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Abstract

We present a method for the hierarchical representation of vector
fields. Our approach is based on iterative refinement using cluster-
ing and principal component analysis. The input to our algorithm
is a discrete set of points with associated vectors. The algorithm
generates a top-down segmentation of the discrete field by splitting
clusters of points. We measure the error of the various approxima-
tion levels by measuring the discrepancy between streamlines gen-
erated by the original discrete field and its approximations based on
much smaller discrete data sets. Our method assumes no particular
structure of the field, nor does it require any topological connectiv-
ity information. It is possible to generate multiresolution represen-
tations of vector fields using this approach.
Keywords: vector field visualization; Hardy’s multiquadric
method; binary-space partitioning; data simplification.

1 Introduction

The rapid increase in the power of computer systems coupled with
the improving precision of computational simulations now produce
terascale data sets. The critical research problem encountered in
the visualization of these data sets is the development of methods
for storing, approximating, and rendering them. The crux of the
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problem is to reduce the size of the data sets while preserving es-
sential features. We create different representations (or approxima-
tion levels) of a data set, each of which can be substituted for the
complete set, depending on the requirements of a visualization tech-
nique. The given discrete vector field may be represented by a few
data elements or by several billion elements if necessary, with each
of the various representation levels containing as many as possible
of the essential features contained in the original data set.

In this paper, we address simplification of vector fields. Our
method creates a disjoint set of “clusters,” and thereby a simpli-
fied discrete vector field, where a single point and vector is used to
represent a cluster. We define a bisection strategy for clusters that
utilizes a plane to effectively split a discrete data set. The “tiling”
that is implied by this repeated bisection procedure creates a parti-
tioning of space into convex regions. Each of these convex regions,
bounded by certain split planes used during the split process, con-
tains a particular discrete subset of the original data.

Each cluster has an associated error measure that depends on the
differences in the streamlines generated from the points of the dis-
crete vector field that are contained in the cluster. We measure the
deviation of these simplified vector fields from the original discrete
field and base our cluster generation process on these errors. Our
algorithm splits clusters recursively, and splitting continues until a
certain error condition is met.

Most standard hierarchical visualization and data representation
schemes require a mesh defining the connectivity of data points at
varying levels of resolution. Except in very specialized situations
where the connectivity among points is implicit (e.g., rectilinear
and curvilinear grids), one must store connectivity information ex-
plicitly. This is a major overhead concerning storage and also pro-
cessing requirements. Our approach is among the very first stress-
ing the concept of “gridless” representation. Our vector field data
hierarchy is solely based on positional and vector information with-
out the need to store or compute any connectivity information.

One of the main motivations for this work is to provide tools
that enable interactive and real-time browsing of massive scientific
data sets. Our method supplies a very flexible means for produc-
ing coarser levels of approximation of massive data, thus enabling
interactive exploration. The vector field hierarchies generated with
our approach can easily be adapted to support local level-of-detail
rendering, or user-steered local refinement operations to focus on



certain details present in a vector field.
In Section 2, we review mesh simplification algorithms that ap-

ply directly to our work. In Section 3, we survey approximation
techniques that we use for vector field data. In Section 4, we dis-
cuss error measures that differentiate a simplified vector field from
the original one. In Section 5, we describe the procedure that de-
termines the bisection plane used to split a cluster. More practical
aspects of our algorithm are covered in Section 6. Results of our
algorithm are provided in Section 7. Conclusions and future work
are presented in Section 8.

2 Related Work

Given a discrete vector field as a set of points
{xi = (xi, yi, zi) : i = 1, ..., n} and a corresponding set of
vectors{vi = (ui, vi, wi) : i = 1, ..., n}, the goal of our simplifi-
cation method is to construct a new discrete representation of the
vector field containing fewer points. We present an algorithm based
on a top-down refinement approach by using an adaptive clustering
method. This type of simplification requires no topological
knowledge or connectivity information.

A number of methods have been developed that simplify scalar
fields, but research concerning simplification of vector fields is still
in its infancy. Several simplification algorithms use a bottom-up or
a top-down strategy for the construction of multiple approximation
levels of a given field. In a bottom-up strategy, the given (high-
resolution) grid is examined to identify regions where the mesh can
be simplified, and the mesh is decimated in these areas. This pro-
cess continues until an error threshold is reached. In a top-down
strategy, an initial mesh is iteratively refined. One starts with a very
coarse mesh and inserts points into the mesh until a desired error
condition is met. Most of these methods require topological con-
nectivity information for the data points.

Nielsonet al. [12, 13] have used a wavelet approach to simplify
vector fields over the sphere and over curvilinear grids. In [12], they
define a class of Haar wavelets over triangular domains and apply
these techniques to simplify a vector field over a sphere. In [13],
they utilize “lifted Haar wavelets” and apply them to curvilinear
grids.

Helman and Hesselink [7] have developed methods to simplify
the visualization of two-dimensional vector fields by visualizing
the topology of the field. The topology is visualized by specify-
ing a collection of tangent curves that separate a flow into regions.
The tangent curves connect critical points, where the flow is zero.
These methods provide a good way to simplify two-dimensional
vector fields, but these techniques have not been extended to three
dimensions.

The algorithm we present in this paper utilizes clustering, simi-
lar to the work of Heckelet al. [5, 6], who use these techniques for
the generation of surface triangulations for a given set of scattered
surface data. In these works, they use adaptive clustering methods
to construct near-planar point clusters that can be directly triangu-
lated. The resulting cluster triangulations, together with a triangu-
lation of the space between the clusters, provides a valid surface
reconstruction of a point set. The authors utilize principal compo-
nent analysis (PCA), see Hotelling [8], Jackson [9], or Manly [10],
to find a best-fit plane to each cluster, and then split perpendicular
to this plane.

Most of these methods are based on an error measure. However,
error measures are difficult to define for vector fields. We have
decided to utilize an error measure that pertains to the visualization
itself, i.e., we consider an approximation of a given vector field to
be a good approximation if the visualizations of the original data
set and the approximation are very similar.

The algorithm we use is based on a top-down approach. We uti-
lize clustering [10] to generate a binary space partitioning (BSP) of

the data set. Initially, all points of the given discrete vector field
are placed in a single cluster. Clusters are split using a weighted
best-fit plane that splits the clusters so that the variance of the error
is reduced in the child clusters. Each cluster has an associated error
measure that depends on the differences in the streamlines gener-
ated from the points of the original discrete vector field that are
contained in the cluster. The algorithm splits clusters recursively,
and splitting continues until a certain error condition is met. The
approach is “gridless” in the sense that we never require any point
connectivity.

3 Approximation of Unstructured Vector
Fields

A discrete vector field in three-dimensional space is defined by a set
of pointsxi, i = 1, ..., n, and a set of associated vectorsvi. We as-
sume that the data set is a scattered data set, with no mesh defining
the connectivity of the points. We define an analytical approxima-
tion to the vector field by usingHardy’s multiquadric method, see
[2, 3, 4, 11], which is one of the most effective and most commonly
used methods for scattered data interpolation.

Given n points x1,x2, ...,xn and associated vector values
v1,v2, ...,vn, Hardy’s multiquadric interpolant is defined by the
solution of then× n linear system of equations

vi =

n∑
j=1

αj
√
||xi − xj ||2 +R2, i = 1, ..., n,

where the parameterR2 is a positive constant. Once the unknown
coefficientsαj are computed, one can approximate a vector value
v at an arbitrary pointx in space by

v(x) =

n∑
j=1

αj
√
||x− xj ||2 +R2.

The computation of the coefficientsαj requires the inversion of an
n × n matrix. The functionv(x) smoothly interpolates the vector
values at then data points and provides a vector estimate at any
pointx in space.

For large data sets, it is unreasonable to consider all data for
the construction of Hardy’s multiquadric interpolant. Franke and
Nielson [1] have shown that for each pointxi of a scattered data
set, an influence radius can be defined so that its contribution to
the Hardy interpolant is zero outside this radius. A more common
method is to utilize a fixed, small number of data points for the
calculation of localized Hardy interpolants.

Concerning the identification of the data points closest to a par-
ticular point for which we have to compute a local Hardy inter-
polant, we utilize akd-tree, see [14].

4 Clustering and Error Measurements

Traditionally, algorithms concerned with the approximation of sci-
entific data consider the numerical deviation of the given data and
its approximation as the error. In the context of our application,
which is the visualization and analysis of a vector field, it is more
important to ensure that the resulting imagery generated from a par-
ticular approximation varies very little from the imagery obtained
from the original data set. We chose to use the deviation of stream-
lines as the criterion to measure the error of a discrete approxima-
tion of a given discrete field.

Our method separates a discrete vector field data set into dis-
joint clusters. A simplified vector field is defined by using a sin-
gle point and associated vector for each cluster and using Hardy’s



(a) (b)

Figure 1: Cluster-based simplification of a vector field: (a) The original vector field segmented into two clusters. (b) By replacing each cluster
with a single point and associated vector, a simplified field is obtained.
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Figure 2: Calculation of the error measure at a pointx. The error
is the sum of the distances between the sequence of point pairssi
ands′i obtained by a Runge-Kutta method. The streamline based
on the original field is drawn as the solid line, and the dashed line
corresponds to the simplified field.

multiquadric to approximate the field locally. Figure 1 illustrates a
vector field subdivided into two clusters and the simplified vector
field. The new data point associated with a clusterC is defined by
the average of the coordinates of the points inC. The single vector
associated withC is calculated as the average of the vector values
associated with the points of the original field contained inC.

Suppose we have segmented a vector fieldV into a set of disjoint
clustersC1, C2, ..., Cn and have determined the cluster center points
x1,x2, ...,xn with associated vector valuesv1,v2, ...,vn; the set
of n points andn vectors defines a new, reduced vector fieldV ′.
To measure the difference betweenV andV ′ at an arbitrary point
x, we compute a difference measure for the streamlines emantating
from x, one based on the fieldV and one based onV ′, see Figure 2.

A streamline is an integral curve. It is calculated by solving the
equation

dx(t)

dt
= v(x(t)), (1)

wheret is the parameter along the streamline. Given an initial point
x in a field, a streamline can be calculated by solving this initial-
value problem. We apply a fourth-order Runge-Kutta scheme, see
[15], to integrate the equation stepwise.

For a given pointx in the field, we calculate two streamlines, one
based on the simplified field and one based on the original one. We
use the deviation of the two streamlines as an error measure for an
approximation. The streamlines are calculated using a fixed number
of Runge-Kutta steps (with a fixed step size), using the same pointx
as the initial position. We compare the difference between the two
streamlines by calculating the sum of the distances between the cor-
responding Runge-Kutta points on the respective streamlines, see
Figure 2.

Thus, we define the error at a pointx to be

ε(x) =

n∑
i=1

||si − s′i||, (2)

where si is the ith Runge-Kutta point in the generation of the
streamline forV, ands′i is the ith point in the generation of the
streamline forV ′.

To calculate an error measure for an entire cluster of points, we
use the maximum calculated error value for those points belonging
to the cluster,i.e.,

ε(C) = max
x∈C

ε(x). (3)

In Figure 3, we illustrate the difference between streamlines for the
blunt-fin data set.

5 Splitting Clusters

In order to generate the set of clusters whose cluster center points
and associated vectors define a simplified vector field, we recur-
sively split clusters until the maximum value of all cluster errors is
less than a prescribed tolerance. Each cluster is split using a “bi-
section” plane, which is placed and oriented to reduce the error in
the child clusters. Figure 4 provides an illustration of a cluster and
a desirable splitting plane.

To generate the split plane for a clusterC, we consider the points
xi of the original discrete vector field that are contained inC and the
associated error valuesε(xi) for these points. To generate position
and orientation of the split plane, we focus on those points of the
cluster where the error is low, and use a weighted least squares best-
fit plane using these points.

First, we determine weights for each point, based on the approx-
imation error. Those pointsxi of the original vector field where the
error is low should be weighted high for our split procedure, while



(a)

(b)

Figure 3: Error between two streamlines in the blunt-fin data set.
(a) The simplified vector field based on 200 clusters, with relatively
large error. (b) The simplified vector field based on 4000 clusters,
with a substantially reduced error.

split
plane

�

Figure 4: The split plane subdivides the cluster such that the errors
in the child clusters are minimized.

points with high error should be weighted low. Thus, the weight
w(xi) of a pointxi is proportional to the reciprocal of the calcu-
lated errorε(xi) at the point. In particular, if

W =
∑
xj∈C

ε(xj)
−1, ε(xj) 6= 0, (4)

then we define the weightw(xi) of a pointxi to be

w(xi) =
1

Wε(xi)
. (5)

We define the orientation of the split planeP as the best-fit
plane, in the least squares sense, to the set of weighted points
{wi(xi)xi : xi ∈ C}, passing through the point

x =
1

k

∑
xi∈C

wi(xi)xi, (6)

wherek is the cardinality of the clusterC, see Hotelling [8] or Jack-
son [9].

The splitting process is done recursively, defining a binary space
partitioning of the data set. At each step of the partitioning pro-
cedure, we concentrate on the cluster that has the maximum error.
This results in simplified vector fields based solely on the differ-
ences between streamlines.

We illustrate the splitting process for a two-dimensional vector
field defined by the function(x, y)→ 〈x, xy〉. We limit the vector
field to the region0 ≤ x ≤ 1 and−1 ≤ y ≤ 1. This vector
field is shown in Figure 5. Figure 6 shows the cluster centers and
associated vectors after splitting.

The errors associated with clusters must be updated (locally)
once a particular cluster has been split. The computation of a
streamline emanating at a particular cluster centerx depends on
a certain number of nearby centers of “neighbor” clusters. Splitting
one of these neighbor clusters will affect the streamline computa-
tion, and therefore the error for pointx. Thus, we locally update
cluster values whenever splitting is performed.

6 The Algorithm

Given a discrete vector field as a set of points and a corresponding
set of vectors, we initially place all vectors in a single cluster, thus
defining a single, constant vector fieldV ′. We calculate the error
for all points of the cluster and define the maximum point error as
the cluster error. Each cluster is placed in a priority queue ordered
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Figure 5: The vector field(x, y)→ 〈x, xy〉.

(a) (b)

(c) (d)

Figure 6: The splitting algorithm operating on the vector field
(x, y)→ 〈x, xy〉. We have displayed the cluster centers after (a) 7
splits; (b) 15 splits; (c) 25 splits; and (d) 45 splits.

Data Set Number of Points Number of Clusters Time
in seconds

Spiral 4,000 500 45
Three Singularities 4,000 1,000 60
Blunt Fin 41,000 5,000 886

Table 1: Statistics for the three vector fields.

by decreasing cluster error. We repetitively use the cluster at the
front of the priority queue to refine the vector fieldV ′.

Given a clusterC with maximal weight (the cluster at the front of
the queue), we calculate the split plane for the cluster and split the
cluster into two child clustersC1 andC2. We calculate the center
points and average vectors that represent each of these clusters and
obtain a modified vector fieldV ′ by replacing the point and vector
representingC by the new points and vectors representing the child
clusters. We recalculate the errors forC1 andC2 and insert them
into the priority queue.

This process is repeated until a vector field approximation is ob-
tained whose maximal cluster error is less than a prescribed error
tolerance or until a prescribed number of clusters is generated.

7 Results

We have applied this algorithm to several complex data sets. Pre-
processing of the data sets was done on an SGI Onyx2 computer
system, using one 195MHz R10000 processor. The statistics for
each data set are shown in Table 1.

The first data set is given by a discrete field of 4,000 samples
taken from the vector field defined by the equation

(x, y)→ 〈−0.03x+ 0.1y,−0.1x− 0.03y, 0〉 . (7)

We have illustrated the simplified vector field at two resolutions in
Figure 7. The streamlines for the original field and the simplified
fields are nearly identical in each case. Here, the simplified fields
represent the spiral well, even though few clusters are generated
near the center.

The second data set is given by a discrete field of 4,000 samples
taken from the vector field defined by the equation

(x, y)→
〈
−x2 + xy +

1

2
y +

1

4
, x2 + xy − 1

2
y − 1

4

〉
. (8)

This vector field contains three critical points. We have illustrated
the simplified vector field at two resolutions in Figure 8. Here,
the light-colored streamline represents the data of the original field,
and the dark-colored streamline represents the data of the simplified
field.

The third data set is the blunt-fin data set. This is a curvilinear
data set containing 41,000 points. Figures 9a–d show streamsur-
faces generated for this vector field and for simplified versions of
it. In each figure, the streamsurface of the original vector field is
shown in blue, while the streamsurface for the simplified field is
shown in red. The simplified vector fields are based on (a) 200
clusters; (b) 500 clusters; (c) 1500 clusters; and (d) 2000 clusters.

We have found that the illustration of these simplified vector
fields, where a short streamline is displayed at each cluster cen-
ter, is a very useful tool for visualizing the entire field. Since the
simplification routine generates clusters where the error is high, we
obtain many streamlines in areas of high error, and few in regions
of low error. Figures 9e and 9f illustrate this technique with two
simplified fields at different resolutions for the blunt-fin data set.



(a) (b)

Figure 7: A two-dimensional spiral vector field. The streamlines (shown here as tubes) for the simplified fields and the original one are nearly
identical. The simplified vector fields are based on (a) 40 clusters, and (b) 300 clusters.

(a) (b)

Figure 8: Segmentation of a two-dimensional vector field having three critical points. (a) Using 100 clusters, the simplified field cannot
reproduce the streamline generated from the original field. The streamline generated from the original field is shown in light gray, and the
streamline generated from the simplified field is shown in dark gray. (b) Using 500 clusters, the simplified field can reproduce the streamline
generated from the original field.



The streamlines are generated at the centers of the clusters. The
simplified vector fields are based on 170 clusters in Figure 9e and
300 clusters in Figure 9f.

8 Conclusions

We have presented an algorithm suitable for the generation of a
hierarchical representation for discrete vector fields. This method
uses a clustering approach, segmenting the vector field into a hi-
erarchy of disjoint clusters. This allows us to represent the origi-
nal vector field a varying resolutions. We utilize an error measure
that measures the error between the streamlines generated from the
points of the original discrete vector field and points of the approx-
imate field, and we use this measure to generate split planes for
iterative segmentation.

Our approach is innovative in two regards: (1) Our method is en-
tirely gridless, leading to significant savings in memory and storage
overhead, and (2) our error computation is based on the difference
in streamlines between the original vector field and an approxima-
tion. The gridless paradigm is extremely space-saving, and an error
metric based on the visual differences between approximations is
definitely advantageous for visualization applications.

We have experimented with a variety of approaches for cluster-
ing. In the context of vector fields, the data is characterized by
(1) positional information and (2) vector information for each in-
dividual datum. A multitude of different options exists concerning
possible clustering criteria. Several approaches, including cluster-
ing merely based on vector information will, in general, lead to
cluster whose members will lie in disjoint regions of the original
field that are far apart from each other. The binary space partition-
ing approach that we have chosen creates spatially convex clusters
and avoids most of the problems encountered with other clustering
strategies.

We plan to develop other strategies for clustering vector field
data. Our current algorithm generates a BSP tree, but there are
many other hierarchical data structures that one could use. We plan
to evaluate the changes in the vector field topology under simplifi-
cation as well.
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Figure 9: Construction of Vector Field Hierarchies.




