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Abstract We introduce a machine-learning framework named statistics-informed neural network (SINN) for learn-

ing stochastic dynamics from data. This new architecture was theoretically inspired by a universal approximation

theorem for stochastic systems, which we introduce in this paper, and the projection-operator formalism for stochas-

tic modeling. We devise mechanisms for training the neural network model to reproduce the correct statistical

behavior of a target stochastic process. Numerical simulation results demonstrate that a well-trained SINN can

reliably approximate both Markovian and non-Markovian stochastic dynamics. We demonstrate the applicability

of SINN to coarse-graining problems and the modeling of transition dynamics. Furthermore, we show that the ob-

tained reduced-order model can be trained on temporally coarse-grained data and hence is well suited for rare-event

simulations.

1 Introduction

The use of machine learning (ML) techniques to model stochastic processes and time series data has seen many

contributions in the past years. Two common strategies are to utilize neural networks (NNs) to either solve or learn

the associated differential equations.
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In the ‘solver’ strategy, the differential equation governing a dynamical system is assumed to be known a priori

and an NN is used to construct a numerical solver for the equation. A representative approach using the solver

strategy is the physics-informed neural network (PINN) [1, 2]. In the PINN approach, an NN serves as a solver

that transforms initial and boundary conditions into approximate solutions. Specifically, an NN is trained using

a specialized loss function that is defined in terms of the underlying differential equation. Thus, minimizing this

specialized loss function steers the solver towards producing outputs that conform to the target differential equation.

More recent members within the PINN family include sparse physics-informed neural network (SPINN) [3], parareal

physics-informed neural network (PPINN) [4], and so on [5].

The ‘learning’ strategy, on the other hand, aims to learn the hidden dynamics from data using an NN. This strategy

is adopted by the neural ordinary differential equation (NeuralODE) approach [6]. In this approach, an NN is not

used to directly solve an equation, but rather to compute the gradient of the state variables. To train such a network,

an adjoint dynamic system and a reverse-time ODE solver are adopted to facilitate backpropagation. After updating

the parameters of the augmented dynamics, solutions to the differential equations can be found to reconstruct and

extrapolate the hidden dynamics. Recent developments on top of NeuralODE include NeuralSDE [7, 8], Neural

Jump SDE [9], NeuralSPDE [10], Neural Operators [11], infinitely deep Bayesian neural networks [12], etc.

Generally speaking, learning an unknown dynamics, which is an ‘inverse’ problem, is more challenging than

solving or simulating a known dynamics. This is particularly so for stochastic systems. The ever-growing abundance

of data necessitates methods that can learn stochastic dynamics in a wide range of scientific disciplines such as,

for example, molecular dynamics [13, 14, 15], computational chemistry [16], and ecology [17]. Aside from the

aforementioned work based on ML methodologies, recent progress in this direction includes the work of Lu et

al. [18, 19, 20] on the learning of interaction kernel of multi-particle systems with non-parametric methods, the

kernel-based method [21, 22] for learning discrete non-Markovian time series, and various approximations of the

Mori-Zwanzig equation for the learning of non-Markovian stochastic dynamics [13, 14, 23, 24, 25, 26] in molecular

dynamics. Typically, these non-ML methods use sophisticated series expansion and regression techniques to learn

and construct the desired stochastic model. Although being theoretically complete and numerically successful

within their own applicability, such modeling processes are often complex and too difficult to be extended to

high-dimensional or highly heterogeneous systems. The success of NN models in dealing with high-dimensional

problems for complex systems inspired us to use it to build a simple data-driven, extensible framework for modeling

stochastic dynamics, i.e. the statistics-informed neural network (SINN). We now detail SINN’s construction and the

main rationale behind it, as well as its major differences from the existing ML frameworks.

To learn stochastic dynamics with NNs, we first consider how to use deterministic architectures such as the

recurrent neural network (RNN) to generate randomness. Being built on top of a deterministic RNN architecture,

SINN does not generate randomness per se, but rather transforms an input stream of discrete independent and
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Figure 1: Equation-based and equation-free modeling diagrams in different spatial-temporal scales.

identically distributed (i.i.d.) random numbers to produce realizations of stochastic trajectories. The modeling

capacity of this simple construction can be examined using the universal approximation theorem (UAT) for RNNs.

Specifically, by mimicking the proof of the UAT for a one-layer RNN for arbitrary deterministic, open dynamical

systems [27], we obtain a similar result stating that a one-layer RNN with Gaussian white-noise input can universally

approximate arbitrary stochastic systems. We then use the long short-term memory (LSTM) [28] architecture as

the building blocks for SINN in order to capture non-Markovian and memory effects that the underlying stochastic

system may contain. Contrary to PINNs and the NeuralSDE, SINN is trained on the statistics, such as probability

density function and time autocorrelation functions, of an ensemble of trajectories. Briefly speaking, SINN is mainly

different from other ML frameworks in the following three aspects: (I) SINN is entirely equation-free — training

and modeling do not rely on knowledge about the underlying stochastic differential equation; (II) an RNN, instead

of fully connected or convolutional layers, is used as the primary architecture of the model; (III) instead of seeking

a pathwise approximation to the stochastic dynamics, SINN constructs simulated trajectories that converge to the

example trajectories in the sense of probability measure and n-th moment. The computational and modeling merit

brought by these three features will be elaborated later with numerical supports.

In a greater picture, SINN can be categorized as an equation-free ML architecture for discovering the hidden

dynamics of a physical system at different spatial-temporal scales. From a modeling perspective, the classical

equation-based modeling approach, as shown in Figure 1, normally starts with a microscopic model for the molec-

ular/quantum dynamics. A certain coarse-grained procedure, such as the projection operator method or the mean-

field approximation, is then applied to reduce the dimensionality of the system in order to generate mesoscopic and

macroscopic models. At different scales, the established physical models have a general form:

∂tu = F(u, k, t), (1)

where u is the unknown (vector) variable or a (vector) field u(x, t), F(u, k, t) is the combination of functions, stochastic
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processes, and operators with modeling parameters k. In contrast to the equation-based approach, ML approaches

rely on equation-free models based on the convolutional neural network (CNN) [29, 30], RNN [31], or graph neural

network (GNN) [32] to model a physical process. These NNs need to be trained on data, such as the sample

trajectories of an observable in the phase space. The general form of the modeling ansatz for the unknown function

u(x, t) relies on the multi-fold function composition:

u(x, t) = f1( f2( f3(· · · , k3), k2), k1), (2)

where fi is the activation function of i-th NN layer and ki represents the corresponding weights and parameters.

ML models such as PINNs use the underlying equations to define the loss function while the modeling anstaz is

of the form (2). Other examples such as the NeuralODE/SDE/SPDE use (2) to model the derivatives function, i.e.

the right-hand side of equation (1). In comparison, SINN is completely equation-free during the training and the

modeling process.

Specifically for this paper, numerical experiments will be provided to demonstrate the capability of SINN in

approximating Gaussian and non-Gaussian stochastic dynamics as well as its ability to capture the memory effect

for non-Markovian systems. We also use SINN to discover surrogate models for transition dynamics that often

appears in computational chemistry. Our SINN model can be trained using temporally coarse-grained trajectories.

This feature makes it an efficient simulator for rare events. In addition to the application in physics, SINN provides

a simple and flexible framework to model arbitrary stationary stochastic processes, hence is generally applicable

in the areas of uncertainty quantification and time series modeling. Several simple test examples presented in

Section 4.2 promisingly show its numerical advantages over established stochastic process modeling tools such as

the transformed Karhunen-Loéve or polynomial chaos expansion [33, 34, 23, 14].

This paper is organized as follows. In Section 2, we review the established universal approximation theorem

for a single-layer RNN model and show that there is a natural extension of this theorem for stochastic systems

driven by Gaussian and non-Gaussian white noise. Inspired by this theoretical result, in Section 3, we propose

a statistics-informed neural network (SINN) and introduce different types of loss functions. The training method

of SINN is provided in Section 4.1. Three simple test examples are presented in Section 4.2 to demonstrate that

SINN can well approximate both Gaussian and non-Gaussian stochastic dynamics. In Section 5, we apply SINN to

a coarse-graining problem and also use it as an effective rare-event simulator to evaluate transition rates. Several

assessments of SINN as a tool for learning stochastic dynamics are also provided. Lastly, the main findings of this

paper are summarized in Section 6. The proofs for the main theorems are given in Appendix A.
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2 RNN as a Universal Approximator for Stochastic Dynamics

Recurrent neural network (RNN) is a good candidate architecture for learning the unknown dynamics of a physical

system since there is a natural correspondence between the recurrent internal structure of RNN and the time-

recursive update rule that quantifies the dynamics. In this section, we discuss the universal approximation properties

of RNN for stochastic processes, in particular, discrete stochastic processes corresponding to the numerical solutions

of stochastic differential equations (SDEs). We consider a one-layer deterministic RNN with stochastic input and

show that if the model is wide enough, i.e. has a large number of hidden states, it can accurately approximate the

finite-difference scheme of a time-homogeneous Markovian SDEs driven by Gaussian white noise.

We first review the universal approximation theorem (UAT) of RNN for deterministic dynamical systems estab-

lished by Schäfer and Zimmermann in [27]. To this end, let us consider a one-layer RNN model given by the update

rule:
st+1 = σ(Ast + Bxt − θ),

yt = Cst,
(3)

where st ∈ RH is the state vector of the RNN, xt ∈ RI is the input, σ is the activation function of the network, and

yt ∈ RN is the output. The modeling parameters of this simple, one-layer RNN are the weight matrices A ∈ RH×H,

B ∈ RH×I, C ∈ RN×H, and the bias vector θ ∈ RH. An immediate observation is that this update rule is very similar

to the structure of a discrete, open dynamical system of the form:

st+1 = g(st, xt),

yt = h(st),
(4)

where st ∈ RJ, xt ∈ RI, yt ∈ RN, and the functions g(·) : RJ
× RI

→ RJ, h(·) : RJ
→ RN. In fact, Schäfer and

Zimmermann in [27] proved that a one-layer RNN with update rule (3) can universally approximate the dynamics

of open dynamical system (4) with arbitrary accuracy. Their result can be restated as:

Theorem 1. (Schäfer & Zimmermann [27], UAT for the deterministic RNN). Let g(·) : RJ
× RI

→ RJ be measurable and

h(·) : RJ
→ RN be continuous, the external input xt ∈ RI, the inner state st ∈ RJ, and the outputs yt ∈ RN (t = 1, · · · ,T).

Then any discrete, open dynamical system of form (4) can be approximated by an RNN model of type (3) to an arbitrary

accuracy.

The exact definition of an RNN model of type (3) and the meaning of the arbitrarily accurate approximation are

provided in Appendix A. The proof of this theorem was established based on the UAT for the feedforward neural

networks. Here we mention some key points of Theorem 1.
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1. The state vector st ∈ RJ in the dynamical system (4) is not the same as the state vector st ∈ RH in RNN (3). In

fact, to guarantee the accuracy of the approximation, there normally is an enlargement of the state space in

RNN, i.e. H > J. This has also to do with the next point.

2. The universal approximation is in the sense of matching the input xt and the output yt. This means that with

the exact same input xt, the output yt of the RNN should match closely with the output yt of the dynamical

system, while the state vectors st of these two systems may be different.

3. The UAT assumes finite-step input/output, i.e. T < +∞.

The above UAT clearly indicates that even with a simple architecture such as the one-layer RNN, one can

universally approximate any open dynamical system of the general form (4). However, the theorem itself provides

little guidance on how to construct such an RNN model for a specific dynamical system. In practice, we rarely use a

wide-enough RNN to complete the computing task. Nevertheless, the theorem indubitably shows the potential of

the RNN architecture in modeling/learning dynamical systems.

We now show that a similar UAT holds for the resulting stochastic RNN by simply replacing the input vector xt

with i.i.d. Gaussian random variables while leaving all other structures unchanged. This result can be stated as:

Proposition 1. (UAT for RNN with Gaussian inputs). Let g(·) : RM
×RI

→ RM be locally Lipschitz and h(·) : RM
→ RN be

continuous, the external input xt ∈ RI be i.i.d. Gaussian random variables, the state vector st ∈ RM, and the outputs yt ∈ RN

(t = 1, · · · ,T). Then any discrete, stochastic dynamical system of form (4) can be pathwisely approximated to an arbitrary

accuracy by an RNN model of type (3) asymptotically almost surely.

A mathematically rigorous statement of Proposition 1 is given as Theorem 3 in Appendix A, which can be proved

using a probabilistic variant of the method proposed by Schäfer and Zimmermann [27]. The detailed proof is rather

technical, hence will also be deferred to Appendix A. An intuitive explanation of why the probability of finding

a suitable RNN that approximates (4) is only asymptotically 1 is that the key estimate which leads to Schäfer and

Zimmermann’s deterministic UAT (Theorem 1 in Appendix A) is based on the fact that the finite-step input vector

xt can be bounded in a compact domain ofRI. Since the Gaussian random input xt ∈ RI is not compactly supported,

but only asymptotically compactly supported, we can only find its universal approximation asymptotically almost

surely. This discussion also implies the following corollary:

Proposition 2. (UAT for RNN with compactly supported stochastic input). Let g(·) : RM
× RI

→ RM be continuously

differentiable, h(·) : RM
→ RN be continuous, the external input xt be i.i.d. random variables with compact support, the inner

state st ∈ RM, and the outputs yt ∈ RN (t = 1, · · · ,T). Then any discrete, stochastic dynamical system of form (4) can be

pathwisely approximated to an arbitrary accuracy by an RNN model of type (3) almost surely.
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Proof. The proof is easy to obtain following the above arguments and Appendix A. �

As an example, consider i.i.d. stochastic input xt being uniformly distributed in [a, b]I. Then, with probability 1

one can find an RNN model of type (3) that accurately approximates open stochastic dynamics (4). For the proposed

RNN with stochastic inputs, what the RNN learns is the deterministic update rule that matches the input xt with

the output yt. This is the fundamental reason why the proof of the UAT for RNN with deterministic inputs can be

modified to obtain the UAT for RNN with stochastic inputs.

UAT for SDEs. The above UATs for RNN with stochastic input can be immediately applied to address the learning

and approximation problem of SDEs. Consider Itô’s diffusion on Rd:

dX(t) = b (X(t)) + σ (X(t)) dW(t), (5)

where b(X(t)) ∈ Rd is the vector field, σ(X(t)) ∈ Rd×m is the diffusion matrix, andW(t) ∈ Rm is the standard Wiener

process. Any (explicit) finite difference scheme corresponding to Itô’s diffusion can be written in the form of (4)

with i.i.d. Gaussian input. For instance, the Euler–Maruyama scheme is given by

X(t + ∆t) = X(t) + ∆t b (X(t)) + σ (X(t))
√

∆tξ(t)

= g(X(t), ξ(t),∆t), (6)

where ξ(t) are i.i.d. standard normal random variables. For a fixed ∆t, (6) corresponds to the update rule for the

state vector in (4) where xt = ξ(t). Any phase space observables of the stochastic system yt = h(Xt) can be the output.

Under some mild conditions, the Euler–Maruyama scheme (6) is proven to be pathwise convergent to the exact

solution of SDE (5) as ∆t→ 0 [35, 36]. With this result, we can actually obtain the following UAT for Itô’s diffusion:

Proposition 3. (UAT for the RNN approximation of Itô’s diffusion) Suppose b(x) and σ(x) are locally Lipschitz, then the exact

solution in a finite time grid to Itô’s diffusion (5) can be pathwisely approximated to an arbitrary accuracy by an RNN model

of the type (3) asymptotically almost surely, if we replace xt by ξ(t).

A formal statement of Proposition 3, i.e. Theorem 4, and its proof are again provided in Appendix A. Since any

time-inhomogeneous SDE admits a time-homogeneous extended dynamics by choosing t = Y(t) as another state

variable. Therefore, the universal approximation result naturally extends to time-inhomogeneous SDEs. Similarly,

if a non-Markovian SDE admits a suitable embedded Markovian dynamics representation, one can approximate it

with RNN model (3) by using the latter representation. As an example, consider the generalized Langevin equation
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(GLE) [13] that is frequently used in the coarse-grained modeling of large-scale molecular systems:


q̇ = p,

ṗ = F(q) −
∫ t

0
K(t − s) p(s) ds + f (t),

(7)

where q(t), p(t) are the effective position and momentum of a coarse-grained particle of unit mass, F(q) is the effective

potential energy force, f (t) is the fluctuation force which is often assumed to be a colored Gaussian stochastic

process, and the time autocorrelation function of f (t) yields the memory kernel K(t) = 〈 f (t) f (0)〉. GLE (7) is a

non-Markovian stochastic system because of the time-convolution term
∫ t

0 K(t − s) p(s) ds. It is shown in [13] and

many recent works that for many molecular dynamical systems, GLE (7) for a coarse-grained particle often admits

a Markovian embedded approximation:


dq = p dt,

dp =
[
F(q) + ZTs

]
dt,

ds =
[
Bs −QZp

]
dt + dW(t),

(8)

where the vector s consists of auxiliary variables whose length depends on the order of approximation, and Z,B,Q

are the corresponding auxiliary matrices. For such Markovian embedded dynamics, the proposed RNN has the

capacity to approximate its output q(t) and p(t) according to Proposition 3.

3 Statistics-Informed Neural Network

The UAT shows the potential of RNNs in simulating stochastic dynamics at the large-width limit. In this section,

we put this theoretical insight into practice as a framework called the statistics-informed neural network (SINN) to

learn stochastic dynamics from data. The main structure of SINN can be briefly summarized as follows. We use the

long short-term memory (LSTM) architecture, a specific type of RNN, to capture non-Markovian memory effects

a potential stochastic system might have. These LSTM cells take i.i.d. random sequences as input and generate

ensembles of stochastic time series. A set of training algorithms and statistics-based loss functions are devised to

train SINN to reproduce the statistical characteristics of a target stochastic system.

Before we introduce the specific way to construct SINN, it is worth clarifying our approach. In this paper, we

do not seek to construct NNs which are merely an implementation of established theoretical results in Section 2.

A wide enough, one-layer neural network has the universal approximation property while is hardly useful in

practice. Instead, we use a multi-layer deep neural network to design neural network. Deep neural networks with
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Figure 2: SINN architecture

multiple layers are proven to have many successful applications while the convergence proof is far out of reach.

For this reason, we investigate numerical convergence to the target stochastic dynamics in terms of statistics, which

corresponds to the weak convergence instead of the pathwise convergence [36]. It is noted that the UAT result

should be understood as a justification of the modeling capacity of stochastic RNN, and the way we embed random

noise into the system.

3.1 Model Architecture

A graphical illustration of the SINN architecture is shown in Figure 2. The network consists of a multi-layer LSTM

component to learn the temporal dynamics of stochastic processes, and a dense layer attached to the output gate of

the LSTM as a ‘read-out’ device. Dropout layers can be optionally placed between the layers to control overfitting.

As inspired by the UAT, we use a stream of i.i.d. random numbers as the input to the model, which only

carries out deterministic operations, in order to generate different realizations of a stochastic process. The preferred

distributions for the input noise are the ones with maximum entropy, i.e., normal distributions for outputs with

infinite support, uniform distributions for outputs with compact support, and exponential distributions for outputs

with support onR+. From one perspective, the maximum entropy principle implies that this is the best choice when

we assume minimum prior knowledge about the stochastic process. From an alternative perspective, the i.i.d. noise

sequences can be viewed as the entropy source for SINN, which in turn can be viewed as a transformer between the

input and output stochastic processes. Since information can be lost during the calculation, the maximum entropy

distributions help to ensure that the transformation process will not starve of entropy.
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Denoting the white noise sequence as ξt, the forward pass of the first LSTM layer in SINN can be written as:

f (1)
t = σg

(
W fξt + U f h

(1)
t−1 + b f

)
, (9)

i(1)
t = σg

(
Wiξt + Uih

(1)
t−1 + bi

)
, (10)

o(1)
t = σg

(
Woξt + Uoh(1)

t−1 + bo

)
, (11)

c̃(1)
t = σc

(
Wcξt + Uch

(1)
t−1 + bc

)
, (12)

c(1)
t = f (1)

t ◦ c(1)
t−1 + i(1)

t ◦ c̃(1)
t , (13)

h(1)
t = o(1)

t ◦ σh(c(1)
t ), (14)

where c̃(1)
t is the cell input activation, c(1)

t is the cell state, and f (1)
t , i(1)

t , o(1)
t are the forget gate, the input gate, and

the output gate of the first layer, respectively [28]. For a subsequent layer i, the previous-layer output h(i−1)
t replaces

ξt as the input. The final output χt is then calculated as χt = Wmh(n)
t , where h(n)

t is the output of n-th LSTM layer,

Wm ∈ Rx, and x is the size of the output vector χt. Here we emphasize that only the input sequence is random, while

the entire SINN model itself is deterministic. This makes training of the network very efficient and straightforward.

3.2 Loss Function

Rather than seeking a pathwise approximation to the stochastic dynamics, we attempt to match various density

functions and the statistics of the trajectories obtained from SINN with those for the target processes. By doing so,

we avoid tracking and storing the input Gaussian white noise used in generating the target processes. Moreover,

the input noise sequences of SINN can also be temporally coarse-grained if the loss function is measured on the

coarse-grained target processes.

Autocorrelation Function. The autocorrelation function (ACF) of a sequence X is a deterministic function of lag τ

defined as

ACFX(τ) =
E[XtXt+τ]

E[X2
t ]

, (15)

where the process X is assumed to be zero-mean without loss of generality.

Two common approaches exist for computing the ACF of discrete time series data. The first approach, which we

call the brute force method, simply uses the definition in (15) to compute ACF(τ) for every τ. For a sequence of length

n, computing its ACF up to τ = n using brute force requires O(n2) operations. The second approach, which we call

the fast Fourier transform (FFT) method, uses the Wiener-Khinchin theorem to efficiently compute the ACF using the

Fourier transform of the sequence as ACFX = FFT−1 (FFT(X) · FFT(X)∗), where the asterisk (∗) denotes the complex

conjugate. The FFT approach requires only O(n log n) operations for computing the ACF up to τ = n. However, due

10



to the periodicity assumption as implied by the Fourier transformation, the computed ACF can deviate considerably

from the true value for large τ. The problem is particularly serious if the ACF does not decay close enough to zero

at the length of the sequence data. Hence, the method for computing the ACF must be chosen with discretion while

taking the characteristics of the target process into account. In the following numerical examples, both the brute

force and FFT approaches are used as appropriate. Both methods permit efficient backpropagation of ACF-based

losses to the NN model using popular tensor algebra libraries such as PyTorch [37] and JAX [38]. For the numerical

examples considered, we use a linear combination of L1 and L2 norms to calculate the loss for ACF. Specifically, the

loss function we use is

Lossac f =
1
n

∑
τ∈T

|ACFO(τ) −ACFT(τ)| +
1
n

∑
τ∈T

[ACFO(τ) −ACFT(τ)]2, (16)

where ACFO(τ) is SINN output ACF function at time τ and ACFT(τ) is the ACF for the target stochastic process.

There are flexibilities in terms of the selection of the loss function and hence valid options are not limited to the Lp

norms.

Probability Density Function. Binning-based probability density function (PDF) estimators are not differentiable

due to the discrete nature of the histogram operation. Therefore, we compute and compare the empirical PDFs of

both the target and simulated trajectories using kernel density estimation (KDE):

f̂h(x) =
1
|X|

|X|∑
i

Kh(x − Xi), (17)

where K is a non-negative kernel while h is a smoothing parameter. Kh(d) � 1
h K( d

h ) is the scaled kernel. We use the

Gaussian kernel KGauss(d) = 1
√

2π
exp(− d2

2 ) with a bandwidth parameter h = |X|−
1
5 [39], where |X| is the length of the

sequence X. Similarly, the combined L1 and L2 norm are used to calculate the loss for the probability density:

Losspd f =
1
n

n∑
i=1

| f̂ O
h (xi) − f̂ T

h (xi)| +
1
n

n∑
i=1

[ f̂ O
h (xi) − f̂ T

h (xi)]2, (18)

where f̂ O
h (x) and f̂ T

h (x) are the estimated PDFs for the output sequence and the target stochastic process, respectively.

While the Kullback–Leibler divergence appears to be a natural choice for comparing probability distributions, its

use of the logarithm operations requires that a large number of output trajectories to be sampled to ensure numeral

stability. As such, we are in favor of the Lp norms due to their robustness and the resulting performance benefits.
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4 Numerical Experiments

4.1 Training Method

The SINN model is trained with stochastic gradient descent (SGD) using the Adam optimizer. The learning rate

is set to be 10−3 with β1 = 0.9 and β2 = 0.999. Training and validation losses are tracked throughout the training

process for every 100 steps. A new batch of Gaussian white noise trajectories are generated and used as the model

input for every training iteration. This is to ensure that the learned SINN model is generalizable and not overfitting

to a particular realization of the stochastic processes. In our experiments, the training batch and the target data both

contain 400 sequences, while the validation set contain 800 sequences.

Evaluation of Loss. Instead of comparing the ACFs over the entire lag range 1, . . . , tmax, we randomly select a set

T of lag values τ1, . . . , τm with m � tmax during each SGD step and compare the ACFs at the selected lags. Typical

values of m is around 20. This procedure is particularly important when the brute force ACF estimator is employed

due to its high computational cost.

Input Sequence. The white noise sequence, which serves as the input to the SINN model as described earlier in

Section 3.1, is always created afresh at each SGD iteration. This refreshing procedure is to ensure that the dynamics

SINN learned is independent of any specific realizations of the input random noise. This step is particularly

important to guarantee the generality and consistency of SINN’s training results.

Validation Sequence. The validation data is a fixed number of target sequences that are used to monitor training

and detect overfitting. The losses computed on the validation sequence do not participate in backpropagation.

Computational Cost. All computations are performed using a workstation with 16 AMD Zen3 cores at 3.0 GHz

and one NVIDIA A100 accelerator. A SINN model with 2 LSTM layers each with 25 units can be trained for 1200

SGD iterations within approximately 1 minute. Detailed runtime statistics for all numerical examples considered in

this paper are summarized in Table 1. Explanations will be presented in following sections.

Before presenting numerical results, we comment in advance on the modeling advantages of SINN, which echos

the three architectural differences we mentioned in Introduction. First, SINN is essentially equation-free since the

modeling and training of SINN use no equations. This feature allows the generated dynamics to have tunable coarse-

grained time scales, which makes it particularly suitable for capturing the long-time behavior of stochastic systems.

Further discussion in this regard is provided in Section 5.2. Second, SINN learns a deterministic update rule for SDEs

which is similar to the Euler–Maruyama scheme (6). Thus, it is very natural to do time-domain extrapolation and

expect a certain predictability of SINN. Third, the convergence we seek is defined in terms of statistical moments

12



Table 1: Wall time measurements for all numerical examples. The ‘SINN Training’ column records the wall time for
the SINN model to achieve εT, εV < 10−3. Here εT and εV are the training and validation errors, respectively. The time
steps for the Euler–Maruyama scheme are ∆t = 10−2 (OU, FPU, Poisson, CG) and ∆t = 10−3 (Double-Well). Temporally
coarse-grained trajectories with step size dt = 0.2 are used to train SINN. Hence SINN models all have time scale dt = 0.2.
Other technical details for each example are given in the corresponding section. All wall time values are averaged over
5 simulations. The algorithms are implemented using PyTorch and executed on a workstation with 16 AMD Zen3 cores
at 3.0 GHz and one NVIDIA A100 accelerator.

Stochastic Process Training Generate 5000 trajectories up to T = 1000

SINN Euler–Maruyama SINN

OU 33 s 13 s 1.4 s
FPU 68 s 25 s 1.4 s
Poisson 150 s 13.8 s 1.4 s
CG 268 s 3430 s 1.4 s
Double-Well 779 s 252 s 1.4 s

and probability measure. In many cases, such as the transition dynamics simulation in Section 5.2, it can be shown

that such convergence is already enough to capture the physics we are interested in.

4.2 Validation Cases

We present three test cases here to show that SINN can well approximate Gaussian and non-Gaussian stochastic

dynamics. Detailed runtime statistics are listed in Table 1.

4.2.1 Ornstein–Uhlenbeck Process

Consider the Ornstein–Uhlenbeck (OU) process given by the following SDE:

dx
dt

= −θx + σξ(t), (19)

where σ andθ are positive parameters and ξ(t) is standard Gaussian white noise with correlation function 〈ξ(t)ξ(s)〉 =

δ(t − s). The OU process is ergodic and admits a stationary, i.e. equilibrium, Gaussian distribution N(0, σ2/2θ). In

addition, the ACF of x(t) at equilibrium is an exponentially decaying function C(τ) = 〈x(t + τ)x(t)〉 = σ2

2θ e−θτ. With

the parameter values σ = 0.5 and θ = 1, we generate approximated dynamics for x(t) using the proposed SINN

architecture with two LSTM layers each with one unit. The stationary ACF and the equilibrium PDF, which are

analytical, are used as the target by the loss function to train the NN parameters.

Figure 3 clearly shows that the statistics of the OU process is faithfully reproduced by the trajectories simulated

by SINN. Here we note that the time step dt = 0.1 of SINN is much larger than the MD time step ∆t = 10−3. This

temporally coarse-grained feature of SINN is one of its main characteristics which makes it particularly useful in

rare-event simulations as will be detailed in Section 5.2 and 5.3). The error plot shows that the generalization

error gets smaller while remaining at the same magnitude with respect to the training error during the training
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Figure 3: Comparison of the dynamics of q(t) generated by MD simulation and the SINN model. The MD simulation
results of the sample trajectories (Top Left) are obtained using the Euler–Maruyama scheme for (19) with step size
∆t = 10−3. The target processes are temporally coarse-grained sample trajectories of q(t) with step size dt = 0.1. Note
that sample trajectories simulated by SINN thus have natural coarse-grained time scale dt � ∆t. The output statistics
(PDF and ACF) are evaluated by taking the ensemble average over 5000 SINN trajectories which are generated using a
new set of Gaussian white noise as the SINN input.

14



process. This indicates that over-fitting does not happen. Since the correlation function and the equilibrium

probability density uniquely determine a Gaussian process, we conclude that the stochastic process generated by

SINN faithfully represents the dynamics of the OU process. For timing results as given in Table 1, a slightly different

SINN architecture with 2 LSTM layers each with 5 hidden units is adopted to establish better comparability, while

other parameters are exactly the same.

4.2.2 Langevin Dynamics

Consider the Langevin dynamics for an anharmonic oscillator:


q̇ = p,

ṗ = −V′(q) − γp + σξ(t),
(20)

where V(q) = α
2 q2 + θ

4 q4 is the Fermi-Pasta-Ulam (FPU) potential and ξ(t) is Gaussian white noise. Parameters

γ and σ are linked by the fluctuation-dissipation relation σ = (2γ/β)1/2, where β is proportional to the inverse of

the thermodynamic temperature. Langevin dynamics for the FPU oscillator admits the Gibbs-form equilibrium

distribution ρeq ∝ e−βH, where H =
p2

2 + V(q). The parameters α = β = θ = γ = 1 and σ =
√

2 are chosen for numerical

simulations. We use the same SINN model as in the OU process example with two LSTM layers and one hidden state

to generate approximated dynamics for q(t). Unlike the case for the OU process, here we do not have an analytical

expression for the ACF of q(t). Hence, an empirical estimate of the ACF of q(t) is obtained from numerical solutions

to (20). Since q(t) is no longer a Gaussian process, its PDF and ACF cannot completely characterize its dynamics.

To ensure the validity of the model, we add the stationary ACF for q2(t) as an extra training target for the neural

network. The results as presented in Figure 4 show that the SINN architecture can well approximate the dynamics

of the non-Gaussian process (20). Runtime benchmarks use the same architecture as in the OU process example.

Remark 1. Assuming that the Kramers–Moyal expansion [40] for a stochastic process exists, one can continuously

improve the approximations to the master equation corresponding to the stochastic process by progressively intro-

ducing higher-order moments. This is the reason why we added the ACF for q2(t) as an additional target to train the

model for non-Gaussian dynamics. We note that higher-order moments such as 〈q4(t)q4(0)〉 can also be easily added

into the total loss function. Due to this extensibility of SINN, it is fairly simple to include higher-order information

so that the generated stochastic process can faithfully approximates that of the original stochastic process. We

note that this is not generally guaranteed by established methods in stochastic modeling such as the transformed

Karhunen-Loéve or polynomial chaos expansion [33, 34].
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Figure 4: Comparison of the dynamics of q(t) generated by MD simulation and the SINN model. The setting is exactly
the same as the one used in Figure 3 except that we added the ACF 〈q2(t)q2(0)〉 into the total loss function.

Remark 2. As a data-driven framework, the equation-free feature of SINN renders it a desirable option for solving

reduced-order modeling problems, where the effective dynamics for the low-dimensional resolved observables is

generally hidden and has to be extracted from the underlying high-dimensional dynamical systems through coarse-

graining procedures. Generally speaking, dimensionality reduction leads to memory effects in the reduced-order

dynamics. We emphasize that these effects can be captured by the LSTM modules of SINN. Langevin dynamics

(20) provides a good example for this. Here, the system as a whole is Markovian for the state variables {q(t), p(t)}.

However, the reduced-order effective dynamics for the observable q(t) alone is non-Markovian. Using the Mori-

Zwanzig framework [14, 41], one can derive the following evolution equation for q(t):

d
dt

q(t) = Ω q(t) +

∫ t

0
K(t − s) q(s) ds + f (t), (21)

where Ω is a modeling constant, K(t) is the memory kernel, and f (t) is the stochastic fluctuation force. In (21), the

memory effect is encoded by the convolution integral
∫ t

0 K(t − s) q(s) ds, where K(t) is generally unknown. SINN

provides a novel mechanism to quantify this complicated memory effect by ‘storing’ it within the LSTM cell state

vectors ct, whose update mechanism can be learned through simulation data. The coarse-grained modeling problem

considered in Section 5.1 also provides an example to further illustrate this point.
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Figure 5: Comparison of the dynamics of x(t) generated by MD simulation and the SINN model. The MD simulation
results of the sample trajectories (Top Left) are obtained using a first-order finite difference scheme [42] with step-size
∆t = 0.01. The target processes are temporally coarse-grained sample trajectories of x(t) with step size dt = 0.2. The
SINN model has 2 LSTM layers each with 5 hidden units. The input noise sequence satisfies the exponential distribution
with r = 1. Two statistical moments: 〈x(t), x(0)〉 and 〈x2(t)x2(0)〉, estimated with 400 simulated trajectories of x(t), are used
to compose the loss function. The output PDF and ACF are evaluated by taking the ensemble average over 5000 SINN
trajectories.

4.2.3 SDE Driven by Poisson White Noise

In order to validate the assertion made in Section 3.1 that SINN can take i.i.d. non-Gaussian noise sequences and

model stochastic process with support on R+, we consider the following SDE driven by Poisson white noise:

dx
dt

= −bx + ξ(t), (22)

where ξ(t) =
∑n(t)

i=1 ziδ(t − ti) is a random sequence of δ-pulses. This random pulse is generated as follows. For

each time t, n(t) satisfies Poisson distribution with probability P (n(t) = n) = (λt)ne−λt/n!, which counts the number

of stimuli that arrive within interval (0, t]. zi are i.i.d. exponentially distributed random variables with probability

density ρ(z) = re−rz (z > 0). For numerical simulations, we choose b = r = 1 and λ = 2.

SDE (22) describes the dynamical behavior of a system when randomly perturbed by external stimuli, which is

commonly seen in many control systems in electronic engineering and physics. We want to use SINN to generate

stochastic processes that recover the statistical features of x(t). Here we only use observation data x(t) and assume

the minimum prior knowledge of its generating mechanism. That is, as shown in Figure 5, x(t) is a random jump

process and has support on R+. For this case, we use i.i.d. exponentially distributed noise sequence as the input of

SINN and train the neural network using the empirical PDF/ACF calculated from sample trajectories of x(t).

In Figure 5, we show that SINN can simulate trajectories of the jump stochastic process using exponentially
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distributed noise sequence as the input. Other important statistics such as the ACF and the equilibrium PDF are

also compared with the ground truth that we obtained through the MD simulation of (22). It is remarkable that

SINN faithfully recovers the long tail of the equilibrium PDF of x(t). Also, it is noted that we did not use the Poisson

distribution to generate the random noise input since this part is assumed to be unknown when training the model.

These results clearly demonstrate that SINN can model stochastic dynamics driven by non-Gaussian noise and that

the input of the neural network can be accordingly adjusted to be non-Gaussian to accommodate the modeling

needs.

Remark 1. A similar stochastic jump process was considered in the Neural jump SDE framework [9]. One obvious

difference is that SINN seeks convergence in terms of statistics, e.g. moments and PDF, whereas the Neural jump

SDE targets path-wise convergence. Furthermore, the training process employed in SINN is closer to real-world

applications in the sense that only the trajectory data of x(t), possibly temporally coarse-grained, were used to

train the neural network. Moreover, we assumed minimum prior knowledge on the generating mechanism of the

observable x(t). In other words, this is a case where the equation of motion for x(t) is completely hidden. This fact

will be more obvious with the coarse-grained modeling example considered in Section 5.1.

Remark 2. It is shown in [42] for SDE (22) that the governing equation for the transition probability P(x, t) satisfies

a generalized Fokker–Planck equation:

∂tP(x, t) = b∂xP(x, t) − λP(x, t) + λ

∫ +∞

−∞

re−r(x−y)θ(x − y) P(y, t)dy, (23)

where θ is the Heaviside step function. This equation is not given in the form of the Kramers–Moyal expansion.

Nevertheless, since the moments of various orders for x(t) still exist, we expect a high-order Kramers–Moyal

expansion to yield a good approximation to (23). This is why we added the high-order correlation function

〈x2(t)x2(0)〉 in the loss function when training SINN. It is reasonable to expect that training against more moments

will help SINN to generate stochastic trajectories closer to the original process x(t). While we believe SINN can

model several common types of stochastic processes, some particular processes such as the Lévy processes cannot

be modeled by the current version of SINN simply because its moments do not exist.1 A possible remedy for this

case might be using instead fractional moments [43] to define the loss function. This, of course, awaits further

investigation.

1We thank one of the anonymous reviewers for pointing this out.
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5 Applications

In this section, we use practical examples to demonstrate the capabilities of SINN to discover hidden stochastic

dynamics in given non-Gaussian, non-Markovian stochastic systems. We further verify whether the resulting

stochastic model has long-time predictability and numerical stability. The applications we consider here are the

coarse-grained modeling of a molecular system and the study of transition dynamics and rare events. Using these

examples, we show that SINN has several computational and modeling advantages over the traditional stochastic

modeling methods.

5.1 Coarse-Grained Modeling of a Molecular System

Coarse-grained modeling of complex molecular systems is an important research area in statistical mechanics and

molecular dynamics [44, 45]. The goal is to construct effective dynamics for the coarse-grained (CG) particles

from the original high-resolution molecular system. If the effective dynamics capture the core features that are

sufficient to understand the important physics of the original system, then one only needs to solve the coarse-

grained, low-dimensional effective dynamical system so that the overall computational cost can be greatly reduced.

However, analytically solving the coarse-graining problem for realistic molecular systems is virtually intractable.

Hence, data-driven approaches are commonly adopted. Classical coarse-graining methods such as those utilizing

the Mori–Zwanzig formulation or the GLE extract important statistics for the CG particles from simulation data

and build an integro-differential stochastic differential equation, as given in (21), to describe the effective dynamics.

This is very close to what we do with SINN, except that the equation is now replaced by a neural network. To test

how well SINN models the dynamics of a CG particle, we consider a chain of N particles interacting with each other

according to the following Langevin dynamics [14]:

dr j

dt
=

1
m

(p j − p j−1),

dp j

dt
=
∂V(r j+1)
∂r j+1

−
∂V(r j)
∂r j

−
γ

m
p j + σξ(t),

(24)

· · ·· · ·
Figure 6: Schematic illustration of the coarse-graining scheme of a 1D particle chain where two neighboring particles
are coarse-grained into a large CG particle with position Qi = (q2i−1 + q2i)/2 and momentum Pi = p2i−1 + p2i.
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Figure 7: Comparison of the dynamics of the coarse-grained particle Q50(t) generated by MD simulations and SINN.
Sample trajectories from MD simulation (Top Left) are obtained using the Euler–Maruyama scheme for (24) with a step
size ∆t = 10−3. The training data for SINN are the temporally coarse-grained sample trajectories of Q50(t) with a step size
dt = 0.1. The training setup is exactly the same as the one used in the FPU example (20), except that the SINN model
here uses 2 LSTM layers and 5 hidden units per layer.

where {ri, pi}
N
i=1 are non-canonical coordinates for the dynamics. Here, r j = q j − q j−1 represents the displacement

between two neighboring particles relative to their equilibrium positions and p j is the momentum of the j-th particle.

The two endpoints of the chain are assumed to be fixed, i.e. q0 = qN+1 = 0, and the chain has N = 100 particles. The

model parameters are chosen to be the same as those used in studying (20). That is, we have an FPU-type interaction

potential V(r) = α
2 r2 + θ

4 r4 with α = β = θ = γ = 1 and σ = (2γ/β)1/2 =
√

2.

For this chain dynamics, we consider the coarse-grained scheme illustrated in Figure 6 and focus on the effective

dynamics of the center CG particle with position Q25 = (q49 + q50)/2 relative to its equilibrium. We note that Q25 can

be explicitly expressed in terms of r-coordinates as:

Q25 =
q49 + q50

2
=

49∑
i=1

ri +
r50

2
. (25)

Traditionally, a GLE of form (7) can be used as an ansatz to approximate the stochastic dynamics for Q25 [13].

Here, we use SINN instead to do the modeling. The simulation results and calculation details are provided in

Figure 7. Although the dynamics for Q25 is completely hidden, our simulation results indicate that with only a

limited amount of 400 temporally coarse-grained trajectories, SINN can act as an accurate surrogate model for Q25.

Detailed runtime statistics can be found in Table 1. We particularly note the runtime savings when comparing with

the Euler–Maruyama scheme. More explanations can be found in Section 5.3.
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Figure 8: (Left) Schematic illustration of the hopping events between two states for the reaction coordinate x(t). Through
thermodynamic interactions with the environment, an imaginary particle may gain enough energy to cross the energy
barrier and make a transition from one well to the other. (Right) Sample trajectory of x(t) simulated using (26). The
modeling parameters are chosen to be V0 = 5, x0 = 1, and β = 1. One can see that hopping between these two states is
a rare event for the given height of energy barrier.

5.2 Transition Dynamics Modeling and Rare-event Simulations

The motivation for modeling transition dynamics stems from the need to calculate the reaction rate of a chemical

reaction. While this is an important problem, determining the reaction rate using simulation trajectories becomes

extremely difficult when the reaction is a rare event. This is because it takes a long time, which often exceeds the

typical time scale of MD simulations, to adequately observe the reaction when it happens with a very low probability.

As a rare event example, we consider a toy problem as illustrated in Figure 8 for the transition dynamics given by

the Langevin equation for a double-well system [46, 22]:


ẋ = p,

ṗ = −V′(x) − γp + σξ(t),
(26)

where V(x) = V0

[
1 − (x/x0)2

]2
is a symmetric double-well potential with depth V0 and two basins around x0 and−x0.

The two wells correspond to two states along the reaction coordinate x(t), which, for example, can be the backbone

dihedral angle of n-butane in the isomerization process [47]. We aim to use SINN to construct a reduced-order

model for the reaction dynamics based on the short-time simulation data of x(t). Once the effective model is built,

one may use it as a surrogate model to perform Monte Carlo simulations or to generate long-time trajectories of x(t)

with larger time step sizes. From this, the rate of transition can be calculated in an economical manner. In practical

applications, one may obtain sample trajectories for the reaction coordinate x(t) from large-scale MD simulations

that model the whole physical system. Here, we use a toy model (26) to quickly generate sample trajectories of x(t)

for the purpose of demonstrating the learning capability of SINN and its validity in simulating rare events.

Since the transition dynamics is more complicated than the examples considered in Section 4.2, we employ a
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Figure 9: Comparison of the dynamics of the reaction coordinate x(t) generated by MD simulation and the SINN model.
The exact statistics, including the PDFs and the ACFs for x(t) and x2(t), are obtained through MD simulations of (26) and
averaged over 5 × 104 trajectories. The statistics for the SINN outputs are similarly calculated.

SINN model with 2 LSTM layers and 25 hidden units per layer. This structure may not be optimal in terms of

complexity or efficiency, but is found to be sufficient for our study. To train the neural network, we solve (26) using

the Euler–Maruyama scheme with step size ∆t = 10−3 and obtain 400 sample trajectories. Temporally coarse-grained

trajectories are obtained by subsampling the trajectories with a fixed interval of dt = 0.2 and used as the training

data. After the temporal subsampling, each trajectory contains 400 points uniformly spanning the interval [0, 80].

The equilibrium PDFs and ACFs for x(t) and x2(t) are used to construct the loss function. During the training process,

occasionally the optimization gets stuck at local optima. In this case, we simply need to retrain the model from

random initialization. The numerical results are presented in Figure 9. We see that SINN yields an overall excellent

approximation for the transition dynamics. Remarkably, it actually reproduces the hopping events between the

two states. Moreover, from the comparison of the long-time trajectories and the normalized ACF, we can see that

the trained SINN model can generate extrapolated trajectories for a good prediction of the long-time dynamics of

x(t), even though the training was carried out using only data from t = 0 to t = 80. A more qualitative evaluation

of SINN on describing the transition dynamics relies on the calculation of the transition rate from the generated

samples trajectories, which can be found in Section 5.3.

5.3 Further Assessment of SINN

In this section, we thoroughly study the SINN model for the double-well system and use this example to further

assess the modeling capability of SINN in various aspects. In particular, we focus on the temporally coarse-grained

nature of SINN and explain why this property is important for rare event simulations. More simulations are
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Figure 10: Comparison of SINN models with different coarse-grained time scales dt. As dt increases, local information
gets gradually filtered out as shown by the short-time trajectories in the inset figure of the left panel. However, the ACF
and PDF of the simulated trajectories remain essentially the same.

carried out to show that with short-time data, SINN can extrapolate and predict long-time dynamics. We also

discuss favorable numerical features of SINN, including numerical convergence and consistency of the randomized

optimization procedure.

SINN as a Coarse-grained Time Integrator. The SINN models we have used so far are trained using the coarse-

grained sample trajectories of x(t) with a time step size dt = 0.2, which is much larger than the MD integration time

step size ∆t = 10−3. The output of SINN, i.e. the approximated trajectories of x(t), has the same coarse-grained

step size as the training data. This makes SINN a natural coarse-grained time integrator for the reduced-order

dynamics of x(t). This coarse-grained nature of our SINN model provides an efficient means to generate long-

time approximated trajectories of x(t) because the sampling gets 200 times sparser. For the calculation of physical

quantities, such as the reaction rate, where the local fast-time dynamics becomes irrelevant, this leads to huge

computational advantages. In Figure 10, we compare sample trajectories of x(t) generated by well-trained SINNs

with different time step sizes dt = 0.1, 0.2, 0.5. For these three time-scales, SINN all reproduces the correct hopping

dynamics. It is also clearly observed that while fast-time dynamics is filtered out as dt increases, the statistics, i.e.

PDFs and ACFs, of the predicted trajectories remain essentially unchanged. This means that the coarse-grained

trajectory is sufficient to capture the important physics, i.e. the statistics of the hopping dynamics. The capability

to generate temporally coarse-grained stochastic trajectories is one of the most prominent features of SINN, which

gives huge computational advantages. We emphasize that this feature is not easily achievable using established

stochastic modeling methods such as the ones based on the Mori-Zwanzig equation, GLE, or the NeuralSDE.

We also compare the computational time of the Euler–Maruyama scheme versus SINN in Table 1. The savings

in simulation time of using SINN to generate coarse-grained trajectories can be clearly seen. The advantage is

particularly obvious in the CG example since the underlying MD system has a high dimensionality of 200. We

emphasize that the dimensionality of many realistic MD systems, e.g. proteins, is much higher and hence the

potential saving in computational time will be enormous. Meanwhile, the time spent on training SINN is well

amortized.
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Remark. A possible intuitive explanation on why neural networks can actually learn a coarse-grained time inte-

grator for dynamical systems might be due to the similarity between the multi-fold function composition structure

of neural network with that of the Runge–Kutta (RK) method for solving an ODE y′ = f (t, y). The well-known

fourth-order RK method has in fact a function composition structure and can be rewritten as:

yn+1 = yn +
∆t
6

{
f (tn, yn) + 2 f

(
tn +

∆t
2
, yn +

∆t
2

f (tn, yn))
)

+ · · ·
}
, (27)

where yn is the approximated solution at time tn. By further expressing yn in (27) using yn−1 and f (tn−1, yn−1) and

repeating this procedure, we obtain a natural coarse-grained time integrator with a multi-fold function composition

structure. One can imagine that a neural network may have learned a similar structure during training. In fact, this

connection was already noticed in the literature [48].2

Calculation of Transition Rate. We use our SINN model as a simulator for the transition dynamics of the double-

well system (26) and assess how well it predicts the transition rate for rare events. To calculate the transition rate

between the two states, we first divide the phase space for x(t) into two regions: A = (−∞, 0] and B = (0,+∞).

Obviously, −x0 ∈ A and x0 ∈ B. Consider the equilibrium time correlation function CA,B(t) defined by:

CA,B(t)
CA

=
〈hA(x(0))hB(x(t))〉
〈hA(x(0))〉

, (28)

where hA(x(t)) is an indicator function of system configuration satisfying hA(x(t)) = 1 if x(t) ∈ A and hA(x(t)) = 0 if

x(t) < A, while hB(x(t)) is analogously defined. Thus, the ratio (28) is the probability of finding the system in state B

after time t when the system is initially at state A. As a result, the transition rate from A to B can be calculated as

[49, 50]:

kAB =
d
dt

CA,B(t)
CA

, τmol < t� τrxn, (29)

which is the slope of the CA,B(t)
CA

curve in the time range between a short transient time scale τmol and the exponential

relaxation time τrxn = 1/(kAB + kBA).

The numerical results are summarized in Figure 11. The time profiles of the equilibrium time correlation function

match well with those obtained by MD simulations. The resulting values of kAB are approximately estimated to be

0.009, 0.003, and 0.002 for transition dynamics with energy barrier height values V0 = 4, 5, and 6, respectively. These

agree well with the values obtained by MD simulations. By calculating the transition rate using SINNs trained

with coarse-grained trajectories with different temporal resolutions dt, we also observe that the temporal coarse-

2We thank Prof. Yannis Kevrekidis for pointing this out to us through private communications.
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Figure 11: Prediction of the transition rate using SINN as the simulator for rare events. The time profiles of the equilib-
rium correlation function CA,B(t)/CA for double-well dynamics (26) are plotted for different values of the barrier depth V0

and the coarse-grained time scale dt: (left) V0 = 4, dt = 0.2; (middle) V0 = 5, dt = 0.2; (right) V0 = 6, dt = 0.5. The results
obtained from SINN are compared with the numerical simulation results obtained from long-time MD trajectories. The
linear regression is used in fitting CA,B(t)/CA in between the transient time scale τmol and the exponential relaxation time
scale τrxn in order to evaluate kAB. The specific time domains for the linear regression are chosen to be (from left to
right) [5, 10], [25, 50] and [25, 50], respectively. R2 is the coefficient of determination.

graining of the trajectories does not significantly influence the calculated reaction rate. This is consistent with our

previous analysis. The successful prediction of the transition rate kAB indicates that, with the equilibrium PDFs and

ACFs for x(t) and x2(t), it is practically sufficient to create a reliable numerical approximation for the reduced-order

dynamics of x(t) using SINN, although this information is not enough to theoretically guarantee the uniqueness of

the non-Gaussian process.

Long-time Predictability, Numerical Convergence, and Consistency. Lastly, we discuss long-time predictability,

numerical convergence, and training consistency of SINN. As a neural network based on the LSTM architecture,

SINN makes prediction of the long-time dynamics of the reduced-order observable x(t) by quantifying the memory

effect of the non-Markovian system. This is similar to reduced-order modeling using the Mori–Zwanzig formalism

or GLEs. Since these approaches are proven to have predictability of the long-time stochastic dynamics [13, 51],

it is reasonable to expect SINN to have a similar behavior. This is indeed the case as we have already shown in

Figure 9, where the SINN model faithfully predicts the long-time dynamics of x(t) using short-time training data for

t ∈ [0, 80].

Due to the usage of the randomized training protocol, each learned SINN model may have a differently param-

eterized memory model. This raises a reasonable doubt that whether our demonstrated long-time predictability

of SINN is merely a coincidence. Due to the well-known difficulties on the theoretical convergence analysis for

deep neural networks, here we only provide numerical verifications. To this end, we verify the convergence and

consistency of the obtained SINN model by comparing the long-time tail of the ACF for x(t) with the MD simulation

result. We trained an ensemble of independently initialized SINN models using the same data set. Specifically, we

obtained three ensembles of SINN models. The first ensemble was trained using 400 trajectories of x(t) for t ∈ [0, 40]

with a coarse-grained step size ∆t = 0.2, while the time domain for the second and third ensemble trajectories are
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Figure 12: Long-time predictions of the ACF of x(t) using SINN. In each figure, the ACFs of the top 5 qualified SINN
model are used to calculate the 95% confidence interval of the predicted dynamics. For qualified SINN models, the one
with the smallest validation error εV is selected to be the best model.

[0, 70] and [0, 100], respectively. In each ensemble, we repeated the training process to create 20 candidate SINN

models. Each candidate model was obtained by independent training of SINN until the training and validation

error satisfied εT, εV = l1 + l2 ≤ 10−3. From these candidate SINN models, we performed time extrapolation to

generate long-time dynamics of x(t) and re-evaluated the validation error εV to select the top 5 qualified SINN models

with the smallest εV. The evaluation time domains for εV were [0, 40], [0, 70], or [0, 100], respectively, since these

were the only time frames for which the ground truth was known. This procedure ensured the qualified SINN

models produce stationary time sequences in order to be consistent with the equilibrium dynamics of x(t). The

simulation results and the analysis are presented in Figure 12. We see that with training data as short as t ∈ [0, 40],

qualified SINN models, i.e. the top ones with the smallest validation errors, yield overall good predictions of the

long-time dynamics of x(t). This validates the long-time predictability of SINN. As we gradually increase the length

of the target trajectories from t ∈ [0, 40] to t ∈ [0, 100], the 95% confidence interval of the predicted dynamics gets

smaller. This indicates that the collective output of the ensemble of SINN models converges to the correct dynamics

of x(t). Hence, a numerical validation of the convergence of SINN is established here in terms of the statistics

of the input-output. All these repeated training leads to accurate stochastic models for the transition dynamics.

This confirms that the randomized optimizer used in the training does not compromise, at least numerically, the

consistency of the trained SINN models.

6 Conclusion

In this paper, we introduced a statistics-informed neural network (SINN) for learning stochastic dynamics. The

design and construction of SINN is theoretically inspired by the universal approximation theorem for one-layer

RNNs with stochastic inputs. This new model uses i.i.d. white-noise sequences as the input and layers of long

short-term memory (LSTM) cells as the functional units to generate output sequences. The statistics of the target

stochastic process, such as equilibrium probability density and time autocorrelation functions of different orders,

are used in the loss function to train the parameters. SINN has a relatively simple architecture where deterministic

26



transformations are applied to the random input and is easy to implement and train. Numerical simulation results

have shown that SINN can effectively approximate Gaussian and non-Gaussian dynamics for both Markovian and

non-Markovian stochastic systems. The successful application of SINN in modeling the transition dynamics clearly

indicates that it can serve as a useful surrogate model to simulate rare events. Moreover, the coarse-grained nature

and the long-time predictability of SINN makes it an efficient and reliable framework for reduced-order modeling.

Further applications and extensions of this framework in the general area of stochastic modeling, uncertainty

quantification, and time series analysis can be expected. The code we used to train and evaluate our models is

available at https://github.com/SINN-model/SINN.
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A Universal Approximation Theorem for Recurrent Neural Networks with

Gaussian Stochastic Inputs

Following [27], we first introduce some useful definitions and established universal approximation results for the

deterministic recurrent neural network (RNN).

Definition 1. For any (Borel-)measurable function f (·) : RJ
→ RJ and I,N ∈ N,

∑I,N( f ) is called a function class for

three-layer feedforward neural networks if any g ∈
∑I,N( f ) is of the form:

g(x) = V f (Wx − θ), where x ∈ RI, V ∈ RN×J, W ∈ RJ×I, θ ∈ RJ, J ∈N.

This three-layer feedforward neural network has I input neurons, J hidden neurons, and N output neurons. Note

that the function f : RJ
→ RJ is defined to be component-wise with

f (Wx − θ) :=



f (W1x − θ1)

f (W2x − θ2)
...

f (WJx − θJ)


. (A.1)

Definition 2. A subset S of a metric space (X, ρ) is called ρ-dense in a subset U if there exists s ∈ S such that ρ(s,u) < ε

for any ε > 0 and any u ∈ U.

Definition 3. Let CI,N : RI
→ RN be the set of all continuous functions. A subset S ⊂ CI,N is uniformly dense on a

compact domain inCI,N if for any compact subset K ⊂ RI, S is ρK-dense inCI,N, where ρK( f , g) := supx∈K ‖ f (x)−g(x)‖∞.

Definition 4. A function σ is called a sigmoid function if σ is monotonically increasing and bounded.

Common choice of sigmoid function of neural networks are 1/(1 + e−x) and tanh(x).

The following result is the well-known universal approximation theorem (UAT) for feedforward neural networks.

Theorem 2. (UAT for feedforward neural networks) For any sigmoid activation function σ and any dimensions I and N,∑I,N(σ) is uniformly dense on a compact domain in CI,N.
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The above theorem simply implies that for any sigmoid function σ, as long as J ∈N is large enough, i.e. the number

of hidden state (neuron) is large enough, a three-layer feedforward neural network can approximate any continuous

function in any compact domain with arbitrary accuracy. This theorem was used in [27] to prove the universal

approximation theorem for RNN of type (4) when the input xt is deterministic.

We now introduce the following definition of the RNN class:

Definition 5. Let σ(·) : RJ
→ RJ be an arbitrary sigmod function and I,N,T ∈ N. The class RNNI,N(σ) refers to

discrete RNN system of the form (3), i.e.

st+1 = σ(Ast + Bxt − θ),

yt = Cst,

where xt ∈ RI, st ∈ RJ, and yt ∈ RN for all t = 1, · · · ,T. Note that here σ(Ast + Bxt − θ) is calculated component-wise

as in (A.1). We also define o(RNNI,N(σ)) to be the set of all possible output yt for the RNN of the class RNNI,N(σ).

It is proved in [27] that RNNI,N(σ) is “dense” in the “space of discrete open dynamical systems”, in the sense that

for any sigmoid σ and δ > 0, there exists ỹt ∈ o(RNNI,N(σ)) such that ‖ỹt − yt‖∞ < δ, where yt is the output of a

M-dimensional open system:

st+1 = g(st, xt),

yt = h(st),
(A.2)

where g(·) : RM
→ RM and h(·) : RM

→ RN.

For RNN with stochastic input, the proof is similar. But the corresponding universal approximation theorem,

i.e. Theorem 1, holds only in the sense of probability essentially because whether one can find an RNN model such

that ‖ŷt − yt‖∞ < δ for all δ > 0 becomes a random event. Using the above definitions and Theorem 2, we can prove

the following theorem:

Theorem 3. (UAT for RNN with Gaussian inputs). Let g(·) : RM
× RI

→ RM be locally Lipschitz and h(·) : RM
→ RN

be continuous. In addition, the external input xt ∈ RI are i.i.d. Gaussian random variables, the inner state st ∈ RM, and the

outputs yt ∈ RN (t = 1, · · · ,T). Then, for a finite number of iteration steps, the probability of finding an RNN model (3) such

that the outputs of the RNN pathwisely approximate the solution of the discrete, stochastic dynamical system of the form (4)

arbitrarily accurate, is asymptotically 1.
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Proof of Theorem 3. We first show that the dynamics of an M-dimensional open dynamical system with st+1 =

g(st, xt) can be represented by an RNN with an update function of the form s̄t+1 = σ(As̄t + Bxt − θ) for all t = 1, · · · ,T

asymptotically almost surely. For any realization of xt, Theorem 2 implies that for any compact set K ⊂ RM
× RI

which contains (st, xt), one can find suitable ḡ(st, xt) ∈
∑I+M,M(σ) with weight matrices V ∈ RM×J,W ∈ RJ×M, B ∈ RJ×I,

and a bias θ ∈ RJ such that for all t = 1, · · · ,T,

sup
xt,st∈K

‖g(st, xt) − ḡ(st, xt)‖∞ ≤ δ, where ḡ(st, xt) = Vσ(Wst + Bxt − θ). (A.3)

Here δ > 0 is an arbitrary constant and σ is an arbitrary component-wise applied sigmoid activation function.

We denote approximated dynamics generated by the feedback neural network by

s̄t+1 = ḡ(s̄t, xt) = Vσ(Ws̄t + Bxt − θ).

Further assuming that s̄t ∈ K, for any δ > 0, we can find suitable W,B,V, θ such that

‖st − s̄t‖∞ = ‖g(st−1, xt−1) − g(s̄t−1, xt−1) + g(s̄t−1, xt−1) − s̄t‖∞

≤ ‖g(st−1, xt−1) − g(s̄t−1, xt−1)‖∞ + ‖g(s̄t−1, xt−1) − s̄t‖∞

≤ ‖g(st−1, xt−1) − g(s̄t−1, xt−1)‖∞ + δ.

Since g is continuously differentiable, in the compact set K, it is also Lipschitz continuous. This implies for any ε > 0,

there is δ > 0 and thus there are suitable W,B,V, θ, such that

‖st − s̄t‖∞ ≤ C‖st−1 − s̄t−1‖∞ + δ ≤ δ(1 + C + · · ·CT−1) = δ
1 − CT

1 − C
≤ ε, (A.4)

where we have used s0 = s̄0. Estimate (A.4) indicates that for deterministic inputs xt, the open dynamical system

update function g(st, xt) can be universally approximated by the feedward neural network update function ĝ(ŝt, xt)

since the output of each step, i.e. st, can be approximated arbitrarily accurate.

For an RNN with Gaussian random input xt, however, since xt is not compactly supported, whether xt, st ∈ K

becomes a random event. For any fixed K ⊂ RM
×RI and sigmoid function σ, one can associate it with the function

class
∑I+M,M(σ). The probability that one can find a suitable approximation to function g(st, xt) within

∑I+M,M(σ) for
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any initial s0 ∈ RM and xt ∈ RI can be written as

Pr

 inf
ĝ∈

∑I+M,M(σ)
sup

xt∈RI ,s0∈RM

t=1,··· ,T

‖g(st, xt) − ḡ(s̄t, xt)‖∞ ≤ ε,∀ε > 0

 , (A.5)

where for stochastic xt, the norm ‖g(st, xt) − ḡ(s̄t, xt)‖∞ is interpreted in the pathwise sense [36], i.e. it is valid for

each realization of xt. Also note that that the above probability depends on K, in particular, the size 3 of it, which is

denoted as |K|. Taking the limit |K| → +∞, we obtain

lim
|K|→+∞

Pr

 inf
ḡ∈

∑I+M,M(σ)
sup

xt∈RI ,s0∈RM

t=1,··· ,T

‖g(st, xt) − ḡ(s̄t, xt)‖∞ ≤ ε,∀ε > 0


= lim
|K|→+∞

Pr

 inf
ḡ∈

∑I+M,M(σ)
sup

xt,st,s̄t∈K
t=1,··· ,T

‖g(st, xt) − ḡ(s̄t, xt)‖∞ ≤ ε,∀ε > 0
∣∣∣∣∣xt, st, s̄t ∈ K

 Pr[xt, st, s̄t ∈ K]

= lim
|K|→+∞

Pr[xt, st, s̄t ∈ K].

(A.6)

Here we used (A.3) and (A.4) to show that under the condition xt, st, s̄t ∈ K, the event infḡ∈
∑I+M,M supxt,st,x̄t∈K ‖g(st, xt)−

ḡ(s̄t, xt)‖∞ < δ,∀δ > 0, t = 1, · · · ,T happens with probability 1, i.e. it holds for almost all xt.

Now the problem of calculating the probability (A.5) in the limit |K| → +∞ boils down to the calculation of

lim|K|→+∞ Pr[xt, st, s̄t ∈ K]. To this end, we note that if we can choose a compact set K0 ⊂ RM
×RI such that xt, s0 ∈ K0

for all t = 1, · · · ,T, then ‖s1‖ = ‖g(s0, x0)‖ ≤ C0 for some C0 > 0 because g is a continuous function therefore bounded

in K0. We choose another compact set K0 ∪ B(0,C0) ⊂ K1 ⊂ RJ
×RJ, where B(0,C0) is a ball centered at 0 with radius

C0. Then we must have ‖s2‖ = ‖g(s1, x1)‖ ≤ C1 since x1, s1 ∈ K1. Continuing this procedure for T times, we can find a

compact set KT ⊂ RM
×RI such that st, xt ∈ KT. Since the same logic applies to s̄t, we can find a compact K ⊂ RM

×RI

such that st, xt, s̄t ∈ KT. On the other hand, Chebyshev’s inequality for a standard normal random variable X implies

Pr[|X| ≥ b] ≤
1
b2 ⇒ Pr[X < b] ≥ 1 −

1
b2 . (A.7)

Then for i.i.d. random variables X1, · · ·XT, we have

Pr[|X1| < b, · · · , |XT | < b] =

T∏
i=1

Pr[|Xi| < b] ≥
[
1 −

1
b2

]T

.

3
|K| can be defined as, e.g. |K| := supx∈K ‖x‖2, where ‖x‖2 is the l2-norm of the vector.
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Therefore, for fixed T, we have

lim
b→+∞

Pr[|X1| < b, · · · , |XT | < b] = 1. (A.8)

This means that asymptotically almost surely one can find a compact subset B such that xt ∈ B for all t = 1, · · ·T. As

a direct result of this, we have

lim
|K|→+∞

Pr[xt, st, s̄t ∈ K] = 1. (A.9)

Combining (A.6) and (A.9), we show that for an RNN with i.i.d. Gaussian input xt, asymptotically almost surely,

one can find suitable W,B,V, θ such that ‖st − s̄t‖∞ < ε for any sigmoid σ and any ε > 0. Furthermore, let

s′t+1 = σ(Ws̄t + Bxt − θ),

which yields s̄t = Vs′t. By defining A := WV ∈ RJ×J, we obtain

s′t+1 = σ(As′t + Bxt − θ). (A.10)

The dynamics of the RNN update function (A.10) encodes (not equals) the dynamics of the open dynamical systems.

Hence we claim that the dynamics of an M-dimensional open dynamical system with st+1 = g(st, xt) can be repre-

sented by an RNN with an update function of the form s̄t+1 = σ(As̄t +Bxt−θ) for all t = 1, · · · ,T asymptotically almost

surely. We note that the transformation s̄t = Vs′t often involves an enlargement of the hidden state dimensionality

since A ∈ RJ×J, where J is set to be large enough to guarantee the validity of the universal approximation.

The second part of the proof is to show that the output of the dynamical system, i.e. yt = h(st) can be approximated

by the output of an RNN ỹt = C̃s̃t asymptotically almost surely where s̃t is an extended vector satisfying the RNN

update rule: s̃t+1 = σ(Ãs̃t + B̃xt− θ̃). For an RNN with deterministic input, the proof is done in [27]. Hence we simply

state the result obtained therein.

Claim. For xt, st, s̄t ∈ K ⊂ RM
×RI, there exist enlarged matrices Ã, B̃, C̃ and θ̃ for an RNN model:

s̃t+1 = σ(Ãs̃t + B̃xt − θ̃),

ỹt = C̃s̃t, (A.11)
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such that the output vector ‖ỹt − yt‖ ≤ ε for all ε > 0. In (A.11), we have

J̃ = J + J̄, rt = σ(Es′t + Fxt − θ̄) ∈ R J̄, E ∈ R J̄×J,F ∈ R J̄×I, θ̄ ∈ R J̄, s̃t =

s′trt

 ∈ R J̃,

Ã =

A 0

E 0

 ∈ R J̃× J̃, B̃ =

BF
 ∈ R J̃×J, C̃ = [0 D] ∈ RN× J̃, and θ̃ =

θθ̄
 ∈ R J̃.

Proof.

‖yt − ỹt‖ = ‖yt −Dσ(Es′t−1 + Fxt−1 − θ̄)‖

≤ ‖yt −Qσ(GVσ(As′t−1 + Bxt−1 − θ) − θ̂)‖ + ‖Qσ(GVσ(As′t−1 + Bxt−1 − θ) − θ̂) −Dσ(Es′t−1 + Fxt−1 − θ̄)‖.

Here Qσ(GVσ(As′t−1 + Bxt−1 − θ) − θ̂) is a bounded function defined in the compact domain K. Hence, the universal

approximation theorem implies that for any ε1 > 0, we can find suitable D,E,F, θ̄ such that ‖Qσ(GVσ(As′t−1 + Bxt−1 −

θ) − θ̂) −Dσ(Es′t−1 + Fxt−1 − θ̄)‖ ≤ ε1. Then we obtain

‖yt − ỹt‖ ≤ ‖yt −Qσ(GVσ(As′t−1 + Bxt−1 − θ̄) − θ̂)‖ + ε1

= ‖yt −Qσ(GVs′t − θ̂)‖ + ε1

= ‖yt −Qσ(Gs̄t − θ̂)‖ + ε1

≤ ‖yt − h(s̄t)‖ + ‖h(s̄t) −Qσ(Gs̄t − θ̂)‖ + ε1.

Again applying the universal approximation theorem, we have ‖h(s̄t)−Qσ(Gs̄t− θ̂)‖ ≤ ε2,∀ε2 > 0. On the other hand,

h(x) is continuously differentiable and thus Lipschitz in the compact set K and we have ‖yt − h(s̄t)‖ = ‖h(st)− h(s̄t)‖ ≤

C‖st − s̄t‖ ≤ Cε0. This leads to

‖yt − ỹt‖ ≤ Cε + ε1 + ε2 ≤ δ,∀δ > 0. (A.12)

�

This claim indicates that under the condition xt, st, s̄t ∈ K ⊂ RM
×RI, the probability of finding suitable Ã, B̃, θ̃, C̃
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such that ‖ỹt − yt‖ ≤ δ,∀δ > 0 is 1. Hence using again relations (A.5), (A.6), and (A.9), we have

lim
|K|→+∞

Pr

 inf
ỹt∈o(RNNI,N(σ))

sup
xt∈RI ,s0∈RM

‖yt − ỹt‖∞ ≤ δ,∀δ > 0

 , t = 1, · · · ,T

= lim
|K|→+∞

Pr
[

inf
ỹt∈o(RNNI,N(σ))

sup
xt,st,s̄t∈K

‖yt − ȳt‖∞ ≤ δ,∀δ > 0
∣∣∣∣∣xt, st, s̄t ∈ K

]
Pr[xt, st, s̄t ∈ K]

= lim
|K|→+∞

Pr[xt, st, s̄t ∈ K] = 1. (A.13)

This implies that any open dynamical system (4) with Gaussian inputs xt, the existence of finding a deterministic RNN

model of the form (3) with the same stochastic input xt that pathwisely approximates the solution of (4) arbitrarily

accurate tends to 1 as |K| → +∞. This concludes the proof of Theorem 3.

Theorem 4. Suppose b(x) : Rd
→ Rd and σ(x) : Rm

→ Rd in SDE (5) are locally Lipschitz and b(x) satisfies conditions

(i)–(iii) listed in [35]. Consider a uniform time grid 0 = t0 < t1 · · · < tNT = T with step size ∆t = ti+1 − ti. Then in this time

grid, the probability of finding an RNN model (3) such that the outputs of the RNN pathwisely approximate the exact solution

of the SDE arbitrarily accurate, is asymptotically 1.

Proof. The proof to this theorem is obtained by combining Theorem 3 and the established pathwise convergence

result for the Euler–Maruyama (EM) scheme to the exact solution to SDE (5). It was proved by Gyöngy [36, 35] that

under the local Lipschitz condition on b(x), σ(x) and (i)–(iii) listed in [35], the EM scheme with uniform step size ∆t

satisfies pathwise error estimate:

sup
i=0,··· ,NT

‖X(ti, ω) − X̂∆
EM(ti, ω)‖2 ≤ CT(ω)∆

1
2−ε, ∀ε > 0, for almost all ω ∈ Ω, (A.14)

where ‖ · ‖2 is the Euclidean norm, ω ∈ Ω defines a sample realization of the Wiener process W(t), and X̂∆
EM(ti, ω) is

the pathwise approximated solution generated using EM scheme with the same Wiener process realization. This

result also can be restated as: for any ω ∈ Ω, the above inequality holds in probability 1.

Now, suppose the EM scheme is the open dynamical system (4) as we defined in (6) and we specify the output

of the open dynamical system as yt = h(st) = h(X(t)) = X(t). Since b(x) and σ(x) in SDE (5) are locally Lipschitz,

naturally g(·) in (6) is also locally Lipschitz 4 for any fixed ∆t > 0. Applying the result in Theorem 3, in particular,

estimate (A.12), we know there exists a stochastic RNN such that

sup
i=0,··· ,NT

‖X̂∆
EM(ti, ω) − X̂∆

RNN(ti, ω)‖∞ < δ,∀δ > 0, for any ω ∈ Ω, {ξ(ti)}NT
i=0, {X̂

∆
EM(ti, ω)}NT

i=0, {X̂
∆
RNN(ti, ω)}NT

i=0 ∈ K, (A.15)

4Here we mean the function g(x, y, z) = x − zb(x) + σ
√

zy is locally Lipschitz for fixed z.
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where X̂∆
RNN(ti, ω) is the path generated by stochastic RNN with any fixed ω ∈ Ω. Combining (A.14) and (A.15) and

then using the triangle inequality and ‖ f ‖2 ≤
√

d‖ f ‖∞, we obtain

sup
i=0,··· ,NT

‖X(ti, ω) − X̂∆
RNN(ti, ω)‖2 ≤ sup

i=0,··· ,NT

‖X(ti, ω) − X̂∆
EM(ti, ω)‖2 +

√

d sup
i=0,··· ,NT

‖X̂∆
EM(ti, ω) − X̂∆

RNN(ti, ω)‖∞

≤ CT(ω)∆
1
2−ε +

√

dδ,

(A.16)

which is valid for all ε, δ > 0, almost all ω ∈ Ω and {ξ(ti)}NT
i=0, {X̂

∆
EM(ti, ω)}NT

i=0, {X̂
∆
RNN(ti, ω)}NT

i=0 ∈ K ⊂ Rd
× Rm. As a

result, by using estimate (A.13), we obtain

lim
|K|→+∞

lim
∆→0

Pr

 inf
X̂∆(t,ω)∈o(RNNm,d(σ))

sup
{ξ(ti)}

NT
i=0∈R

m,X(0,ω)∈Rd

t=1,··· ,T

‖X(ti, ω) − X̂∆
RNN(ti, ω)‖∞ ≤ δ,∀δ > 0


= lim
|K|→+∞

lim
∆→0

Pr
[

inf
X̂∆(t,ω)∈o(RNNm,d(σ))

sup
{ξ(ti)}

NT
i=0∈R

m,{X̂∆
EM(ti,ω)}NT

i=0 ,{X̂
∆
RNN(ti,ω)}NT

i=0∈K
t=1,··· ,T

‖X(ti, ω) − X̂∆
RNN(ti, ω)‖∞ ≤ δ,∀δ > 0

∣∣∣∣∣{ξ(ti)}NT
i=0, {X̂

∆
EM(ti, ω)}NT

i=0, {X̂
∆
RNN(ti, ω)}NT

i=0 ∈ K]
]
× Pr[{ξ(ti)}NT

i=0, {X̂
∆
EM(ti, ω)}NT

i=0, {X̂
∆
RNN(ti, ω)}NT

i=0 ∈ K]

= lim
|K|→+∞

lim
∆→0

Pr[{ξ(ti)}NT
i=0, {X̂

∆
EM(ti, ω)}NT

i=0, {X̂
∆
RNN(ti, ω)}NT

i=0 ∈ K] = 1.

(A.17)

This probability can be interpreted as follows. For any ω ∈ Ω, taking the limit ∆→ 0 and then |K| → +∞ (note that

the order is not exchangeable), the probability of finding a suitable stochastic RNN from RNNm,d(σ), which takes

sample discrete white noise {ξ(ti)}NT
i=0 and generates outputs {X̂RNN(ti)}NT

i=0 that accurately approximate (error< δ holds

for any δ > 0) the exact solution {X(ti)}NT
i=0 in all time grid 0 < t1 · · · < tNT , tends to 1. This concludes the proof of

Theorem 4. �

As a final note, we point out that our UAT results are established based on pathwise convergence, while what

SINN seeks is weak convergence, i.e. convergence in terms of statistical moments. While the UAT convergence

results do not imply weak convergence, they do provide a plausible hint that weak convergence can be numerically

achieved. To obtain a UAT for weak or strong convergence, a prerequisite that needs further examination is the

ergodicity condition of the stochastic RNN model[52]. This is beyond the scope of the present paper and awaits

future investigation.
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