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ABSTRACT OF THE DISSERTATION

Statistical Performance Characterization and Analysis of Nano-Scale VLSI Circuits

by

Ruijing Shen

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2011

Dr. Sheldon X.-D. Tan, Chairperson

The performance of integrated circuits (IC) is becoming less predictable as tech-

nology scales to the sub-90-num regime. Disparate sources of variations stem from

the manufacturing process and ultimately translate to a parametric yield loss. To

improve parametric yield, efficient algorithms are required to accurately predict the

performance of a circuit at the design stage. However, given the high complexity

of design and the presence of a large number of correlated parameters that exhibit

significant variations, traditional Monte Carlo (MC) method becomes inefficient as a

large number of sampling points are required for an accurate statistical description

of the circuit response.

To mitigate this problem, a novel methodology for statistical performance analysis

is proposed by representing statistical processes in a deterministic way to determine

the key characteristics of statistical distributions. The proposed methodology has

been successfully applied to statistical full-chip leakage analysis and capacitance ex-

traction. For statistical full-chip leakage analysis, a general framework has been

provided to derive the full-chip leakage currents or powers as closed form functions

of process variation parameters. To the best knowledge of the author, this is the

first full-chip statistical leakage analysis algorithm considering all types of spatial
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correlations with only linear time complexity O(N). Furthermore, it is extendable

to incremental analysis for even more promising computing speed for larger problem

sizes. For statistical capacitance extraction, a 3D statistical capacitance extraction

method called StatCap is proposed, in which orthogonal polynomials are used to rep-

resent the statistical processes and the analytic second-order orthogonal polynomials

are derived from the capacitance integrated equations to give more accurate results

without loss of efficiency compared to the linear models. Experimental results show

that StatCap is two orders of magnitude faster than the recently proposed statistical

approach and many orders of magnitude faster than the MC.

To improve parametric yield, not only efficient algorithms are required to accu-

rately predict the performance of a circuit, but also efficient techniques are highly

desirable for chip design. Toward this direction, a novel voltage binning technique is

proposed in the last part of the dissertation. The proposed method makes it possible

to predict maximum bin numbers required under the uniform binning scheme, and

model the optimal binning scheme as a set-cover problem. To achieve the same yield

as the uniform approach, the proposed method can significantly save the number of

bins and only takes very small CPU time cost.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Nanometer chip design in an uncertain world

As VLSI technology scales into the nanometer regime, chip design engineering faces

several challenges in maintaining historical rates of performance improvement and

capacity increase with CMOS technologies. One profound change in the chip de-

sign business is that engineers can’t put the design precisely into the silicon chips.

Chip performance, manufacture yield and lifetime become unpredictable at the de-

sign stage. Chip performance, manufacture yield and lifetime can’t be determined

accurately at the design stage. The main culprit is that many chip parameters –

such as oxide thickness due to chemical and mechanical polish (CMP) and impurity

density from doping fluctuations – can’t be determined precisely, and thus are un-

predictable. The so-called manufacture process variations start to play a big role

and their influence on the chip’s performance, yield and reliability becomes signifi-

cant [12, 30, 51, 69, 52].
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As a result, it is imperative to develop new design methodologies to consider the

impacts of various process and environmental uncertainties and elevated temperature

on chip performance. Variational impacts have to be incorporated into every steps

of design process to ensure the reliable chips and profitable manufacture yields. The

design methodologies and design tools from system level down to the physical levels

have to consider variability and thermal impacts on the chip performance, which

calls for new statistical and thermal-aware optimization approaches for designing

nanometer VLSI systems.

Performance modeling and analysis of nanometer VLSI systems in the presence

of process-induced variation and uncertainness is the one of the grand challenging

problems facing IC chip designers and design tool developers. How to efficiently and

accurately assess the impacts of the process variations on circuit performances in the

various physical design steps are critical for fast design closure, yield improvement,

cost reduction of VLSI design and fabrication processes. The design methodologies

and design tools from system level down to the physical levels have to embrace vari-

ability impacts on the nanometer VLSI chips, which calls for statistical/stochastic

based approaches for designing 90nm and beyond VLSI systems.

Process variation can occur at different levels: wafer level, inter-die level, and

intra-die level. Furthermore, they are caused by different sources such as lithography,

materials, aging, etc [7, 69]. Some of the variations are systematic, i.e., those caused

by the lithography process [18, 55]. Some are purely random, i.e., the doping density

of impurities and edge roughness [7].
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1.1.2 Process induced variations in a nutshell

During the chip fabrication process, there exists thickness and width variation, which

is referred by process induced variation. Inaccurate model of process variations will

cause very high potential for silicon failure. Due to the limitations of manufactur-

ing process, there are many causes for process variation. Take chemical mechanical

polishing (CMP) for instance, which is a technique used to manufacture copper in-

terconnect. In CMP, a slurry is used to grind down the copper. As a result, wider

conductors will have more copper loss compared to conductors that are skinnier.

Therefore, CMP changes the thickness of interconnect wires, which results in shift of

the parasitic resistance, capacitance and inductance. Another cause of the process

variation is the limit of the wavelength of light used in photolithography. Optical

proximity correction (OPC) [62] is a technique to manufacture structures with di-

mensions less than the wavelength of the light used to illuminate the wafer. However,

the manufactured dimensions will vary from the drawn dimensions even with the use

of OPC.

In general, process variations can be classified into the following categories [12]:

inter-die and intra-die. Inter-die variations are the variations from die to die, while

intra-die variations correspond to variability within a single chip. As a result, inter-

die variations are global variables, and affect all the devices on a chip in the same

way, i.e., make the transistor gate channel lengths of all the devices on the same

chip smaller. Intra-die variations may affect different devices differently on the same

chip, i.e., make some devices have smaller gate oxide thicknesses and others have

larger transistor gate oxide thicknesses. In addition, intra-die variations may exhibit

spatial correlation, i.e., it is more likely for devices located close to each other to

have similar characteristics than those placed far away. Under inter-die variation, if
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the circuit performance metrics such as (power, timing, noises) of all gates or devices

are sensitive to the process parameters in similar ways, then the circuit performance

can be analyzed at multiple process corners using deterministic analysis methods.

However, statistical methods must be used to correctly predict the performances if

intra-die variations are involved. As some circuit performance metrics such as leakage

current varies exponentially with these parameters, simple use of worst-case values

for all parameters can result in exponentially larger leakage estimates than the actual

values, and is too inaccurate to be used in practical cases.

1.1.3 A simple look at process variations modelling

In this book, we can model parameter variation as follows,

δtotal = δinter + δintra, (1.1)

where δinter and δintra represent the inter-die variation and intra-die variation, re-

spectively. In some works such as in [9, 69, 35], δinter and δintra are both modeled

as Gaussian random variables. In general, we will consider both the Gaussian and

non-Gaussian cases.

For δintra, the value of parameter p located at (x, y) can be modeled as a location-

dependent normally distributed random variable [40]:

p = µp + δx + δy + ǫ, (1.2)

where µp is the mean value (nominal design parameter value) at (0, 0), and δx and δy

stand for the gradients of the parameter indicating the spatial variations of p along the

x and y directions, respectively. ǫ represents the random intra-chip variation. Due to
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spatial correlations in the intra-die variation [77], the vector of all random components

across the chip ~ǫ has a correlated multivariate normal distribution, ~ǫ ∼ N(0,Σ), where

Σ is the covariance matrix of the spatially correlated parameters. We will have a more

comprehensive coverage of variation modeling in Chapter 2.

1.2 Objectives and results of this thesis

The main objective of this dissertation is to develop new theories and methodologies

for efficient and accurate statistical analysis of very large scale integrated circuits.

The key contribution of this research is the introduction and the exploration of sev-

eral novel technique for statistical analysis and characterization of nano-scale VLSI

designs. The major achievements accomplished in this dissertation are as follows:

• A novel fast and accurate method for full-chip statistical analysis of leakage

power is proposed. The method is capable to consider both intra-die and inter-

die variations with strong spatial correlations without any limitation of static

leakage models. Unlike many existing approaches, no grid-based partitioning

and approximation are required. Instead, the spatial correlations are naturally

handled by orthogonal decompositions. The proposed method is very efficient

and it becomes linear in the presence of strong spatial correlations. Experimen-

tal results show that the proposed method is about 16× faster than the recently

proposed method [9] with constant better accuracy.

• A new statistical leakage characterization in standard cell library (SCL) is put

forward for fast full-chip statistical leakage estimation. This novel characteriza-

tion in SCL works in the presence of any spatial correlation condition (strong

or weak), and can guarantee O(N) time complexity, where N is the number of
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grids on chip. The numerical examples in 45nm CMOS process demonstrate

the proposed algorithm is 1000X faster than a recently proposed grid-based

method [9] with similar accuracy and many orders of magnitude times speedup

over the Monte Carlo method.

• Further more, an incremental analysis algorithm is proposed to update the

chip-level statistical leakage information efficiently after a few changes are made.

The incremental analysis provides about 10X further speedup, which is 10,000X

compared to [9]. We expect the incremental analysis could achieve more speedup

over the full leakage analysis for larger problem sizes.

• An efficient non-linear 3-D statistical capacitance extraction method is devel-

oped. The new method, called StatCap, uses orthogonal polynomials to repre-

sent the non-linear statistical processes. Experimental results show that Stat-

Cap is two orders of magnitude faster than the recently proposed statistical

capacitance extraction method based on the spectral stochastic collocation ap-

proach [86] and many orders of magnitude faster than the Monte Carlo method

for several practical conductor structures.

• A new concept called “valid voltage segment” is proposed for yield optimization

technique using voltage binning method to improve yield of chips. The new

concept of valid voltage segment enables a series of intuitionistic and efficient

technique for yield analysis and improvement. For instance, a formulation to

predict the maximum number of bins required under the uniform binning scheme

is proposed. Also, an optimal binning scheme can be modeled as a set-cover

problem. A greedy algorithm is developed to solve the set-cover problem in an

incremental way. The proposed method is also extendable to deal with a range

of working supply voltages for dynamic voltage scaling under different operation
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modes (like lower power and high performance modes).

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 starts with providing

background knowledge about some fundamental statistical and stochastic mathematic

models, concepts and algorithms which we will used in latter part of the dissertation..

Chapter 3 to Chapter 5 focus on the new techniques for statistical full-chip leakage

power consumption analysis considering process variations. After that, Chapter 6

introduces a statistical capacitance extraction method for interconnect conductors

considering process variations. Chapter 7 presents a yield optimization technique

using voltage binning method to improve yield of chips. Finally, Chapter 8 concludes

the dissertation.
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Chapter 2

Background of Statistical Analysis

in VLSI

2.1 Multiple random variables for VLSI design

2.1.1 Components of covariance in process variation

In general, process variation can be classified into the two categories [9]: inter-die

and intra-die. Inter-die variations are the variations from die to die, while intra-

die variations correspond to variability within a single chip. As a result, inter-die

variations are global variables, and affect all the devices on a chip in the same way,

i.e., make the transistor gate channel lengths of all the devices on the same chip

smaller. Intra-die variations may affect different devices differently on the same chip,

i.e., make some devices have smaller gate oxide thicknesses and others have larger

transistor gate oxide thicknesses. In addition, intra-die variations may exhibit spatial

correlation, i.e., it is more likely for devices located close to each other to have similar

characteristics than those placed far away.
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In general, we can model parameter variation as follows,

δtotal = δinter + δintra, (2.1)

where δinter and δintra represent the inter-die variation and intra-die variation, respec-

tively. In some works such as in [9, 68, 35], δinter and δintra are both modeled as

Gaussian random variables. In this chapter, we will discuss both the Gaussian and

non-Gaussian cases. Due to the global effects of inter-die variation, we will use a

single random variable δinter for all gates/grids in a chip.

For δintra, the value of parameter p located at (x, y) can be modeled as a location-

dependent normally distributed random variable [40]:

p = µp + δx + δy + ǫ, (2.2)

where µp is the mean value (nominal design parameter value) at (0, 0), and δx and δy

stand for the gradients of the parameter indicating the spatial variations of p along the

x and y directions, respectively. ǫ represents the random intra-chip variation. Due to

spatial correlations in the intra-chip variation, the vector of all random components

across the chip ~ǫ has a correlated multivariate normal distribution, ~ǫ ∼ N(0,Σ), where

Σ is the covariance matrix of the spatially correlated parameters.

A grid-based method is used in works such as [9] to consider speed-up. In the

grid-based method, the intra-die spatial correlations of parameters are modeled by

partitioning the die region into
√
n row×√n col = n grids. Since devices close to each

other are more likely to have similar characteristics than those placed far away, grid-

based methods assume perfect correlations among the devices in the same grid, high

correlations among those in close grids and low to zero correlations in far-away grids.
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For example, in Fig. 2.1: Gate1 and Gate2 (whose sizes are shown to be exaggeratedly

large) are located in the same grid square, so their parameter variations (such as the

variations of their gate channel length) are assumed to be always identical. Gate1

and Gate3 lie in neighboring grids, so their parameter variations are not identical

but highly correlated due to their spatial proximity (for example, when Gate1 has a

larger than nominal gate channel length, Gate3 is more likely to have a larger than

nominal gate channel length). On the other hand, Gate1 and Gate4 are far away from

each other, their parameters can be assumed as weakly correlated or uncorrelated (i.e.

when Gate1 has a larger than nominal gate channel length, the gate channel length

for Gate4 may be either larger or smaller than nominal).

Gate
Gate

Gate

Gate

Gate

2
5

4

3

1

Figure 2.1: Grid based model for spatial correlations

With the grid-based model, we can use a single random variable p(x, y) to model a

parameter variation in a single grid at location (x, y). As a result, n random variables

are needed for each type of parameter, where each represents the value of a parameter

in one of the n grids. In addition, we assume that correlation only exists among the

same type of parameters in different grids (this assumption is not critical and can

easily be removed). For example, gate length L for transistors in the i-th grid are
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correlated with those in nearby grids, but are uncorrelated with other parameters such

as gate oxide thickness Tox in any grid including the i-th grid itself. For each type of

parameter, a correlation matrix Σ of size n× n represents the spatial correlations of

this parameter. Notice that the number of grid partitions needed is determined by

the process, not the circuit. So we can apply the same correlation model to different

designs under the same process.

2.1.2 Variable decoupling and reduction

Due to the large number of random variables involved in VLSI design, we should

reduce the number of variables by exploiting the spatial correlations of the given

process variations.

Also, the spectral stochastic method in 2.2, starts with independent random vari-

ables as the input of the spectral stochastic method. Since the random variables are

correlated, this correlation should be removed before using the spectral stochastic

method. We first present following result as our theoretical basis for decoupling the

correlation of those variables [84].

Proposition 2.1.1. For a set of zero-mean Gaussian distributed variables ξ∗ whose

covariance matrix is Ω, if there is a matrix L satisfying Ω = LLT , then ξ∗ can be

represented by a set of independent standard normal distributed variables ξ as ξ∗ = Lξ.

Proof. According to the characteristics of normal distribution, linear transforma-

tion does not impact on the zero mean of the variables, and yield another normal

distribution. Thus we only need to prove the covariance matrix remains unchanged

during the transformation. According to the definition of covariance,

cov(Lξ) = E(Lξ(Lξ)T ) = LE(ξξT )LT , (2.3)
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where E(x) means the mean value of x. Since ξ is subject to standard normal distri-

bution,

LE(ξξT )LT = LLT = Ω (2.4)

The techniques for decoupling and reducing the number of variables consists of

two different types: principal factor analysis (PFA) and principal component analysis

(PCA). Which will be introduced in the following part.

2.1.3 Principle factor analysis technique

Note that the solution for decoupling is not unique. For example, Cholesky decom-

position can be used to seek L since the covariance matrix Ω is always a semi-positive

definite matrix. However Cholesky decomposition cannot reduce the number of vari-

ables. Principle factor analysis (PFA) [28] can substitute Cholesky decomposition

when variable reduction is needed. Eigen-decomposition on the covariance matrix

yields:

Ω = LLT , L = (
√

λ1e1, ...,
√

λnen), (2.5)

where {λi} are eigenvalues in order of descending magnitude, and {ei} are corre-

sponding eigenvectors. PFA reduces the number of components in ξ by truncating L

using the first k items.

The error of PFA can be controlled by k:

err =

n
∑

i=k+1

λi

n
∑

i=1

λi

, (2.6)

where bigger k leads to a more accurate result. PFA is efficient, especially when the

correlation length is large. In our experiments, we set the correlation length being 8
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times of width of wires. As a result, PFA can reduce the number of variables from

40 to 14 with an error of about 1% in an example with 20 parallel wires.

2.1.4 Weighted PFA technique

Principle factor analysis is another variable reduction technique, which can handle

the spatial correlation. One idea is to consider the importance of the outputs during

the reduction process. The recently proposed weighted PFA (wPFA) technique [83]

is followed here to seek better variable reduction efficiency.

If a weight is defined for each physical variable ξi, to reflect its impact on the

output, then a set of new variables ξ∗ are formed:

ξ∗ = Wξ (2.7)

where W = diag(w1, w2, ..., wn) is a diagonal matrix of weights. As a result, the

covariance matrix of ξ∗, Ω(ξ∗), now contains the weight information and performing

PFA on Ω(ξ∗) leads to the weighted variable reduction. Specifically, we have

Ω(ξ∗) = E(Wξ(Wξ)T ) = WΩ(ξ)W T (2.8)

and denote its eigenvalues and eigenvectors by λ∗
i and e∗i . Then, the variables ξ can be

approximated by the linear combination of a set of independent dominant variables

ζ∗:

ξ = W−1ξ∗ ≈W−1

k
∑

i=1

√

λ∗
i e

∗
i ζ

∗
i . (2.9)

The error controlling process is similar to (2.6), but using the weighted eigenvalues

λ∗
i .
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2.1.5 Principal component analysis technique

We first briefly review the concept of principal component analysis (PCA), which is

used here to transform the random variables with correlation to uncorrelated random

variables [29]. Then the difference between PFA and PCA will be discussed.

Suppose that x is a vector of n random variables, x = [x1, x2, ..., xn]
T , with co-

variance matrix Ω and mean vector µx = [µx1
, µx2

, ..., µxn
]. To find the orthogonal

random variables, we first calculate the eigenvalue and corresponding eigenvector.

Then, by ordering the eigenvectors in descending order eigenvalues, the orthogonal

matrix A will be obtained. Here, A is expressed as

A = [eT1 , e
T
2 , ..., e

T
n ]

T (2.10)

where ei is the corresponding eigenvector to eigenvalue λi, which satisfies

λiei = Ωei, i = 1, 2, ..., n (2.11)

and

λi < λi−1, i = 2, 3, ..., n (2.12)

With A, we can perform the transformation to get orthogonal random variables y,

y = [y1, y2, ..., yn]
T by using

y = A(x− µx) (2.13)

where, yi is a random variable with Gaussian distribution. The mean, µyi, is 0 and

the standard deviation, σyi, is
√
λi on the condition that [29]

eTi ei = 1, i = 1, 2, ..., n (2.14)
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Here, because of the orthogonal property of matrix A

A−1 = AT (2.15)

To reconstruct the original random variables, we use the following equation:

x = ATy + µx (2.16)

PCA and PFA has two major difference. Firstly, the diagonal entries of correlation

matrix in PCA are unities, which means that the variance of every variable involving

in this analysis is one. Therefore, the “factors” defined in PCA are called “compo-

nents”, since the variables are already normalized. By contract, the diagonal elements

of the original correlation matrix are estimated communalities in PFA. Second, the

process of factor extraction is different. In PCA, the factor loadings are extracted

form the ones in the diagonals. On the other hand, PFA utilizes an iterative method

to refine estimates of the communalities to some predefined level of accuracy. After

each step, these estimated values are placed into the diagonal of correlation matrix.

In most cases, these two methods usually yield very similar results. However, PFA

is often preferred as a classification method to detect structure, while PCA is often

preferred as a method when the goal of analysis is to reduce the number of variables.

More detailed discussion can be found in [23].
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2.2 Sum of random variables

2.2.1 Monte Carlo method

Monte Carlo (MC) techniques [17] can be used to estimate the value of a definite,

finite-dimensional integral of the form

G =

∫

S

g(X)f(X)dX, (2.17)

where S is a finite domain and f(X) is a probability density function (PDF) over X ,

i.e., f(X) ≥ 0 for all X and
∫

S
f(X)dX = 1. We can accomplish the Monte Carlo

estimation for the value of G by drawing a set of independent samples X1, X2, ..., XMC

from f(X) and by applying

GMC = (1/MC)
MC
∑

i=1

g(Xi). (2.18)

The estimator GMC above is a random variable. Its mean value is the integral G

we are trying to estimate, i.e., E(GMC) = G, making it an unbiased estimator. The

variance of GMC is V ar(GMC) = σ2/MC, where σ2 is the variance of the random

variable g(X) given by

σ2 =

∫

S

g2(X)f(X)dX −G2. (2.19)

We can use the standard deviation of GMC to assess its accuracy in estimating G.

If the sample number MC is sufficiently large, then by the Central Limit Theorem,

GMC−G

σ/
√
MC

has an approximate standard normal distribution(N(0, 1)). Hence,

P

(

G− 1.96
σ√
MC

≤ GMC ≤ G+ 1.96
σ√
MC

)

≈ 0.95, (2.20)
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where P is the probability measure. (2.20) shows that GMC will be in the interval
[

G− 1.96 σ√
MC

, G+ 1.96 σ√
MC

]

with 95% confidence. Thus, one can use the error

measure

|Error| ≈ 2σ√
MC

(2.21)

in order to assess the accuracy of the estimator.

2.2.2 Spectral stochastic method using stochastic orthogonal

polynomial chaos

One recent advance in stochastic analysis is to apply stochastic orthogonal polynomial

chaos (PC) [74] to the nanometer scale integrated circuit analysis. Based on the

Askey scheme [78], any stochastic random variable can be represented by orthogonal

polynomial chaos, and the random variable with different probability distribution

type is associated with different type of orthogonal polynomials.

Hermite polynomial chaos (Hermite PC or HPC) utilizes a series of orthogonal

polynomials (with respect to the Gaussian distribution) to facilitate stochastic anal-

ysis [79]. These polynomials are used as the orthogonal base to decompose a random

process in a similar way that sine and cosine functions are used to decompose a peri-

odic signal in a Fourier series expansion. Note that for the Gaussian and log-normal

distributions, Hermite polynomial is the best choice as they lead to exponential con-

vergence rate [20]. For non Gaussian and non log-normal distributions, there are

other orthogonal polynomials such as Legendre for uniform distribution, Charlier for

Poisson distribution and Krawtchouk for Binomial distribution etc [19, 74].

For a random variable y(ξ) with limited variance, where ξ = [ξ1, ξ2, ...ξn] is a

vector of zero mean orthogonal Gaussian random variables. The random variable can
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be approximated by truncated Hermite PC expansion as follows [20]:

y(ξ) =

P
∑

k=0

akH
n
k (ξ) (2.22)

where n is the number of independent random variables, Hn
k (ξ) is n-dimensional

Hermite polynomials and ak are the deterministic coefficients. The number of terms

P is given

P =

p
∑

k=0

(n− 1 + k)!

k!(n− 1)!
(2.23)

where p is the order of the Hermite PC.

Similarly, a random process v(t, ξ) with limited variance can be approximated as

v(t, ξ) =
P
∑

k=0

akH
n
k (ξ) (2.24)

If only one random variable/process is considered, the one-dimensional Hermite

polynomials are expressed as follows:

H1
0 (ξ) = 1, H1

1 (ξ) = ξ,H1
2(ξ) = ξ2 − 1, H1

3 (ξ) = ξ3 − 3ξ, ... (2.25)

Hermite polynomials are orthogonal with respect to Gaussian weighted expectation

(the superscript n is dropped for simple notation):

< Hi(ξ), Hj(ξ) >=< H2
i (ξ) > δij (2.26)

where δij is the Kronecker delta and < ∗, ∗ > denotes an inner product defined as

follow:

< f(ξ), g(ξ) >=
1

√

(2π)n

∫

f(ξ)g(ξ)e−
1

2
ξT ξdξ (2.27)
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Like Fourier series, the coefficient ak for random variable y and ak(t) for random

process v(t) can be found by a projection operation onto the HPC basis:

ak =
< y(ξ), Hk(ξ) >

< H2
k(ξ) >

, (2.28)

ak(t) =
< v(t, ξ), Hk(ξ) >

< H2
k(ξ) >

, ∀k ∈ {0, ..., P}. (2.29)

Once we obtain the Hermite PC, we can obtain the mean and variance of random

variable y(ξ) trivially as (one Gaussian variable case):

E(y(ξ)) = y0

V ar(y(ξ)) = y21V ar(ξ1) + y22(t)V ar(ξ21 − 1)

= y21 + 2y22 (2.30)

Similarly, for random process v(t, ξ) (one Gaussian variable case), the mean and

variance are as follows

E(v(t, ξ)) = v0(t)

V ar(v(t, ξ)) = v21(t)V ar(ξ1) + v22(t)V ar(ξ21 − 1)

= v21(t) + 2v22(t) (2.31)

One critical problem remains so far is how to obtain the coefficients of Hermite

PC in (2.28) and (2.29) efficiently. There are two group of techniques to calculate

the coefficients of Hermite PC in (2.28) and (2.29) efficiently, which are collocation-

based spectral stochastic method and Galerkin-based spectral stochastic method, or

collocation-based and Galerkin-based methods in short.
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2.2.3 Collocation-based spectral stochastic method

The Gaussian quadrature method is an efficient numerical method for computing the

definite integral of a function [26]. Using this method, we can compute the coefficients

ak and ak(t) in (2.28) and (2.29), respectively. Next, we will review this method,

which uses the Hermite polynomial shown below.

Our goal is to determine the numerical solution to the integral equation < y(ξ), Hj(ξ) >

(x can be a random variable or random process). In our problem, this is a one-

dimensional numerical quadrature problem based on Hermite polynomials [26]. Thus,

we have

< y(ξ), Hk(ξ) > =
1

√

(2π)

∫

y(ξ)Hk(ξ)e
− 1

2
ξ2dξ

≈
P
∑

i=0

y(ξi)Hi(ξi)wi (2.32)

Here we have only a single random variable ξ. ξi and wi are Gaussian-Hermite

quadrature abscissas (quadrature points) and weights.

The Quadrature rule states that if we select the roots of the P th Hermite Polyno-

mial as the quadrature points, the quadrature is exact for all polynomials of degree

2P − 1 or less for (2.32). This is called (P -1)-level accuracy of the Gaussian-Hermite

quadrature.

For multiple random variables, a multi-dimensional quadrature is required. The

traditional way of computing a multi-dimensional quadrature is to use a direct ten-

sor product based on one dimensional Gaussian Hermite quadrature abscissas and

weights [54]. With this method, the number of quadrature points needed for n-

dimensions at level P is about (P+1)n, which is well known as the curse-of-dimensionality.

Smolyak quadrature [54], also known as sparse grid quadrature, is used as an
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efficient method to reduce the number of quadrature points. Let us define a one-

dimensional sparse grid quadrature point set ΘP
1 = {γi, γ2, ..., γP}, which uses P + 1

points to achieve degree 2P + 1 of exactness. The sparse grid for an n-dimensional

quadrature at degree P chooses points from the following set:

ΘP
n = ∪

P+1≤|~i|≤P+n
(Θi1

1 × ...×Θin
1 ) (2.33)

where |~i| =∑n
j=1 ij . The corresponding weight is:

wi1...in
ji1 ...jin

= (−1)P+n−|~i|







n− 1

n+ P − |~i|





Π
m
wim

jim
(2.34)

where







n− 1

n+ P − |~i|






is the combinatorial number and w is the weight for the

corresponding quadrature points. It has been shown that interpolation on a Smolyak

grid ensures a bound for the mean-square error [54]

|EP | = O(N r
P (logNP )

(r+1)(n−1)),

where NP is the number of quadrature points and k is the order of the maximum

derivative that exist for the delay function. The number of quadrature points increases

as O( nP

(P )!
).

It can be shown that a sparse grid of at least level P is required for an order P

representation. The reason is that the approximation contains order P polynomials

for both y(ξ) and Hj(ξ). Thus, there exists y(ξ)Hj(ξ) with order 2P , which requires

a sparse grid of at least level P with an exactness degree of 2P + 1.

Therefore, level 1 and level 2 sparse grids are required for linear and quadratic
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models, respectively. The number of quadrature points is about 2n for the linear

model, and 2n2 for the quadratic model. The time cost is about the same as the

Taylor-conversion method, while keeping the accuracy of homogenous chaos expan-

sion.

In addition to the sparse grid technique, we also employ several accelerating tech-

niques. Firstly, when n is too small, the number of quadrature points for sparse grid

may be larger than that of direct tensor product of a Gaussian quadrature. For exam-

ple, if there are only 2 variables, the number is 5 and 15 for level 1 and 2 sparse grid,

compared to 4 and 9 for direct tensor product. In this case, the sparse grid will not

be used. Secondly, The set of quadrature points (2.33) may contain the same points

with different weights. For example, the level 2 sparse grid for 3 variables contain

4 instances of the point (0,0,0). Combining these points by summing the weights

reduces the computational cost of y(~γi).

2.2.4 Galerkin-based spectral stochastic method

The Galerkin-based method is using the principle of orthogonality that the best ap-

proximation of y(ξ) is obtained when the error, ∆(ξ), defined as

∆(ξ) = y(ξ)− y (2.35)

is orthogonal to the approximation. That is

< ∆(ξ), Hk(ξ) >= 0, k = 0, 1, . . . , P, (2.36)

whereHk(ξ) are Hermite polynomials. In this way, we have transformed the stochastic

analysis process into a deterministic form, whereas we only need to compute the
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corresponding coefficients of the Hermite PC.

For the illustration purpose, considering two Gaussian variable ξ = [ξ1, ξ2], we

assume that the charge vector in panels can be written as a second order (p = 2)

Hermite PC, we have

y(ξ) = y0 + y1ξ1 + y2ξ2 + y3(ξ
2
1 − 1) +

y4(ξ
2
2 − 1) + y5(ξ1ξ2). (2.37)

which will be solved by (2.36). Once the Hermite PC of y(ξ) is known, the mean

and variance of y(ξ) can be evaluated trivially. Given an example, for one random

variable, the mean and variance are calculated as:

E(y(ξ)) = y0

V ar(y(ξ)) = y21V ar(ξ) + y22V ar(ξ2 − 1)

= y21 + 2y22. (2.38)

In consideration of correlations among random variables, we apply principal compo-

nent analysis (PCA) 2.1.5 to transform the correlated variables into a set of indepen-

dent variables.

2.3 Sum of log-normal random variables

Due to the exponential convergence rate, Hermite PC can be used to represent log-

normal variables and the sum of log-normal variables [42].
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2.3.1 Hermite PC representation of log-normal variables

Let g(ξ) be the Gaussian random variable, and l(ξ) be the random variable obtained

by taking the exponential of g(ξ),

l(ξ) = eg(ξ), g(ξ) = ln(l(ξ)) (2.39)

For a log-normal random variable Il, let the mean and the variance of g(ξ) as µg

and σ2
g , then the mean and variance of l(ξ) are

µl = e(µg+
σ2
g
2
) (2.40)

σ2
l = e(2µg+σ2

g)[eσ
2
g − 1] (2.41)

respectively.

A general Gaussian variable g(ξ) can always be represented in the following affine

form:

g(ξ) =

n
∑

i=0

ξigi (2.42)

where ξi are orthogonal Gaussian variables. i.e. < ξiξj >= δij , < ξi >= 0 and ξ0 = 1

and gi is the coefficient of the individual Gaussian variables. Note that such form can

always be obtained by using Karhunen-Loeve orthogonal expansion method [20]

In our problem, we need to represent the log-normal random variable l(ξ) by using

the Hermite PC expansion form:

l(ξ) =

P
∑

k=0

lkH
n
k (ξ) (2.43)

where l0 = exp[µg +
σ2
g

2
]. To find the other coefficients, we can apply (2.28) on l(ξ).
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Therefore, we have

lk(t) =
< l(t, ξ), Hk(ξ) >

< H2
k(ξ) >

, ∀k ∈ {0, ..., P}. (2.44)

It was shown in [19], l(ξ) can be written as

l(ξ) =
< Hk(ξ − g) >

< H2
i (ξ) >

= exp[µg +
1

2

n
∑

j=1

g2j ] (2.45)

where n is the number of independent Gaussian random variables.

The log-normal process can then be written as

l(ξ) = l0(1 +

n
∑

i=1

ξigi +

n
∑

i=1

n
∑

j=1

(ξiξj − δij)

< (ξiξj − δij)2 >
gigj + ...) (2.46)

where gi is defined in (2.42).

2.3.2 Hermite PC representation with one Gaussian variable

In this case, ξ = [ξ1]. For the second order Hermite PC (P = 2), following (2.46), we

have

l(ξ) = l0(1 + σgξ1 +
1

2
σ2
g(ξ

2
1 − 1)) (2.47)

Hence, the desired Hermite PC coefficients, I0,1,2, can be expressed as l0, l0σg and

1
2
l0σ

2
g respectively.
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2.3.3 Hermite PC representation of two and more Gaussian

variables

For two random variables (n = 2), assume that ξ = [ξ1, ξ2] is a normalized uncorre-

lated Gaussian random variable vector that represents random variable g(ξ):

g(ξ) = µg + σ1ξ1 + σ2ξ2 (2.48)

Note that

< (ξiξj − δij)
2 >=< ξ2i ξ

2
j >=< ξ2i >< ξ2j >= 1

Therefore, the expansion of the log-normal random variables using second order

Hermite PCs can be expressed as

l(ξ) = l0(1 + σ1ξ1 + σ2ξ2 +
σ2
1

2
(ξ21 − 1) +

σ2
2

2
(ξ22 − 1) +

2σ1σ2ξ1ξ2) (2.49)

where

µl = l0 = exp(µg +
1

2
σ2
1 +

1

2
σ2
2)

Hence, the desired Hermite PC coefficients, I0,1,2,3,4,5, can be expressed as l0, l0σ1,

l0σ2,
1
2
l0σ

2
1,

1
2
l0σ

2
2 , and 2l0σ1σ2 respectively.

Similarly, for four Gaussian random variables, assume that

ξ = [ξ1, ξ2, ξ3, ξ4] is a normalized, uncorrelated Gaussian random variable vector. The

random variable g(ξ) can be expressed as

g = µg +

4
∑

i=1

σiξi (2.50)
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As a result, the log-normal random variable l(ξ) can be expressed as

l(ξ) = l0(1 +
4
∑

i=1

ξiσi +
4
∑

i=1

1

2
(ξ2i − 1)σ2

i +
4
∑

i=1

4
∑

j=1

ξiξjσiσj + ...) (2.51)

where

µl = l0 = exp(σ0 +
1

2

4
∑

i=1

σ2
i )

Hence, the desired Hermite PC coefficients can be expressed using the equation

(2.51) above.

2.4 Summary

To understand statistical analysis and modeling for nanometer VLSI design, some

preliminary concepts in probability theory are necessary for the better comprehension

of the following chapters. In this chapter, we have introduced the fundamentals

of statistical analysis involved in VLSI design. First we have presented the basic

concepts and components of covariance in process variation in VLSI design. After

that, we reviewed the techniques for variable decoupling and reduction, following by

different methods to estimate the sum of random variables. In leakage analysis of

VLSI, log-normal distribution has very wide application. Therefore, we discussed the

sum of log-normal random variables in detail at the end of this chapter.
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Chapter 3

Statistical Leakage Power Analysis

– Modeling and Previous Works

3.1 Introduction

As VLSI technology scales down into the nanometer regime, power consumption and

corresponding thermal effects have become the first tier limiting factor threatening the

continuous integration and performance improvement of integrated systems. Dynamic

and leakage power are the two main sources of power consumption in VLSI circuits.

In many high-performance designs, leakage component now is comparable to the

dynamic component. Reports indicate that over 40% of total power consumption in

90-nm process technology comes from leakage [58]. This situation will become worse

as technology scales and the impacts of the uncertainties from process variability and

temperature environments on transistor leakage currents become more significant [1].

Process-induced variability has a huge impact on circuit performance in the sub-

90nm VLSI technologies [50]. This is the particular case for leakage power. As a result,

leakage variations become significant, and traditional worst case-based approach will
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lead to extremely pessimistic and expensive design solutions. Statistical estimation

and analysis of leakage power considering process variability are critical in various

chip design steps to improve design yield and robustness. A block diagram of the

Statistical Leakage Analysis (SLA) flow is shown in Fig. 3.1. In the leakage estimation

model, we can obtain the chip-level leakage statistics such as the mean value and

standard deviation from 1) process information, 2) library information and 3) design

information. To reduce leakage, an optimization approach has been proposed for

standard cell based designs [63]. In this chapter, we also use a regular standard cell

library for experimental results.

Full−Chip Leakage Statistics
(Mean value, variance, etc.)

Statistics of 

Process Parameters

(Distribution, mean value,

standard deviation,

covariance, etc.)

Netlist FloorplanStandard Cell Library

Statistical Leakage Analysis

Figure 3.1: Chip-level statistical leakage analysis flow.

Many methods have been proposed for the statistical model of chip-level leakage

current. Early work in [68] gives the analytic expressions of mean value and variance of

leakage currents of CMOS gates considering only subthreshold leakage. The method

in [49] provides simple analytic expressions of leakage currents of the whole chip

considering global variations only. The method in [75] uses third order Hermite

polynomials without considering spatial correlations, and only calculates the mean

value of full-chip leakage current.
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In [46], reverse biased source/drain junction band-to-band tunneling (BTBT) leak-

age current is considered, in addition to the subthreshold leakage currents, for esti-

mating the mean values and variances of the leakage currents of gates only. In [60],

the probability density function (PDF) of stacked CMOS gates and the entire chip are

derived considering both inter-die and intra-die variations. In [10], a hardware-based

statistical model of dynamic switching power and static leakage power was presented,

which was extracted from experiments in a pre-determined process window.

Recently, a full-chip SLA method considering spatial correlations in the intra-

die and inter-die variations was proposed [9]. This method introduces a grid-based

partitioning of the circuits to reduce the number of variables at a loss of accuracy. A

projection based approach has been proposed in [35] to speed up the leakage analysis,

where Krylov subspace-based reduction has been performed on the coefficient matrices

of second order expressions. This method assumes independent random variables

after a pre-processing step such as principal components analysis (PCA). However,

owing to the large number of random variables involved (103 to 106), the PCA based

pre-process can be very expensive. Work in [22] proposes a linear time complexity

method to compute the mean and variance of full-chip leakage currents by exploiting

the symmetric property of one existing exponential spatial correlation formula. The

method only considers subthreshold leakage and it requires the chip cells and modules

to be partitioned into a regular grid with similar uniform fitting functions, which is

typically impractical.

Recent work in [6] presents a unified approach for statistical timing and leakage

current analysis using quadratic polynomials. However, this method only considers

the long-channel effects and ignores the short-channel effects (ignoring channel length

variables) for the gate leakage models. The coefficients of the orthogonal polynomials

at gate-level are computed directly by the inter-production via the efficient Smolyak
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quadrature method. The method also tries to reduce the number of variables via the

moment matching method, which further speeds up the quadrature process at the

cost of more errors.

In [64], Shen et al. propose a general full-chip leakage modeling and analysis

approach, which is a gate-based spectral method and uses PCA to reduce the number

of variables with much less accuracy loss (assuming that the geometrical variables are

Gaussian. For non-Gaussian variables, independent component analysis (ICA) [24]

can be used). This method considers both inter-die and intra-die variations and it can

work with various spatial correlations. The proposed method becomes linear under

strong spatial correlations. Unlike the existing approaches as presented in [9, 22], [64]

does not make any assumptions about the distributions of final total leakage currents

for both gates and chips, and does not require any grid-based partitioning of the chip.

Chip-level SLA methods can be classified into different categories based on differ-

ent criteria as shown in Table. 3.1. Our classification and survey may not be complete

as this is still an active research field and more efficient methods will be developed

in the future. We will present in detail some recent important developments in the

section such as Monte Carlo method and the traditional grid-based method [9]. The

gate-based spectral stochastic method [64] and the virtual grid-based method will

be introduced in Chapter 4 and Chapter 5, respectively. We remark that our lim-

ited coverage of the other methods, which are presented in minimal detail, does not

diminish the value of their contributions.

Table 3.1: Different methods for full-chip SLA.
Criteria Categories

Process variation Inter-die Intra-die, spatial correlated and non-correlated

Leakage distribution Log-normal Non-log-normal

Speed-up method Monte Carlo Grid-based Gate-based Projection based

Leakage component Isub Igate
Static leakage model Gate-based MOSFET-based
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This chapter is structured as follows. In Section 3.2, we discuss the leakage model

for one gate without consideration of variation in process parameters first, then Sec-

tion 3.3 gives the process variation models for computing statistical information of

full-chip leakage current. Afterwards, Section 3.4 presents the recently proposed chip-

level statistical leakage modeling and analysis work. The chapter concludes with a

summary and brief discussion of potential open research problems.

3.2 Static leakage modeling

There are several different leakage mechanisms that contribute to the total leakage

in a device. Among them, the three major factors can be identified as: subthreshold

leakage, gate oxide leakage and junction tunneling leakage [45]. Here we describe the

empirical curve-fitting models for them, which will be used for leakage current under

process variations in the next section. The leakage current can be modeled based

on gates or devices. In this section, we will show both kinds of leakage modeling

methods.

3.2.1 Subthreshold and gate oxide leakage modeling

The subthreshold leakage current, Isub, is exponentially dependent on the threshold

voltage, Vth. Vth is observed to be most sensitive to gate oxide thickness Tox and

effective gate channel length L due to short-channel effects. When the change in

L or Tox is small, the precise relationship shows an exponential dependent effect on

Isub, with the effect of Tox being relatively weak. For the gate oxide leakage current,

both channel length and oxide thickness have strong impacts on the leakage currents,

which are exponential functions of the two variables.

a) Isub and Igate model of one gate
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The leakage model is based on gates, as in [9] and [64]. They follow the analytical

expression estimating the subthreshold leakage currents as follows:

Isub = ea1+a2L+a3L2+a4T
−1
ox +a5Tox, (3.1)

Igate = ea1+a2L+a3L2+a4Tox+a5T 2
ox , (3.2)

where a1 through a5 are the fitting coefficients for each unique input combination

of a gate. A look-up table (LUT) can be used to store the fitting coefficients. For

a k-input gate, the size of the LUT is 2k as we have two equations for each input

combination. In [9], The authors only keep dominant states for the leakage current,

i.e., only one “off” transistor in a series transistor stack. However, this is impractical

with technology downscaling to 45nm. The Isub based on the model in (3.1) still has

a large error compared to the simulation results. Hence, the authors in [64] keep all

the states.

Figure 3.2: Schematic of the AND2 gate

Take the AND2 gate in Fig. 3.2 as an example. There are four different input

patterns for the subthreshold leakage current, as shown in Fig. 3.3. In [9], the authors

mentioned the “Dominant States”, and assumed that only the leakage for dominant
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input patterns need to be considered. However, the AND2 gate is comprised of two

sub-circuits, one NAND gate and one inverter, which they have different dominant

input patterns. Actually, there is no significant difference between the four kinds

of input patterns. Also, when the inputs are “01” or “10”, the leakage sources are

NMOS gates. But when the input is “11”, the main contribution comes from the

PMOS gates (as shown in Fig. 3.3). Therefore, in nano-scale technology, we need to

measure the leakage currents for all input patterns. After choosing sampling points

for L and Tox in their 3σ regions linearly, and then conducting SPICE simulation at

each point, the subthreshold leakage current is stored as the original curve. We can

then perform the curve fitting process. Fig. 3.4 and Fig. 3.5 show the curve fitting

results of Isub and Igate for four input patterns in the AND2 gate. Here, 100 points are

chosen linearly in the 3σ regions for L and Tox. These figures show that the curves fit

the SPICE results very well, and the currents in the four cases are comparable with

each other. Since there is no “Dominant State”, all of them need to be considered.

After we obtain the analytic expression for each input combination, we take the

average of the leakage currents of all the input combinations to arrive at a final

analytic expression for each gate in lieu of the dominant states used in [9]. Based on

this model, the leakage current of one gate under process variation can be estimated

by lognormal distributions. The average leakage of a gate can be computed as a

weighted sum of leakage under different input states,

Iavgsub =
∑

j∈input states

PjIsub,j, (3.3)

Iavggate =
∑

j∈input states

PjIgate,j , (3.4)

Ileak,chip =
∑

∀gates i=1,...,N

Iavgsub,i + Iavggate,i, (3.5)
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where Pj is the probability of input state j; Isub,j and Igate,j are the subthreshold

leakage value and the gate oxide leakage value at input state j, respectively and N

is the total number of gates in the circuit. We ensure that the interaction between

these two leakage mechanisms is included in the total leakage current estimation.

Since all the leakage components can be approximated as a lognormal distribution,

we can simply sum up the distributions of the lognormals for all gates to get the full-

chip leakage distribution. Note that there exist spatial correlations, and the leakage

distributions of any two gates may be correlated. Therefore, the full-chip leakage

current is calculated by a sum of correlated lognormals:

S =

p
∑

i=1

eYi , (3.6)

where p is the total number of lognormals to sum, Yi is Gaussian random variable, and

Y = [Y1, Y2, . . . , Yp] forms a multivariate normal distribution with covariance matrix

ΣY . The vector Y is a function of L and Tox.

If further speed-up is needed, we can consider only the dominant input states here,

but it will lose some accuracy, especially for nano-scale technology.

a=0 b=0
 a=0 b=1
 a=1 b=0
 a=1 b=1


Figure 3.3: Four leakage cases (ab = “00” – Pattern 0, ab = “01” – Pattern 1, ab =
“10” – Pattern 2, ab = “11” – Partern 3).

b) Isub and Igate model of a MOSFET
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Figure 3.4: Subthreshold leakage currents for four different input patterns in AND2
gate under 45nm technology.
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Figure 3.5: Gate oxide leakage currents for four different input patterns in AND2
gate under 45nm technology.
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In [36], the authors formulated the statistical model for the subthreshold leakage

current in a MOSFET. Here, we only discuss the formulation method developed for

NMOS transistors, then, the method can be easily extended to PMOS transistors. In

this model, we first set up the Leff (effective gate channel length) model. Afterwards,

the Isub of one MOSFET can be formulated.

In nano-scale technology, the minimum feature size of a device is much smaller

than the optical wavelength, which causes a severe distortion of the rectangular gate.

Due to this, the leakage current (Isub) increases significantly, while the current in the

strong inversion region (Ion) is weakly affected [67].

In this part, let us translate an irregular gate structure into a single transistor of

effective gate channel length Leff first. Fig. 3.6 shows a non-rectilinear gate. We can

divide the non-rectilinear gate into slices of different lengths and same characteristic

width W0 along the width direction. In this way, the leakage current of the i-th non-

rectilinear gate IG,i can be approximated as the sum of the leakage currents of all the

slices along the width direction,

IG,i =
M
∑

j=1

Ij(Lj ,W0) = I(Leff ,W ), (3.7)

where W is the width of the gate, and each slice can be considered as a regular gate.

Table. 3.2 shows the expressions for modeling Leff , which can be used to include the

distortion of a rectangular gate in any circuit simulation tool.

After we set up the Leff model, a compact model for Isub can be developed based

on it. The leakage current is expressed as a function of Leff [22]. Layout parameters

SA and SB are also employed to account for the stress effects of Isub (Fig. 3.7). By

evaluating different values for these two parameters, asymmetrical stress effects of

Isub are included. This method uses the stress liner technique [36], and could be

37



Table 3.2: Summary of the effective gate channel length model.
Model Parameters Model Expressions

M Total number of slices along the width direction

µ µ =
∑M

j=1
Lj

M

σ σ =

√

∑M
j=1

(Lj−µ)2

M

α Fitting parameter

Leff = Lmin + αln
(

σW
W0

)

0W

L j
W

Figure 3.6: Procedure to derive the effective gate channel length model.

extended to include the stress effects induced by other techniques (e.g. SiGe, STI).

The curve-fitted leakage model considering narrow width effect is shown in (3.8),

Isub =
αsub

√

qǫsiNcheff(W 2 + αWW )

(V 2
ds + αds1Vds + αds2)exp(αL1L

2
eff + αL2Leff)

×
(

1− exp

(

−Vds

VT

))(

2− exp

(

− SA

SA0

)

− exp

(

− SB

SB0

))

×exp
(

Vgs − Vthlin

nVT

)

, (3.8)

where all αs are fitting parameters, ǫsi is the dielectric constant of Si, and Ncheff is

the effective channel doping concentration.

In [36], the authors point out that Igate is less important than the other two

components. Because high-k techniques are used to better insulate the gate from the

channel for sub-65nm technologies, gate-oxide tunneling effect has been moderated
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Figure 3.7: Typical layout of a MOSFET.

and controlled.

3.2.2 Junction tunneling leakage modeling

In nano-scale CMOS devices, Junction Tunneling Leakage (JTL) becomes an ex-

tremely important component in leakage current [45]. In [45] a JTL model requiring

“rectangular junction” approximation has been proposed as a simplifying assump-

tion, while the JTL model in [36] does not have that limit. Here, we give more details

about the non-rectangular JTL model in [36]. This model includes both band-to-

band tunneling (BBT) and trap-assistant tunneling (TAT) effects. Since the drain

and source junctions have the same expression of JTL for symmetrical MOSFET, we

only describe the drain junction model.

It is known that the tunneling of electrons through the bandgap contributes to

the carrier transport in the PN junction in high electric fields. This electron-hole pair

generation/recombination comes through direct or indirect BBT, and also through

TAT. We can obtained the JTL current by an integration of the generation rates over
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the structure:

Ijunc = q

∫∫

(RBBT +RTAT )dxdy, (3.9)

where RBBT is the generation rate from BBT contribution and RTAT is from TAT. By

approximating the complex junction edge as a rectangular one [45], we can calculate

the integral in (3.9) by using the average tunneling current density (Jjunc). Jjunc is

determined by the average electric field (Ejunc) across the junction. Note that this

approximation works only when the current density is almost the same everywhere

along the PN junction. However, this is not the real case. The peak of current

density changes greatly in nano-scale technologies, since we use the “halo” profile to

reduce the depletion region width of the source-substrate and drain-substrate junc-

tions. Many two-dimensional device simulations have been conducted in detail to

describe the mechanism. It is shown that the JTL current density is dramatically

changed when “halo” is applied, and the density peak occurs where the high doping

region is implanted. There is nearly no current leaking through the bottom side of

the junction.

The traditional junction leakage model cannot be used in SLA for another reason:

Jjunc is very hard to express. In a previous work [45], Jjunc is modeled as a function

of Ndside and Naside, where Ndside and Naside represent the donor and acceptor doping

concentration, respectively. In the real case, these two non-lithographic variation

sources are very hard to characterize, since the actual dopant profile can not be

measured directly. As a result, we need to employ new parameters.

In the modeling method in [36], the authors introduced two new parameters, Vthlin

and Vthsat to express JTL and its variations. Vthlin represents the channel doping effect,

which is the subthreshold voltage measured when Vds = 0.1V ; and Vthsat represents the

doping effects in drain, which is the subthreshold voltage measured when Vds = Vdd.
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If the variation characterization procedure is feasible, these two parameters are easily

measurable. Observing that by characterizing the fluctuations of Vthlin and Vthsat,

most of the JTL variations can be included, and the junction tunneling leakage model

can be expressed as follows:

Ijunc = Wαhalo(RBBT +RTAT )
V

3/2
ds

E
1/2
g

× exp

(

E
3/2
g√
Vds

+
Vthlin

αthlin

+
Vthsat

αthsat

)

, (3.10)

where Eg is the band-gap, αhalo stands for the tunneling length induced by “halo”

αthlin and αthsat are empirical parameters which can be easily extracted from the

measured data. The reasons are: 1) when Vthsat is a constant, Ijunc mostly depends

on Vthlin; 2) when Vthlin is a constant, Ijunc mostly depends on Vthsat.

3.3 Process variational models for leakage analysis

In this section, we present the process variation for computing variational leakage

currents. Process variation occurs at different levels: wafer level, inter-die level, and

intra-die level. Furthermore, they are caused by different sources such as lithography,

materials, aging, etc [7]. Some of the variations are systematic, i.e., those caused by

the lithography process [18, 55]. Some are purely random, i.e., the doping density

of impurities and edge roughness [7]. In this section, we introduce different kinds of

process variations first, and then the process variational model for leakage analysis.

The main process parameter to have a big impact on leakage current is the tran-

sistor threshold voltage Vth. Vth is observed to be the most sensitive to the effective

gate channel length L and gate oxide thickness Tox. The ITRS’08 [1] indicates that

the gate channel length variation is a primary factor for device parameter variation,

and the number of dopants in channel results in an unacceptably large statistical
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variation of the threshold voltage. Therefore, we must consider the variations in L

and Tox, since leakage current is most sensitive to these parameters [9]. To reflect

reality, we model spatial correlations in the gate channel length, while the gate oxide

thickness values for different gates are taken to be uncorrelated.

Here we list an example of detailed parameters for gate channel length and gate

oxide thickness variations for under 45nm technology in Table 3.3. As indicated in

the second column, we can decompose each parameter variation into “inter-die” and

“intra-die” variations. For intra-die variation, we further decompose it into with

and without spatial correlation. In most cases, these variations can be modeled by

Gaussian distributions ([71], [14]). The total variance (σ2) is computed by summing

up the variances of all components, since the sum of Gaussian distributions is still a

Gaussian distribution.

Table 3.3: Process variation parameter breakdown for 45nm technology.
σ2 Distribution (σ)

Gate Inter-die 20% 4%× 18nm
Length(L) Intra-die

∗ Spatial Correlated 80%
Gate Oxide Inter-die 20% 4%× 1.8nm
Thickness(Tox) Intra-die

∗ Non-Correlated 80%

Electrical measurements of a full wafer shows that the intra-die gate channel

length variation has strong spatial correlation [18]. This implies that devices that are

physically close to each other are more likely to be similar than those that are far

apart. Therefore, the intra-die variation of gate channel lengths is modeled based on

such kind of correlation. There are several different models that can represent this

kind of spatial correlations. Take the exponential model [77] for instance,

γ(dis) = e−dis2/η2 , (3.11)
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where dis is the distance between two panel centers and η is the correlation length.

The strong spatial correlation suggested by (3.11) can be used to speed up the calcu-

lation by grid based method or principal component analysis (for Gaussian distribu-

tions) or independent component analysis (for non-Gaussian distributions). Details

will be given in the next section. For gate oxide thickness, Tox, strong spatial corre-

lation does not exist, therefore, we assume Tox of different gates are uncorrelated.

The last column of Table 3.3 shows the standard deviation (σ) of each variation.

According to statistical theory regarding Gaussian distributions, 99% of the samples

should fall in the range of ±3σ. According to [1], the physical gate channel length for

high performance logic in 45nm technology will be 18nm, and the physical variation

should be controlled within +/-12%. Therefore, we let 3σ be 12%, and a similar

analysis can be done for Tox.

For a gate/module in a chip with gate channel length L, and process variation

∆L using our model parameters in Table 3.3, we have

L = µL +∆L,∆L = ∆Linter +∆Lintra corr, (3.12)

where µL is the nominal design parameter value, and ∆Linter is constant for all gates

in all grids since it is a global factor that applies to the entire chip. For one chip

sample, we only need to generate it once. ∆Lintra corr is different between each gate

or each grid, and has spatial correlation. Therefore, we generate one value for each

gate/grid, and the spatial correlation is regarded as an exponential model in (3.11),

so that the correlation coefficient value diminishes with the distance between any two

gates/grids.
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As for the gate oxide thickness Tox, using model parameters in Table 3.3, we have

Tox = µox +∆Tox,∆Tox = ∆Tox,inter +∆Tox,intra uncorr, (3.13)

where µox is the nominal design parameter value. Similarly to ∆Linter, ∆Tox,inter is

constant for all gates in all grids. ∆Tox,intra uncorr is different between any gates/grids,

but does not have spatial correlation.

After the process variations are modeled as correlated distributions, we can apply

the Principal Component Analysis (PCA) in 2.1.5 to decompose correlated Gaussian

distributions into independent ones. After PCA, the process variations (e.g., ∆Vth,

∆Tox and ∆L) of each gate can be modeled as:

∆XG,i = VG,iE, (3.14)

where the vector ∆XG,i = [∆xG,i,1,∆xG,i,2, . . .]
T stands for the parameter variations

of the i-th gate. E = [ε1, ε2, . . . , εm]
T represents the random variables for modeling

both inter-die and intra-die variations of the entire die. Here {ε1, ε2, . . . , εm} can

be extracted by PCA. They are independent and satisfy the standard Gaussian dis-

tribution (i.e., zero mean and unit standard deviation). m is the total number of

these random variables. For practical industry designs, m is typically large (e.g.,

103 ∼ 106). VG,i captures the correlations among the random variables.

When m is a large number, the size of VG,i can be extremely huge. However,

XG,i only depends on the intra-die variations within its neighborhood; so VG,i should

be quite sparse. In Section 3.4, the gate-based spectral stochastic method and the

projection-based method will use this sparsity property to reduce the computational

cost in two different ways.
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Gate-based statistical leakage analysis typically starts from the leakage modeling

for one gate,

IG,i = f(E), (3.15)

where IG,i represents the total leakage current (including all the leakage components

such as subthreshold leakage, gate oxide leakage and junction tunneling leakage) of the

i-th gate. Different models can be chosen here to represent the relationship between

E and IG,i. For example, quadratic models are used to guarantee accuracy,

log(IG,i) = ETAG,iE +BT
G,iE + CG,i, (3.16)

where AG,i ∈ Rm×m, BG,i ∈ Rm and CG,i ∈ R are the coefficients. More details will

be given in the next section.

Given the leakage models of all the individual gates, the full-chip leakage current

is the sum of leakage currents of all the gates on the chip:

Ileak,Chip = IG,1 + IG,2 + · · ·+ IG,N , (3.17)

where N is the total number of gates in a chip. If we choose the quadratic model

in (3.16), (3.17) implies that the full-chip leakage current is the sum of many lognor-

mal distributions. As we mentioned before, it can be approximated as a lognormal

distribution [9]. Therefore, we can also use a quadratic model to approximate the

logarithm of the full-chip leakage:

log(Ileak,Chip) = ETAChipE +BT
ChipE + CChip, (3.18)

where AChip ∈ Rm×m, BChip ∈ Rm and CChip ∈ R are the coefficients. In (3.16) and
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(3.18), the quadratic coefficient matrices AGatei and AChip can be extremely large for

capturing all the intra-die variations, which makes the quadratic modeling problem

extremely expensive in practical applications. Several approaches have been made to

reduce the size of the model, with more details shown in the next section.

3.4 Previous works for full-chip leakage analysis

As shown in Table. 3.1, full-chip leakage modeling and analysis methods can be

classified into different categories based on different criteria. In this section, we will

present in detail several important methods such as the grid-based method, the gate-

based spectral stochastic method and project-based methods.

3.4.1 Monte Carlo methods

Monte Carlo (MC) technique mentioned in Section 2.2.1 can be used to estimate the

value of leakage power at gate-level as well as chip-level.

For full-chip leakage current, Ileak,Chip is G in (2.17). If the sample number MC is

large enough, then we can obtain a sufficiently accurate result. However, for full-chip

leakage current analysis, the Monte Carlo estimator is too expensive. A more efficient

method with good accuracy is needed.

Several techniques exist for improving the accuracy of Monte Carlo evaluation

of finite integrals. In these techniques, the goal is to construct an estimator with a

reduced variance for a given, fixed number of samples. In other words, the improved

estimator can provide the same accuracy as the standard Monte Carlo estimator,

while needing considerably fewer samples. This is desirable because computing the

value of g(Xi) is typically costly.
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3.4.2 Grid-based methods

Since the number of gates on an entire chip is very large and every gate has their

own variational parameter, the resulting number of random variables is very large.

For greater efficiency, the grid-based method partitions a chip to several grids, and

assigns all the gates on one grid with the same parameters.

The work in [9] shows a typical grid-based method considering both inter-die and

intra-die variations (including the consideration of spatial correlation). It uses lognor-

mal distribution to approximate the leakage current of each gate and the total chip

leakage is determined by summing up the lognormals. In this work, both subthreshold

leakage and gate oxide leakage of only dominant input states are considered in (3.4)

and (3.5). Here we consider only intra-die variation of parameters. The extension to

handling inter-die variation is quite obvious, as shown at the end of this subsection.

As shown in (3.6), the total leakage current of a chip is the sum of correlated

leakage components, which can be approximated as a lognormal using Wilkinson’s

method [4]. A sum of t lognormals, S =
∑t

i=1 e
Yi , is approximated as the lognormal

eZ , where Z = N(µz, σz). In Wilkinson’s approach, the mean value and standard

deviation of Z are obtained by matching the first two moments, u1 and u2 of
∑t

i=1 e
Yi

as follows:

u1 = E(S) = eµz+σ2
z/2 =

t
∑

i=1

eµyi
+σ2

yi
/2, (3.19)

u2 = E(S2) = e2µz+2σ2
z =

t
∑

i=1

e2µyi
+2σ2

yi +

2

t−1
∑

i=1

t
∑

j=i+1

eµyi
+µyj e(σ2

yi
+ σ2

yj
+ 2rijσyiσyj )/2, (3.20)

where rij is the correlation coefficient of Yi and Yj . Solving (3.20) for µz and σz
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yields

µz = 2 ln u1 −
1

2
lnu2, (3.21)

σ2
z = ln u2 − 2 lnu1. (3.22)

From the above formula, we can see that a pair-by-pair computation for all cor-

related pairs of variables needs to be done, i.e., for all i, j such that rij = 0. It will

lead to a very expensive computation time cost. First, leakage currents of different

gates are correlated because of the spatial correlation of L. Secondly, Isub and Igate

associated with the same NMOS transistor are correlated. Thirdly, Isub in the same

transistor stack are also correlated. If there are N gates in the circuit, the com-

plexity for computing the sum will be O(N2), which is far from practical for large

circuits. Therefore, the grid-based method uses several approximations to reduce the

time complexity. In the grid-based method, gates in the same grid have the same

parameter values. For example, let Isub,i be the subthreshold leakage currents for

Gatei (i = 1, . . . , t) under the same input vector, and assume that these gates are all

in the same grid k. Then

Isub,i = αie
Y 0

i +β0·dLk+β1·dTox,i, (3.23)

where αi, β0 and β1 are the fitting coefficients. Since we assume that L is spatially

correlated and Tox is uncorrelated, all of the Isub,i in the same grid should use the

same variable dLk, and different dTox values. Then, the sum of the leakage terms

Isub,i in grid k is given by:

eY
0

i +β0·dLk ·
t
∑

i=1

αi · eβ1·dTox,i. (3.24)
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Note that the second part of the above expression is a sum of independent lognor-

mal variables, which is a special case for the sum of correlated lognormal variables.

By using Wilkinson’s method, this can be computed in linear time. Therefore, for

gates of the same type with the same input state in the same grid, the time com-

plexity is only linear, and we can approximate the sum of leakage of all gates by

a lognormal variable which can be superposed in the original expression. Similarly,

Igate of different gates in the same grid can be calculated through summation in linear

time, and can be approximated by a lognormal variable.

Now, if the chip is divided into n grids, we can reduce the number of correlated

leakage components in each grid to a small constant c in their library. As a result,

the total number of correlated lognormals to sum is no more than c · n. In general,

the number of grids is set to be substantially smaller than the number of gates in

the chip, which can be regarded as a constant number. Therefore, the complexity

required for the sum of lognormals in the grid-based method is reduced from O(N2)

to a substantially smaller constant O(n2).

As we discussed before, leakage currents of different gates are correlated due to

spatially correlated parameters such as transistor gate channel length. Furthermore,

Isub and Igate are correlated within the same gate. In addition, leakage currents under

different input vectors of the same gate are correlated because they are sensitive to

the same parameters of the gate, regardless of whether or not these are spatially

correlated. We must carefully predict the distribution of total leakage in the circuit,

and the correlations of these leakage currents must be correctly considered when they

are summed up.

As we mentioned before, the leakage currents that arise from the same leakage

mechanisms in the same grid from the same entry of the look-up table are merged

into a single lognormally distributed leakage component to reduce the number of

49



correlated leakage components to sum. Let Isum1 and Isum2 be two merged sums,

which correspond to subthreshold leakage and gate oxide leakage components in the

same grid, respectively. These can be calculated as

Isum1 = eY
0

1
+β0·dL ·

t
∑

i=1

αi · eβ1·dTox,i = eY
0

1
+β0dLeξ, (3.25)

Isum2 = eY
0

2
+β′

0
·dL ·

t′
∑

i=1

α′
i · eβ

′

1
·dT ′

ox,i = eY
0

2
+β0dLeγ , (3.26)

where eξ and eγ are the lognormal approximations of the sum of independent log-

normals,
∑t

i=1 αi · eβ1·dTox,i and
∑t′

i=1 αi · eβ
′

1
·dT ′

ox,i in Isum1 and Isum2 respectively, as

described in (3.24).

Note that
∑t

i=1 αi · eβ1·dTox,i and
∑t′

i=1 αi · eβ
′

1
·dT ′

ox,i may be correlated, since the

same gate could have both subthreshold and gate leakage. Therefore, eξ and eγ

are correlated, and we need to derived the correlation between ξ and γ. Since the

Tox values are independent in different gates, we can easily compute the correlation,

cov(
∑t

i=1 αi · eβ1·dTox,i,
∑t′

i=1 αi · eβ
′

1
·dT ′

ox,i) as

∑

αiα
′
ie

(β2

i +β′2

i )σ2

T ′

ox,i

/2
(e

βiβ′

iσ
2

Tox,i − 1). (3.27)

The correlation between eξ and eγ is then found as

cov(eξ, eγ) = E(eξ+γ)−E(eξ)E(eγ)

= eµξ+µγ+(σ2

ξ
+σ2

γ)/2(ecov(ξ,γ)/2 − 1), (3.28)

where µξ / µγ and σξ / σγ are the mean value and standard deviation of ξ / γ,
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respectively. Solving (3.28) for cov(ξ, γ), we have

cov(ξ, γ) = 2log

(

1 +
cov(eξ, eγ)

emξ+mγ+(σ2

ξ
+(σ2

γ )/2

)

. (3.29)

Since eξ and eγ are approximations of
∑t

i=1 αi · eβ1·dTox,i and
∑t′

i=1 αi · eβ
′

1
·dT ′

ox,i

respectively, it is reasonable to assume that

cov(eξ, eγ) = cov

(

t
∑

i=1

αi · eβi∆Tox,i,
t′
∑

i=1

α′
i · eβ

′

i∆T ′

ox,i

)

. (3.30)

At the same time, the mean values and standard deviations of ξ and γ are already

known from the approximations, therefore, the computation of cov(ξ, γ) is easily

possible.

We can extend the framework for statistical computation of full-chip leakage con-

sidering spatial correlations in intra-die variations of parameters to handle inter-die

variation. For each type of parameter, a global random variable can be applied to

all gates in the circuit to model the inter-die effect. In addition, this framework is

general, and can be used to predict the circuit leakage under other parameter varia-

tions or other leakage components such as the JTL current discussed in Section 3.2.2.

However, if the Gaussian or lognormal assumption does not work, we can not use the

grid-based method to estimate full-chip leakage.

3.4.3 Projection-based statistical analysis methods

The projection-based method is used to compute the moments of statistical leak-

ages via moment matching techniques, which are well developed in the area of in-

terconnect model order reduction [70]. In the projection-based method, quadratic

models in (3.16) and (3.17) are used to guarantee accuracy. Li et al. [38] proposed
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a projection-based approach (PROBE) to reduce the quadratic modeling cost. In a

quadratic model, we need to compute all elements of the quadratic coefficient matrix,

which is the main difficulty. Take Achip in (3.18) for example. In most real cases,

Achip is rank-deficient. As a result, this full-rank matrix Achip can be approximated by

another low-rank matrix Ãchip, if ‖Achip − Ãchip‖F is minimized. Here, ‖ · ‖F denotes

the Frobenius norm, which is the square root of the sum of the squares of all matrix

elements. Li et al. [38] proved that the optimal rank-R approximation is:

Ãchip =

R
∑

r=1

λchiprPchiprP
T
chipr, (3.31)

where m stands for the total number of random variables, and λchipr ∈ R and Pchipr ∈

Rm are the r-th dominant eigenvalue and eigenvector of the matrix Achip, respectively.

The PROBE method proposed in [38] is efficient in handling 101 ∼ 102 random

variables. However, there are 103 ∼ 106 variables in a full-chip SLA. This led Li

et al. [35] to improve the projection-based analysis algorithm by exploring the un-

derlying sparse structure of the leakage analysis problem. Specifically, the improved

methodology includes: 1) Two-step iterative algorithm for quadratic SLA modeling;

2) Quadratic model compaction algorithm for leakage distribution estimation; and 3)

Incremental analysis algorithm for locally updating the leakage distribution.

The algorithm in [35] estimates the full-chip leakage power with consideration

of both inter-die and intra-die process variations, and is not limited to lognormal

distributions. It can be applied to either grids or gates in the full chip.

This method has linear computational complexity in relation to circuit size under

the assumption that all the given random variables are linearly independent. However,

this is not generally true for practical circuits as spatial correlation typically occurs

in many layout related parameters. One way to mitigate this problem as suggested
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by the method is to convert the correlated random variable into independent ones

via some decomposition processes such as principal component analysis (PCA). PCA

essentially is based on the singular value decomposition (SVD), whose complexity

is (nN2), where n is the number of correlated variables and N is the number of

independent variables. As a result, the paper is not linear if PCA is considered.

The projection-based SLA starts from the standard cell library characterization.

In this step, the leakage current of each gate can be approximated by a regression

model. Typically, modeling the variations in one gate only involves a few (e.g., 5 ∼ 10)

random variables. Therefore, we can run SPICE simulations (or utilize measurement

models if available) and apply the PROBE [38] method to fit the rank-K model for

each gate:

log(IG,i) =
K
∑

j=1

λG,i,j ·
(

P̃ T
G,i,j ·∆XG,i

)2

+ B̃T
G,i ·∆XG,i + CG,i, (3.32)

where XG,i is defined in (3.14), and λG,i,j, PG,i,j, BG,i and CG,i are the coefficients.

Substituting (3.14) into (3.32):

log(IG,i) =

K
∑

j=1

λG,i,j ·
(

P T
G,i,jE

)2
+BT

G,iE + CG,i, (3.33)

PG,i,j = V T
G,iP̃

T
G,i,j, BG,i = V T

G,iB̃
T
G,i, (3.34)

where PG,i,j ∈ Rm , BG,i ∈ Rm, and m is the total number of random variables for

the whole chip. Note that the sizes of PG,i,j and BG,i in (3.33) are much larger than

the sizes of PG,i,j and BG,i in (3.32). However, as discussed in Section 3.3, VG,i is a

sparse matrix. So both PG,i,j and BG,i are sparse, too. To simplify the notation, the

following symbols are defined to represent all gate-based leakage models in a matrix
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form:

log(Ileak,Gate) = [log(IG,1), log(IG,2), . . . , log(IG,N)]
T ,

ΛG,j = [λG,1,j, λG,2,j, . . . , λG,N,j]
T ,

PG,j = [PG,1,j, PG,2,j, . . . , PG,N,j]
T ,

BG = [BG,1, BG,2, . . . , BG,N ] ,

CG = [CG,1, CG,2, . . . , CG,N ]
T . (3.35)

Comparing (3.35) with (3.33), it is easy to verify that:

log(Ileak,Gate) =
K
∑

j=1

ΛG,j ⊗
(

P T
G,jE

)

⊗
(

P T
G,jE

)

+BT
GE + CG, (3.36)

where ⊗ stands for the point-wise multiplication, i.e., [a1, a2, . . . , ]
T ⊗ [b1, b2, . . .]

T =

[a1b1, a2b2, . . .]
T .

After the standard cell library characterization, we need to extract the low-rank

quadratic model of the full-chip leakage current in an efficient way. As shown in (3.17),

full-chip leakage current can be calculated by summing leakage currents of all the

gates. Applying the log transform to both sides of (3.17),

log(Ileak,chip) = log
[

elog(IG,1) + elog(IG,2) + · · ·+ elog(IG,N )
]

. (3.37)

Substitute (3.36) into (3.37), and then apply second order Taylor expansion on it,

we will obtain the quadratic model in the form of (3.18) after some mathematical
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manipulations. In this quadratic model, the coefficients are given by

Cchip = log

(

1

α

)

, (3.38)

Bchip = α · BG · Φ, (3.39)

Achip = α ·
K
∑

j=1

PG,j · diag(Φ⊗ ΛG,j) · P T
G,j

+
α

2
· BG · diag(Φ) · BT

G −
α2

2
· BG · ΦΦT · BT

G, (3.40)

where diag([a1, a2, . . .]
T ) means the diagonal matrix with the elements {a1, a2, . . .}

and

α =
1

eCG,1 + eCG,2 + · · ·+ eCG,N
, (3.41)

Φ =
[

eCG,1eCG,2 · · · eCG,N
]T

. (3.42)

Note that computing the values of α and Φ has linear computational complexity.

After getting the values of α and Φ, the coefficients Cchip and Bchip can be evaluated

from (3.39) and (3.40). Since BG in (3.40) is sparse, we can compute the matrix-

vector product BG with linear computational complexity. Therefore, we can finish

the extraction of both Cchip in (3.39) and Bchip in (3.40) in linear time.

However, the quadratic coefficient matrix Achip in (3.40) is no longer sparse, which

is the major difficulty here. We can understand this non-sparsity feature from the last

term at the right-hand side of (3.40). Because the vector Φ is dense, ΦΦT should be a

dense matrix. Therefore, BGΦΦ
TBT

G is dense, although BG is sparse. For this reason,

explicitly constructing Achip based on (3.40) becomes extremely expensive. To solve

this problem, the projection-based method uses an iterative algorithm, which consists

of two steps: Krylov subspace generation and orthogonal iteration. In this process,
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we try to find the optimal low-rank approximation of Achip instead of the full matrix

Achip.

a) Krylov Subspace Generation

We can obtain the optimal Rank-R approximation of Achip by the dominant eigen-

values {λchip1, λchip2, . . ., λchipR} and eigenvectors {Pchip1, Pchip2, . . . , PchipR}, as shown

in (3.31). All the linear combinations of these dominant eigenvectors generate a sub-

space called the dominant invariant subspace [21] and is denoted as

span{Pchip1, Pchip2, . . . , PchipR}. (3.43)

We can approximate the dominant invariant subspace in (3.43) by the followingKrylov

subspace [21]

span{Q0, AchipQ0, A
2
chipQ0, . . . , A

R−1
chipQ0}, (3.44)

where Q0 ∈ Rm is a non-zero vector which is not orthogonal to any dominant eigenvec-

tors. First, we need to develop an algorithm to extract the Krylov subspace which is a

good approximation of the dominant invariant subspace. Then, the extracted Krylov

subspace can be used as the starting point of the orthogonal iteration in next step.

By doing this, the orthogonal iteration converges to the dominant invariant subspace

in only a few iteration steps. The Arnoldi algorithm used in matrix computations [21]

can be applied here to generate the Krylov subspace.

Fig. 3.8 is the flow of a simplified implementation of the Arnoldi algorithm [35].

Here, Step 3 shows the key point of the Arnoldi algorithm. In this step, we com-

pute the matrix-vector product Qr = AchipQr−1. Because Achip is a large and dense

matrix, (3.45) does not construct the matrix Achip explicitly. Instead, it computes

AchipQr−1 implicitly. For example, we can multiply all terms in (3.40) by Qr−1 sepa-
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rately and then add them together. In this way, Achip in (3.40) can be obtained by

a summation of the products of many sparse or low-rank matrices. As a result, we

can compute the implicit matrix-vector product in (3.45) with linear computational

complexity. More details are provided in [35].

Algorithm: Simplified Arnoldi algorithm.

Input: Full matrix Achip

Output: Extracted Krolov subspace Q

1. Randomly select an initial vector Q0 ∈ Rm.

2. Q1 = Q0/‖Q0‖F
3. For r = 2, 3, . . . , R

Qr = α ·
K
∑

j=1

PG,j · diag(Φ⊗ ΛG,j) · P T
G,j ·Qr−1

+
α

2
· BG · diag(Φ) · BT

G ·Qr−1

−α
2

2
· BG · ΦΦT · BT

G ·Qr−1 (3.45)

4. Orthogonalize Qr to all Qi(i = 1, 2, . . . , r − 1)

5. Qr = Qr/‖Qr‖F
6. End For

7. Q = [QR, . . . , Q2, Q1] (3.46)

Figure 3.8: The flow of simplified Arnoldi algorithm

B. Orthogonal Iteration

Note that the Krylov subspace we compute from Fig. 3.8 is not exactly equal to the

dominant invariant subspace. Because of this, we need further apply an orthogonal

iteration [21] which exactly converges to the dominant invariant subspace, and the

matrix Q in (3.46) can be used as the initial value in the iteration. The starting
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Algorithm: Orthogonal iteration.

Input: the matrix Q ∈ Rm×R.
Output: Qchip and Uchip.

1. Q(1) = Q, where the superscript stands for the iteration index.

2. For i = 2, 3, . . .

Z(i) = α ·
K
∑

j=1

PG,j · diag(Φ⊗ ΛG,j) · P T
G,j ·Q(i−1)

+
α

2
· BG, · diag(Φ) ·BT

G, ·Q(i−1)

−α
2

2
· BG, · ΦΦT · BT

G, ·Q(i−1) (3.47)

3. Q(i)U (i) = Z(i) (QR factorization)

4. End For

5. Qchip = Q(i), Uchip = U (i) (3.48)

Figure 3.9: The flow of simplified orthogonal iteration algorithm.

58



point of the orthogonal iteration can be any matrix, theoretically. However, as we

mentioned before, the Krylov subspace Q is a good approximation of the dominant

invariant subspace, so using Q as the starting point will help the orthogonal iteration

converge within a few iteration steps.

Fig. 3.4.3 summarizes a simplified implementation of the orthogonal iteration al-

gorithm. In (3.47), note that N ≫ R in Q(i−1) ∈ RN×R, because R is typically small

(e.g., around 10) in most practical applications. As a result, similar to (3.45), comput-

ing Z(i) in (3.47) has linear computational complexity. Similarly, since Z(i) ∈ Rm×R

contains only a few columns, the QR factorization in Step 4 of Fig. 3.4.3 also can be

done in linear time for the same reason. In Fig. 3.4.3, if the columns in the initial

matrix Q are not orthogonal to the dominant invariance subspace, then the orthog-

onal iteration is probably convergent [21]. After the orthogonal iteration converges,

we can use Qchip and Uchip in (3.48) to determine the optimal Rank-R approximation

of Achip [21]

Ãchip = QchipUchipQ
T
chip. (3.49)

Combining (3.49) with (3.18) yields

log(Ichip) = ET ·
(

QchipUchipQ
T
chip

)

· E +BT
chipE + Cchip, (3.50)

where expressions of Cchip and Bchip are given in (3.39) and (3.40). We assume a

given approximation rank R in the algorithms in Fig. 3.8 and Fig. 3.4.3. Based on

the approximation error, the value of R can be iteratively determined. For example,

starting from a low-rank approximation, if the modeling error remains large, we should

iteratively increase the value of R. In most practical cases, R in the range of 5 ∼ 15

can provide approximation results which is already sufficiently accurate.
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In summary, to extract the low-rank quadratic model of the full-chip leakage cur-

rent, we can use a two-step iterative algorithm which only involves simple vector

operations and sparse matrix-vector multiplications. Therefore, this algorithm has

linear computational complexity in relation to circuit size. Furthermore, it is not

necessary to construct the matrix Ãchip in (3.49) explicitly. An algorithm that effi-

ciently estimates the leakage current distribution will be introduced in the following

part.

The quadratic function in (3.50) is m-dimensional (m is large, typically). Hence,

estimating the leakage distribution directly from (3.50) is not efficient. Hence, we will

use a quadratic model compaction algorithm to convert the high-dimensional model

to a low-dimensional one, and keep the leakage distribution unchanged at the same

time.

Algorithm: quadratic model compaction algorithm.

Input: the quadratic model in (3.50).
Output: full chip leakage distribution.

1. Qcomp [UcompBcomp] = [QchipBchip] (QR factorization).

2. Ω = QT
compE (3.51)

3. log(Ichip) = ΩT ·
(

UcompUchipU
T
comp

)

· Ω +BT
compΩ + Cchip (3.52)

Figure 3.10: The flow of quadratic model compaction algorithm.

Fig. 3.10 shows the basic steps in the proposed quadratic model compaction al-

gorithm. In [35], it is proved that the quadratic models in (3.50) and (3.52) are

equivalent, and the random variables Ω defined in (3.51) are independent and satisfy

the standard normal distribution.

The quadratic function in (3.52) is (R+1)-dimensional, where R+1≪ N . We can

apply (3.52) to extract the PDF/CDF of log(Ichip), for example, using either Monte
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Carlo analysis or APEX [37]. Then, the distribution of Ichip can be easily computed

by a simple nonlinear transform [57].

There is another point we want to mention here. Leakage analysis can be in-

cremental. If any local changes to a circuit are made, incremental leakage analysis

can facilitate a quick update on the leakage distribution. For simplicity, we only dis-

cuss the case where one gate is changed. It can be directly extended to handle the

simultaneous change of multiple gates.

Assume the i-th gate is changed (e.g., a high Vth gate is replaced by a low Vth

gate), then the full-chip leakage changes as

Inewchip = Ioldchip − IoldG,i + InewG,i , (3.53)

where Ioldchip/I
new
chip and IoldG,i/I

new
G,i represent the leakage currents of the entire chip and

the i-th gate before /after the change, respectively. Once we know the low-rank

quadratic models of log
(

Ioldchip

)

, log
(

IoldG,i

)

and log
(

InewG,i

)

, incremental leakage analysis

can quickly generate the low-rank model for log
(

Inewchip

)

. Compared with (3.17), (3.53)

only contains a few terms. As a result, it is much more efficient to update the

leakage distribution using (3.53) than the full leakage analysis from (3.17). The

iterative algorithm and compaction algorithm we discussed above can be directly

applied to (3.53).

As mentioned earlier, the projection-based approach has its limitations since it

starts with independent random variables generated by PCA. The pre-process PCA

can be expensive (at least non-linear) for a large number of resulting independent

random variables. If we assume a small number of independent variables, the proposed

Krylov based reduction will become less relevant as variable reduction has been done

in the PCA step.
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3.5 Summary

In this chapter, we have presented problem of statistical leakage analysis under process

variations and spatial correlations. We then briefly discussed the existing approaches.

Then we presented two statistical leakage analysis methods: the stochastic spectral

based method with variable reduction techniques and the virtual grid based approach.

We have presented a linear algorithm for full-chip statistical analysis of leakage

currents in the presence of any condition of spatial correlation (strong or weak). The

new algorithm adopts a set of uncorrelated virtual variables over grid cells to represent

the original physical random variables with spatial correlation and the size of grid

cell is determined by the correlation length. As a result, each physical variable is

always represented by virtual variables in local neighbor set. Furthermore, a look-up

table is used to cache the statistical leakage information of each type of gate in the

library to avoid computing leakage for each gate instance. As a result, the full-chip

leakage can be calculated with O(N) time complexity, where N is the number of

grid cells on chip. The new method maintains the linear complexity from strong to

weak spatial correlation and has no limitation of leakage current model or variation

model. This paper also offers an incremental analysis capability to update the leakage

distribution more efficiently when local changes to a circuit are made. Experimental

results show the proposed method is about 1000X faster than the recently proposed

method [9] with similar accuracy and many orders of magnitude times over the Monte

Carlo method. Numerical results shows the proposed incremental analysis can further

achieve significant speedup over the full leakage analysis.
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Chapter 4

Gate-based Statistical Leakage

Power Analysis

4.1 Introduction

In the chapter, we propose a new general full-chip leakage modeling and analysis

method. The new method starts with the process variational parameters such as

the channel length, δL, gate oxide thickness, δTox, and it can derive the full-chip

leakage current Ileak in terms of those variables directly (or their corresponding trans-

formed variables). Unlike existing grid-based methods, which trade the accuracy for

speedups, the new method is gate-based method and uses principal component anal-

ysis (PCA) to reduce the number of variables with much less accuracy loss assuming

that the geometrical variables are Gaussian. For non-Gaussian variables, independent

component analysis (ICA) [24] can be used. The new method considers both inter-die

and intra-die variations and it can work with various spatial correlations. The pro-

posed method becomes linear under strong spatial correlations. Unlike the existing

approaches [9, 22], the new method does not make any assumptions about the distri-
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butions of final total leakage currents for both gates and chips and does not require

any grid-based partitioning of the chip. Compared with [6], the proposed method

applies a more efficient multi-dimensional numerical quadrature method (versus on

reduced number of variables using inter-production via the moment matching), con-

siders more accurate leakage models and presents more comprehensive comparisons

with other methods.

In the new method, we first fit both the subthreshold and gate oxide leakage cur-

rents into analytic expressions in terms of parameter variables. We show that by using

more terms in the gate level analytic models, we can achieve better accuracy than [9].

Second, The new method employs the orthogonal polynomials, which gives the best

representation for specific distributions [20] and is also called the spectral stochastic

method, to represent the variational gate leakages in an analytic form in terms of the

random variables. The step is achieved by using the numerical Gaussian quadrature

method, which is much faster than the Monte Carlo method. The total leakage cur-

rents are finally computed by simply summing up the resulting analytical orthogonal

polynomials of all gates (their coefficients). The spatial correlations are taken care

of by PCA or ICA, and at the same time, the number of random variables can also

been substantially reduced in the presence of strong spatial correlations during the

decomposition process. Experimental results on the PDWorkshop91 benchmarks on

a 45nm technology show that the proposed method is about 10× faster than the

recently proposed method [9] with constant better accuracy.

4.2 Flow of gate-based method

To analyze the statistical model of chip-level leakage current, traditional methods are

grid-based. Since the number of gates on a whole chip is very large, and every gate
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has its own variational parameters, which means that the number of random variables

is huge. So considering efficiency, the traditional methods partition a chip to several

grids, and assume that all the gates in one grid have the same parameters as mentioned

in 3.4.2. However, this is not the real case. Take Fig. 4.1 as one example. Here

the distance between Gate1 and Gate2 is smaller than the distance between Gate1

and Gate3. In grid-based method, we suppose that Gate1 has strong correlation

with Gate3, and has weak correlation with Gate2. But actually, the situation is

opposite. In this section, we will present the new full-chip statistical leakage analysis

Gate1

Gate3

Gate2

Figure 4.1: An example of a grid-based partition.

method. This method is gate-based instead of grid-based, while it can gain better

speed as well as better accuracy than the method in [9], which is based on grid. Our

algorithm is shown in Fig. 4.2. The new algorithm basically consists of three major

parts. The first part (step 1) is pre-characterization, which builds the analytic leakage

expressions (3.1) and (3.2) for each type of gates. This step only need to be done once

for a standard cell library. The second part (step 2-5) generates a set of independent

random variables and builds the gate-level analytic leakage current expressions and

covariances. The final part (step 6) computes the final leakage expressions by simple

polynomial additions and calculates other statistical information.
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Algorithm: New full-chip leakage current computation al-
gorithm.

Input: standard cell lib, netlist, placement information of design, σ of
L and Tox.
Output: analytic expression of the full-chip leakage currents in terms of
Hermite polynomials.

1. Generate fitting parameter matrices asub and agate of Isub and Igate
in (3.1) and (3.2) for each type of gates (after SPICE run on each
input pattern) (Section 3.2).

2. Perform PCA to transform and reduce the original parameter vari-
ables in L into independent random variables in Lk. (Section 4.3).

3. Generate Smolyak quadrature points set Θ2
n with corresponding

weights.

4. Calculate the coefficients of Hermite polynomial of Isub,k and Igate,k
for the final leakage analytic expression for each gate using (4.8)
and (4.9).

5. Calculate the analytic expression of the full-chip leakage current by
simple polynomial additions and calculate µleakage, σleakage, PDF
and CDF of the leakage current if required.

Figure 4.2: The flow of proposed algorithm.
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4.3 Random variables transformation and reduc-

tion

In our gate-based approach, instead of using grid-based partitioning, as in [9], to

reduce the number of channel length variables in presence of the strong spatial cor-

relation, we applied the principal component analysis (PCA) to reduce the number

of random variables. Our method starts with the following random variable vectors:

L = [L1, L2, ..., Ln] + δLinter, Tox = [Tox1, Tox2, ..., Toxn] + δTox,inter, (4.1)

where n is the total number of gates on the whole chip, δLinter and δTox,inter represent

the inter-die (global) variations. In total, we have 2n + 2 random variables. There

exist correlations between L among different gates, represented by the covariance

matrix cov(Li, Lj) computed by (3.11).

The first step is to perform PCA on L to get a set of independent random variables

L′ = [L′
1, L

′
2, ..., L

′
n], where L = PL′, and P = {pij} is the n by n principal component

coefficient matrix. In this process, singular value decomposition (SVD) is used on the

covariance matrix, and the singular values are arranged in a decreasing order, which

means that the elements in L′ are arranged in a decreasing weight order. Then the

number of elements in L′ can be reduced by only considering the dominant part of L′

as [L′
1, L

′
2, ..., L

′
k] (for instance, the weight should be bigger than 1%), where k is the

number of reduced random variables. Then every element L′
i in L′ can be represented

by orthogonal Gaussian random variable ξi with normal distribution.

L′
i = µi + σiξi. (4.2)
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where µi and σi are the mean value and standard deviation of L′
i. And L can be

represented as

L =



















µL1

µL2

...

µLn



















+



















p11 . . . p1k

p21 . . . p2k
...

...
...

pn1 . . . pnk





































σ1ξ1

σ2ξ2
...

σkξk



















+ δLinter . (4.3)

For [Tox1, Tox2, ..., Toxn], δLinter and δTox,inter, we can also represent them using the

standard Gaussian variables as

Tox,j = µox,j + σox,jξox,j, δLinter = σL,interξL,inter, δTox,inter = σox,interξox,inter, (4.4)

where ξox,j, ξL,inter and ξox,inter are independent orthonormal Gaussian random vari-

ables. As a result, we can present L and Tox by k + n + 2 independent orthonormal

Gaussian random variables.

ξ = [ξ1, ξ2, ..., ξk+n+2]. (4.5)

Then the Isub(L,Tox) and Igate(L,Tox) can be modeled as Isub(ξ) and Igate(ξ), re-

spectively.

But among the k+n+2 variables, only k+2 variables related to the channel lengths

are correlated. In other words, the n variables Tox,i of each gate are independent. As

a result, for the jth gate, we only have k+3 independent variables, the corresponding

variable vector, ξg = {ξg,j}, is defined as

ξg,j = [ξ1, ..., ξk, ξox,j, ξL,inter, ξox,inter]. (4.6)
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4.4 Computation of full-chip leakage currents

For each gate, we need to present the leakage currents in order-2 Hermite polynomials

first as shown below for both subthreshold and gate leakage currents – Isub(ξg,j) and

Igate(ξg,j):

Isub(ξg,j) =

P
∑

i=0

Isub,i,jH
2
i (ξg,j), Igate(ξg,j) =

P
∑

i=0

Igate,i,jH
2
i (ξg,j), (4.7)

where H2
i (ξg,j)s are order-2 Hermite polynomials. Isub,i,j and Igate,i,j are then com-

puted by the numerical Gaussian quadrature method discussed in Section 2.2.3. Let

S be the size of Z-dimensional second order (level-2) quadrature point set Θ2
Z and

Z = k + 3. Then Isub,i and Igate,i can be computed as the following:

Isub,i,j =

S
∑

l=1

Isub(~γl)H
2
i (~γl)wl/ < H2

i (ξg,j) >, (4.8)

Igate,i,j =
S
∑

l=1

Igate(~γl)H
2
i (~γl)wl/ < H2

i (ξg,j) >, (4.9)

where Isub(~γl) and Igate(~γl) are computed using (3.1) and (3.2).

As a result, their coefficients for ith Hermite polynomial at jth gate can be added

directly as

Ileakage,i,j =
∑

Isub,i,j +
∑

Igate,i,j . (4.10)

After the leakage currents are calculated for each gate, we can proceed to compute

the leakage current for the whole chip as follows:

Ileakage(ξ) =

n
∑

j=1

(Isub(ξg,j) + Igate(ξg,j)). (4.11)
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The summation is done for each coefficient of Hermite polynomials. Then we obtain

the analytic expression of the final leakage currents in terms of the ξ.

We can then obtain the mean value, variance PDF and CDF of the leakage current

very easily. For instance, the mean value and variance for the full-chip leakage current

are

µleakage = Ileakage,0th, (4.12)

σ2
leakage =

∑

I2leakage,1st + 2
∑

I2leakage,2nd,type1 +
∑

I2leakage,2nd,type2, (4.13)

where Ileakage,ith is the leakage coefficient for ith Hermite polynomial of second order

defined as follows,

H0th(ξ) = 1, H1st(ξ) = ξi, H2nd,type1(ξ) = ξ2i − 1, H2nd,type2(ξ) = ξiξj, i 6= j. (4.14)

4.5 Time complexity analysis

To analyze the time complexity, one typically does not count the pre-characterization

cost of step 1 in Fig. 4.2. For PCA step (step 2), which essentially uses singular value

decomposition (SVD) on the covariance matrix, its computation cost is O(nk2), if we

are only interested in the first k dominant singular values. This is the case for strong

spatial correlation.

In step 3, we need to compute the weights of Level 2 (k+3)-dimensional Smolyak

quadrature point set. For quadratic model with k+3 variables, the number of Smolyak

quadrature points is about (k+3)2. So the time cost for generating Smolyak quadra-

ture points set is O((k + 3)2).

In step 4, we need to call (3.1) and (3.2) S times for each gate. In each call, we
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need to compute k+3 variables in the Hermite polynomials. The computing cost for

the two steps is (O(n(k+3)×S)), where n is the number of gates. After the leakage

currents are computed for each gate, it takes O(n(k + 3)) to compute the full-chip

leakage current.

The total computing cost is O(nk2+ (k+3)2+n(k+3)S +n(k+3)). For second

order Hermite polynomials, S ∝ k2, so the time complexity becomes O(nk3). If k ≪ n

(for strong spatial correlation), we end up with a linear time complexity O(n). In

the sub-90nm VLSI technologies, the spatial correlation is really strong, and in the

down-scaling process, the spatial correlation will become stronger, which makes sure

our method can achieve pretty good time complexity.

4.6 Experimental results

The proposed method is implement in Matlab 7.4.0. For comparison purpose, we also

implement the grid-based method in [9] and the pure Monte-Carlo method. All the

experimental results are carried out in a Linux system with quad Intel Xeon CPUs

with 2.99Ghz and 16GB memory.

The methods for full-chip statistical leakage estimation are tested on circuits in

the PDWorkshop91 benchmark set. The circuits are synthesized with Nangate Open

Cell Library and the placement is from MCNC [41]. The technology parameters come

from the 45nm FreePDK Base Kit and PTM models [59].

Table 4.1 shows the detailed parameters for gate length and gate oxide thickness

variations. Here we choose two set of σ2 distributions. The last column of Table 4.1

shows the standard deviation (σ) of each variation. The 3σ values of parameter

variations for L and Tox are set to 12% of the nominal parameter values, of which

inter-die variations constitute 20% and intra-die variations, 80% (Case 1); inter-die
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Table 4.1: Process variation parameter breakdown for 45nm technology.
Case 1

σ2 Distribution (σ)
Gate Inter-die 20% 4%× 18nm
Length(L) Intra-die

∗ Spatial Correlated 80%
Gate Oxide Inter-die 20% 4%× 1.8nm
Thickness(Tox) Intra-die

∗ Non-Correlated 80%

Case 2
σ2 Distribution (σ)

Gate Inter-die 50% 4%× 18nm
Length(L) Intra-die

∗ Spatial Correlated 50%
Gate Oxide Inter-die 50% 4%× 1.8nm
Thickness(Tox) Intra-die

∗ Non-Correlated 50%

variations constitute 50% and intra-die variations, 50% (Case 2). The parameter L is

modeled as sum of correlated sources of variations, and the gate oxide thickness Tox

is modeled as an independent source of variation. The same framework can be easily

extended to include other parameters of variations. Both L and Tox in each gate

are modeled as Gaussian parameters. For the correlated L, the spatial correlation

is modeled based on the exponential special correlation in (3.11). For [9], we still

partition the chip into a number of regular grids and the numbers of grid partitions

of spatial correlation model used for the benchmarks are given in Table 4.1.

For comparison purposes, we perform Monte Carlo (MC) simulations with 500,000

runs, the grid-based method in [9], and the new method on the benchmarks. The

large number of MC runs is due to the fact that proposed method is quite accurate.

Fig. 4.3 shows the full-chip leakage current distribution (PDF and CDF) of circuit

SC0 with 125 gates, considering variation in gate length and gate oxide thickness as

in Table 4.1 for Case 1, and the spatial correlation of gate length. It shows that our
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method fits very well with the MC results, and is more accurate than [9]. Other test

cases show the similar comparison results. The results of the comparison of mean
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Figure 4.3: Distribution of the total leakage currents of the proposed method, the
grid-based method and the MC method for circuit SC0 (Process variation parameters
set as Case 1).

values and standard deviations of full-chip leakage currents are shown in Table 4.2

and Table 4.3. For Case 1, the average errors for mean value and standard deviation

of the new gate-based method are 0.8% and 4.04%, respectively. While for the grid-

based method in [9], the average errors for mean value and standard deviation are

4.08% and 39.7%, respectively. For Case 2, the average errors for mean value and

standard deviation of the new gate-based method are 0.8% and 5.51%, respectively.

While for the grid-based method in [9], the average errors for mean value and standard

deviation are 4.17% and 28.4%, respectively. Our gate-based method is more accurate

than the grid-based method, especially for standard deviation value. Since we use
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Table 4.2: Comparison of the mean values of full-chip leakage currents among three
methods.

Circuit Gate Grid Variation µ of Ileak (µA) Errors (%)
Name # # Setting MC [9] New [9] New
SC0 125 4 Case 1 1.84 1.75 1.82 -4.67 -0.84

Case 2 1.84 1.75 1.82 -4.85 -0.87
SC2 1888 16 Case 1 29.98 28.88 29.70 -3.65 -0.91

Case 2 30.02 28.89 29.75 -3.77 -0.89
SC5 6417 64 Case 1 107.9 103.6 107.2 -3.93 -0.65

Case 2 107.9 103.6 107.2 -3.9 -0.65

Table 4.3: Comparison standard deviations of full-chip leakage currents among three
methods.

Circuit Variation σ of Ileak (µA) Errors (%)
Name Setting MC [9] New [9] New
SC0 Case 1 0.495 0.668 0.524 35.0 -5.77

Case 2 0.632 0.726 0.689 14.9 9.04
SC2 Case 1 8.606 10.86 8.798 26.2 2.23

Case 2 10.71 12.03 11.36 12.33 6.13
SC5 Case 1 26.19 41.36 25.11 57.9 -4.12

Case 2 26.19 41.36 25.11 57.9 -4.12

45nm technology, while the results in [9] is based on 100nm technology, the error

ranges are different (In [9], the average errors for mean value and standard deviation

are 1.3% and 4.1%). Results of the grid-based method in [9] will become worse when

the technology scales down, since the dominant state assumption is not working any

more.

And Table 4.4 also compares the CPU times of the three methods. From this table

we can see that even our method is gate-based, it is still faster than the method in [9],

which is grid-based. And the proposed method is much faster than the Monte Carlo

method. On average, the proposed method has about 16X speedup over the grid

based method in [9]. We notice that method in [9] will become faster with smaller

number of grids used. But this can lead to large errors even with strong spatial
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correlations.

Table 4.4: CPU time comparison among three methods.

Circuit Variation Cost time(s) Speedup (%)
Name Setting MC [9] New [9] New
SC0 Case 1 378.1 11.35 1.40 8.11 270.1

Case 2 358.6 7.47 1.41 5.30 254.33
SC2 Case 1 1.35× 104 168.51 18.79 30.6 718.5

Case 2 1.35× 104 87.94 17.23 5.10 437.96
SC5 Case 1 2.76× 105 3335 121.2 27.52 2277

Case 2 2.06× 105 7798.3 443.95 17.56 464.33

4.7 Summary

In this chapter, we have presented a gate-based method for analyzing the full-chip

leakage current distribution of digital circuit. The method considers both intra-

die and inter-die variations with spatial correlations. The new method employs the

orthogonal polynomials and multi-dimensional Gaussian quadrature method to rep-

resent and compute variational leakage at the gate level, and uses the orthogonal

decomposition to reduce the number of random variables by exploiting the strong

spatial correlations of intra-die variations. The resulting algorithm compares very

favorable with the existing grid-based method in terms of both CPU time and ac-

curacy. The presented method has about 16X speedup over [9] with constant better

accuracy.
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Chapter 5

Linear Statistical Leakage Power

Analysis Using New

Characterization in Standard Cell

Library

5.1 Introduction

When the spatial correlation is weak, existing general approaches mentioned in 3 and 4

do not work well as the number of correlated variables can not be reduced too much.

Recently an efficient method was proposed [82] to address this problem. The method

is based on simplified gate leakage models and formulates the major computation

tasks into matrix-vector multiplications via Taylor’s expansion. It then applies fast

numerical methods like the Fast Multi-Pole method or the pre-corrected FFT method

to compute the multiplication. However, this method assumes the gate-level leakage

currents are purely lognormal, and the chip-level leakage is also approximated by

76



lognormal distribution, which is not the case as we will show in the paper. Also it

can only give the mean and variances, not the complete distribution of the leakage

powers.

In this chapter, firstly, we present a new linear-time algorithm for statistical leak-

age analysis in the presence of any spatial correlation (from no spatial correlation

to 100% correlated situation). The new algorithm exploits the following property:

leakage current of a gate in the presence of spatial correlation is affected by process

variations in the neighbor area. As a result, gate leakage current can be efficiently

computed by considering the neighbor area in constant time. We adopt a newly pro-

posed spatial correlation model where a new set of location-dependent uncorrelated

virtual variables are defined over grid cells to represent original correlated random

variables via fitting. To compute the statistical leakage current of a gate on the new

set of variables, the orthogonal polynomials based collocation method is applied and

the variational gate leakages and total leakage currents are represented in an analytic

form in terms of the random variables, which can give complete statistic information.

The new method considers both inter-die and intra-die variations and can work with

any spatial correlations (strong or weak, as defined in Section 3.3). Unlike the exist-

ing approaches [9, 22], the new method does not make any assumptions about the

final distributions of total leakage currents for both gate and chip levels. In case of

medium and strong correlations, the proposed method can also work in linear time

by properly sizing the grid cells so both locality of correlation and accuracy are still

preserved.

Furthermore, we bring forth a novel characterization of standard cell library for

statistical leakage information and we have the following observations: (1) The set

of neighbor cells is usually small (∼ 10), and only considering the relative position,

not the absolute position on chip. (2) As proved later, the number of neighbor cells
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involved in our model is not related to the strength (level) of spatial correlation.

(3) The orthogonal polynomials based stochastic collocation method is applied and

the variational leakage of a gate is represented in an analytic form in terms of the

virtual random variables, which can give complete distribution. (4) The gate-level

leakage distribution is only related to the type of gates in a standard cell library. This

statistical leakage characterization can be stored in a look-up table, which only needs

to be built once for a standard cell library. And the full-chip leakage of any chip can

be easily calculated by summing up certain items in the look-up table.

The main contributions of this chapter are as follows:

1. We applied the virtual grid based model for spatial correlation modeling in the

statistical leakage analysis and making the resulting algorithm linear time for

the first time for all the spatial correlation (weak or strong) cases.

2. We proposed a new characterization in SCL for statistical leakage analysis. The

corresponding algorithm can accelerate full-chip full-chip statistical analysis for

all spatial correlation conditions (from weak to strong). To the best knowledge

of the authors, the proposed approach is the first published algorithm which

can guarantee O(N) time complexity for all spatial correlation conditions.

3. In addition, an incremental algorithm has been proposed. When a few local

changes are made, only a small circuit (includes the changing gates) is involved

in the updating process. Our numerical examples show the incremental analysis

can achieve 10× further speedup compared with the library-enabled full-chip

analysis approach.

In addition to the main contributions, we also present a forward-looking way

to extend the proposed method to handle run-time leakage analysis. In order to
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estimate maximum run-time leakage, the input state under the maximum leakage

input vector needs to be chosen. While for transient run-time leakage simulation,

every time the input vector changes, the input states of some gate on a chip will

be updated. Therefore, the incremental technique makes efficient run-time leakage

simulation possible. More details are given in Section 5.4.6.

Experimental results on the PDWorkshop91 benchmarks on a 45nm technology

show the proposed method using novel characterization in SCL is on average two

orders of magnitude faster than the recently proposed method [9] with similar accu-

racy. For weak correlation situation, more speed-up can be observed. We remark that

the experiment in this work is based on idle-time leakage. However, the linear time

algorithm can also be applied to run-time leakage by selecting different input states

under certain input vectors. Notice that glitch events is ignored in the simplified

discussion, which may cause estimation errors [39], and needs to be considered in the

future work. More details are discussed in Section 5.4.6.

5.2 Virtual grid-based spatial correlation model

The virtual grid-based model is based on the observation that the leakage current of

a gate in the presence of spatial correlation only correlates to its neighbor area. If

we can introduce a set of uncorrelated variables to model the localized correlation,

computing the leakage current of one gate can be done in a constant time by only

considering its neighbor area. Hence total full-chip statistical leakage currents can

then be computed by simply adding all the gate leakage currents together in terms

of the virtual set of variables in linear time. Notice that the virtual random variables

in different grids are always independent, which is different from traditional grid-

based model. This idea was proposed recently for fast statistical timing analysis [11]
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to address the computational efficient modeling for weak spatial correlation, which

is similar to the PCA-based approach [64], but with different set of independent

variables.

Specifically, the chip area is still divided into a set of grid cells. When the spatial

correlation is weak enough to be ignored, the cell can become so small that one cell

only contains one gate. Then we introduce a “virtual” random variable for each cell

for one source of process variation.

These virtual random variables are independent and will be the basis for statistical

leakage current calculation concerned with spatial correlation. Then we can express

the original physical random variable of a gate in a grid cell as a linear combina-

tion of the virtual random variables of its own cell as well as its nearby neighbors.

Since virtual random variable in each cell has specific location on chip, such location-

dependent correlation model still retains the important spatial physical meaning (in

contrast to PCA-based models). The grid partition can be made of any shape. We

use hexagonal grid cells [11] in this work since they have minimum anisotropy for 2D

space.

Here we define the distance between centers of two direct neighbor grid cells as the

grid length dc. Gates located in the same cell have strong correlation (larger than a

given threshold value ρhigh) and are assumed to have the same parameter variations.

And “spatial correlation distance” dmax is defined as the minimum distance beyond

which the spatial correlation between any two cells is sufficiently small (or smaller

than a given threshold value ρlow) so we can ignore it.

In this model, the jth grid cell is associated with one virtual random variable

ξj ∼ N(0, 1), which is independent of all other virtual random variables. ∆Lj can then

be expressed as its k closest neighbor cells. We introduce the concept of correlation

index neighbor set T (j) for cell j, and the corresponding variable vector, ~ξg,j, is defined
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as

~ξgridj = [ξq, q ∈ T (j)], (5.1)

to model the spatial correlation of ∆Lj as

∆Lj =
∑

q∈T (j)
αq · ξq. (5.2)

For example, hexagonal grid partition is used as shown in Fig. 5.1, and if T (i)

for each cell is defined as its closest k = 7 neighbor cells, then ∆L located at cell

(xi, yi) can be represented as a linear combination of seven virtual random variables

located in its neighbor set. Take ∆L1 in Fig. 5.1 for instance, we have ∆L1 =

α1ξ1 + α2ξ2 + . . .+ α7ξ7.

d
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Figure 5.1: Location-dependent modeling with the T (i) of grid cell i defined as its
seven neighbor cells.

This concept of virtual random variable helps to model the spatial correlation.

Two cells close to each other will share more common spatial random variables, which

means the correlation is strong. On the other hand, two cells physically far away from
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each other will share less or no common spatial random variables. In this way, the

spatial correlation is modeled as a homogeneous and isotropic random field and the

spatial correlation is only related to distance. That is to say, spatial correlation can

be fully described by ρ(d) in (3.11). dmax is the distance beyond which ρ(d) becomes

small enough to be approximated as zero.

Since ρ(d) is only a function of distance, the number of unique distance values

between two correlated grid cells equals the number of unique element values in ΩN .

From Fig. 5.1, the spatial correlation distance equals to the distance between cell

1 and cell 10 which is dmax =
√
7dc, and there are only three unique correlation

distances d1 to d3. Correspondingly, there are only three unique elements in ΩN ,

without including two special values: 0 for d ≥ dmax or 1 for distance within one cell.

Furthermore, the same correlation index can be used for all grid cells and the co-

efficient αk should be the same for the same distance because of the homogeneousness

and isotropy of spatial correlation. For the cell marked 1 in Fig. 5.1, we only have two

unique values among the seven coefficients, i.e., we set p0 = α1, p1 = αi, i = 2, 3, . . . , 7.

In other words, we have

∆L1 = p0ξ1 + p1(ξ2 + . . .+ ξ7). (5.3)

In this way, although there are seven random variables involved in the neighbor set,

there are only two unknown coefficients left in the linear function in (5.3) due to the

symmetry property of hexagonal partition.

According to (3.11), a nonlinear over-determined system can be built to determine
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the two unique values of p0, p1 as follows,

ρ(0) = E(∆L2
1) = p20 + 6p21

ρ(d1) = E(∆L1,∆L2) = 2p0p1 + 2p21 (5.4)

ρ(d2) = E(∆L1,∆L9) = 2p21

ρ(d3) = E(∆L1,∆L8) = p21

The system in (5.5) can be solved by formulating them as a non-linear least square

optimization problem. In the matrix form, we can rewrite (5.2) for a whole chip as

∆L = PN,N · ~ξ, (5.5)

where N is the number of grid cells, and ~ξ = [ξ1, ξ2, . . . , ξN ]. According to (5.2),

the correlation index set contains only k spatial random variables, which is a very

small fraction of the total spatial random variables. As a result, PN,N is a sparse

matrix. Every gate only is concerned with k virtual random variables, which has

specific location information.

Fundamentally, PCA-based method performs a similar process and has a similar

new transformation matrix between the original and new set of variables:

∆L = Vn,n · ~ξ, (5.6)

where Vn,n is the transformation matrix obtained from eigen-value decomposition of

the correlation matrix in PCA. The major difference is that Vn,n is a dense matrix

even though the original correlation matrix is sparse. This makes a huge difference

especially when the spatial correlation is weak as eigen-decomposition will take almost
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O(n3) to compute. The virtual independent spatial correlation model also works for

medium and strong correlation cases, which will be shown in the next section.

5.3 Linear chip-level leakage power analysis method

In this section, we will present the new full-chip statistical leakage analysis method.

We first introduce the overall flow of the proposed method and highlight the major

computing steps. The new algorithm flow is summarized in Fig. 5.2.

Algorithm: New full-chip statistical leakage anlaysis.

Input: standard cell lib, netlist, placement information of design, stan-
dard deviation of L and Tox.
Output: analytic expression of the full-chip leakage currents in terms of
Hermite polynomials.

1. Generate a1 through a5 for Isub and Igate in (3.1) and (3.2) for each
type of gates (Section 3.2).

2. Solve (5.5) to determine coefficients in (5.3).

3. Calculate the coefficients of Hermite polynomial of Isub and Igate
for the leakage analytic expression for each gate.

4. Calculate the analytic expression of the full-chip leakage current
by simple polynomial additions and calculate mean value, standard
deviation, PDF and CDF of the leakage current if required.

Figure 5.2: The flow of proposed algorithm.

The new algorithm consists of three major parts. The first part (Step 1 and

2) is pre-characterization. Step 1 builds the analytic leakage expressions (3.1) and

(3.2) for each type of gates, which only needs to be done once for a standard cell

library. Step 2 deals with a small-sized non-linear over-determined system, which can

be solved with any least-square optimization algorithm. The second part (Step 3)
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generates a small set of independent virtual random variables and builds the analytic

leakage current expressions and covariances for each gate on top of the new random

variables. The final part (Step 4) computes the final full-chip leakage expressions by

simple polynomial additions. From the final expressions, we can calculates important

statistical information (like mean, variance, and even the whole distributions). In the

following, we briefly explain some important steps.

5.3.1 Computing gate leakage by the orthogonal polynomial

method

In the following, we use the orthogonal polynomial based modeling approaches men-

tioned in 2.2.3. Note that for Gaussian and log-normal distributions, Hermite poly-

nomial is the best choice as it leads to exponential convergence rate [20]. For non

Gaussian and non log-normal distributions, there are other orthogonal polynomials.

The proposed method can be extended to other distributions with different orthogonal

polynomials.

In our problem, y(~ξ) in (2.22) will be the leakage current for each gate, and

eventually for the full chip. For the jth gate, from (5.2), ∆Lj only relates to k

independent virtual random variables in T (j). Since k is a small number, Step 3 in

Fig. 5.2 can be very efficient.

To compute the gate leakage current, we need to present both Isub and Igate of

each gate in the second-order Hermite polynomials, respectively:

Isub(~ξgridj) =
∑P

i=0
Isub,i,jHi(~ξgridj), (5.7)

Igate(~ξgridj) =
∑P

i=0
Igate,i,jHi(~ξgridj), (5.8)
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where Hi(~ξgridj) are second-order Hermite polynomials defined as in (4.14). And

Isub,i,j and Igate,i,j are then computed by the numerical Smolyak quadrature method

in (2.32).

Notice that the time complexity of computing leakage for a gate is O(k2). And the

number of involved independent random variables k is very small compared to total

number of gates. The analytic expression is also functions of those involved random

variables.

5.3.2 Computation of full-chip leakage currents

After the leakage currents are calculated for each gate, we can proceed to compute

the leakage current for the whole chip as follows:

Ichip(~ξ) =
∑n

j=1
(Isub(~ξgridj) + Igate(~ξgridj)). (5.9)

The summation is done for each coefficient of Hermite polynomials. Then we obtain

the analytic expression of the final leakage currents in terms of ~ξ.

We can then obtain the mean value and variance of full-chip leakage current very

easily as follows,

µchip = Ichip,0th, (5.10)

σ2
chip =

∑

I2chip,1st + 2
∑

I2chip,2nd,type1

+
∑

I2chip,2nd,type2, (5.11)

where Ichip,ith is the leakage coefficient for ith Hermite polynomial of second order

defined in (4.14). Since Hermite polynomials with orders higher than two have no

contribution to mean value or standard deviation. Second order is good enough for
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estimating µchip and σchip in (5.10) and (5.11).

5.3.3 Time complexity analysis

To analyze the time complexity, one typically does not count the pre-characterization

cost of Step 1 in Fig. 5.2, and the time cost of Step 2 is ignorable compared to the

following steps. In Step 3, we need to compute the weights of Level 2 k-dimensional

Smolyak quadrature point set. For quadratic model with k+3 variables, the number

of Smolyak quadrature points is S ∼ O(k2) based on the discussion in Section 5.3.1.

So the time cost for generating Smolyak quadrature points set is O(k2). In step 4, we

need to call (3.1) and (3.2) S times for each gate. In each call, we need to compute

k + 3 variables in the Hermite polynomials. The computational cost for the two

steps is (O(nk × S)), where n is the number of gates. After the leakage currents are

computed for each gate, it takes O(n(k+3)) to compute the full-chip leakage current.

For the second order Hermite polynomials, S ∝ k2, and the k is the number of

grid cells in the correlated neighbor index set, which is a very small constant number.

As a result, the time complexity of our approach becomes linearly – O(n).

5.4 New statistical leakage characterization in SCL

In this section, we will present why a new characterization modeling statistical leakage

can be added to SCL, and how it can be applied in our new full-chip statistical leakage

analysis method.
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5.4.1 Acceleration by look-up table approach

The spatial correlation in (5.2) is related to distance between two grid cells. As a

result, neighbor set T (i) represents the relative location, not the absolute location.

In other words, a local neighbor set T and a local set of variables ~ξloc = [ξ1, . . . , ξk]

can be shared by all the gates in all the cells.

The local neighbor set T and the coefficients in (5.2) are determined by dmax/dc.

From the specific spatial correlation model in (3.11), (as shown in Fig. 5.3),

dmax = η
√

− ln(ρlow), dc = η
√

− ln(ρhigh), (5.12)

then the ratio of spatial correlation distance dmax over grid length dc becomes

dmax/dc =
√

ln(ρlow)/ln(ρhigh). (5.13)

Once the threshold values ρhigh and ρlow are set, dmax/dc is not related to the correla-
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Figure 5.3: Relation between ρ(d) and d/η.

tion length η. This means we can determine the grid length once we know the spatial

88



correlation distance for a specific correlation formula at cost of controlled errors (by

ρhigh and ρlow).

Furthermore, (5.13) shows the spatial correlation (strong or weak) has nothing to

do with T and the virtual random variables used in our model. At the same time, the

fitting parameters of static leakage in (3.1) and (3.2) is only related to the types of

gates in a library. As a result, the coefficients of Hermite polynomials for the leakage of

one gate are only functions of the type of the gate, ρhigh and ρlow. Therefore, a simple

look-up table can be used to store the coefficients of Hermite polynomials of each type

of gates in the library. In other words, we do not need compute the coefficients of

Hermite polynomials for each gate, just look them up from table instead. This makes

a big difference, as the time complexity is reduced from O(n) to O(N), where n is

the number of gates and N is the number of grid cells on chip.

For the look-up table, suppose Q is the number of Hermite polynomials involved

and m is the number of gate types in the library, then it includes two matrices as

follows:

CS = {Isub,q,j}, CG = {Igate,q,j}. (5.14)

Here Isub,q,j represents the coefficient of Hq for jth kind of gate in the library for

subthreshold leakage; and Isub,q,j represents the coefficient of Hq for jth kind of gate

in the library for gate oxide leakage. CS and CG are Q × m matrices. Notice the

table needs to only be built once and can be reused for different designs with different

conditions of spatial correlations since the new algorithm is independent of spatial

correlation length η or the circuit design information. In this way, the look-up table

actually builds a new characterization in SCL, which present the statistical leakage

behavior of each standard cell.
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5.4.2 Enhanced algorithm

The enhanced new algorithm consists of two parts. The first part is pre-characterization

as shown in Fig. 5.4. We build analytic leakage current expressions for each kind of

gate on top of a small set of independent virtual random variables. For fixed values

of ρhigh, ρlow and one library, a new characterization is added to the SCL by building

a look-up table, which stores coefficients of Hermite polynomials of Isub and Igate for

the leakage analytic expressions for each kind of gate. This process only needs to be

done once for one LIBRARY, given ρhigh and ρlow. Besides, it involves a small-size

non-linear over-determined problem, which can be solved fast with any least-square

algorithm.

Algorithm: Characterization of statistical leakage infor-
mation in SCL

Input: standard cell lib, ρhigh, ρlow.
Output: look-up table for coefficients of Hermite polynomials of Isub
and Igate for the leakage analytic expressions for each kind of gate.

1. Generate fitting parameter matrices asub and agate of Isub and Igate
in (3.1) and (3.2) for each type of gates (after SPICE simulation
on each input pattern) (Section 3.2).

2. Calculate dmax/dc from ρhigh and ρlow to determine the neighbor
set. And then solve (5.5) to determine coefficients in (5.3).

3. Generate Smolyak quadrature points set Θ2
z with corresponding

weights.

4. Calculate the coefficients of Hermite polynomials of Isub and Igate
for the leakage analytic expressions for each kind of gate in library.

Figure 5.4: The flow of statistical leakage characterization in SCL.

When we deal with full-chip statistical leakage analysis, the coefficients of local

Hermite polynomials in the neighbor grid cell set for each cell can be simply calculated
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by the look-up table. After transferring the local coefficients to corresponding global

positions, we can compute the final full-chip leakage expressions by simple polynomial

additions. From the resulting expression, we can calculate other statistical informa-

tion (like mean, variance, and even the whole distributions). The new algorithm flow

is summarized in Fig. 5.5. In the following, we briefly explain some important steps.

Algorithm: New full-chip statistical leakage analysis algo-
rithm.

Input: Look-up table for coefficients of Hermite polynomial of Isub and
Igate for the leakage analytic expression for each kind of gate. netlist,
placement information of design, standard deviation of L and Tox.
Output: analytic expression of the full-chip leakage currents in terms of
Hermite polynomials.

1. For every grid cell on chip, calculate the coefficients of local Hermite
polynomials in the neighbor cell set by the look-up table.

2. Transfer the local coefficients to their corresponding global posi-
tions.

3. Calculate the analytic expression of the full-chip leakage current
by simple polynomial additions and calculate mean value, standard
deviation, PDF and CDF of the leakage current if required.

Figure 5.5: The flow of the proposed algorithm using statistical leakage characteriza-
tion in standard cell library.

5.4.3 Computation of full-chip leakage currents

Here we define a gate mapping matrix as follows

GN×m = {gi,j}, (5.15)
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where gi,j represents the number of jth kind of gate in library located in ith grid cell.

Then the coefficients of local Hermite polynomials in neighbor set for all the cells on

chip can be easily calculated by the look-up table as follows,

Isub,loc = G · CT
S , Igate,loc = G · CT

G (5.16)

In order to get the full-chip leakage current, the local coefficients need to be

transferred to their corresponding global positions

T (i) = (xi, yi) + T. (5.17)

For the ith grid cell, the local set of random variables ~ξloc should be transferred to

the corresponding positions in T (i). Therefore, Isub,loc and Igate,loc can be transferred

to the corresponding global coefficients based on the global virtual random variable

set ~ξ. For example, the coefficient of ξi in the ith cell is

Isub(ξi) =
∑

k,i∈T (k)

Isub,loc(ξT (k)−(xk,yk)) (5.18)

Next, we can proceed to compute the leakage current of the whole chip as follows,

Ichip(~ξ) =
∑

Isub(~ξ) + Igate(~ξ) (5.19)

The summation is done for each coefficient of global Hermite polynomials to obtain

the analytic expression of the final leakage currents in terms of ~ξ. We can then obtain

the mean value, variance, PDF and CDF of the leakage current very easily. For
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instance, the mean value and variance for the full-chip leakage current are

µchip = Ichip,0th, (5.20)

σ2
chip =

∑

I2chip,1st + 2
∑

I2chip,2nd,type1

+
∑

I2chip,2nd,type2, (5.21)

where Ichip,ith is the leakage coefficient for ith Hermite polynomial of second order

defined in (4.14).

5.4.4 Incremental leakage analysis

During the leakage-aware circuit optimizations, a few small changes might be made

to the circuit. But we do not want to compute the whole chip leakage from scratch

again. In this case, incremental analysis become necessary. In this section, we show

how this can be done in our look-up table based framework.

For brevity, we only consider the case where one gate is changed. However, the

proposed incremental approach can be easily extended to handle a number of gates.

Assume one gate located in the ith grid cell is changed (e.g. a jth type of gate is

replaced by a (j + 1)th type), resulting in:

Inewchip = Ioldchip − Ioldgrid−i + Inewgrid−i (5.22)

where Inewchip and Ioldchip denote the full-chip leakage currents after and before change,

respectively; and Ioldgrid−i and Inewgrid−i are the leakage currents in the ith grid cell before

and after change, respectively.

As defined in (5.15), gi,j in gate mapping matrix represents the number of jth

kind of gate in the library located in the ith cell on a chip. Therefore, we can quickly
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generate the new gate mapping matrix Gnew by updating only two elements in Gold

gnewi,j = goldi,j − 1,

gnewi,j+1 = goldi,j+1 + 1. (5.23)

In the incremental analysis processes, we can consider the updating part as a small

circuit, in which there is only one grid cell (the ith cell on chip) and only two types

of gates in the library (the jth and the (j + 1)th). Then the updating gate mapping

matrix is

Gupdate = [−1 1], (5.24)

and look-up tables in (5.14) using in the small circuit are only

Cupdate
S = [Isub,j, Isub,j+1]

Cupdate
G = [Igate,j , Igate,j+1], (5.25)

where Isub,j/(j+1), Igate,j/(j+1) are the j/(j + 1)th column in CS and CG, respectively.

Compared to the size of the whole chip, the small circuit is much simpler and

only contains a few terms. Therefore, updating the leakage distribution using (5.24)

and (5.25) is much cheaper than the full-blown chip leakage analysis. More details

on the incremental look-up table approach are not included in this paper due to the

limited number of pages.

5.4.5 Time complexity analysis

Considering statistical leakage analysis of a certain chip, for each grid cell, we need

to do a weighted sum up of m kinds of gates in this cell for every coefficient in the
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neighbor set(size k). For quadratic model with k variables, the number of coefficients

is about S ∼ k2. So the time cost for this step is O(k2 × m × N), where N is the

number of cells. For transferring the local coefficients to their global positions and

summing them up, the time cost is O(N). Next, it takes O(N) to compute the full-

chip leakage current. Since k and m are very small constant numbers, as a result, the

time complexity of our approach becomes O(N).

5.4.6 Discussion of extension to statistical run-time leakage

estimation

The leakage current for each input combination we obtained in 3.2 can be the leakage

in stand-by mode (idle) as well as active mode (run-time), by choosing different

selections of input vectors.

For idle leakage analysis, we take the average of the leakage currents of all the

input combinations to arrive at analytic expression for each gate as in (5.26), in lieu

of the dominant states used in [9]. The reason for keeping all input states is that the

technology down-scaling narrows the gap between leakage under dominant states and

others. Only consider one state in leakage analysis will lead to large error compared

to the simulation results.

Iavgsub =
∑

i∈all input states
PiIsub,i,

Iavggate =
∑

i∈all input states
PiIgate,i, (5.26)

where Pi is the probability of input state i and Isub,i and Igate,i is the subthreshold

leakage and gate leakage value at input state i, respectively.

On the other hand, run-time leakage might change when a new input vectors is

95



applied. By choosing the input state at gate-level under certain input vector, the

final analytic expression for run-time leakage can be obtained. Notice that the size of

the look-up table of run-time leakage is larger than the one used in idle-time leakage

analysis. For run-time leakage, the analytic expressions of all input patterns cannot

be combined and have to be stored separately.

The proposed statistical characterization in SCL is fast enough to make run-time

leakage estimation under a series of input vectors possible. More details for statistical

run-time leakage analysis is given in the following part.

Here we present a forward-looking way to extend the proposed method to han-

dle run-time leakage current estimation. In traditional power analysis, leakage was

considered important only in the idle time. However, as technology scales down, the

growth of leakage power become significant even during run time for instance for

computing the maximum power bound [16].

Run-time leakage, however, is input-signal dependent and changes each time the

input signals change, which means it becomes time varying. As a result, the run-time

leakage analysis will take extremely long time as we need to perform the statistical

analysis for each input vector along the time domain. Fortunately, with the novel

statistical characterization in SCL and the incremental approach discussed in Sec-

tion 5.4.4, leakage analysis at each cycle is fast enough to make run-time leakage

estimation possible.

In the following, we show how to extend the proposed statistical leakage method

to handle the run-time leakage analysis. First, in the run-time leakage analysis, given

the initial input vector and initial state of each gate on a chip, the initial leakage

analysis can be done using the algorithm in Fig. 5.5. After that, every time the

input vector changes, the input states of some gates on the chip will be updated.

Instead of computing the chip-level leakage from the very beginning, the incremental
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technique discussed in Section 5.4.4 can be applied here to update the run-time leakage

information. The flow of proposed statistical analysis of run-time leakage is shown in

Fig 5.6.

Change in
input vector?

input states of all gates on chip
SLA on given initial input vector and

Update runtime leakage behavior
by incremental leakage analysis

No

Yes

Figure 5.6: Simulation flow for full-chip run-time leakage.

Also one notable difference is that the gate-level leakage analytical expressions

in (3.1) and (3.2) for all input states need to be stored for run-time leakage analysis

instead of the average value in (5.26) for idle-time leakage analysis.

Second, sometimes the maximum statistical run-time leakage estimation is re-

quired instead of such transient results of leakage. In fact, the maximum run-time

leakage of a circuit can be much greater than the minimum leakage (by a few orders

of magnitude [39]). Besides, the input vectors causing the maximum leakage current

highly depends on process variations due to the shrinking physical dimensions.

To obtain the maximum statistical run time leakage, we follow the work in [16],

which proposed a technique to accurately estimate the run-time maximum/minimum

leakage vector considering both cell functionalities and process variations. One can

first run the tool in [16] to obtain input vector giving the maximum leakage power

97



first. Then one can apply the proposed SCL tool to obtain the maximum/minimum

statistical leakage power under the input. The proposed statistical leakage character-

ization in SCL will work as long as the input vector is given.

We note that glitch events also have effect on run-time leakage power and the

ignoring glitching can cause an estimation error of approximately 5-20% depending

on circuit topology [39]. However, glitch has not been considered in any existing

statistical run-time leakage analysis works so far and will be investigated in the future.

5.4.7 Discussion about run-time leakage reduction technique

Run-time leakage reduction technology such as power gating [3] is widely applied

in design of mobile devices nowadays. Although the model of leakage power used

in this work is idle-time leakage, the proposed method can be extended to leakage

computation under the run-time scenario with leakage reduction.

By shutting off the idle blocks, power-gating is an effective technique for saving

leakage power. Following the run-time leakage model for power-gating in [27], the

variational part of full-chip leakage can be estimated as

Ileak = (1−W )
∑

i∈allgates
Igatei , (5.27)

where W is the empirical switching factor. And from [80], the leakage of a gate Igate

can be approximated into a single exponential function of its virtual ground voltage

(VV G)

Igate ≈ Îe−KgateVV G , (5.28)

where Kgate is the leakage reduction exponent, and Î is zero-VV G leakage current.

Notice both the switching factor W in (5.27) and the leakage reduction exponent
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Kgate in (5.28) are related only to the type of gates and not to a statistical factor.

Therefor, the proposed look-up table approach can work for both idle leakage and

run-time leakage with power-gating activities.

5.5 Experimental results

The proposed methods with and without using look-up table have been implemented

in Matlab 7.8.0. Since the leakage model for method in [82] has to be purely log-

normal (linear terms in exponent parts), we did not choose it for comparing purpose.

All the experimental results are carried out in a Linux system with quad Intel Xeon

CPUs with 2.99Ghz and 16GB memory.

The methods for full-chip statistical leakage analysis were tested on circuits in the

PDWorkshop91 benchmark set. The circuits were synthesized with Nangate Open

Cell Library [53] and the placement is from MCNC [41]. The technology parameters

come from the 45nm FreePDK Base Kit and PTM models [59].

Table 5.1: Summary of test cases used in this chapter.

Circuit Gate # Area/µm2 Testcase dmax/µm dc/µm Grid #

SC0 125 1459×1350 Case 1 2190 730 2×2
Case 2 1095 365 4×4

SC1 1888 4892×4874 Case 3 1896 612 8×8
Case 4 918 328 16×16

SC2 6417 10092×10466 Case 5 984 328 32×31
Case 6 482 164 64×64

VLSI 2e6 SC2 × 256 Case 7 6301 2144 112×112

According to [1], L and Tox for high performance logic in 45nm technology will be

18nm and 1.8nm, respectively. And the physical variation should be controlled within

+/-12%. So the 3σ values of variations for L and Tox were set to 12% of the nominal
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values, of which inter-die variations constitute 20% and intra-die variations, 80%. L

is modeled as sum of spatial correlated sources of variations, and Tox is modeled as

an independent source of variation. The same framework can be easily extended to

include other parameters of variations. Both L and Tox are modeled as Gaussian

parameters. For the correlated L, the spatial correlation is modeled based on (3.11),

and the partition adopts Fig. 5.1. The test cases are given in Table 5.1 (all length

units in µm), where test case “VLSI” is generated from duplicating SC2 as unit block

to 16×16 array.

For comparison purposes, we performed Monte Carlo (MC) simulations with

50,000 runs using (3.1) and (3.2), the method in [9] (only consider spatial correlation

of neighbor grid cells) and the proposed approaches on the benchmarks.

5.5.1 Accuracy and CPU time

The results of the comparison of mean value and standard deviations of full-chip

leakage current are shown in Table 5.2, where New is the proposed method. The

average errors for mean and standard variance (σ) values of the new technique are

4.52% and 3.92%, respectively. While for the method in [9], the average errors for

mean value and σ are 4.12% and 3.83%, respectively. Table 5.2, shows these two

algorithms have almost the same accuracy and our method can handle both strong

and weak spatial correlations by adjusting grid size. For very large circuit such as

Case7 Monte Carlo and method in [9] run out of memory but the proposed method

still works.

Table 5.3 compares the CPU times of MC, method in [9], proposed method(New),

and proposed method using statistical leakage characterization in SCL (shorted as

LUT). This table shows the new method, New, is much faster than the method in [9]
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Table 5.2: Accuracy comparison of different methods based on Monte Carlo.
Test Grid Mean Value (µA) Errors (%)
Case # MC Method [9] New Method [9] New
Case1 2 × 2 3.311 3.105 3.169 -6.20 -4.28
Case2 4 × 4 3.310 3.105 3.169 -6.20 -4.28
Case3 8 × 8 30.04 28.88 30.46 -3.85 -1.38
Case4 16 × 16 30.04 28.88 30.46 -3.85 -1.38
Case5 32 × 32 191.6 179.0 182.7 -6.59 -4.65
Case6 64 × 64 191.6 179.0 182.7 -6.59 -4.65
Case7 112 × 112 – – 2.6e4 – –

Test Grid Standard Deviation (µA) Errors (%)
Case # MC Method [9] New Method [9] New
Case1 2 × 2 0.904 0.837 0.861 -7.40 -4.69
Case2 4 × 4 0.594 0.547 0.548 -7.91 -7.74
Case3 8 × 8 5.713 5.494 5.417 -3.83 -5.18
Case4 16 × 16 5.307 5.400 5.067 1.75 -4.52
Case5 32 × 32 33.87 31.83 32.25 -6.02 -4.78
Case6 64 × 64 33.20 30.27 29.34 -8.83 -11.63
Case7 112 × 112 – – 4.1e3 – –

and MC simulation. On average, the proposed algorithm has about 113X speedup

over [9] and many order of magnitudes over the MC method. And the speed of our

approach is not affected by the total number of grid cells. If the spatial correlation is

strong, which means dmax is large, dc can be increased at the same time without loss

of accuracy. So the number of neighbor grid cells in T (i) will still be much smaller

than the number of gates. The new method will be efficient and linear under both

cases. Table 5.3 also shows proposed method can gain further speed up with look-up

table technique using statistical leakage characterization in SCL.

5.5.2 Incremental analysis

For comparison purpose, one gate in each benchmark circuit is changed, and the pro-

posed incremental algorithm is applied to update the leakage value locally. Table 5.4
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Table 5.3: CPU time comparison.

Test Case MC Method in [9] New LUT

Case1 83.14 2.96 0.10 0.023

Case2 87.09 13.16 0.14 0.036

Case3 828.42 26.24 0.86 0.033

Case4 869.12 74.50 0.87 0.609

Case5 7532.77 117.77 8.65 1.005

Case6 7873.54 490.84 10.67 7.191

Case7 – – 2598 3.7313

shows the computational cost of the incremental analysis and the speedup over four

different leakage analysis methods in Table 5.3. Compared with the look-up table ap-

proach (the fifth column in Table 5.3), the incremental analysis achieves 13− 3.1e4X

speedup. As discussed in Section 5.4.4, the mini-circuit for updating only contains a

small constant number of terms. Therefore, when the problem size increases further,

we expect the incremental analysis could achieve more speedup over the full leakage

analysis.

Table 5.4: Incremental leakage analysis cost.
Test Cost time(s) Speedup over
Case Incremental LUT MC [9] New LUT
Case1 3.78e-4 2.2e5 2.7e4 265 53
Case2 1.53e-4 5.7e5 8.1e4 915 157
Case3 0.0026 3.2e5 3.7e4 331 13
Case4 1.12e-4 7.8e6 6.7e5 7768 407
Case5 0.0095 7.9e5 1.1e5 911 16
Case6 2.77e-4 2.8e7 6.1e6 3.9e4 3.1e4
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5.6 Summary

In this chapter, we have presented problem of statistical leakage analysis under process

variations and spatial correlations. We then briefly discussed the existing approaches.

Then we presented two statistical leakage analysis methods: the stochastic spectral

based method with variable reduction techniques and the virtual grid based approach.

We have presented a linear algorithm for full-chip statistical analysis of leakage

currents in the presence of any condition of spatial correlation (strong or weak). The

new algorithm adopts a set of uncorrelated virtual variables over grid cells to represent

the original physical random variables with spatial correlation and the size of grid

cell is determined by the correlation length. As a result, each physical variable is

always represented by virtual variables in local neighbor set. Furthermore, a look-up

table is used to cache the statistical leakage information of each type of gate in the

library to avoid computing leakage for each gate instance. As a result, the full-chip

leakage can be calculated with O(N) time complexity, where N is the number of

grid cells on chip. The new method maintains the linear complexity from strong to

weak spatial correlation and has no limitation of leakage current model or variation

model. This work also offers an incremental analysis capability to update the leakage

distribution more efficiently when local changes to a circuit are made. Experimental

results show the proposed method is about 1000X faster than the recently proposed

method [9] with similar accuracy and many orders of magnitude times over the Monte

Carlo method. Numerical results shows the proposed incremental analysis can further

achieve significant speedup over the full leakage analysis.
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Chapter 6

Statistical Capacitance Modeling

and Extraction

6.1 Introduction

It is well accepted that the process-induced variability has huge impacts on the circuit

performance in the sub-100nm VLSI technologies [51, 50]. The variational consider-

ation of process has to be assessed in various VLSI design steps to ensure robust

circuit design. Process variations consist of both systematic ones, which depend on

patterns and other process parameters, and random ones, which have to be dealt

with using stochastic approaches. Efficient capacitance extraction approaches by us-

ing the boundary element method (BEM) such as the fastCap [47], HiCap [66] and

PHiCap [81] have been proposed in the past. To consider the variation impacts on

the interconnects, one has to consider the RLC extraction processes of the three-

dimensional structures modeling the interconnect conductors. In this chapter, we

investigate the geometry variational impacts on the extracted capacitance.

Statistical extraction of capacitance considering process variations has been stud-
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ied recently and several approaches have been proposed [34, 86, 28, 87, 85] under

different variational models. Method in [34], uses analytical formulae to consider the

variations in capacitance extraction and it has only first-order accuracy. The Fast-

Sies program considers the rough surface effects of the interconnect conductors[87].

It assumes only Gaussian distributions and has high computational costs. Method

in [28] combines the hierarchical extraction and principle factor analysis to solve the

capacitance statistical extraction.

Recently, a spectral stochastic collocation based capacitance extraction method

was proposed [86, 84]. This approach is based on the Hermite orthogonal polynomial

representation of the variational capacitance. It applies the numerical quadrature

(collocation) method to compute the coefficients of the extracted capacitances in the

Hermite polynomial form where the capacitance extraction processes (by solving the

potential coefficient matrices) are performed many times (sampling). One of the

major problems with this method is that many redundant operations are carried

out (such as the set up of potential coefficient matrices for each sampling, which

corresponds to solve one particular extraction problem). For the second-order Hermite

polynomials, the number of samplings is O(m2), where m is the number of variables.

So if m is large, the approach will lose it efficiency compared to the Monte Carlo

method.

In this chapter, instead of using the numerical quadrature method, we use a

different spectral stochastic method, where the Galerkin scheme is used. Galerkin-

based spectral stochastic method has been applied for statistical interconnect mod-

eling [74, 15] and on-chip power grid analysis considering process variations in the

past [44, 42, 43]. The new method, called statCap, first transforms the original

stochastic potential coefficient equations into a deterministic and larger one (via the

Galerkin method) and then solves it using an iterative method. It avoids the less
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efficient sampling process in the existing collocation-based extraction approach. As

a result, the potential coefficient equations and the corresponding augmented system

only need to be set up once versus many times in the collocation based sampling

method. This can lead to a significant saving in CPU time. Also the augmented po-

tential coefficient system is sparse, symmetric and low-rank, which is further exploited

by an iterative solver to gain further speedup. To consider second order effects, we

derive the closed-form orthogonal polynomials for the capacitance integral equations

directly in terms of variational variables without the loss of speed compared with the

linear model. Experimental results show that the proposed method based on the first

order and second order effects can deliver two orders of magnitude speedup over the

collocation based spectral stochastic method and many orders of magnitude over the

Monte Carlo method.

The main contributions of the this chapter are as follows:

1. Proposing the Galerkin-based spectral stochastic method to solve the statistical

capacitance extraction problem where Galerkin scheme (versus the collocation

method) is used to compute the coefficients of capacitances;

2. Deriving the closed-form coefficients hermite polynomial for potential coefficient

matrices in both first order and second order forms

3. Studying the augmented matrix properties and showing that augmented matrix

is still quite sparse, low rank and symmetric;

4. Solving the augmented systems by Minimum Residue Conjugate Gradient method

[56] to take advantage of the sparsity, low rank and symmetric properties of the

augmented matrices;

5. Comparing with the existing statistical capacitance extraction method based
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on the spectral stochastic collocation approach [86] and Monte-Carlo method

and showing the superiority of the proposed method.

We remark that we have put less emphasis on the acceleration techniques during

the extraction processes such as the multiple-pole scheme [47], the hierarchical meth-

ods [66, 81], using the more sophisticated iterative solvers such as general minimal

residue (GMRES) [61], which actually are the key components of those methods. The

reason is that this is not the focus area where our major contributions are made. We

believe those existing acceleration techniques can significantly speedup the proposed

method as they did for the deterministic problem. This is especially the case for the

hierarchical approach [66], the number of panels (thus the random variables) can be

considerably reduced and the interaction between panels are constant. These are the

areas for our future investigations.

6.2 Problem formulation

For m conductors system, the capacitance extraction problem based on the Boundary

Element Method (BEM) formulation is to solve the following integral equation [48]:

∫

S

1

| →xi −
→
xj |

ρ(
→
xj)daj = v(

→
xi) (6.1)

where ρ(
→
xj) is the charge distribution on the surface at conductor j, v(

→
xi) is the

potential at conductor i and 1

|→xi−
→

xj |
is the free space Green function 1. daj is the

surface area on the surface S of conductor j.
→
xi and

→
xj are point vectors. To solve for

capacitances from one conductor to the rest of others, we set the conductor’s potential

to be one and all other m− 1 conductors’ potential to be zero. The resulting charges

1Note that the scale factor 1/(4πǫ0) can be ignored here to simplify the notation and is used in
the implementation to give results in units of farads.
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computed are capacitances. BEM method divides the surfaces into N small panels

and assume uniform charge distribution on each panel, which transforms (6.1) into a

linear algebraic equation

Pq = v (6.2)

where P ∈ RN×N is the potential coefficient matrix, q is the charge on panels, v is the

pre-set potential on each panel. By solving above linear equation, we can obtain all

the panel charges (thus capacitance values). In potential coefficient matrix P , each

element is defined as

Pij =
1

sj

∫

Sj

G(
→
xi,

→
xj)daj (6.3)

where G(
→
xi,

→
xj) =

1

|→xi−
→

xj |
is the Green function of point source at

→
xj . Sj is the surface

of panel j and sj is the area of panel j.

Process variations introducing conductor geometry variations are reflected on the

fact that the size of panel and distances between panels become random variables.

Here we assume the panel is still a two-dimensional surface. These variations will

make each element in capacitance matrix follow some kinds of random distributions.

The problem we need to solve now is to derive this random distribution and then to

effectively compute the mean and variance of involved capacitance given geometry

randomness parameters.

In this chapter, we follow the variational model introduced in [28], where each

point in panel i is disturbed by a vector ∆ni that has the same direction as the

normal direction of panel i.

→
xi

′
=

→
xi +∆ni (6.4)

where the length of the ∆ni follows Gaussian distribution |∆ni| ∼ N(0, σ2). If the

value is negative, it means the direction of the perturbation is reversed. The cor-
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relation between random perturbation on each panel is governed by the empirical

formulation such as the exponential model [88]

γ(r) = e−r2/η2 (6.5)

where r is the distance between two panel centers and η is the correlation length.

The most straightforward method is to use Monte Carlo (MC) simulation to ob-

tain distributions, mean values and variances of all those capacitances. But the MC

method will be extremely time consuming as each sample run requires the formulation

of the changed potential coefficient matrix P .

6.3 Review of spectral stochastic method

In this section, we briefly explain how to compute coefficients, the mean and variance

from Hermite PCs using spectral stochastic or orthogonal polynomial chaos (PC)

based stochastic analysis method in 2.2.2.

In case that q(ξ) in (6.2) is unknown random variable vector (with normal distri-

bution), then potential coefficient equation become

P (ξ)q(ξ) = v (6.6)

Where both P (ξ) and q(ξ) are in Hermite PC form. Then the coefficients can be

computed by using Galerkin method. The principle of orthogonality states that the

best approximation of v(ξ) is obtained when the error, ∆(ξ), defined as

∆(ξ) = P (ξ)q(ξ)− v (6.7)
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is orthogonal to the approximation. That is

< ∆(ξ), Hk(ξ) >= 0, k = 0, 1, . . . , P, (6.8)

whereHk(ξ) are Hermite polynomials. In this way, we have transformed the stochastic

analysis process into a deterministic form, whereas we only need to compute the

corresponding coefficients of the Hermite PC.

For the illustration purpose, considering two Gaussian variable ξ = [ξ1, ξ2], we

assume that the charge vector in panels can be written as a second order (p = 2)

Hermite PC, we have

q(ξ) = q0 + q1ξ1 + q2ξ2 + q3(ξ
2
1 − 1) +

q4(ξ
2
2 − 1) + q5(ξ1ξ2). (6.9)

which will be solved by using augmented potential coefficient matrices to be discussed

in Section 6.4. Once the Hermite PC of q(ξ) is known, the mean and variance of q(ξ)

can be evaluated trivially. Given an example, for one random variable, the mean and

variance are calculated as:

E(q(ξ)) = q0

V ar(q(ξ)) = q21V ar(ξ) + q22V ar(ξ2 − 1)

= q21 + 2q22. (6.10)

In consideration of correlations among random variables, we apply principal compo-

nent analysis (PCA) to transform the correlated variables into a set of independent

variables.
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6.4 New orthogonal polynomial based extraction

method: StatCap

In this section, we present our new spectral stochastic method based method, StatCap,

which uses the orthogonal polynomials to represent random variables starting from

the geometry parameters.

In our new method, we first represent the variation potential matrix P into a

first-order form using Taylor expansion. We then extend our method to handle the

second-order variations in the Section 6.5.

6.4.1 Expansion of potential coefficient matrix

Specifically, each element in the potential coefficient matrix P can be expressed as:

Pij =
1

sj

∫

Sj

G(
→
xi,

→
xj)daj (6.11)

where G(
→
xi,

→
xj) is the free space Green function define in (6.3).

Notice that if panel i and panel j are far away (their distance is much larger than

the panel area), we can have the following approximation [28]:

Pij ≈ G(
→
xi,

→
xj) i 6= j (6.12)

Suppose variation of panel i can be written as ∆ni = δi
→
ni where

→
ni is the unit normal

vector of panel i and δi is the scalar variation. Then take Taylor expansion on the

Green function,

G(
→
xi +∆ni,

→
xj +∆nj) =

1

| →xi −
→
xj +∆ni −∆nj |

(6.13)
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=
1

| →xi −
→
xj |

+∇ 1

| →xi −
→
xj |
· (∆nj −∆ni) +O((∆ni −∆nj)

2) (6.14)

From free space Green function, we have

∇G(
→
xi,

→
xj) = ∇

1

| →xi −
→
xj |

= ∇ 1

| →r |
=

→
r

| →r |3
(6.15)

→
r=

→
xi −

→
xj (6.16)

Now we first ignore the second-order terms to make the variation in the linear

form. As a result, the potential coefficient matrix P can be written as

P ≈ P0 + P1 =


















G(
→
x1 +∆n1,

→
x1 +∆n1) . . . G(

→
x1 +∆n1,

→
xn +∆nn)

G(
→
x2 +∆n2,

→
x1 +∆n1) . . . G(

→
x2 +∆n2,

→
xn +∆nn)

... . . .
...

G(
→
xn +∆nn,

→
x1 +∆n1) . . . G(

→
xn +∆nn,

→
xn +∆nn)



















(6.17)

where

P0 =



















G(
→
x1,

→
x1) G(

→
x1,

→
x2) . . . G(

→
x1,

→
xn)

G(
→
x2,

→
x1) G(

→
x2,

→
x2) . . . G(

→
x2,

→
xn)

...
... . . .

...

G(
→
xn,

→
x1) G(

→
xn,

→
x2) . . . G(

→
xn,

→
xn)



















P1 =


















0 . . .∇G(
→

x1,
→

xn) · (∆nn −∆n1)

∇G(
→

x2,
→

x1) · (∆n1 −∆n2) . . .∇G(
→

x2,
→

xn) · (∆nn −∆n2)

... . . .
...

∇G(
→

xn,
→

x1) · (∆n1 −∆nn). . . 0


















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We can further write the P1 as the following form:

P1 = V1 ·N1 · J1 − J1 ·N1 · V1 (6.18)

J1 =


















0 ∇G(
→
x1,

→
x2) . . . ∇G(

→
x1,

→
xn)

∇G(
→
x2,

→
x1) 0 . . . ∇G(

→
x2,

→
xn)

...
... . . .

...

∇G(
→
xn,

→
x1) . . . ∇G(

→
xn,

→
xn−1) 0



















N1 =



















→
n1 0 . . .

0
→
n2 . . .

... . . .
...

0 . . .
→
nn



















V1 =



















δn1 0 . . .

0 δn2 . . .

... . . .
...

0 . . . δnn



















where J1 and N1 are vector matrices and V1 is a diagonal matrix.

To deal with spatial correlation, P1 can be further expressed as a linear combina-

tion of the dominate and independent variables

ξ = [ξ1, ξ2, . . . , ξp] (6.19)

through the principal component analysis (PCA) operation. As a result, V1 can be
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further expressed as



















∑p
i=1 a1iξi 0 . . .

0
∑p

i=1 a2iξi . . .

... . . .
...

. . . 0
∑p

i=1 aniξi



















(6.20)

Finally we can represent the P1 as

P1 =
∑

P1iξi (6.21)

where

P1i = Ai ·N1 · J1 − J1 ·N1 ·Ai (6.22)

and

Ai =



















a1i 0 . . . 0

0 a2i . . . 0

...
... . . .

...

0 . . . 0 ani



















(6.23)

6.4.2 Formulation of the augmented system

Once the potential coefficient matrix is represented in the affine form as shown in

(6.21), we are ready to solve for the coefficients P1i by using the Galerkin method,

which will result in a larger system with augmented matrices and variables.

Specifically, for p independent Gaussian random variables

ξ = [ξ1, . . . , ξp], there areK = 2p+p(p−1)/2 first and second-order Hermite polynomi-

als. Hi(ξ) i = 1, . . . , K represents each Hermite polynomial andH1 = ξ1, . . . , Hp = ξp.
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So for the vector of variational potential variables q(ξ), it can be written as:

q(ξ) = q0 +

K
∑

i=1

qiHi(ξ) (6.24)

where each qi is a vector associated with one polynomial. So the random linear

equation can be written as:

Pq = (P0 +

p
∑

i=1

P1iHi)(q0 +
K
∑

i=1

qiHi) = v (6.25)

Expanding the equation and performing inner product with Hi on both sides, we can

derive new linear system equations:

(W0 ⊗ P0 +

p
∑

i=1

Wi ⊗ P1i)Q = V (6.26)

where ⊗ is the tensor product and

Q =



















q0

q1
...

qK



















; V =



















v

0

...

0



















(6.27)

andWi =


















< HiH0H0 > < HiH0H1 > . . . < HiH0HK >

< HiH1H0 > < HiH1H1 > . . . < HiH1HK >

...
... < HiHlHm >

...

< HiHKH0 >< HiHKH1 > . . . < HiHKHK >



















(6.28)

where < HiHlHm > represents the inner product of three Hermite polynomial Hi,

Hl, Hm. The matrix (W0 ⊗ P0 +
∑p

i=1Wi ⊗ P1i) in (6.26) is called the augmented
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potential coefficient matrix. Since Hi are at most second order polynomials, we can

quickly calculate every element in Wi with a lookup table for any number of random

variables.

We remark that matrices Wi are very sparse due to the nature of the inner prod-

uct. As a result, their tensor products with P1i will also lead to the very sparse

augmented matrix in (6.26). As a result, we have the following observations regard-

ing the structure of the Wi and the augmented matrix.

1. Observation 1: W0 is a diagonal matrix.

2. Observation 2: For Wi matrices, i 6= 0, all the diagonal elements are zero.

3. Observation 3: All Wi are symmetric and the resulting augmented matrix W0⊗

P0 +
∑p

i=1Wi ⊗ P1i is also symmetric.

4. Observation 4: If one element at position (l, m) inWi is not zero, i.e. Wi(l, m) 6=

0, then elements at the same position (l, m) of Wj, j 6= i, must be zero. In

other words,

Wi(l, m)·Wj(l, m) = 0 when i 6= j

∀ i, j = 1, . . . , p and l, m = 1, . . . , K

Such sparse property can help save the memory significantly as we do not need to

actually perform the tensor product as shown in (6.26). Instead, we can add all Wi

together and expand each element in the resulting matrix by some specific P1i during

the solving process, as there is no overlap among Wi for any element position.

As the original potential coefficient matrix is quite sparse, low rank, the augmented

matrix is also low rank. As a result, the sparsity, low rank and symmetric properties
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can be exploited by iterative solvers to speed up the extraction process as shown in

the experimental results. In our implementation, the Minimum Residue Conjugate

Gradient method [56] is used as the solver since the augmented system is symmetric.

6.5 Second-order StatCap

In this section, we extend StatCap to consider second order perturbations. We show

the derivation of the coefficient matrix element in second-order orthogonal polynomial

from the geometric variables. As a result, the second order potential coefficient matrix

can be computed very quickly. In our second-order StatCap, we consider both of the

far field and near field cases when (6.11) is approximated.

6.5.1 Derivation of analytic second-order potential coefficient

matrix

Each element in the potential coefficient matrix P can be expressed as

Pij =
1

sisj

∫

Si

∫

Sj

G(
→
xi,

→
xj)daidaj

≈ 1

sj

∫

Sj

G(
→
xi,

→
xj)daj (6.29)

≈ 1

si

∫

Si

G(
→
xi,

→
xj)dai (6.30)

where G(
→
xi,

→
xj) is the free space Green function defined in (6.3).

We assume the same definitions for ∆ni, δni and
→
ni as in Section 6.4. If we consider

both first-order and second-order terms, we have the following Taylor expansion on
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Pij,

Pij(∆ni,∆nj)

= Pi,j,0 +∇Pij ·∆ni +∇Pij ·∆nj

+∆nj
T∇2Pij∆nj +∆ni

T∇2Pij∆ni

+2∆nj
T∇2Pij∆ni +O((∆ni −∆nj)

3)

≈ Pi,j0 +
∂Pij

∂∆ni
δni +

∂Pij

∂∆nj
δnj

+
∂2Pij

∂∆ni
2 δni

2 +
∂2Pij

∂∆nj
2 δnj

2 + 2
∂2Pij

∂∆ni∆nj
δniδnj

(6.31)

And to deal with the spatial correlation, ∆ni can be further expressed as a linear

combination of the dominate and independent variables in (6.19) through the PCA

operation. As a result,

∆ni = δni
→
ni= (ai1ξ1 + . . .+ aipξp)

→
ni (6.32)

where aiL is defined in (6.20). After that, P will be represented by a linear combina-

tion of Hermite polynomials

P = P0 +

p
∑

L=1

P1LξL +

p
∑

L=1

P2L(ξ
2
L − 1)

+

L1 6=L2
∑

L1

∑

L2

P2L1,L2
ξL1

ξL2
(6.33)

where P2L is the coefficient corresponding to the first type of second order Hermite

polynomial, ξ2L − 1; and P2L1,L2
means the coefficient corresponding to the second

type of second order Hermite polynomial, ξL1
ξL2

(L1 6= L2).

So for each element Pij in P , the coefficients of orthogonal polynomials can be

computed as follows,

Pij,1L = aiL
∂Pij

∂∆ni
+ ajL

∂Pij

∂∆nj
(6.34)
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Pij,2L = a2iL
∂2Pij

∂∆ni
2
+ a2jL

∂2Pij

∂∆nj
2

+2aiLajL
∂2Pij

∂∆nj∆ni
(6.35)

Pij,2L1,L2
= 2aiL1

aiL2

∂2Pij

∂∆ni
2
+ 2ajL1

ajL2

∂2Pij

∂∆nj
2

+2(aiL1
ajL2

+ aiL2
ajL1

)
∂2Pij

∂∆nj∆ni

(6.36)

Hence we need to compute analytic expressions for the partial derivatives of Pij

to obtain the coefficients of Hermite polynomials. The details of the derivations

for computing the derivatives used in (6.34), (6.36) and (6.36) can be found in the

appendix section.

6.5.2 Formulation of the augmented system

Similarly as Section 6.4, once the potential coefficient matrix is represented in the

affine form as shown in (6.33), we are ready to solve the coefficients P1L, P2L and

P2L1,L2
by using the Galerkin method.

In this case, P in (6.33) now is rewritten as

P = P0 +

p
∑

i=1

P1iHi +
K
∑

i=p+1

P2iHi (6.37)

So after considering the first-order and second-order Hermite polynomials in P , the

random linear equation can be written as:

Pq = (P0 +

p
∑

i=1

P1iHi +
K
∑

i=p+1

P2iHi)(q0 +
K
∑

i=1

qiHi) = v (6.38)
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Expanding the equation and performing inner product with Hi on both sides, we can

derive a new linear system:

(W0 ⊗ P0 +

p
∑

i=1

Wi ⊗ P1i +
K
∑

i=p+1

Wi ⊗ P2i)Q = V (6.39)

where ⊗ is the tensor product and Q and V is the same as in (6.27). and Wi has the

same definition as in (6.28).

Again, the matrix in the right-hand side of (6.39) is the augmented potential

coefficient matrix for the second-order StatCap. Since Hi are at most second order

polynomials, we can still use lookup table to calculate every element in Wi for any

number of random variables.

Now we study the properties of augmented potential coefficient matrix. We review

the features and observations we made for the first-order StatCap.

For Wi, which is a K ×K matrix, where K = p(p+ 3)/2, the number of nonzero

elements in Wi is showed in Table 6.1. From Table 6.1, we can see that matrices Wi

for i = 1, . . . , K are still very sparse. As a result, their tensor products with P1i and

P2i will still give rise to the sparse augmented matrix in (6.39).

For the four observations in Section 6.4 regarding the the structure of Wi, i =

p + 1, . . . , K and the augmented matrix, we find that all the observations are still

valid except for Observation 2. As a result, all the efficient implementation and

solving techniques mentioned at the end of the Section 6.4 can be applied to the

second order method.

Table 6.1: Number of non-zero element in Wi

i = 0 1 ≤ i ≤ p p+ 1 ≤ i ≤ 2p 2p+ 1 ≤ i ≤ K
# non-zero K 2p+2 p+3 2p+4
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6.6 Experimental results

In this section, we compare the results of the proposed first-order and second-order

statCap methods against the Monte Carlo method and the SSCM method [86], which

is based on the spectral stochastic collocation method. The proposed statCap meth-

ods have been implemented in Matlab 7.4.0. We use Minimum Residue Conjugate

Gradient method as the iterative solver. We also implement the SSCM method in

Matlab using the sparse grid package [32, 31]. We do not use any hierarchical algo-

rithm to accelerate the calculation of the potential coefficient matrix for both statCap

and SSCM. Instead, we use analytic formula in [76] to compute the potential coeffi-

cient matrices.

All the experimental results are carried out in a Linux system with Intel Quadcore

Xeon CPUs with 2.99Ghz and 16GB memory.

We test our algorithm on six testing cases. The more specific running parameters

for each testing cases are summarized in Table 6.2. In Table 6.2, p is the number

of dominate and independent random variables we get through PCA operation, and

MC# means the times we run Monte Carlo method. The 2 × 2 bus are shown in

Fig. 6.1, and three-layer metal plane capacitance is shown in Fig. 6.2. In all the

experiments, we set standard deviation as 10% of the wire width and the η, the

correlation length, as 200% of the wire width.

Table 6.2: The test cases and the parameters setting
1x1 bus 2x2 bus 3-layer 3x3 bus 4x4 bus 5x5 bus

Panel # 28 352 75 720 1216 4140
p 10 15 8 21 28 35

MC # 10000 6000 6000 6000 6000 6000

First, we compare the CPU times of the four methods. The results are shown

in Table 6.3. In the table, StatCap(1st/2nd) refer to the proposed first and second

121



Figure 6.1: A 2× 2 bus
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Figure 6.2: 3-layer metal planes
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order methods respectively. SP(X) means the speed up of the first-order StatCap

comparing with Monte Carlo or SSCM. All the capacitances are in pico-farad.

Table 6.3: CPU runtime (in seconds) comparison among MC, SSCM and Stat-
Cap(1st/2nd)

1× 1 bus, MC(10000)
MC SSCM StatCap(1st) StatCap(2nd) SP(MC) SP(SSCM)
2764s 49.35s 1.55s 3.59s 1783 32

2× 2 bus, MC(6000)
MC SSCM StatCap(1st) StatCap(2nd) SP(MC) SP(SSCM)

63059s 2315s 122s 190s 517 19

3-layer metal plane, MC(6000)
MC SSCM StatCap(1st) StatCap(2nd) SP(MC) SP(SSCM)

16437s 387s 4.11s 6.67s 3999 94

3× 3 bus, MC(6000)
MC SSCM StatCap(1st) StatCap(2nd) SP(MC) SP(SSCM)

2.2× 105s 7860s 408s 857s 534 19

4× 4 bus, MC(6000)
MC SSCM StatCap(1st) StatCap(2nd) SP(MC) SP(SSCM)
–* 3.62× 104 1573s 6855s 260 23

5× 5 bus, MC(6000)
MC SSCM StatCap(1st) StatCap(2nd) SP(MC) SP(SSCM)
–* – 1.7× 104 6.0× 104s – –

* – out of memory

It can be seen that both the first and second order StatCap are much faster than

both SSCM and the Monte Carlo method. And for large testing cases, such as the 5x5

bus case, Monte Carlo and SSCM will run out of memory, but StatCap still work well.

For all the cases, StatCap can deliver about two-orders of magnitude speedup over

the SSCM and three orders of magnitude speedup over Monte Carlo method. Notice

that both SSCM and StatCap use the same random variables after PCA reduction.

We notice that both Monte Carlo and SSCM need to compute the potential coef-

ficient matrices each time the geometry changes. This computation can be significant

compared to the CPU time of solving potential coefficient equations. This is one of the
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reasons that SSCM and MC are much slower than StatCap, in which the augmented

system only needs to be setup once.

Also SSCM uses the sparse grid scheme to reduce the collocation points in order

to derive the orthogonal polynomial coefficients. But the number of collocation points

are still in the order of O(m2) for the second-order Hermit polynomials, wherem is the

number of variables. Thus it requires O(m2) solutions for the different geometries.

In our algorithm, we also consider the second-order Hermit polynomials. But we

only need to solve the augmented system once. The solving process can be further

improved by using some advanced solver or acceleration techniques.

Next, we perform the accuracy comparison. The statistics for 1× 1 bus case from

the four algorithms are summarized in Table 6.4 and Table 6.5 for the mean value

and standard deviation respectively. The parameter settings for each case is listed in

Table 6.2. We make sure that SSCM, the first-order and The second-order StatCap

use the same number of random variables after the PCA operations.

Table 6.4: Capacitance mean value comparison for the 1× 1 bus

MC SSCM StatCap(1st) StatCap(2nd)
C11 135.92 135.90 136.58 136.21
C12 -57.11 -57.01 -57.49 -57.27
C21 -57.11 -57.02 -57.49 -57.27
C22 135.94 135.69 136.58 136.21

Table 6.5: Capacitance standard deviation comparison for the 1× 1 bus

MC SSCM StatCap(1st) StatCap(2nd)
C11 2.42 2.49 3.13 2.63
C12 1.71 1.74 2.02 1.86
C21 1.72 1.71 2.02 1.86
C22 2.51 2.52 3.19 2.63
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From these two tables, we can see that first-order StatCap, second-order StatCap

and SSCM give the similar results for both mean value and standard deviation com-

pared with the MC method. For all the other cases, the times we carry out Monte

Carlo simulations are as shown in Table 6.3, and the similar experimental results can

be obtained. The maximum errors and average errors of mean value and standard

deviation for all the testing cases are shown in Table 6.6 and Table 6.7. Compare to

the Monte Carlo method, the accuracy of the second-order StatCap is better than the

first-order StatCap method, while from Table 6.3, the speed of second-order StatCap

keeps in the same order as first-order StatCap, and is still much faster than SSCM

and Monte Carlo.

6.7 Additional notes

In this appendix section, we detail the derivations for computing derivatives in (6.34),

(6.36) and (6.36).

First, we consider the scenario where panel i and panel j are far away (their

distance is much larger than the panel area). In this case, the approximations in

(6.12) and (6.13) are still valid. From free space Green function, we have (6.15)

and (6.16) for the first-order Hermite polynomails and we have the following for the

second-order Hermite polynomails:

Pij,0 =
1

| →xi −
→
xj |

(6.40)

∂Pij

∂∆ni

= −
→
r · →ni

| →r |3
(6.41)

∂Pij

∂∆nj
=

→
r · →

nj

| →r |3
(6.42)

125



Table 6.6: Error comparison of capacitance mean values among SSCM, and Stat-
Cap(1st and 2nd order)

1× 1 bus, MC(10000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 0.19% 0.67% 0.28%
Avg err 0.14% 0.57% 0.24%

2× 2 bus, MC(6000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 0.32% 0.49% 1.19%
Avg err 0.15% 0.24% 0.89%

3-layer metal plane, MC(6000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 0.30% 1.84% 0.81%
Avg err 0.14% 0.90% 0.58%

3× 3 bus, MC(6000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 0.33% 0.81% 0.43%
Avg err 0.11% 0.58% 0.11%

4× 4 bus, SSCM as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 0 0.76% 0.35%
Avg err 0 0.40% 0.09%

5× 5 bus, StatCap(2nd) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err – 0.59% 0
Avg err – 0.28% 0

∂2Pij

∂∆ni
2

=
3(

→
r · →ni)

2

| →r |5
− 1

| →r |3
(6.43)

∂2Pij

∂∆nj
2

=
3(

→
r · →

nj)
2

| →r |5
− 1

| →r |3
(6.44)

∂2Pij

∂∆nj∆ni

=
−3(→r · →

nj)(
→
r · →ni)

| →r |5
(6.45)

Second, we consider the scenario where panel i and panel j are near each other

(their distance is comparable with the panel area). In this case, the approximation

126



Table 6.7: Error comparison of capacitance standard deviations among SSCM, and
StatCap(1st and 2nd order)

1× 1 bus, MC(10000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 2.48% 29.34% 8.77%
Avg err 2.29% 23.38% 7.91%

2× 2 bus, MC(6000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 14.28% 12.98% 25.99%
Avg err 6.11% 8.51% 6.04%

3-layer metal plane, MC(6000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 8.35% 16.26% 2.38%
Avg err 3.37% 5.06% 0.86%

3× 3 bus, MC(6000) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 23.32% 21.39% 11.75%
Avg err 3.33% 10.35% 4.38%

4× 4 bus, SSCM as standard
SSCM StatCap(1st) StatCap(2nd)

Max err 0 25.7% 6.68%
Avg err 0 16.1% 3.89%

5× 5 bus, StatCap(2nd) as standard
SSCM StatCap(1st) StatCap(2nd)

Max err – 17.5% 0
Avg err – 7.92% 0

in (6.12) is no longer accurate and we must consider the general form in (6.29) and

(6.30).

Since panel i panel j are perpendicular to ∆ni/∆nj , for
∂Pij

∂∆nj
and

∂2Pij

∂∆nj
2 , with
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(6.29), we have

∂Pij

∂∆nj
≈

∂ 1
sj

∫

Sj
G(

→
xi,

→
xj)daj

∂∆nj

=
∂ 1

sj

∫

Sj

1

|→xi−
→

xj+∆ni−∆nj |
daj

∂∆nj

=
1

sj

∫

Sj

∂ 1

|→xi−
→

xj+∆ni−∆nj |

∂∆nj

daj

=
1

sj

∫

Sj

→
r · →

nj

| →r |3
daj

=

→
r · →

nj

sj

∫

Sj

1

| →r |3
daj (6.46)

∂2Pij

∂∆nj
2
≈

∂2 1
sj

∫

Sj
G(

→
xi,

→
xj)daj

∂∆nj
2

=
∂2 1

sj

∫

Sj

1

|→xi−
→

xj+∆ni−∆nj |
daj

∂∆nj
2

=
1

sj

∫

Sj

∂2 1

|→xi−
→

xj+∆ni−∆nj |

∂∆nj
2

daj

=
1

sj

∫

Sj

3(
→
r · →

nj)
2

| →r |5
− 1

| →r |3
daj

=
3(

→
r · →

nj)
2

sj

∫

Sj

daj

| →r |5
− 1

sj

∫

Sj

daj

| →r |3
(6.47)
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Similarly, with (6.30), we can further obtain

∂Pij

∂∆ni

≈
∂ 1

si

∫

Si
G(

→
xi,

→
xj)dai

∂∆ni

=
− →

r · →ni

si

∫

Si

1

| →r |3
dai (6.48)

∂2Pij

∂∆ni
2
≈

∂2 1
si

∫

Si
G(

→
xi,

→
xj)dai

∂∆ni
2

=
3(

→
r · →ni)

2

si

∫

Si

dai

| →r |5
− 1

si

∫

Si

dai

| →r |3
(6.49)

While for
∂2Pij

∂∆nj∆ni
, we need to further consider two cases. First, when panel i and

panel j are in parallel, we have

∂2Pij

∂∆ni
2
=

∂2Pij

∂∆nj
2
= − ∂2Pij

∂∆nj∆ni
(6.50)

Second, we consider panel i and panel j are not in parallel. Then we arrive

∂2Pij

∂∆nj∆ni

=
∂

∂Pij

∂∆ni

∂∆nj

=
∂(−

→

r ·→ni

si

∫

Si

1

|→r |3
dai)

∂∆nj

= −
→
r · →ni

si

∂
∫

Si

1

|→r |3
dai

∂∆nj
(6.51)

Assume the conductors are rectangular geometries. Then two panels should be either

in parallel or perpendicular. Since panel i and panel j are not parallel, these two

panels will be perpendicular.

Without loss of generality, we assume that panel i is in parallel with xz-plane,

panel j is in parallel with yz-plane. Then easily to see,
→
ni= (0, 1, 0) and

→
nj= (1, 0, 0).
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Let ukl, k, l ∈ {0, 1} denote the four corners of panel i, with (xik, yi, zil) being the

Cartesian cooridinates of corner ukl, and the center of gravity is (xi, yi, zi). Let tkl,

k, l ∈ {0, 1} denote the four corners of panel j, with (xj, yjk, zjl) being the Cartesian

cooridinates of corner tkl, and the center of gravity is (xj , yj, zj).

After that, (6.51) can be further deduced to

∂2Pij

∂∆nj∆ni

=
yj − yi

si

∂
∫ xi1

xi0

∫ zi1
zi0

dxdz

|→r |3

∂xj

=
yj − yi

si

∂
∫ xi1−xj

xi0−xj
(
∫ zi1
zi0

dz

|
→

r′|3
)dx

∂xj

=
yj − yi

si
(

∫ zi1

zi0

dz
∣

∣

∣

→
r
−∣
∣

∣

3 −
∫ zi1

zi0

dz
∣

∣

∣

→
r
+
∣

∣

∣

3 )

=
yj − yi

si

1
∑

k=0

1
∑

l=0

(

(−1)k+l+1(zil − zj)

((xik − xj)2 + (yi − yj)2)

× 1
√

(xik − xj)2 + (yi − yj)2 + (zil − zj)2

)

(6.52)

where

→
r =

√

(x− xj)2 + (yi − yj)2 + (z − zj)2

→
r′ =

√

(x)2 + (yi − yj)2 + (z − zj)2

→
r+ =

√

(xi1 − xj)2 + (yi − yj)2 + (z − zj)2

→
r− =

√

(xi0 − xj)2 + (yi − yj)2 + (z − zj)2

6.8 Summary

In this chapter, we have proposed a novel statistical capacitance extraction method,

called statCap, for three-dimensional interconnects considering process variations.
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The new method is based on the orthogonal polynomial method to represent the vari-

ational geometrical parameters in a deterministic way. We consider both first order

and second order variational effects. The new method avoids the sampling operations

in the existing collocation-based spectral stochastic method. The new method solves

an enlarged potential coefficient system to obtain the coefficients of orthogonal poly-

nomials for capacitances. statCap only needs to set up the augmented equation once

and can exploit the sparsity and low-rank property to speedup the extraction process.

The new statCap method can consider second-order perturbation effects to generate

more accurate quadratic variational capacitances. Experimental results show that our

method is two orders of magnitude faster than the recently proposed statistical ca-

pacitance extraction method based on the spectral stochastic collocation method and

many orders of magnitude faster than the Monte Carlo method for several practical

interconnect structures.
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Chapter 7

Voltage Binning Technique for

Yield Optimization

7.1 Introduction

Process-induced variability has huge impacts on the circuit performance and yield in

the nanometer VLSI technologies [2]. Indeed, the characteristics of devices and inter-

connects are prone to increasing process variability as device geometries getting close

to the size of atoms. The yield loss from process fluctuations is expected to increase

as the transistor size scaling down. As a result, improving yields considering the

process variations is critical to mitigate the huge impacts from process uncertainties.

Supply voltage adjustment can be used as a technique to reduce yield loss, which

is based on the fact that both chip performance and power consumption depend

on supply voltage. By increasing supply voltage, chip performance improves. Both

dynamic power and leakage power, however, will become worse at the same time [72].

In contrast, lower supply voltage will reduce the power consumption but make the

chip slower. In other words, faster chips usually have higher power consumption
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and slower chips often come with lower power consumption. Therefore, it is possible

to reduce yield loss by adjusting supply voltage to make some failing chips satisfy

application constraints.

For yield enhancement, there are also different schemes for supply voltage adjust-

ment. In [72], the authors proposed an adaptive supply voltage method for reducing

impacts of parameter variations by assigning individual supply voltage to each manu-

factured chip. This methodology can be very effective but it requires significant effort

in chip design and testing at many different supply voltages. Recently, a new voltage

binning technique has been proposed by the patent [33] for yield optimization as an

alternative technique of adaptive supply voltage. All manufactured chips are divided

into several bins, and a certain value of supply voltage is assigned to each bin to make

sure all chips in this bin can work under the corresponding supply voltage. At the cost

of small yield loss, this technique is much more practical than the adaptive voltage

supply. But only a general idea is given in [33], without details of selecting optimal

supply voltage levels. Another recent work [89] provides a statistical technique of

yield computation for different voltage binning schemes. From results of statistical

timing and variational power analysis, the authors developed a combination of analyt-

ical and numerical techniques to compute joint probability density functions (PDFs)

of chip yield as a function of inter-die variation in effective gate length L , and solve

the problem of computing optimal supply voltages for a given binning scheme.

However, the method in [89] only works under several assumptions and approxima-

tions that will cause accuracy loss in both yield analysis and optimal voltage binning

scheme. The statistical model for both timing and power analysis used in [89] are

simplified by integrating all process variations other than inter-die variation in L to

one random variable following Gaussian distribution. Indeed, the intra-die variations

has a huge impact on performance and power consumption [5, 65]. And other process
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variations (gate oxide thickness, threshold voltage, etc) have different distributions

and should not be simplified to only one Gaussian distribution. Furthermore, this

technique cannot predict the number of voltage bins needed under certain yield re-

quirement before solving the voltage binning problem.

In general, voltage binning for yield improvement becomes an emerging technique

but with many unsolved issues. In this paper we propose a new voltage binning

scheme to optimize yield. The new method first computes the set of working supply

voltage segments under timing and power constraints from either the measurement of

real chips or Monte Carlo based SPICE simulations on a chip with process variations.

Then on top of the distribution of voltage segment lengths, we propose a formulate

to predict the upper bound of bin number needed under uniform binning scheme for

the yield requirement. Furthermore, we frame the voltage binning scheme as a set-

cover problem in graph theory and solve it by a greedy algorithm in an incremental

way. The new method is not limited by the number or types of process variabilities

involved as it should be based on actual measured results. Furthermore, the new

algorithm can be easily extended to deal with a range of working supply voltages for

dynamic voltage scaling under different operations modes (like lower power and high

performance modes).

Experimental results on a number of benchmarks under 45nm technology show

that the proposed method can correctly predict the upper bound on the number of

bins required. The optimal binning scheme can lead to significant saving for the

number of bins compared to the uniform one to achieve the same yield with very

small CPU cost.
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7.2 Problem formulation

7.2.1 Yield estimation

A “good” chip needs to satisfy two requirements:

1) timing slack is positive S > 0 under working frequency.

2) power does not exceed the limit P < Plim.

For a single voltage supply, the definition of parametric chip yield is the percentage

of manufactured chips satisfying these constraints. Specifically, we compute yield for

a given voltage level by direct integration in the space of process parameters:

Y =

∫

· · ·
∫

S>0,P<Plim

f(∆ ~X1, . . . ,∆ ~Xn)d∆ ~X1 . . . d∆ ~Xn (7.1)

where f(∆ ~X1,∆ ~X2, . . . ,∆ ~Xn) is the joint PDF of ∆ ~X1 to ∆ ~Xn, which represents the

process variations. Also there exists spatial correlation in the intra-die part of varia-

tion. Existing approach in [89] ignores the intra-die variation in process parameters,

which means only one random variable for inter-die variation is considered. And all

other variations except inter-die variation in Leff are integrated into one Gaussian

random variable. In this way, the multi-dimensional integral in (7.1) can be modeled

numerically as a 2 or 3 dimensional integral. However, the spatial correlation can have

significant impacts on both statistical timing and statistical power of a circuit [8, 65],

thus impacts on yield analysis also.

7.2.2 Voltage binning problem

We first define voltage binning scheme as in [89].

Definition 7.2.1. A voltage binning scheme is a set of supply voltage levels ~V =
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{V1, V2, . . . , Vk}, a set of corresponding bins ~U = {U1, U2, . . . , Uk}, which is also a

partitioning of all chips, and a binning algorithm B, which distributes manufactured

chips among the bins.

The binning algorithm B assigns chips to bins so that any chip in bin Ui meets

both the performance and power constraints at supply voltage level Vi corresponding

to Ui. The yield loss is constituted by chips which fail to be assigned to any bin in

~U .

The definition of a voltage binning scheme depends on two factors: the bin voltage

levels ~V and the binning algorithm A. Different binning algorithm will result in

different yield even given the same bin voltage levels ~V . However, in the optimization

process, the focus is the binning algorithms which can produce the maximum possible

yield. That is to say, in an optimal binning algorithm, there exists at least one voltage

bin for any “good” chip (the chips satisfies performance and power constraints). In

this way, the yield loss under bin voltage levels ~V will reach the maximum value.

Therefore, the problem of computing optimal voltage binning scheme can be for-

mulated as follows:

max
~V

Y ; s.t. Vmin ≤ Vi ∈ ~V ≤ Vmax (7.2)

where Y is the total yield under the optimal voltage binning scheme with supply

voltage levels ~V = {V1, V2, . . . , Vk}.

We would like to mention one special type of voltage binning in which we have an

infinite number of voltage bins with all possible voltage levels. This binning scheme

allows the supply voltage to be individually tailored for each chip to meet timing and

power constraints. It is obvious that the yield in this case is the maximum possible

yield, named as Ymax, which should be an upper bound of yield for any other voltage
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binning scheme. As a result, for optimal solution, kopt should be the minimum number

of bins that make Yk,opt = Ymax.

7.3 Proposed new voltage binning method

Algorithm: New Voltage Binning algorithm

Input: Timing and power constraints, measured data of timing and
power from N manufactured chips.
Output: Optimal voltage binning scheme and the corresponding number
of bins kopt.

1. Map measured data to a set of Vdd segments S = {Sj}, in which
Sj = [Vlow,j, Vhigh,j] represents the Vdd range at which the jth chip
satisfies timing and power constraints.

2. Keep only the valid Vdd segments Sval (Vlow ≤ Vhigh).

3. Calculate voltage levels and corresponding bins for optimal binning
scheme:

Sleft = Sval; i = 1

while Sleft is not empty

Stmp = Sleft
GREEDY-SET-COVER(Stmp) → Sleft, Vi

Ui = chips covered by Vi; i ++

kopt = i− 1

Figure 7.1: The algorithm sketch of the proposed new voltage binning method.

In this section, we present a new voltage binning scheme, which not only gives

the good solution for a given set of voltage levels, but also computes the minimum

number of bins required. Fig. 7.1 presents the overall flow of the proposed method

and highlights the major computing steps. Basically, Step 1 and 2 compute the valid

voltage segment for each chip. Step 3 determinates the voltage levels and the chip
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assignments to the resulting bins. This is done by a greedy-based set covering method.

In Fig. 7.1, Sleft denotes the set of uncovered voltage segments left in the complete

set of valid voltage segments Sval. Vi is the i
th supply voltage level, and chips assigned

to Ui can meet both the power and timing constraints at supply voltage Vi.

The algorithm in Step 3 tries to find the voltage level one at a time such that it

can cover as many chips as possible in a greedy fashion (a chip is covered if its valid

Vdd segment contains the given voltage level). The algorithm stops when all the chips

are covered, and the number of levels seen so far (kopt) will be the minimum number of

bins that can reach the maximum possible yield Ymax. In the new algorithm, we can

also provide a formulation to predict the minimum number of bins required under the

uniform binning scheme from the distribution of length of valid Vdd segment, which

can serve as a guideline for the number of bins required.

7.3.1 Voltage binning considering valid segment

For a chip, the working supply voltage range (segment) [Vlow, Vhigh] actually can be

considered as a knob to do the trade-off between the power and timing of the circuit.

As we know, supply voltage affects power consumption and timing performance in

opposite ways. Reducing supply voltage will decrease the dynamic power and leakage

power, which is often considered the most effective technique for low power design.

On the other hand, propagation delay will increase as supple voltage decreases [73].

Fig. 7.2 shows the mean delay and power consumption as functions of supply voltage,

which show such trends clearly. As a result, given the power consumption bound

and the timing constraint for a chip, Vlow is mainly decided by timing and Vhigh is

mainly determined by power constraint. Since process variation leads to different

timing performances and power consumptions, the valid Vdd segment [Vlow, Vhigh] will
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Figure 7.2: The delay and power change with supply voltage for C432.

be different for each chip. As a result, the measured timing and total power data

from a chip can be mapped onto corresponding working Vdd segments, which is the

Step 1 in Fig. 7.1. For some chips, we may have Vlow > Vhigh (invalid segment), which

means that these chips will fail on any supply voltage. So we call them “bad” chips.

Suppose there are N sampling chips from testing, and nbad are bad chips. Obvi-

ously, the maximum of possible yield via voltage binning scheme only will be

Ymax = (N − nbad)/N, (7.3)

We then define the set of valid segments Sval = [Vlow, Vhigh] by removing the bad chips

from the sampling set and only keeping the valid segments (Step 2 in Fig 7.1). Then

the voltage binning scheme problem in (7.2) can be framed into a set-cover problem.

Take Fig. 7.3 for instance, there are nval = 13 horizontal segments between Vmin

and Vmax (each corresponds a valid Vdd segment), and the problem becomes using

minimum number of vertical lines to cover all the horizontal segments. In this case,

three voltage levels can cover all the Vdd segments of these 13 chips. We also notice
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that one chip can be covered by more than one voltage level. In this case, it can

be assigned to any voltage level containing it. The problem is well known in graph

theory with known efficient solutions. This valid voltage segment model has many

Vdd

Vmin V1 V2 V3 Vmax

Figure 7.3: Valid voltage segment graph and the voltage binning solution.

benefits compared with other yield analysis model for voltage binning:

1. Distribution of length of valid supply voltage segment can provide information

about the minimum number for uniform binning under certain yield requirement

(e.g. to achieve 99% for Ymax, more details in 7.3.2.)

2. The model can also be used when the allowed supply voltage level for one voltage

bin is an interval or a group of discrete values for voltage scaling mechanism

instead of a scalar (details in Section 7.3.3). To the best knowledge of the

authors, this proposed method is the first one working for this case.

7.3.2 Bin number prediction under given yield requirement

The distribution of valid Vdd segment length (defined as len = Vhigh − Vlow) can be a

guide in yield optimization when there is a lower bound requirement for yield. And
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it works for both uniform binning and optimal binning. Notice that the optimal

binning can always has an equal or better yield than the uniform binning. Actually

the experiment result part shows that the number of bins needed for optimal voltage

binning is much smaller than the prediction from the distribution of len. Fig. 7.4
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Figure 7.4: Histogram of the length of valid supply voltage segment len for C432.

shows the histogram of valid supply voltage length, len, for testing circuit C432.

From which we can see that it is hard to tell which type of random variable it belongs

to. However, it is quite simple to get the numerical probability density function

(PDF) and cumulative distribution function (CDF) from measured data of testing

samples, as well as the mean value and standard deviation.

Suppose the yield requirement is Yreq, and the allowed supply voltages for testing

is in [Vmin, Vmax]. For the uniform voltage binning scheme, there is k bins, and the

set of supply voltage levels is ~V = {V1, V2, . . . , Vk}. Since the voltage binning scheme
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is uniform,

Vi − Vi−1 = ∆V const. (i = 2, 3, . . . k). (7.4)

For the uniform voltage binning scheme, we have the following observations:

Observation 1. If there are k bins in [Vmin, Vmax], then

∆V = (Vmax − Vmin)/(k + 1). (7.5)

Observation 2. For a Vdd segment [Vlow, Vhigh] with a length len = Vhigh − Vlow,

if len > ∆V , there must exist at least one Vdd level in the set of supply voltage levels

~V = {V1, V2, . . . , Vk} that can cover [Vlow, Vhigh]. Now we have the following results:

Proposition 7.3.1. For the yield requirement Yreq, the upper bound for voltage bin-

ning numbers kup can be determined by

kup =
Vmax − Vmin

F−1(1− Yreq)
− 1, (7.6)

where F−1(len) is the inverse function of cumulative distribution function (CDF) of

len.

(7.6) basically says that the upper bound for the numbers of voltage bins in

uniform scheme can be predicted from the yield requirement and the distribution of

len.

Proof sketch for Proposition 7.3.1:

If the chip satisfies the yield requirement Yreq,

1− F (∆V ) ≤ Yreq (Observation2). (7.7)

For the upper bound for voltage binning numbers kup, the corresponding ∆Vmin can
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be calculated by

∆Vmin =
Vmax − Vmin

kup + 1
(Observation1). (7.8)

From (7.7) and (7.8),

Yreq = 1− F (∆Vmin) = 1− F

(

Vmax − Vmin

kup + 1

)

. (7.9)

which is equivalent form of (7.6). Q.E.D.

Notice that the optimal binning always has a better or equal yield compared to

uniform binning using same number of bins. Therefore, if the uniform voltage binning

scheme with k bins already satisfies the yield requirement, k bins must be enough

for the optimal voltage binning scheme. So the histogram for the length of valid Vdd

segment can be used to estimate the upper bound for the number of bins needed for

a certain yield requirement for both uniform and optimal voltage binning schemes.

And this process can be done right after mapping measured power and timing data

to working Vdd segments.

7.3.3 Yield analysis and optimization

The whole voltage binning algorithm for yield analysis and optimization is given

in Fig. 7.1. After the yield analysis and optimization, supply voltage levels ~V =

{V1, V2, . . . , Vk,opt} , the corresponding set of bins ~U = {U1, U2, . . . , Uk,opt} can be

calculated up to kopt, where Yk,opt = Ymax already.

There are many algorithms for solving the set-cover problem in Step 3. By choos-

ing optimal set-cover algorithm, the global optimal solution can be obtained. In this

case, the decision version of set-covering problem will be NP-complete. In this paper

we use a greedy approximation algorithm as shown in Fig. 7.5, which can easily be
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implemented to run in polynomial time and achieve a good enough approximation of

optimal solution. Notice that the greedy approximation is not necessary and any algo-

rithm for set-cover can be used in Step 3, which is not a limitation for our valid supply

voltage segment model. The solution found by GREEDY-SET-COVER is at most a

small constant times larger than optimal [13], which is found already satisfactory as

shown in the experimental results. Besides, the greedy algorithm can guarantee that

each voltage level will cover the most segments corresponding to uncovered testing

chips, which means this algorithm is incremental. As a result, if only k − 1 bins is

needed, we can stop the computation at k − 1 instead of k. And when the designer

needs more voltage bins, the computation doesn’t need to be start all over again.

Actually the benefit of incremental voltage binning scheme is very useful for circuit

design. Since when the number of bins increase from k − 1 to k, the existing k − 1

voltage levels will be the same.

Algorithm: GREEDY-SET-COVER(S).
Input: S.
Output: C.

1. Select an supply voltage value Vg value which covers most voltage
segments in S

2. C ← ∅
3. for i = 1 : size(S)

if Vg ∈ Si

C ← C +Si

4. return C

Figure 7.5: The flow of greedy algorithm for covering most uncovered elements in S.

We remark that the proposed method can be easily extended to deal with a group

of discrete values Vg,1, Vg,2, . . . for dynamic voltage scaling under different operation

modes instead of a single voltage. For example, if the ith supply voltage level Vi
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contains two discrete values, Vs and Vh, which are the supply voltages for saving-power

mode and high-performance mode, respectively (anything in between also works for

the selected chips). Set-cover algorithm in Fig. 7.5 now will use a range Vg (defined by

users) to cover the voltage segments instead of a single voltage level. Such extension

is very straightforward for the proposed method.

7.4 Experimental results

In this section, the proposed voltage binning technique for yield analysis and opti-

mization was verified on circuits in the ISCAS85 benchmark set with constraints on

timing performance and power consumption. The circuits were synthesized with Nan-

gate Open Cell Library. The technology parameters come from the 45nm FreePDK

Base Kit and PTM models [59]. The proposed method has been implemented in

Matlab 7.8.0. All the experimental results are carried out in a Linux system with

quad Intel Xeon CPUs with 2.99Ghz and 16GB memory.

7.4.1 Setting of process variation

For each type of circuit in the benchmark, 10000 Monte Carlo samples are generated

from process variations. In this paper, effective gate length L and gate oxide thickness

Tox are considered as two main sources of process variations. According to [1], the

physical variation in L and Tox should be controlled within +/-12%. So the 3σ values

of variations for L and Tox were set to 12% of the nominal values, of which inter-

die variations constitute 20% and intra-die variations, 80%. L is modeled as sum of

spatial correlated sources of variations, and Tox is modeled as an independent source

of variation. The same framework can be easily extended to include other parameters

of variations. Both L and Tox are modeled as Gaussian parameters. For the correlated
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L, the spatial correlation was modeled based on the exponential models [77].

The power and timing information as a function of supply voltage for each testing

chip is characterized by using SPICE simulation. Under 45nm technology, typical

supply voltage range is 0.85V − 1.3625V [25]. Since that, Vdd is varied between 0.8

volt and 1.4 volt in this paper, which is enough for 45nm technology.

We remark that practically the power and timing information can be obtained

from measurements. As a result, all the sources of variability of transistors and

interconnects including inter-die and intra-die variations with spatial correlations will

be considered automatically.

7.4.2 Prediction of bin numbers under yield requirement

As mentioned in 7.3.2, the proposed valid segment model can be used to predict the

number of bins needed under yield requirement before voltage binning optimization.

Table 7.1 shows the comparison between the predicted number and the actual number

Table 7.1: Predicted and actual number of bins needed under yield requirement.
Circuit Yreq Predicted Real for Uni. Real for Opt.
C432 99% 25 23 4

97% 10 9 3
95% 7 6 3

C1908 99% 27 12 7
97% 11 6 3
95% 7 3 3

C2670 99% 8 4 3
97% 5 3 2
95% 3 2 1

C7552 99% 30 12 5
97% 9 4 3
95% 6 3 2

needed under yield requirement for the testing chips. In this table Yreq means the
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lower bound requirement for yield optimization (normalized by Ymax). Column 3 is the

predicted number of bins; and columns 4 and 5 are the actual bin numbers found for

the uniform and optimal voltage binning schemes, respectively. This table validates

the upper bound formulation for the needed number of bins in 7.3.2. From this table,

we can see that the predicted value is always the upper bound of actual number of

bins needed, which can be applied as a guide for yield requirement in optimization.

Table 7.1 also shows that the optimal voltage binning scheme can significantly reduce

the number of bins compared with the uniform voltage binning schema under the

same yield requirement. When yield requirement is 99% of the optimal yield, the

optimal voltage binning scheme can reduce 52% bin count on average.

7.4.3 Comparison between uniform and optimal voltage bin-

ning schemes

Experiments for both uniform and the optimal voltage binning schemes with different

number of bins are used to verify the proposed voltage binning technique. Table 7.2

shows the results, where Ymax is the maximum chip yield which can be achieved

when Vdd is adjusted individually for each manufactured chip, VB stands for voltage

binning schemes used and kopt is the minimum number of bins to achieve Ymax. From

Table 7.2, we can see that the yield of optimal VB always increases with the number

of bins, with Ymax as the upper bound. And the voltage binning can significantly

improve yield compared with simple supply voltage. Column 8 in Table 7.2 shows

that the number of bins needed to achieve Ymax in optimal voltage binning schemes is

only 1.88% of number of bins needed in the uniform scheme on average, which means

that optimal voltage binning schemes is much more economic in order to reach the

best possible yield.
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Table 7.2: Yield under uniform and optimal voltage binning schemes (%).
Circuit Ymax VB 1 bin 2bins 5bins 10bins kopt
C432 96.66 Uni. 60.19 79.04 90.52 94.36 4514

Opt. 80.08 88.68 96.42 96.66 10
C1908 98.06 Uni. 71.80 91.46 95.20 97.04 437

Opt. 89.18 92.88 97.18 98.06 21
C2670 90.15 Uni. 81.12 87.13 89.74 89.95 1205

Opt. 85.77 88.34 89.83 90.08 13
C7552 93.46 Uni. 73.94 86.38 91.40 92.34 1254

Opt. 87.22 90.30 92.64 93.26 18

Fig 7.6 compares the yields from uniform and optimal voltage binning schemes

with the number of bins from 1 to 10 for C432. This figure shows that the optimal

binning scheme always provides higher yield than the uniform binning scheme. For

optimal voltage binning scheme, the yield increasing speed is slower down as the bin

number increases since we use greedy algorithm. For other testing circuits, similar

phenomenon is observed from the yield results.

7.4.4 Sensitivity to frequency and power constraints

For very strict power or frequency constraints, voltage binning can provide more

opportunities to improve yield. Figure 7.7 shows the changes in parametric yield

for C432 with and without voltage binning yield optimization due to the changes in

frequency and power consumption requirements, where Pnorm is normalized power

constraint and fnorm is normalized frequency constraint. By analyzing this figure, we

can see that parametric yield is sensitive to both performance and power constraints.

As a result, yield can be substantially increased by binning supply voltage to a very

small amount of levels in the optimal voltage binning scheme. For example, without

voltage binning technique, the yield will fall down 0% when constraints become 20%

stricter, while the voltage binning technique can keep the yield as high as 80% under

148



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Yield under different number of voltage bins

Number of voltage bins

Y
ie

ld

 

 

Optimal VB

Uniform VB

Figure 7.6: Yield under uniform and optimal voltage binning schemes for C432.

the same situation.

7.4.5 CPU times

Table 7.3 compares the CPU times among different voltage binning schemes and

different number of bins. Since the inputs of our algorithm in Fig. 7.1 are the measured

data for real chips practically, the time cost of measuring data is not counted in the

time cost of the voltage binning method. But in this paper, the timing and power

data is generated from SPICE simulation. There are three steps in our proposed

method as shown in Fig. 7.1. It is easy to see that the time complexity of Step 1 and

2 are both O(N), where N is the number of MC sample points. From [13], Step 3 can

run within O(N2ln(N)) time. Therefore, the speed of our voltage binning algorithm

is not related to the size of circuits. Table 7.3 confirms that binning technique is

insignificant even for the case of 10 bins, and the time cost is not increasing with the
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Figure 7.7: Maximum achievable yield as function of power and performance con-
straints for C2670.

number of gates on chip.

Table 7.3: CPU time comparison(s).
Circuit VB 1 bin 2bins 5bins 10bins
C432 Uni. 0.0486 0.0571 0.0866 0.1374

Opt. 0.0747 0.0786 0.0823 0.0827
C1908 Uni. 0.0551 0.0749 0.1237 0.2037

Opt. 0.0804 0.0840 0.0874 0.0901
C2670 Uni. 0.0347 0.0371 0.0425 0.0504

Opt. 0.0686 0.0696 0.0711 0.0704
C7552 Uni. 0.0476 0.0565 0.0925 0.1493

Opt. 0.0775 0.0791 0.0802 0.0812
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7.5 Summary

In this chapter, we have proposed a new voltage binning technique to improve the

yield of chips. First, we have proposed formulation to predict the maximum number

of bins required under the uniform binning scheme from the distribution of valid Vdd

segment length. We then developed an approximation of optimal binning scheme

based on greedy-based set-cover solution to minimize the number of bins and keep

the corresponding voltage levels incremental. The new method is also extendable to

deal with a range of working supply voltages for dynamic voltage scaling operation.

Experimental results on some benchmarks on 45nm technology show that the pro-

posed method can correctly predict the upper bound on the number of bins required.

The proposed optimal binning scheme can lead to significant saving for the number

of bins compared to the uniform one to achieve the same yield with very small CPU

cost.
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Chapter 8

Conclusion and Future Works

This chapter concludes the dissertation. The first section summaries the research con-

tributions for statistical analysis techniques we proposed for nano-scale VLSI design

in the dissertation. Then the second section discusses how our work can be extended

in the future.

8.1 Summary of research contributions

As technology sizes shrink down to nanometer regime, circuit integration increases,

and the variational consideration of process has to be assessed in various VLSI design

steps to ensure robust circuit design. In order to efficiently generate high yield chips,

we must have a reliable statistical model in the first place.

In this dissertation, we have presented several novel statistical modeling method-

ologies for VLSI design automation. Then based on our models, we have proposed

fast and accurate approach for statistical analysis for full-chip leakage power, and

3D capacitance extraction. An voltage binning technique was also proposed for yield

improvement and optimization.

152



8.1.1 Fast and accurate full-chip statistical analysis of leak-

age power

Chapter 4 presented a method for analyzing the full-chip leakage current distribu-

tions. Compared to existing approaches, no grid-based partitioning and approxi-

mation were required. Instead, the spatial correlations were naturally handled by

orthogonal decompositions. The proposed method was very efficient and it becomes

linear in the presence of strong spatial correlations. Experimental results showed that

the proposed method is about 10× faster than the recently proposed method [9] with

constant better accuracy.

In Chapter 5 an improved linear-time algorithm for full-chip statistical analysis

of leakage powers was proposed, which worked well in the presence of general spatial

correlation (strong or weak). In this algorithm, a new statistical leakage character-

ization in SCL was put forward for fast full-chip statistical leakage estimation. The

most promising feature of this technique was O(N) time complexity, where N was

the number of grids on chip. The numerical examples showed that the proposed algo-

rithm was 1000X faster than a recently proposed grid-based method [9] with similar

accuracy and many orders of magnitude times speedup over the Monte Carlo method.

Further more, an incremental version was proposed, which provided about 10X fur-

ther speedup. So we ended up with 10,000X compared to [9], and the incremental

analysis could achieve more speedup over the full leakage analysis for larger problem

sizes.
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8.1.2 Efficient non-linear 3-D statistical capacitance extrac-

tion method

Next, in Chapter 6, we have proposed a efficient statistical capacitance extraction

method for interconnect conductors considering process variations. In the new method

called StatCap, orthogonal polynomials were used to represent the statistical pro-

cesses. The chapter showed how the variational potential coefficient matrix was rep-

resented in a first-order form using Taylor expansion and orthogonal decomposition.

Then an augmented potential coefficient matrix, which consisted of the coefficients

of the polynomials, was derived. After that, corresponding augmented system was

solved to obtain the variational capacitance values in the orthogonal polynomial form.

Then this chapter proposed a method to extend StatCap to the second-order form to

give more accurate results without loss of efficiency compared to the linear models.

We showed the derivation of the analytic second-order orthogonal polynomials for the

variational capacitance integral equations.

To the best knowledge of the author, this was the first time that closed-form

formulas for second-order potential coefficient matrix was proposed, which provided

more accurate extraction result with tiny cost of additional runtime. Also, techniques

such as setting up the augmented equation once and exploiting the sparsity and low-

rank property were used to speedup the extraction process. Experimental results

showed that statCap was two orders of magnitude faster than the recently proposed

statistical capacitance extraction method based on the spectral stochastic collocation

approach [86] and many orders of magnitude faster than the Monte Carlo method for

several practical conductor structures.
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8.1.3 Yield optimization for nano-scale VLSI considering sta-

tistical behavior

Chapter 7 proposed a yield optimization technique using voltage binning method to

improve yield of chips. Voltage binning technique tried to assign different supply

voltages to different chips in order to improve the yield. The chapter introduced

a novel “valid voltage segment concept”, which was determined by the timing and

power constraints of chips. Different from previous voltage binning technique, the

new concept of valid voltage segment enabled a series of efficient technique for yield

analysis and improvement.

Using this novel concept, we have proposed formulation to predict the maximum

number of bins required under the uniform binning scheme from the distribution of

valid Vdd segment length, and then developed an approximation of optimal binning

scheme based on greedy-based set-cover solution. The nature of greedy algorithm

could keep the corresponding voltage levels incremental while we were trying to mini-

mize the number of bins. The new method was also extendable to deal with a range of

working supply voltages for dynamic voltage scaling operation. Experimental results

on some benchmarks on 45nm technology showed that the proposed voltage binning

technique could correctly predict the upper bound on the number of bins required,

and the proposed optimal binning scheme can lead to significant saving for the num-

ber of bins compared to the uniform one to achieve the same yield with ignorable

runtime.
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8.2 Future research topics

Our work in statistical related VLSI research can be extended in several following

directions.

First, we can extend our fast full-chip statistical leakage analysis methodology

to run-time leakage reduction or simulation. Although the model of leakage power

used in this is idle-time leakage, the proposed method can be extended to leakage

computation under the run-time scenario with leakage reduction. In this dissertation,

we discussed about it, and further experiment needs to be done.

Second, for 3D capacitance extraction, we have put less emphasis on the accelera-

tion techniques during the extraction processes such as the multiple-pole scheme [47]

and the hierarchical methods [66, 81], where the key idea is using the more sophisti-

cated iterative solvers such as general minimal residue (GMRES) [61]. The reason is

that this is not the focus area where our major contributions are made. We believe

those existing acceleration techniques can significantly speedup the proposed method

as they did for the deterministic problem. This is especially the case for the hier-

archical approach [66]. The number of panels (thus the random variables) can be

considerably reduced and the interaction between panels are constant. These are the

areas for our future investigations.

Third, for yield analysis and optimization, there are a lot of new problems lies in

process variation related issues. In this dissertation, we focus on the voltage binning

scheme. However, there are several different methods to predict and improve yield,

and extend to more variation. Increasing chip yield rate considering statistical issues

is and will be a continually emerging topic in the future.
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