
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Geometric Concept Acquisition in a Dueling Deep Q-Network

Permalink
https://escholarship.org/uc/item/3v11228x

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Kuefler, Alex
Kochenderfer, Mykel J.
McClelland, James L.

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3v11228x
https://escholarship.org
http://www.cdlib.org/


Geometric Concept Acquisition in a Dueling Deep Q-Network
Alex Kuefler (akuefler@stanford.edu)

Symbolic Systems Program

Mykel J. Kochenderfer (mykel@stanford.edu)
Department of Aeronautics and Astronautics

James L. McClelland (jlmcc@stanford.edu)
Department of Psychology

Stanford University, Stanford, CA 94305 USA

Abstract

Explaining how intelligent systems come to embody knowl-
edge of deductive concepts through inductive learning is a
fundamental challenge of both cognitive science and artificial
intelligence. We address this challenge by exploring how a
deep reinforcement learning agent, occupying a setting simi-
lar to those encountered by early-stage mathematical concept
learners, comes to represent ideas such as rotation and trans-
lation. We first train a Dueling Deep Q-Network on a shape
sorting task requiring implicit knowledge of geometric proper-
ties, then we query this network with classification and prefer-
ence selection tasks. We demonstrate that scalar reinforcement
provides sufficient signal to learn representations of shape cat-
egories. After training, the model shows a preference for more
symmetric shapes, which it can sort more quickly than less
symmetric shapes, supporting the view symmetry preferences
may be acquired from goal-directed experience.

Introduction
Mathematical concepts are formally definable and may be
deduced from of axioms. In contrast, most human mental
representations, such as visual categories and language con-
cepts, resist precise definitions and only come to be known af-
ter considerable inductive experience. Similarly, deep neural
networks have achieved human-level or state-of-the-art per-
formance on tasks such as object recognition (He, Zhang,
Ren, & Sun, 2016), game playing (Mnih et al., 2015; Sil-
ver et al., 2016), and speech generation (van den Oord et al.,
2016) by learning distributed (rather than symbolic) represen-
tations through inductive (rather than deductive) training. The
empirical success of human learners and artificial neural net-
works contrasts sharply with the description of mathematical
concepts as abstract, formal, and universal ideals.

A growing literature argues that the developmental details
of embodied agents are not mere nuisance variables associ-
ated with the learning and deployment of mathematical con-
cepts, but are necessary tools in facilitating cognition. For
instance, some work suggests that the use of hand gestures
aids learning by grounding the meaning of abstract princi-
ples such as continuity and magnitude in the willful mo-
tions of the body (Goldin-Meadow, Cook, & Mitchell, 2009;
Marghetis & Núnez, 2013; Marghetis, Núñez, & Bergen,
2014). The tuning of low-level responses of the visual system
has also been associated with algebraic expertise. Marghetis,
Landy, and Goldstone (2016) argue that a process of “regi-
mented perception”, implemented by object-based attention,

Figure 1: The top panels show example frames from the shape
sorting environment. The blue cursor indicates grabbing, and
the green cursor is not grabbing. The bottom panel shows
examples of each shape in isolation: Hexagon (Hex.), Equi-
lateral Triangle (E. Tri.), Trapezoid (Trap.), Square, and Right
Triangle (R. Tri.).

lets viewers parse algebraic notation in such a way that makes
salient its hierarchical structure, thus offloading much of the
work of calculation from high-level cognition to perception.
Taken together, this work suggests that for all its formal-
ity, mathematics is still an evolutionarily recent phenomenon,
and in its comprehension, one marshals bodily and neural re-
sources adapted for other purposes.

This account dovetails nicely with the Parallel Distributed
Processing approach (Rogers & McClelland, 2014), or more
recently, advances in deep learning. Just as embodied cog-
nition challenges the primacy of symbolic representations in
mental processes, deep learning has been used to overcome a
number of problems once thought solvable only through the
manipulation of compositional tokens or formal logic. For
example, the “Differentiable Neural Computer” of Graves et
al. (2016) can answer queries involving textual and hierar-
chical reasoning, relying solely on a learned, neural memory
device. Furthermore, these models learn “end-to-end”, ad-
justing connection strengths between stimulus-facing neurons
based on error signals propagated down from higher level de-
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cisions (Mnih et al., 2015), much as Marghetis et al. (2016)
argue that pursuing algebraic skills re-tunes the visual sys-
tem. Despite these connections to the embodied approach
in mathematical cognition, we are not aware of major work
exploring how deep neural networks capture mathematical,
and in particular geometric intuitions through a goal-driven,
learning process of perception and actuation.

This paper provides a proof of concept and an exploratory
analysis. We demonstrate that a domain-agnostic learning al-
gorithm is able to represent geometric concepts that are only
implicitly coded in its training task’s structure. In particular,
we develop a simulated shape sorting toy similar to those en-
joyed by young children. Such a learning environment tasks
an agent to carry out sequences of actions that require knowl-
edge about some geometric properties (whether implicit or
explicit) to maximize reward. We train an agent to expertise
in this task, then evaluate its learned behavior and representa-
tion of shape categories.

Our primary contribution has been to show that reinforce-
ment learning (RL) is sufficient to train a convolutional neu-
ral network agent to perform a shape sorting task expertly.
This training leads to the development of shape-specific rep-
resentations at the top convolutional layer, which feeds into
network layers that compute value. We also found that our
model exhibited a preference for objects with higher orders
of symmetry, supporting the view that experience, rather than
an innate symmetry bias, may be the basis for similar sim-
ilarity preferences in both human infant and primate studies
(Bornstein, Ferdinandsen, Gross, 1981; McMahon Olson,
2007). We also make available the source code for the pixels-
to-actions shape-sorting task described in this paper.

Approach
Our goal is to demonstrate that deep learning may provide a
computational paradigm for building on psychological theory
and generating new hypotheses about geometric concept ac-
quisition. Blocks worlds have previously been used to study
and model intuitive physics (Hamrick, Battaglia, & Tenen-
baum, 2011; Zhang, Wu, Zhang, Freeman, & Tenenbaum,
2016). Although such environments feature a finite set of
discrete entities adhering to rules of interaction, their broad
properties and questions of investigation tend to differ. For in-
stance, these environments simulate physical properties, like
velocity. In contrast, we seek to understand abstract proper-
ties, such as shape and symmetry, and we thus introduce an
environment with few physical constraints. As such, the ex-
perimental setup can be decomposed into an environment and
learning agent, which we represent with a neural network.

Environment
During the initial training stage of our neural network, the
model interacts with a simulated shape sorting toy (see Fig-
ure 1), which may be interpreted as a finite horizon Markov
Decision Process (MDP) with deterministic transitions and
high-dimensional states (Kochenderfer & Reynolds, 2015).

Environment interactions are divided into trials, which con-
sist of at most 500 timesteps. At timestep t, the environment
emits an image st ∈ R84×84 depicting some combination of
two types of objects: blocks and holes. Every object in st is
characterized by an orientation and a position vector, which
remain fixed for holes, but are subject to change for blocks.
Each object is also characterized by a convex, 2D shape
drawn from the set X , which includes squares, trapezoids,
equilateral triangles, right triangles, and hexagons. Once a
shape is chosen for an object, it is held constant throughout
the course of a trial. The image st also includes a cursor
used by an agent to manipulate the position and orientation
of blocks.

The initial frame s0 includes three blocks whose shape as-
signments Xb are drawn uniformly with replacement from
X with randomized positions and orientations. Four holes
with random orientations are also given shape assignments
Xh drawn without replacement from X . A constraint Xb ⊂ Xh
ensures that no block will be generated without a correspond-
ing hole. The positions for holes are also randomized at the
beginning of each trial, but only drawn from four possible,
equidistant locations. This second constraint ensures that
holes never overlap. In contrast, blocks may overlap (some-
times completely) but are manipulable, and can be disentan-
gled by an agent.

Given st , an agent responds with action at in A , which in-
cludes: up, down, left, right movements, toggle grab, rotate
clockwise or counterclockwise, or wait. Rotations are 30°
and a single cardinal movement covers 10% of the height or
width of st . If the grab is active, blocks will “stick” to the
cursor, changing position and orientation with the cursor. If
the grab is inactive, movement and rotation actions do not
influence the blocks.

The environment uses a reward function that assigns a
small reward when the cursor grabs a block r1 = 0.001, a
small penalty −r1 when the cursor contacts the border of the
screen, a large reward r2 = 1.0 when the cursor fits a block to
a corresponding hole or completes a trial. A fit occurs when
the cursor “releases” a block over a hole, and the block’s ver-
tex set is contained by the hole’s vertex set. If a fit occurs, the
block disappears and will not return for the rest of the trial.

Agent
We desire a model of a learning agent that is (1) Deep, or
capable of expressing multiple, hierarchical representations
that could feasibly embody geometric invariants, given raw
pixels, (2) Psychologically plausible, or sufficiently similar
to animal decision making to suggest research directions for
cognitive science, and (3) Powerful enough to solve the non-
trivial MDP described in the previous section. The Deep Q-
Network (DQN) (Mnih et al., 2015) is an attractive option
that can accommodate these considerations.

DQN has attained state-of-the-art results on similar tasks
that include discrete action spaces and high-dimensional state
spaces. Sharing many architectural properties with convolu-
tional neural networks, it learns a succession of hidden rep-

2489



Conv1 Conv2 Conv3

Adv.

Val.

20x20x32 9x9x64 7x7x64

512

512

Figure 2: The Dueling Deep-Q Network architecture and the
dimensionality of each layer. Boxed layers are involved in
representation, output layers are involved in actuation. Dotted
lines denote scalar-vector broadcasting that merge value and
advantage streams. We use the same filter sizes and strides as
Wang et al. (2016)

resentations that can be visualized and interpreted as an ab-
straction hierarchy (Zeiler & Fergus, 2014). Furthermore,
DQN features some desiderata as a model of animal decision
making. A prioritized replay pool has been compared to hip-
pocampal learning mechanisms (McClelland, McNaughton,
& O’Reilly, 1995), and the architecture is trained using tem-
poral difference (TD) learning, which has been shown to un-
derpin some forms of animal learning (Shah, 2012).

TD learning is here accomplished by minimizing the adap-
tive loss function

Li(θi) = E(s,a,r,s′)∼D
[
(yi−Q(s,a;θi))

2] (1)

with target value

yi = r+ γmax
a′

Q(s′,a′;θi
−) (2)

State-action-reward sequences (s,a,r,s′) observed during
environment interactions are drawn from a replay buffer D
and used as training samples. Q(s,a;θi) represents the sum
of discounted future rewards if action a is taken from state s
and is estimated at epoch i by a DQN parameterized by θi.
Updating the model using estimates from a target network
parameterized by θi

− has been shown to improve the stability
of training (Mnih et al., 2015; Wang et al., 2016). A policy
can then be induced from the DQN by selecting actions max-
imizing Q(s,a;θi) with probability ε and otherwise selecting
exploratory, random actions.

In this work, Q(s,a;θi) is represented by a Dueling Deep
Q-Network (DDQN) which is subject to the same TD learn-
ing paradigm as DQN, but features a different architecture
(Wang et al., 2016), shown in Figure 2.1 DDQN follows
its convolutional layers with two disjoint, fully-connected
streams that represent the scalar value of a state V (s) and
the advantage A(s,a) = Q(s,a)−V (s) of a state-action pair

1Our implementation adapts source code from
https://github.com/devsisters/DQN-tensorflow

separately. These representations are merged with the broad-
casting rule

Q(s,a;θ,α,β) =

V (s;θ,β)+A(s,a;θ,α)− 1
|A |∑a′

A(s,a′;θ,α)
(3)

where θ, α, and β parameterize the convolutional, advan-
tage, and value sub-networks respectively. DDQN has been
shown to improve the state-of-the-art beyond the performance
of DQN and has some favorable properties as a neurobiolog-
ical model, as it extends to deep neural networks the advan-
tage learning paradigm, which has been shown to correlate
with striatal neural activity during instrumental learning tasks
(O’Doherty et al., 2004).

Learned Behavior
We trained our agent to complete the shape sorting task over
the course of one week on a single GeForce GTX 980 graph-
ics processing unit. It completed approximately 480,000 tri-
als consisting of at most 500 timesteps each. After train-
ing, the agent completed two experimental tasks consisting
of 50,000 trials. Although the agent trained using ε-greedy
exploration with ε = 0.1, testing tasks were performed using
a pure greedy policy. On both experimental tasks, we found
that the agent adopted the strategy of performing translation
actions early in the trial, followed by rotation actions once the
block was in place over the correct hole.

Single Block Performance. One block per trial was drawn
from Xb and initialized at a random position with four holes
from which to choose. The agent’s cursor was initialized at
the center of the screen. Each trial ended when the agent fit
the block to the appropriate hole, attempted to fit the block
to an incorrect hole, or exceeded 500 timesteps. Incorrect
fits and time outs together accounted for less than 4% of the
total number of trials, with the vast majority of failed trials
resulting from time outs.

Table 1 demonstrates the agent’s efficiency at the task on
the trials it successfully completed, in addition to the esti-
mated value computed by the network upon first grabbing a
block. Although the agent performed nearly optimally on all
shapes, we found that the network assigned higher estimated
value for shapes with greater symmetry (which also corre-
sponds the minimum number of steps needed to fit the block
to a hole). However, although the right triangle and trape-
zoid share the same symmetry order, the trapezoid is assigned
slightly higher value.

Shape Preference. Observing that our model estimated
higher value for some shapes over others, we tested to
see whether the agent demonstrated preferences in a two-
alternative forced choice. In this experiment, two blocks
belonging to different shape categories were generated and
placed equidistantly to corresponding holes. Trials termi-
nated when the agent selected a “winner” by releasing a held
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Table 1: Agent’s performance on single-block trials, includ-
ing value estimated by layer Val., and average number of steps
needed to complete the trial against average number of steps
actually taken by the agent, per each shape category.

Shape Value Min. Steps Act. Steps Ratio
Hex. 0.70 10.74 ±(3.7) 11.83 ±(4.0) 0.91
Square 0.67 11.37 ±(3.8) 12.57 ±(4.1) 0.91
E. Tri. 0.64 11.76 ±(3.9) 12.90 ±(4.1) 0.91
Trap. 0.57 13.73 ±(4.2) 15.06 ±(4.7) 0.91
R. Tri. 0.55 13.66 ±(4.2) 15.38 ±(4.8) 0.89

Hex. Square E. Tri. Trap. R. Tri.
Winner

Hex.

Square

E. Tri.

Trap.

R. Tri.

L
o
s
e
r

0.02 0.00 0.00 0.02

0.98 0.35 0.38 0.26

1.00 0.65 0.42 0.27

1.00 0.62 0.58 0.35

0.98 0.74 0.73 0.65

0.99 0.49 0.41 0.36 0.22

Figure 3: Each cell displays the fraction of choices between
two shapes in which the shape on the x-axis was chosen.
Marginal probabilities of choosing a given shape are shown
above.

block over a corresponding hole. We observed a slight bias
such that the policy selected the block appearing on the right
hand side of the screen 58.65% of the time, but controlled for
this effect by randomizing block position each trial.

The results shown in Figure 3 accord with the findings from
the single block experiment. Blocks appear to be preferred on
the basis of the number of steps needed to achieve a fit, which
is in turn determined by their symmetry order. However, the
trapezoid is again preferred to the right triangle, despite the
fact that both blocks are equally symmetric. We explore a
possible explanation for this result in the next section.

Learned Representations
To gain insight on the agent’s elicited behavior, we treat the
network as a feature extractor and use classification tech-
niques to explore how it internally represents shape cate-
gories in different layers. Within the context of computational
neuroscience, linear classifiers have been used to decode in-
formation about categorical stimuli from neural responses
(Naselaris, Kay, Nishimoto, & Gallant, 2011). We adopt a

similar approach. Intuitively, because neural networks are
universal function approximators (Hornik, Stinchcombe, &
White, 1989), the activation vectors of a well-tuned network
corresponding to different categories should be discriminable
up to a linear transformation. As such, we assess the classifi-
cation accuracy of a Support Vector Machine (SVM) trained
on encodings from different layers of the DDQN.

Our SVM implementation comes from the open source li-
brary, scikit-learn (Buitinck et al., 2013) and makes use of
a linear kernel K(x,x′) = xᵀx′. Multiway classification is
achieved using a “one-versus-all” scheme, such that for n
classes, n separate binary classifiers are trained to discrimi-
nate its corresponding class from examples belonging to other
categories. The final classification is made by the model that
makes its predictions with the largest margin.

Dataset
One might argue that shape representations in the network
depend heavily on scene context. For example, when a scene
contains multiple blocks, it may not be useful to encode any
information about shape identity until the cursor has taken
hold of a single block, as only then must it make a decision
contingent on the identity of the shape. To test this hypoth-
esis, we also repeat the discrimination experiment for condi-
tions involving an absent cursor, and conditions in which the
cursor is visibly grabbing the block.

We generated our training and validation image sets by
enumerating all the possible positions and orientations for a
single block, subject to the environment’s translation and ro-
tation step sizes, and excluding duplicate shape orientations
resulting from symmetry. Each combination was used to pro-
duce a set of 100 unique examples by randomly permuting the
background holes. The resulting data set consisted of 81,000
images, which we shuffled and partitioned into training and
validation sets using a 25-75 split. The data sets including a
cursor were generated by the same process.

Each frame si was replicated four times, producing an
84× 84× 4 tensor, which was then encoded as an activation
vector zi

j at the jth layer of the DDQN. Because the size of
the layers differ greatly, we use principal component analysis
(PCA) to enforce that all activation vectors have 300 dimen-
sions. To establish a classification baseline, we repeat the
same analysis on encodings produced by an untrained, ran-
domly initialized neural network with the same architecture.
We do not standardize encodings prior to classification or di-
mensionality reduction, as all input variables are ReLU-gated
activations and are thus measured on the same scale.

Results
Results shown in Figure 4 support the view that shape in-
formation is scene dependent, albeit slightly. At the level of
Conv3 and beyond, classification accuracy was consistently
greater by about 3% when the cursor was grabbing the block.
Figure 5 visualizes the activation vectors in both conditions,
and suggests that the categories become better separated dur-
ing a grab. Interestingly, these results contradict the view
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Figure 4: Average validation accuracy of the SVM. The top
plot shows accuracy per encoding layer, with baseline ac-
curacy on encodings produced by a DDQN with random
weights. The bottom plot shows classification confusion on
the “Grabbing” condition at Conv3 in the trained network.

that shape information plays a major role in the directions
of greatest variance in higher layers. Whereas the classifiers
achieve above 70% accuracy on frames encoded by Conv3,
upstream encodings from Adv. and Val., were discriminable
only about 45% of the time, dropping even below Conv1 and
Conv2.

The most significant misclassifications are shown to be be-
tween the equilateral triangle and trapezoid, whereas the most
easily discriminable shapes were the hexagon and square.
These misclassifications may explain the preference for trape-
zoid blocks over right triangles, despite their similar orders of
symmetry, as the network seems to “confuse” trapezoids with
the easier triangle shape, whereas the right triangle is easy to
classify as a difficult block.

Conclusions
Learning mechanisms and computational principles underly-
ing mathematical cognition are not well understood. How-
ever, deep neural networks provide opportunities for explor-
ing this direction of inquiry. We hypothesized that reinforce-
ment learning, which incorporates active probing of an en-
vironment, serves as a sufficient training signal for learning
many geometric properties embodied implicitly in an interac-
tive shape sorting task.

No Cursor

Hex. Square E. Tri. Trap. R. Tri.

Grabbing

Figure 5: A sample of 2,500 encodings extracted from Conv3.
Linear Discriminant Analysis was used to project the 300-
dimensional vectors onto a subspace in which the classes are
well-separated. The separation is more clear when the cursor
is grabbing the block.

On a representational level, we showed that shape iden-
tity can be recovered from the network’s hidden layers using
linear classifiers and that this information is more strongly
encoded in later convolutional layers than in the final hidden
layers needed to valuate states and possible actions. Recent
work suggests an analogy between the hierarchical structure
of convolutional neural networks and the hierarchical struc-
ture of the visual system (Yamins et al., 2014). If this anal-
ogy is to be taken seriously, we should predict that despite
their simplicity, geometric forms may find representation in
later visual areas when tied to one’s goals, as when playing
with a shape sorter or interpreting mathematical diagrams on
an exam.

On a behavioral level, we found also that a preference for
symmetric blocks emerged as a consequence of their ease of
fitting. Past work indicates that a preference for symmet-
ric shapes exists among both monkeys (McMahon & Olson,
2007) and human beings, but emerges only later in develop-
ment (Bornstein, Ferdinandsen, & Gross, 1981). Bornstein et
al. (1981) in particular suggest that this preference, which fa-
vors vertical over horizonal symmetry, arises not from the in-
formation redundancy present in such figures, but from their
adaptive value. Symmetrical figures tend to be animate, and
can thus act as adversaries or allies in an organism’s pursuit of
goals. In our domain as well, we found that a block’s degree
of symmetry influences a learning agent’s discounted sum of
expected rewards. This result further supports the adaptive
view of symmetry preference over the redundancy view, and
implies a number of testable predictions for future work.

Follow up studies should investigate whether children
trained to play with shape sorters prefer different blocks on
the basis of their symmetry properties, and if so, if this pref-
erence can be modulated by increasing the stakes of the task,
whether by providing greater rewards or less time to react.
Further simulation work should also explore the relationship
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between symmetry and visual similarity. Despite both be-
ing completely asymmetric, we found that trapezoids were
strongly preferred to right triangles, as they are visually closer
to equilateral triangles. An experiment in which “adversarial"
shapes attempt to look easier to fit than they really are may
demonstrate how the constraints of perception (imposed by
the visual similarity between blocks) and the constraints of
actuation (imposed by the reward signal, or task) must be mu-
tually satisfied in embodied, geometric concept acquisition.

The code associated with this paper can be found at
https://github.com/akuefler/shape-sorting.
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