEPSC, miniature excitatory postsynaptic cur-
rent; WT, wild-type.
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that an enhanced excitatory drive onto GPe-projecting CeA
neurons parallels the anxiety phenotypes of female
16p11.2 del/1 mice. Of note, the electrophysiology ex-
periments in the CeA were performed on mice that were
not subjected to the behavioral procedures. In addition,
these mice were younger than the mice used for the
behavioral experiments (see Supplemental Methods).
However, because the 16p11.2 microdeletion was consti-
tutively present from birth in these mice, it likely affected
subunit B conjugated to Alexa Fluor 555; GPe, globus pallidus externa; LA, latera
wild-type.
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the development of the CeA, leading to functional changes
in CeA circuits even at earlier stages. We propose that
early developmental and functional changes caused by the
16p11.2 microdeletion, such as those that we report here,
predispose the affected individuals to anxiety-related
symptoms. Our findings together strongly suggest a role
of CeA-GPe circuit dysfunction in susceptibility to anxiety
after stress and warrant future studies to elucidate how this
circuit is involved in 16p11.2 microdeletion syndrome.
Figure 6. Female 16p11.2 del/1 mice have
increased excitatory synaptic transmission onto
GPe-projecting CeA neurons. (A) Schematic of the
experimental design. CTB-555 was used to retro-
gradely label GPe-projecting CeA neurons. (B, C)
Representative mEPSC traces from GPe-projecting
CeA neurons recorded from male and female
16p11.2 del/1 (B) and WT (C) mice. (D) Quantifica-
tion of mEPSC frequency for GPe-projecting CeA
neurons in female mice (p = .0482; *p , .05; Mann-
Whitney t test; female 16p11.2 del/1, n = 14 cells
from 5 mice, female WT, n = 13 cells from 7 mice). (E)
Quantification of mEPSC amplitude for GPe-
projecting CeA neurons in female mice (p = .7564;
Mann-Whitney t test). Data are from the same cells
as in panel (D). (F) Quantification of mEPSC fre-
quency for GPe-projecting CeA neurons in male
mice (p = .2017; Mann-Whitney t test; male 16p11.2
del/1, n = 15 cells from 3 mice, male WT, n = 15 cells
from 5 mice). (G) Quantification of mEPSC amplitude
for GPe-projecting CeA neurons in male mice (p =
.1770; Mann-Whitney t test). Data are from the same
cells as in panel (F). Data are presented as mean 6
SEM. BA, basolateral amygdala; CeA, central
amygdala; CeL, lateral division of the CeA; CeM,
medial division of the CeA; CTB-555, cholera toxin

l division of the BA; mEPSC, miniature excitatory postsynaptic current; WT,
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