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Tapered plasma channels to phase-lock accelerating and focusing forces in

laser-plasma accelerators
W. Rittershofer,1, a) C. B. Schroeder,2 E. Esarey,2 F. J. Grüner,1, b) and W. P. Leemans2
1)Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching,

Germany
2)Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA

(Dated: 16 May 2010)

Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave
driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser-
plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation,
required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma
wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the
required tapering differs. The length over which the tapered plasma density becomes singular is calculated.
Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave
buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator
is calculated and the laser pulse length to optimize the energy gain is determined.

PACS numbers: 52.38.Kd

I. INTRODUCTION

Laser-plasma accelerators1 are of great interest be-
cause of their ability to sustain extremely large accel-
eration gradients, enabling compact accelerating struc-
tures. Laser-plasma acceleration is realized by using
a high-intensity laser to ponderomotively drive a large
plasma wave (or wakefield) in an underdense plasma.
The plasma wave has relativistic phase velocity, approx-
imately the group velocity of the laser, and can support
large electric fields in the direction of laser propagation.
When the laser pulse is approximately resonant (duration
on the order of the plasma period) and the laser inten-
sity is relativistic, with normalized laser vector potential
a = eA/mec

2 ∼ 1, the size of the accelerating field is on

the order of E0 = cmeωp/e, or E0[V/m] ≃ 96
√

n0[cm−3],

where ωp = (4πn0e
2/me)

1/2 is the electron plasma fre-
quency, n0 is the ambient electron number density, me

and e are the electron rest mass and charge, respectively,
and c is the speed of light in vacuum. In addition to
extremely large accelerating gradients, plasma-based ac-
celerators have the potential to produce extremely short
electron bunches, a fraction of the plasma wavelength
λp = 2πc/ωp = 2π/kp. Therefore, laser-plasma accel-
erators are actively being investigated as ultra-compact
sources of high-brightness beams for the next generation
of light sources2–4 and linear colliders.5,6

High-quality electron beams up to 1 GeV have
been experimentally demonstrated in cm-scale plasma
channels.7–9 The energy gain of a beam in the laser-driven
plasma wave can be limited by several laser-plasma

a)Presently at University of Oxford, Clarendon Laboratory, Parks
Road, Oxford OX1 3PU, UK.
b)Also at Max-Plank-Institut für Quantenoptik, Hans-
Kopfermann-Strasse 1, 85748 Garching, Germany.

and beam-plasma interaction lengths. For typical laser-
plasma parameters, diffraction is the most severe limita-
tion, and limits the interaction length to on the order of
a few laser Rayleigh ranges. This limitation can be over-
come through a combination of preformed plasma chan-
nel guiding, relativistic self-focusing, and ponderomotive
self-channeling.10 In the regime of weakly-relativistic in-
tensities (a2 . 1) and moderate laser powers P . Pc,
where Pc is the critical power for relativistic self-focusing,
a plasma channel alone can be employed to guide the laser
over many Rayleigh ranges. Guiding at relativistic inten-
sities over many Rayleigh ranges using preformed plasma
channels has been demonstrated experimentally.11

With diffraction overcome by laser guiding, the beam
energy can be limited by slippage between the beam
position and the phase of the plasma wave. Consider
an electron accelerated along the laser-propagation axis
by a laser-driven plasma wave. In the linear regime,
the field of the electrostatic plasma wave has the form
Ez = Emax sin[ωp(z/vp − t)], where vp is the phase ve-
locity of the plasma wave. As the electron is accelerated,
its velocity will increase and approach the speed of light,
vz → c. If the phase velocity of the plasma wave is con-
stant with vp < c, the electrons will eventually outrun the
plasma wave and move into a phase region of the plasma
wave that is decelerating. This limits the energy gain of
the electron in the plasma wave and is commonly referred
to as electron dephasing. The one-dimensional (1D) lin-
ear dephasing length Ld can be defined as the length the
electron must travel before it phase slips by one-half of a
period with respect to the plasma wave. For a highly rel-
ativistic electron, vz ≃ c, the linear dephasing length Ld

is given by (1 − vp/c)Ld = λp/2, i.e., Ld ≃ γ2pλp, where

γ2p = [1− (vp/c)
2]−1 and assuming γ2p ≫ 1. If the phase

velocity of the wake is assumed to be the linear group ve-
locity of the laser γp ≃ γg ≃ ω0/ωp, where ω0 = 2πc/λ0
is the frequency of the laser, then the 1D linear dephas-
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FIG. 1. Schematic of the basic principle of increasing the
plasma density (tapering) to compensate for slippage between
the plasma wave and a relativistic particle such that the par-
ticle (represented by a circle) remains in a constant phase of
the plasma wave. (a) Longitudinal electric field Ez/E0 at the
initial density n0. (b) Longitudinal electric field Ez/E0 at
the twice the initial density 2n0. Laser centroid is located at
ξ = 0.

ing length is Ld1D ≃ λ3p/λ
2
0. The maximum energy gain

after a linear dephasing length is given approximately by
Wmax ≈ eEmaxLd1D = 2πγ2p(Emax/E0)mec

2, assuming

Emax < E0. A more careful calculation12 gives a max-
imum energy gain of Wmax ≃ 4γ2p(Emax/E0)mec

2, for

(2γp)
−2 ≪ (Emax/E0)

2 ≪ 2.
In addition to dephasing, the energy gain may be lim-

ited by laser depletion. As the laser propagates in the
plasma, its energy is transferred to the plasma wave, and
the rate of energy transfer ultimately limits the laser-
plasma interaction length. The characteristic laser deple-
tion length13 is given, for a Gaussian laser pulse profile,
by Lpd ≃ 17.4(k20/k

3
p)/a

2, for a2 < 1. In the weakly-

relativistic regime a2 < 1, Lpd ≫ Ld, and the energy
gain will be limited by dephasing, not laser depletion.
It has been proposed that the dephasing limitation

may be overcome by spatially tailoring the plasma den-
sity, which is referred to as plasma tapering.14–17 Phys-
ically, as the particles slip forward with respect to the
drive laser, the plasma density is increased, reducing the
plasma wavelength and maintaining the phase of the par-
ticles in the plasma wave bucket (cf. Fig. 1). Although
tapering maintains the particle location in the phase of
the plasma wave, slippage between the particles (with
velocity vb ≃ c) and the drive laser [with group velocity
vg ≃ 1 − ωp(z)

2/(2ω2) < c] will continue and limit the
length over which tapering is possible. Injecting particles
several plasma periods behind the laser will extend the
distance over which one can taper the plasma density.
Appropriate tapering can mitigate dephasing such that
the energy gain is limited by laser depletion.
Although the concept of tapering is well-known,14–17

an explicit expression for the density taper in multi-
dimensions is absent in the literature. Previous work con-
sidered tapering for 1D plasma waves,14–16 or assumed
laser propagation in a plasma channel and neglected the
transverse density gradient in the plasma response.17

Here a general expression for the optimal plasma density
taper to phase-lock the beam in a plasma wave generated
by a laser pulse guided in a plasma channel is derived.
An analytic expression for the length over which the ta-
pered plasma density becomes singular (i.e., the length
over which tapering is possible) is also derived.

The plasma tapering required for maintaining a con-
stant phase in the longitudinal field (accelerating force)
and/or the transverse fields (focusing force) of the plasma
wave is also obtained. In a plasma channel the phase
velocity of the longitudinal wake differs from the trans-
verse wake, and therefore the taper required to maintain
a constant phase in the longitudinal wake differs from the
taper that maintains a constant phase in the transverse
wake. Variation of both the plasma channel radius and
axial density allows the particle phase position of both
the longitudinal and transverse fields to be held constant.

The energy gain of a highly relativistic electron in the
plasma wave is calculated for various taper configura-
tions, including tapering to phase lock a relativistic par-
ticle in the wake, a linear tapering, and a tapering that
includes a density step. A linear tapering is considered
since this may be easier to realize experimentally than
the ideal tapering required for exact phase locking. To
avoid a tapering profile in which the density becomes too
large, a scenario is considered in which ideal tapering is
used until the electron has phase slipped by one period of
the plasma wave at the initial density, at which point the
density is reduced back to its initial density. This has the
effect of passing the electron forward by one plasma wave
bucket while holding the phase in the plasma bucket con-
stant. The optimal laser pulse length to maximize the
energy gain in a tapered plasma is also calculated and
found to be shorter than that in an untapered plasma.

This paper is organized as follows. Section II presents a
derivation of the plasma wave excitation by a laser pulse
propagating in a tapered plasma channel. In Sec. III
the required plasma density taper for phase locking an
electron to the longitudinal and/or transverse field, and
the additional energy gain for the case of optimal plasma
tapering are calculated. As the laser pulse propagates
into the higher density plasma, the resonant condition for
plasma wave excitation is shifted. The pulse duration for
maximal energy gain over the optimally tapered plasma
is calculated in Sec. IVA. The effect of a linear den-
sity taper, and the use of a discontinuous, quasi-periodic
plasma density profile are considered in Secs. IVB and
V, respectively. A summary and conclusions are offered
in Sec. VI.
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II. PLASMA WAVE EXCITATION IN A TAPERED

PLASMA CHANNEL

In this section plasma wave excitation by a laser prop-
agating in a non-uniform density channel is considered.
A parabolic plasma channel that is slowly varying in
the laser propagation direction z can be characterized
by two physical quantities: the on-axis density nch(z)
and the matched laser spot size of a low-power laser
pulse r0m, i.e., n0(z, r) = nch + ∆ncr

2/r20m, where
∆nc = 1/(πrer

2
0m) is the critical channel depth,18 with

re = e2/mec
2. For a tapered plasma channel it is con-

venient to introduce the channel radius Rch(z) such that
n0(z, r) = nch[1+r

2/R2
ch]. A constant matched Gaussian

laser spot size implies nch/R
2
ch = ∆nc/r

2
0m = constant.

Therefore, the channel radius must increase as the plasma
density is increased (such that a constant channel depth
∆nc is maintained).17 A discussion of laser pulse propa-
gation in a tapered plasma channel is presented in Ap-
pendix A. The plasma wavenumber can be expressed
as k2p(z, r) = 4πn0e

2/mec
2 = k2p0[1 + r2/R2

ch], where

k2p0(z) = 4πn0(z, 0)/mec
2 is given by the on-axis plasma

density.

A. Plasma response

The cold plasma equations for the plasma density n,
normalized electron momentum u = p/(mec), the nor-
malized electrostatic potential ϕ = eφ/(mec

2) and the
vector potential a = eA/(mec

2) are

∂n

∂ct
+∇ ·

(

nu

γ

)

= 0, (1)

∂

∂ct
(u− a) = ∇(φ− γ), (2)

∇2φ = k2p00

(

n− n0

n00

)

, (3)

[

∇2 − ∂2

∂(ct)2

]

a = k2p00
n

n00

u

γ
+∇ ∂φ

∂ct
, (4)

where γ = (1 + u2)1/2 is the relativistic factor, n0(z, r)
is the equilibrium density profile, and n00 = n0(0, 0) and
k2p00 = 4πn00e

2/(mec
2) are the initial on-axis density and

plasma wave number, respectively. Here it is assumed
that ∇× (u− a) = 0, i.e., initially zero helicity, and the
Coulomb gauge ∇ · a = 0 is used.

In the following the weakly-relativistic regime |u| < 1
is considered, such that the equations may be treated
perturbatively with respect to the normalized amplitude
of the laser field a2L ≪ 1. In addition a broad chan-
nel is considered and it is assumed that the variation in
plasma density owing to the axial taper is slow compared
to the plasma wavelength and channel radius such that
|∂zn0| ≪ |∂rn0| ≪ kpn0. To second order with respect
to the normalized amplitude of the laser field aL ≪ 1,

Eqs. (1-4) become

∂n2

∂ct
+∇ · (n0u2) = 0, (5)

∂

∂ct
(u2 − a2) = ∇(φ2 − a2L/2), (6)

∇2φ2 = k2p0

(

n2

n00

)

, (7)

[

∇2 − ∂2

∂(ct)2

]

a2 = k2p0
n0

n00
u2 +∇∂φ2

c∂t
, (8)

with ∇ · a2 = 0, which can be combined to yield
[

∂2

∂(ct)2
+ k2p(z, r) +∇×∇×

]

u2 = − ∂

∂ct
∇a2L

2
. (9)

If the longitudinal taper is sufficiently slow, then a
quasi-static approximation can be considered such that
the laser evolution during propagation over a pulse dura-
tion (typically of the order of the plasma period ∼ ω−1

p )
may be neglected, i.e., ∂z ≃ −∂ct. Here an axisymmetric
geometry is assumed. The radial and axial components
of Eq. (9) can then be combined to yield19

[

∂2

∂(ct)2
+ k2p −∇2

⊥ − 1

r

∂

∂r

r

k2p

∂

∂r

∂2

∂(ct)2

]

Ψ

=
(

k2p −∇2
⊥

)

a2L/2, (10)

where Ψ = φ2−a2z = u2z−a2L/2 is the effective potential.
The longitudinal and transverse forces on a relativistic
particle vb ≃ c are given by

Ez/E00 = k−1
p00∂ctΨ, (11)

(Er −Bθ)/E00 = −k−1
p00∂rΨ, (12)

where E00 = mc2kp00/e.
To the lowest order in the normalized transverse scale

length O(1/kpRch), assuming a broad channel kpRch ≫
1, Eq. (10) is (∂2ct + k2p)Ψ0 = k2pa

2
L/2. Assuming that

the laser field is primarily a function of the co-moving
variable aL = aL(ζ) (where ζ is the distance relative to
the laser centroid), the solution for Ψ0 is

Ψ0 = kp

∫ ξ

∞

dξ′ sin [kp(ξ − ξ′)] a2(ξ′)/2, (13)

where the variable co-moving with the laser centroid is

ξ =

∫ z

0

dz′/βg(z
′)− ct. (14)

Here βg is the linear (a2L ≪ 1) laser group velocity in a
plasma channel

βg(z) =
[

1− 4/(rsk0)
2 − k2p0/k

2
0

]1/2
. (15)

For an initially quiescent plasma ahead of the laser, the
solution to Eq. (13) behind the laser driver takes the form

Ψ0 = −Â(r) sin[kp(z, r)ξ + ϕ], (16)
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where Â is the amplitude of the plasma wave and ϕ is a
constant phase determined by the location of the drive
laser. For a Gaussian laser pulse centered at ξ = 0, ϕ = 0
and Â(r) = Â0kpL exp(−2r2/r2s − k2pL

2/2) behind the
laser, where rs/2 is the rms waist of the laser intensity
and L is the rms length of the laser intensity, i.e., a2L ∝
exp(−ξ2/2L2).
Substituting Eq. (16) into Eqs. (11) and (12) yields19

Ez

E00
=
kpÂ

kp00
cos(kpξ + ϕ) (17)

(Er −Bθ)

E00
=
∂rÂ

kp00

√

√

√

√1 +

(

Âξ∂rkp

∂rÂ

)2

sin(kpξ + θ + ϕ),

(18)

where tan(θ) = Âξ∂rkp/∂rÂ.
In the following a laser nearly matched in a plasma

channel with a broad laser spot kprs ≫ 1 is considered
and terms of order O(kprs)

−2 are retained. The laser dy-
namics in a tapered channel is discussed in Appendix A.
For a matched laser, the channel radius is given by
kpRch = (kprs)

2/2, and, hence, (kpRch)
2 ≫ (kprs)

2 ≫ 1
for a broad channel. To lowest order for a Gaussian laser
pulse in a parabolic channel, tan(θ) = −kp0ξr2s/2R2

ch. In
this regime, the additional phase shift between the accel-
erating and focusing forces owing to the plasma channel
will be small θ ≪ 1 for phases sufficiently close to the
laser driver, i.e., provided |kpξ| < kpRch.

B. Linear wave phase velocity

In a tapered plasma channel, the phase velocities of
the axial (Ez) and transverse (Er − Bθ) wakefields are
different, as described by Eqs. (17) and (18), owing to the
θ term in the phase. Consider a particle near the channel
axis r ≪ rs. The phases of the axial and radial forces
experienced by the charged particle, i.e., Fz ∝ Ez ∝
exp(iψz) and Fr ∝ (Er − Bθ) ∝ exp(iψr), respectively,
can be expressed as

ψz = kp0ξ, (19)

ψr = kp0ξ

(

1− r2s
2R2

ch

)

+
π

2
. (20)

In general, the force (longitudinal or transverse) on
the particle is a function ∝ exp(iψ) with a phase of the
form ψ = kp(z)ξf(z). The phase velocity of the field is
βp = −∂tψ/∂zψ, or

βp(z) =
[

ξ(kp0f)
−1∂z(kp0f) + 1/βg(z)

]−1
. (21)

In a tapered plasma, the phase velocity of the longitu-
dinal field and the transverse fields are not equal. For
example, for a matched pulse (rs = r0 = constant) in a

tapered plasma channel with Rch = kp0r
2
0/2, the longitu-

dinal and transverse wake phase velocities, respectively,
are

βpz = 1+
k2p0
2k20

(

1 +
4

k2p0r
2
s

)

− ξ∂zkp0
kp0

(22)

βpr = 1+

(

k2p0
2k20

− ξ∂zkp0
kp0

)(

1 +
4

k2p0r
2
s

)

(23)

In an axially-uniform plasma channel (i.e., without ta-
per), then, from Eq. (21), the wave phase velocity is equal
to the laser group velocity βp = βg. In this case, the dif-
ference between the plasma wave phase velocity and a
highly-relativistic beam velocity near the laser propaga-
tion axis is

βb − βp ≃
k2p0
2k20

(

1 +
4

k2p0r
2
s

)

, (24)

where βb = vb/c and γb = (1 − β2
b )

−1/2 ≫ (k0/kp0) ≫ 1.
The length to slip ∆ψ = π/2 (i.e., through a quarter-
period of the plasma wave corresponding to the accel-
erating and focusing phase region in the broad channel
limit) is

Ld =
(k0/kp0)

2

[1 + 4/(kp0r0)2]
λp/2. (25)

In the 1D limit, the length to slip ∆ψ = π (i.e., through
the accelerating phase of the plasma wave bucket with
length λp/2) is k

3
p0Ld1D/k

2
0 = 2π, or Ld1D ≃ (k0/kp0)

2λp.
If the particle is to remain at a constant plasma wave

phase, ψ0 = constant, over the length of the interaction,
then the phase velocity must be equal to the beam veloc-
ity. Assuming that the beam is highly-relativistic such
that γ2b ≫ γ2g ≫ 1, then the phase velocity of the plasma
wave must satisfy βp ≃ βb ≃ 1.
In general, Eq. (21) with ψ0 = kp0(z)ξf(z), can be

written as

−ψ0

[

∂z(kp0f)

k2p0f
2

]

= β−1
g − β−1

p . (26)

Assuming βp ≃ βb ≃ 1 yields

−ψ0

[

∂z(kp0f)

k2p0f
2

]

≃
k2p0
2k20

+
2

(k0rs)2
, (27)

where ψ0 is assumed to be a constant to eliminate slip-
page. For a pulse centered at ξ = 0, ψ0 < 0 is the
plasma wave phase location of the particles behind the
laser pulse. For the phase of the longitudinal field given
by Eq. (19), f = 1, and for the phase of the transverse
field given by Eq. (20), f(z) = 1− r2s(z)/2R

2
ch(z). Equa-

tion (27) can be solved for the plasma density variation
(taper) to eliminate slippage between the beam and the
plasma wave fields.



5

III. PLASMA DENSITY TAPER

In this section the longitudinal plasma density profile
(taper) required to control the slippage between a rela-
tivistic beam and the phase of the longitudinal and/or
transverse field of the plasma wave is calculated.

A. Taper for longitudinal wake phase locking

Consider a matched laser pulse propagating in a
plasma channel such that rs(z) = r0 = constant. From
Eq. (A3), the evolution of the channel radius must satisfy

Rch(z) = kp0(z)r
2
0/2. (28)

Equation (28) indicates that, to maintain a matched laser
spot, the channel radius must increase with the plasma
density Rch(z) ∝

√

n0(z) such that the channel depth is
constant ∆nc = 1/(πrer

2
0).

The phase of the accelerating force is given by ψz =
kp0ξ. Equation (26) can be expressed in the case of the
phase of the axial field (i.e., with f = 1) as17

dkp0
dz

=
k2p0
|ψ0|

(

1

k0ZR
+
k2p0
2k20

)

, (29)

where ZR = k0r
2
0/2 is the Rayleigh length. Defining the

normalized variables k̂p = kp0/kp00, ẑ = k3p00z/k
2
0, and

κ = 2/(kp00r0), Eq. (29) can be expressed as

dk̂p
dẑ

=
k̂2p

2|ψ0|
(

k̂2p + κ2
)

, (30)

with the general solution

ẑ(k̂p) =
2|ψ0|
κ2

{

1− k̂−1
p

+ κ−1 arctan(κ−1)



1−
arctan

(

k̂pκ
−1
)

arctan (κ−1)





}

. (31)

The initial slope of the optimal taper is, from Eq. (30),

dk̂p/dẑ|ẑ=0 = (1 + κ2)/(2|ψ0|), or

dn

dz
(z = 0) =

n0

|ψ0|
k3p00
k20

(

1 +
4

k2p00r
2
0

)

. (32)

Equation (31) indicates that the density becomes sin-
gular at

ẑs =
2|ψ0|
κ2

{

1− κ−1
[

π/2− arctan
(

κ−1
)]}

. (33)

This singularity is the result of the slippage between the
laser and the particle beam. As the plasma density is

increased, the group velocity of the laser decreases, re-
quiring a larger gradient in density to maintain a plasma
wave phase velocity at the beam velocity. In the frame of
the laser pulse, the beam is slipping forward with respect
to the laser pulse. The singularity occurs once the beam
reaches the laser, i.e., travels a distance |ψ0|/kp00 with
respect to the laser centroid. Note that the underdense
plasma assumption will fail before the singular point is
reached, and the model becomes invalid for high densities

approaching k̂p = k0/kp00 ≫ 1.
The maximum length of the plasma taper is given ap-

proximately by the length to reach the density singular-
ity Ltaper ≃ zs. Using Eq. (33), Ltaper ≃ ẑsk

3
p00/k

2
0 ∝

n
3/2
0 |ψ0|, where the phase |ψ0| = |kp00ξ(z = 0, t = 0)|

is given by the initial distance of the particles behind
the laser driver. Therefore, the length of the taper will
be linearly proportional to the number of plasma wave
buckets behind the laser driver where the beam is lo-
cated, i.e., Ltaper ∝ ẑs ∝ |ψ0| ∝ Nb, where Nb is the
number of plasma wave buckets behind the laser driver.
The farther behind the laser driver, the longer the slip-
page distance (for the beam to reach the laser), and the
longer the taper length. As shown in Sec. IVA, the max-
imum energy gain with taper is also linearly proportional
to the number of plasma wave buckets behind the laser
driver where the beam is initially located.
In deriving the phase of the plasma wave fields in

Sec. II, a broad laser pulse (kprs)
2 ≫ 1 was assumed.

For a broad pulse, in the limit κ2 = 4/(kp0r0)
2 ≪ 1, the

plasma density taper Eq. (31) can be expressed as

k̂p(ẑ) ≃
1− (1− 3ẑ/2|ψ0|)2/3 κ2/5
(1− 3κ2/5− 3ẑ/2|ψ0|)1/3

, (34)

and the singular point (maximum taper length) to lowest
order in κ2 ≪ 1 is

ẑs =
2|ψ0|
3

(

1− 3κ2/5
)

. (35)

The expressions for the optimal axial taper to the next
order in the radial parameter [i.e., to order O(κ4)] are
presented in Appendix B. The energy gain for a plasma
taper given by Eq. (34) is calculated in Sec. IV. In the
1D limit, κ → 0, and the plasma taper takes the form16

k̂p(z) = (1− 3ẑ/2|ψ0|)−1/3, with the singular point ẑs =
2|ψ0|/3.
The optimal plasma density taper to lock the phase of

the accelerating field is plotted in Fig. 2, which shows the
taper required to maintain a constant accelerating phase
|ψ0| = 3π for κ = 0 and κ = 0.3. The dashed curves are
the approximate solution, for κ2 ≪ 1, Eq. (34). As an
example, for a laser with wavelength 0.8 µm and matched
spot r0 = 25 µm propagating in a tapered plasma chan-
nel with initial on-axis density 2× 1018 cm−3, such that
2π/kp00 ≃ 30 µm and κ = 2/(kp00r0) = 0.3, the tapered

plasma density will increase to 8×1018 cm−3 (to k̂p = 2)
after a distance of z ≃ 1.7 cm (ẑ = 5.2).
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FIG. 2. The normalized plasma frequency k̂p = kp0(z)/kp00
versus ẑ = k3p00z/k

2
0 for phase locking the accelerating force

(constant phase |ψ0| = 3π) for κ = 0 and κ = 0.3. The dashed
curves are the approximate solution, Eq. (34).

B. Taper for transverse wake phase locking

The radially varying density in the plasma channel pro-
duces a phase shift between the longitudinal and trans-
verse forces [cf. Eqs.(19) and (20)]. Hence, if the lon-
gitudinal phase is made constant by employing a den-
sity taper given by Eq. (34) a beam will slip with re-
spect to the transverse fields. For a beam experiencing
a linear focusing force, the matched electron beam ra-
dius is σr = (ε⊥/kβ)

1/2, where ε⊥ is the transverse ge-
ometric emittance and the betatron wavenumber kβ is
determined from the focusing force. In a high energy ac-
celerator γ ≫ 1, external focusing between accelerator
sections will most likely be employed, and the plasma fo-
cusing should be made near zero. For a uniform plasma,
this may be accomplished by making the laser spot suf-
ficiently broad kprs ≫ 1, or shaping the transverse pro-
file of the laser such that ∂ra

2 = 0 near the axis. In a
plasma channel, one can consider a combination of high-
order laser modes to produce ∂ra

2 = 0,20 or one can con-
sider placing the beam at the zero crossing of the focus-
ing field. In either case, the phase location of the beam
in the transverse fields should remain fixed to minimize
emittance growth. For a beam with constant transverse
wake phase, the phase of the accelerating field slips with
respect to the beam, resulting in a modest decrease in
energy gain.
To lock the phase of the transverse field of a matched

laser pulse requires ψr = kp0fξ = constant, with f =

1−r20/(2R2
ch) = 1−κ2/(2k̂2p). From Eq. (26), the equation

for optimal tapering to maintain the transverse field is

dk̂p
dẑ

=
k̂2p

2|ψ0|
(

k̂2p − κ2/2
)

, (36)

for a broad pulse κ2 ≪ 1. The solution to Eq. (36) is

k̂p(ẑ) ≃
1− [1− 3ẑ/(2|ψ0|)]2/3 (κ2/10)
[1 + 3κ2/10− 3ẑ/(2|ψ0|)]1/3

. (37)

Note that the beam interaction with the plasma wave
will stop once the beam has slipped forward sufficiently
far to reach the laser pulse. This distance is given by ẑs,
Eq. (35), which occurs before the singularity in Eq. (37)
is reached.
For the case where the phase of the transverse wake

is held constant using a plasma density taper, with a
matched laser rs = r0, the phase of the beam in the
longitudinal wake is

ψz = kp0ξ = (ψr + π/2)
(

1 + κ2/2k̂2p

)

, (38)

where the transverse wake phase is now fixed ψr =

constant, and k̂p(z) is given by equation Eq. (37). As the
beam propagates the phase of the axial field increases.

C. Taper for longitudinal and transverse wake phase

locking

The plasma density can be varied to lock the phase
of the accelerating or the focusing fields for a matched
laser propagating in a plasma channel driving a plasma
wave, but not both. Matched laser propagation requires
that the channel radius and on-axis plasma density sat-
isfy Eq. (28). By allowing both the channel radius and
the plasma density to differ from the matched condi-
tion, both the accelerating phase and focusing phase
can be phase-locked to a beam. In this case the laser
spot size will no longer be matched to the plasma chan-
nel. If the on-axis longitudinal field Eq. (19) is constant,
then the transverse phase Eq. (20) will be constant pro-
vided rs/Rch = constant. Hence as the plasma density
varies, the matched channel condition Eq. (28) can no
longer be satisfied, causing the channel radius and laser
spot size to decrease, and the laser intensity to increase:
a2 = a20(r0/rs)

2.
Maintaining constant axial and transverse phase (while

allowing the laser spot size to vary) requires

dk̂p
d(z/ZR)

= ǫk̂2p

(

k̂2p +
κ2

R2

)

, (39)

where R = rs(z)/r0 and ǫ = k3p00ZR/(2|ψ0|k20) is the ra-
tio of the laser spot evolution length scale to the plasma
taper length scale. The laser spot-size evolution in a
tapered plasma channel, given by Eq. (A3), can be ex-
pressed as

R3d2R

d(z/ZR)2
= 1− k̂2pR

2, (40)

assuming rs(z)/Rch(z) = r0/Rch(0) = constant and an
initially matched laser Rch(0) = kp0(0)r

2
0/2.

The coupled system, Eqs. (39) and (40), can be solved
by assuming the taper is slow compared to the laser spot
evolution and ǫ≪ 1. Consider a perturbation about the
matched laser spot R = 1+ǫR1 and axial plasma density
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FIG. 3. Normalized laser spot size and channel radius
R = rs(z)/r0 = Rch(z)/Rch(0) and plasma frequency k̂p ver-
sus propagation distance (normalized to the Rayleigh range)
z/ZR to maintain a constant phase in the accelerating and
focusing phases for ǫ = 0.02 and κ = 0.25.

k̂p = 1 + ǫk̂p1. For z ≪ zs, the lowest order solutions to
the coupled equations are

k̂p(z) = 1 + ǫ(1 + κ2)(z/ZR), (41)

R(z) = 1− 2ǫ(1 + κ2) [(z/ZR)− sin(z/ZR)] . (42)

The plasma density initially increases linearly and the
spot size decreases (and oscillates with period ZR/2π).
Figure 3 shows the numerical solution to the coupled
Eqs. (39) and (40) for the parameters ǫ = 0.02 and
κ = 0.25. For example, ǫ = 0.02 and κ = 0.25 correspond
to tapering to lock a particle at the phase ψ0 = −5π
in a plasma wave driven by a 0.8 µm wavelength laser
with an initially matched 54 µm spot (ZR ≃ 1.2 cm)
propagating in a plasma channel with on-axis density
6 × 1017 cm−3. In Fig. 3 the channel radius has de-
creased to Rch(z) = 0.5Rch(0) over z = 13.8ZR, and the
laser spot has decreased to rs = 27 µm, with an increase
in laser intensity of a factor of 4.

IV. ENERGY GAIN WITH TAPER

Employing a tapered plasma channel, as described in
Sec. III, yields increased energy gain in a single accel-
erator stage limited by dephasing (for the case of low
depletion, e.g., for weakly-relativistic laser intensities
a . 1). The energy gain may be estimated by consider-
ing a charged particle propagating near the axis rb ≪ rs.
Assuming the laser pulse envelope to be Gaussian with
rms pulse length L, the laser-period averaged envelope of
the normalized intensity is a2 = (a20/2R

2) exp(−ξ2/2L2).
Applying Eqs. (11) and (13), the on-axis accelerating
electric field behind the laser pulse is

Ez =
a20
R2

√

π

8

mec
2

e
k2p0Le

−(kp0L)2/2 cos(kp0ξ + ϕ). (43)
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FIG. 4. Normalized plasma wave accelerating field at
(r, z, t) = (0, z, z/cβb) with κ = 0.25 and L̂ = 0.6 versus
propagation distance ẑ for the cases: without taper (dotted
curve), taper given by Eq. (34) (solid curve), and taper given
by Eq. (37) (dashed curve). The initial phase of the particle
is ψz(0) = −3π.

For a relativistic particle γ2b ≫ γ2g ≫ 1, the energy gain
can be expressed as

∆γ = a20
k20
k2p00

√

π

8
L̂

∫

dẑ k̂2pe
−k̂2

p
L̂2/2R−2cos(kpξ + ϕ),

(44)

with the normalized pulse length L̂ = kp00L.

Without taper (kp0 = kp00) and assuming a matched

(R = 1), resonant (L̂ = 1) laser pulse, the maxi-
mum energy gain for a highly-relativistic (βb = 1) elec-
tron propagating near the channel axis (r ≪ rs) is
∆γ = (π/2e)1/2(1 + κ2)−1a20(k0/kp0)

2, over an accel-

eration length (i.e., linear dephasing length) of L̂d =
kp0Ld = π(k0/kp0)

2(1 + κ2)−1.

With a plasma taper, the phase of the accelerating
field can be made constant, thereby increasing the energy
gain. Figures 4 and 5 show the electric field Eq. (43)
and the energy gain Eq. (44), respectively, assuming a
matched laser (R = 1). The cases without taper (dotted
curves), with a taper to lock the position of the par-
ticle in the longitudinal phase given by Eq. (34) (solid
curves), and with a taper to lock the particle position in
the transverse wake phase (dashed curves) are shown in

Figs. 4 and 5 assuming L̂ = 0.6 and ψz(0) = −3π. As
an example, for a laser with wavelength 0.8 µm, normal-
ized intensity a0 = 0.4, and matched spot r0 = 95 µm
propagating in a tapered plasma channel with initial on-
axis density 2 × 1017 cm−3, such that 2π/kp00 ≃ 75 µm
and κ = 2/(kp00r0) = 0.25, the initial peak electric field
(Fig. 4) is |Ez(z = 0)| ≃ 3.1E00a

2
0 ≃ 2.2 GV/m. For

these parameters the energy gain with tapering to lock
the longitudinal wake (Fig. 5) is mc2∆γ ≃ 2.1 GeV com-
pared to 0.42 GeV without taper. Note that self-focusing
of the laser was neglected. Once the plasma density in-
creases via tapering such that P/Pc = (kp0r0a0)

2/32 > 1,
relativistic self-focusing will result in laser evolution.
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FIG. 5. Normalized energy gain ∆γ/[a20(k0/kp00)
2] with κ =

0.25, L̂ = 0.6, and ψz(0) = −3π versus propagation distance
ẑ = k3p00z/k

2
0 for the cases: without taper (dotted curve),

taper given by Eq. (34) (solid curve), and taper given by
Eq. (37) (dashed curve).

A. Maximum energy gain with longitudinal wake tapering

For a matched pulse, and constant phase of the longi-
tudinal wake, the energy gain Eq. (44) may be expressed
as

∆γ = a20

√

π

8

k20
k2p0

L̂ cos(ψ0)

∫

∞

1

dk̂p
k̂2pe

−k̂2

p
L̂2/2

(dk̂p/dẑ)
, (45)

where dk̂p/dẑ is given by Eq. (30) and integration is to

the singular point ẑs (k̂p → ∞). Note that, although
the underdense assumption of this theory breaks down
as the plasma density approaches the critical density, the
excited wake field goes to zero exponentially for kp0L≫ 1
and hence there are negligible differences between taking
the upper limit of the integral of a few or infinity.

Assuming a broad pulse κ2 ≪ 1, k̂2p(dẑ/dk̂p) ≃
(2|ψ0|/k̂2p)(1 − κ2/k̂2p), Eq. (45) can be integrated with
the solution

∆γ = a20

(

k0
kp0

)2√
π

8
(2|ψ0|) cos(ψ0)Λ(L̂), (46)

where

Λ(L̂) = L̂e−L̂2/2

[

1− κ2

3

(

1− L̂2
)

]

−
√

π

2
L̂2

(

1 +
κ2

3
L̂2

)

Erfc
(

L̂/
√
2
)

. (47)

Figure 6 shows the energy gain versus laser pulse dura-
tion. The optimal initial laser pulse duration for maxi-
mum energy gain at can be found by solving dΛ/dL̂ = 0,

which yields L̂ ≃ 0.612− 0.085κ2 for κ≪ 1.

B. Linear plasma density taper

A plasma channel with optimal longitudinal density
tapering Eq. (31) may be challenging to realize experi-
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FIG. 6. Normalized energy gain ∆γ/[a20(k0/kp00)
2] versus

normalized initial laser pulse duration L̂ = kp00L for κ = 0
(dashed curve), κ = 0.25 (solid curve), and κ = 0.4 (dotted

curve). L̂ = 1 corresponds to an initially, linearly resonant
laser pulse.
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FIG. 7. The normalized plasma frequency k̂p = kp0(z)/kp00
versus ẑ = k3p00z/k

2
0 with initial phase ψ0 = −3π and κ =

0.25, for σ = 1, σ = 1.74, and the optimal taper (dashed
curve) given by Eq. (34).

mentally. In this section a linear plasma density taper,
which may be simpler to realize in practice, is considered
and shown to also significantly increase the energy gain.
The plasma density can be expressed in terms of the

initial density slope for the case of optimal tapering,

k̂2p(ẑ) =
n(ẑ)

n00
= 1 + 2σ

dk̂p(0)

dẑ
ẑ, (48)

where dk̂p(ẑ = 0)/dẑ = (1 + κ2)/(2|ψ0|), is the initial
slope of the plasma wavenumber and σ is a constant that
can be determined to yield the maximum energy gain.
Figure 7 shows the plasma density taper (with initial
phase ψ0 = −3π and κ = 0.25) for σ = 1, σ = 1.74, and
the optimal taper given by Eq. (34). For densities less
than the optimal taper, the βb ≃ 1 beam slips forward
with respect to the longitudinal wake, and for densities
larger than the optimal taper the βb ≃ 1 beam slips back
with respect to the longitudinal wake.
Assuming the initial phase of the particle is ψ0, in a

linear taper the phase of the particle slips with respect
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FIG. 8. Normalized energy gain for linear tapers with κ =
0.25 and ψ0 = −3π for σ = 1 and σ = 1.74 versus propagation
distance ẑ. Dashed curve is energy gain with optimal taper.

to the axial field such that

ψz = k̂p

(

ψ0 + ẑ
[

1 + σẑ(dk̂p(0)/dẑ)
]

(

1 + κ2
)

/2
)

,

(49)
where terms of order O(k2p00/k

2
0) are retained. Figure 8

shows the energy gain by solving Eq. (44), with L̂ = 1,
κ = 0.25, and injection at ψ0 = −3π, for the three tapers
shown in Fig. (7). For the case of σ = 1.74 the beam
initially slips back with respect to the longitudinal wake,
and then slips forward before moving into a defocusing
region of the plasma wave.

V. STEP PLASMA DENSITY TAPER

The length over which tapering (to phase-lock a par-
ticle in the plasma wave) is possible is limited by the
density growing unbounded near ẑs. Tapering may be
extended by injecting the beam into a plasma wave phase
further behind the laser (i.e., increasing |ψ0|) or by con-
sidering a discontinuous step in the plasma density pro-
file. For example, consider tapering to maintain the
phase of the beam in the plasma wave. After the beam
slips, with respect to the laser, one plasma wavelength of
the initial density, then (instantaneously) reducing the
density to the initial value will keep the beam in the
same phase of the plasma wave, however, in one plasma
wave bucket closer to the laser compared to its initial po-
sition. A discontinuous or layered taper was considered
in Ref. 16.
The distance to slip Ns periods of the plasma wave

with respect to the initial plasma density is given by
kp00ξ = ψ0 + 2πNs, where ψ0 is the initial phase that

is held constant by the tapering, kp0ξ = k̂p(kp00ξ) = ψ0.
Therefore, the beam will have slipped Ns periods with re-
spect to the initial plasma density after the tapering has

increased the density to k̂p = ψ0/(ψ0 + 2πNs). The dis-
tance to reach this density taper is given by Eq. (31). In
this process, the beam has moved from Nb plasma wave
buckets behind the laser to Nb −Ns buckets behind the
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FIG. 9. Normalized plasma wavenumber k̂p versus distance
ẑ with κ = 0.25. Solid curve is the density taper for a beam
that is in the initial phase ψ0 = −5π and moves to the phase
ψ1 = −3π after the density discontinuity at ẑ(k̂p = 5/3).
Dashed curve is the continuous density taper for a beam at
the phase ψ0 = −7π.
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FIG. 10. Normalized energy gain with L̂ = 0.6 for the taper
cases shown in Fig. 9: solid curve is the discontinuous taper
case and dashed curve is the continuous taper case.

laser after the density discontinuity, while maintaining
the phase in the plasma wave. In principle, the step-
ping down in density described here can be repeated, ad-
vancing the beam to plasma wave buckets closer to the
laser pulse, until the beam reaches the first plasma wave
bucket.
Figure 9 shows an example (with κ = 0.25) of a plasma

density tapering where the beam is initially at the phase
ψ0 = −5π, and after propagating a distance such that

k̂p = 5/3, the density is reduced to the initial value at

ẑ(k̂p = 5/3) ≃ 7.86, and the beam is then located at the
phase ψ1 = −3π. The plasma may then be tapered via
Eq. (34) to maintain this phase, as shown in Fig. 9. Ef-
fectively, the beam is starting in the third plasma wave
bucket behind the laser, and after the density disconti-
nuity, moves to the second plasma wave bucket behind
the laser pulse. For comparison, also shown in Fig. 9
is the continuous taper for a beam initially at a phase
ψ0 = −7π (dashed curve), i.e., a beam initially in the
fourth plasma wave bucket behind the laser pulse.

Figure 10 shows the energy gain for the two cases (dis-
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continuous taper and continuous taper) shown in Fig. 9.
Although the energy gains are comparable, Fig. 10 shows
that higher energy gain can be achieved over equal prop-
agation distance by simply using a continuous taper
and injecting at a phase further being the laser (dashed
curve), compared to discontinuous tapering (solid curve).

VI. SUMMARY AND CONCLUSIONS

In a longitudinally homogeneous plasma, the beam ve-
locity and the laser-driven plasma wave phase velocity
are not matched, resulting in slippage of the beam with
respect to the phase of the plasma wave. The energy gain
in a laser-plasma accelerator can be limited by this de-
phasing between the accelerating field of the plasma wave
and the phase position of an electron beam in the wave.
Dephasing will be the most severe limitation on energy
gain for beams interacting with plasma waves driven by
weakly-relativistic a2 < 1 lasers in a matched plasma
channel. Tapering of the plasma density can mitigate
dephasing of the beam with respect to the plasma wave.
To further enhance the performance of laser-plasma ac-
celerators, it is anticipated that the next generation of
experiments will employ plasma density tapering.
Analytic expressions were derived for the optimal taper

to lock the phase of a relativistic beam in the longitudinal
wake, allowing enhanced energy gains. Expressions for
the maximum taper length over which the plasma density
becomes singular, and the optimal laser pulse duration
for maximizing the energy gain in the tapered plasma
channel were also derived.
In a plasma channel, the phase velocities of the lon-

gitudinal and transverse wakefields differ, and control of
the focusing fields in a plasma wave will require tapering
to maintain the location of the beam in the phase of the
transverse wake (i.e., focusing fields). An expression for
the taper to phase lock the beam to the transverse wake
was derived. With tapering to phase-lock the transverse
wake, slippage in the phase of the longitudinal field re-
sults in a modest decrease in energy gain compared to
the case of tapering to lock the phase of the longitudinal
wake. It was shown that it is possible to lock the phases
of both the longitudinal and transverse wakes by varying
both the axial plasma density and the plasma channel
radius, resulting in a varying laser spot size.
A discontinuous plasma density taper was considered

to move the beam to plasma wave buckets closer to the
drive laser, while maintaining a constant phase in the
plasma wave. This technique can extend the interaction
length and increase the energy gain. Although injecting
a beam into a plasma wave bucket farther behind the
laser yields comparable energy gains, over comparable
distances. It was also shown that significant energy gains
can be achieved by employing a linear plasma density
taper, which could be simpler to realize experimentally.
The slope for achieving the maximum energy gain was
determined.

It should be noted that the laser pulse was assumed
to be non-evolving, i.e., laser depletion, steepening, and
self-focusing were neglected. The scale length for laser
depletion and steepening is the pump depletion length
Lpd ∼ (k20/k

3
p)a

−2, which for a ≪ 1 is much longer than

the tapering scale length ∼ k20/k
3
p. This assumption is

hence only valid for weakly-relativistic laser intensities.
Neglecting laser self-focusing requires P/Pc < 1. For
ultra-intense laser pulses, such that a2 ≫ 1, the pulse
evolution will modify the phase velocity of the plasma
wave since the nonlinear plasma wavelength is a strong
function of laser intensity in this regime. Tapering in the
nonlinear laser intensity regime will be a topic of further
study.
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Appendix A: Laser evolution in a tapered plasma channel

Applying the paraxial approximation, the linear evo-
lution of the normalized laser intensity envelope in a
parabolic (tapered) plasma channel is described by

(

∇2
⊥
+ 2ik0

∂

∂z

)

a = k2p0(z)

[

1 +
r2

R2
ch(z)

]

a, (A1)

where an underdense plasma has been assumed such that
γg ≫ 1. Here the axial plasma density kp0(z) and the
channel radius Rch(z) may vary due to the taper. Equa-
tion (A1) neglects relativistic self-guiding and plasma
wave guiding, which will be valid for laser powers less
than the critical power and weakly-relativistic laser in-
tensities a2 ≪ 1. The lowest-order Gaussian mode solu-
tion to Eq. (A1) can be expressed as

a(z, r) =
a0r0
rs(z)

exp
{

− [1− iα(z)] r2/r2s(z) + iθ(z)
}

,

(A2)

where rs is the laser spot size, α is the phase front cur-
vature, and θ is the phase shift. The evolution equation
for the spot size rs is

d2rs
dz̃2

=
r40
r3s

(

1−
k2p0r

4
s

4R2
ch

)

, (A3)

with the phase-front curvature is given by α =
(rs/r0)d(rs/r0)/dz̃, and the phase shift evolution by
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dθ/dz̃ = 1 − r20/r
2
s . Here z̃ = z/ZR is the propagation

distance normalized to the Rayleigh range, and the ini-
tial conditions rs(0) = r0, drs(0)/dz = 0, θ(0) = 0, and
α(0) = 0 were assumed (at the laser waist). Note that
changes in the group velocity in the underdense plasma
owing to the taper are neglected and βg ≃ 1 is assumed.
The changes in group velocity due to the taper21 yield
terms that are of the order O(k4p/k

4
0), and, hence may be

neglected.

As indicated by Eq. (A3) the condition for a matched
laser pulse in a plasma channel is

Rch(z) = kp0(z)r
2
s(z)/2, (A4)

and a matched laser pulse rs(z) = r0 = constant re-
quires the channel radius to grow proportionally to the
plasma wavenumber: Rch(z) = kp0(z)r

2
0/2. This condi-

tion is equivalent to a constant channel depth, where the
channel depth (change in plasma density at a laser spot
size) normalized to the critical channel depth for guiding
∆nc = mc2/πe2r20 is ∆n/∆nc = k2p0r

4
0/4R

2
ch.

Appendix B: Tapering in a narrow plasma channel

In this Appendix, the plasma taper required for axial
phase locking to order O(κ4) in the transverse parameter
κ = 2/(kp00r0) < 1 is calculated. To order O(κ4), solu-
tions to Eq. (10) yield a curvature term to the phase of
the accelerating field.19 For a particle near the axis, the
phase of the accelerating field is given by

ψz = kp0ξ −
2ξ

kp0R2
ch

= kp0ξ

(

1− κ4

2k̂4p

)

, (B1)

where the matched laser condition is assumed Rch =
kp0r

2
0/2. From Eq. (26) maintaining a highly-relativistic

beam βb ≃ 1 at a constant phase requires, to orderO(κ4),

2|ψ0|
dk̂p
dẑ

=
(

k̂4p + k̂2pκ
2 − 5κ4/2

)

. (B2)

Equation (B2) can be integrated to yield

ẑ

2|ψ0|
=

1

3

(

1− k̂−3
p

)

− κ2

5

(

1− k̂−5
p

)

+
κ4

2

(

1− k̂−7
p

)

,

(B3)

with the plasma density singularity reached at ẑs =
(2|ψ0|/3)

(

1− 3κ2/5 + 3κ4/2
)

.
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F. Krausz, and S. M. Hooker, New J. Phys. 9, 415 (2007).

10E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE J. Quantum
Electron. 33, 1879 (1997).

11C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B.
Schroeder, J. Cary, and W. P. Leemans, Phys. Rev. Lett. 95,
145002 (2005).

12E. Esarey and M. Pilloff, Phys. Plasmas 2, 1432 (1995).
13B. A. Shadwick, C. B. Schroeder, and E. Esarey, Phys. Plasmas
16 (2009).

14T. Katsouleas, Phys. Rev. A 33, 2056 (1986).
15S. V. Bulanov, V. A. Vshivkov, G. I. Dudnikova, N. M. Naumova,
F. Pegoraro, and I. V. Pogorelsky, Plasma Phys. Rep. 23, 259
(1997).

16A. Pukhov and I. Kostyukov, Phys. Rev. E 77, 025401 (2008).
17P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting,
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