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Abstract

Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required 

for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to 

fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic 

model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction 

(ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation 

of the same biosynthetic model with the Tyr replaced by Trp, and further demonstrate that Trp 

can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp 

variant shows a hydrogen bonding network involving two water molecules that are organized by 

Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native 

Phe residue. Additional EPR measurements are consistent with the formation of a Trp radical 

species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp’s higher 

reduction potential relative to Tyr. Together, these findings demonstrate - for the first time - that 

Trp can indeed promote the ORR and provides a structural basis for the observation of varying 
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activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting 

that HCOs use Tyr instead of Trp to achieve higher reactivity.

Graphical Abstract
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INTRODUCTION:

Reduction of O2 to water is fundamental reaction in biological respiration, providing energy 

for numerous cellular processes.1 The enzymes responsible for this reaction are terminal 

oxidases, with heme-copper oxidases (HCOs) as the most well-known example. HCOs 

contain both heme and a CuB center coordinated by three histidine residues, one of which is 

cross-linked to a neighboring tyrosine (Tyr).

This Tyr is proposed to provide one of the four electrons needed for the 4e− reduction 

of O2 to water.2 However, it has been difficult to elucidate its precise role in the reaction 

mechanism of native HCOs due to the practical limitations of studying large, membranous 

enzymes with multiple metal centers. For example, while a Tyr radical species (an 

intermediate in O2 reduction) has been observed when HCOs are treated with H2O2,2 such a 

radical has been difficult to detect when reacting HCOs with O2.

To address this issue, we and other groups have prepared biomimetic models of HCOs by 

incorporating Tyr and other phenolic groups in the vicinity of the active site to investigate 

how an active-site Tyr influences the oxygen reduction reaction (ORR) activity.3–13 For 

example, we introduced a Tyr adjacent to the CuB site of the biosynthetic HCO model, 

CuBMb, via a Phe33Tyr mutation, mimicking the highly conserved tyrosine residue in 

HCO (Fig. 1A).10,14 This variant, F33Y L29H F43H Mb, called F33YCuBMb, dramatically 

enhances the rate of the ORR by ~10-fold and increases selectivity for product water from 

32% to 80%. These results confirmed the importance of Tyr in the ORR and demonstrated 

that F33YCuBMb is a good structural and functional model of HCOs. Using F33YCuBMb, 

we were able to detect a tyrosyl radical in its reaction with both H2O2 and O2, providing 

direct evidence that Tyr can donate an electron in the ORR and that the radical species 
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previously observed during oxidation of ferric CuBMb with H2O2 was consistent with 

the radical observed upon combining ferrous enzyme with O2.12 In further experiments, 

replacing Tyr33 with non-native tyrosine analogs (OMe-Tyr, Cl-Tyr, F2-Tyr and F3-Tyr) 

showed correlations between the rate of the ORR, the pKa of the phenolic group13 and 

redox potential of Tyr/Tyr·.15 Since it has been difficult to introduce noncanonical amino 

acids into native HCOs, our biosynthetic models have allowed us to probe the role of the 

active-site Tyr in HCOs more precisely than studying native HCOs, even tuning the ORR 

activity beyond the capabilities of natural amino acids. Beyond its impact on understanding 

fundamental biology, the ORR is an important reaction of fuel cells that normally requires 

precious metals, such as platinum, as catalysts. HCOs can catalyze the ORR not only 

using earth-abundant metal ions (Fe and Cu), but also doing so at a lower overpotential.16 

Therefore, defining the precise role of Tyr and its function in tuning the ORR activity 

within biosynthetic models contributes to designing novel ORR catalysts through a better 

understanding of the fundamental principles utilized by Nature.

Despite the well-established role of Tyr in HCOs for ORR, there is one terminal oxidase, bd 
oxidase, which defies the idea that a Tyr is required for ORR. Bd oxidase lacks an active-site 

Tyr, instead sporting a highly conserved (>99%) Trp residue located in the proposed O2 

reduction site.17 Since both Tyr and Trp residues play redox-active roles in biology,18–32 the 

above observation led us to question whether Trp in bd oxidase fulfills the same function 

of Tyr in HCOs. This question is difficult to answer in native HCOs, because Tyr in HCO 

is cross-linked with one of the copper-coordinating His residues, such that substitution 

with Trp may perturb the cross-link as well as the properties of the CuB site. Instead, 

we reasoned that our biosynthetic model would be a facile system in which to answer 

this question. Towards this goal, we herein report the preparation, spectroscopic and X-ray 

crystallographic characterization of F33WCuBMb, and compare the effect of an active-site 

Tyr vs. Trp vs. redox inactive Phe on the oxidase activities of these models.

EXPERIMENTAL SECTION:

All chemicals were purchased from Sigma or Fisher and used without further purification.

Protein expression and purification.

Proteins were expressed and purified following a previously reported protocol,10 and the 

identities of the proteins were confirmed by ESI-MS.

Oxidase activity.

Oxygen reduction activity was measured in the Oxygraph Clark type oxygen electrode from 

Hansatech Instruments Ltd, following a slightly modified form of a reported procedure.10 

The assay was conducted with the internal LED light on and stir speed set to 50. The sample 

chamber was charged with 850 μL of 100 mM KPi pH 6.0 buffer and then 50 μL of a 

solution containing 40 mM N,N,N’,N’-tetramethyl-p-phenylenediamine dihydrochloride, a 

redox mediator, and 400 mM sodium ascorbate, the terminal reductant, was added. The O2 

concentration was monitored, and data collected until at least 30 seconds of a linear trace 

of [O2] vs. time was observed, which would be used to do background subtraction during 
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data processing. Then, 100 μL of a 200 μM stock of protein was added rapidly, resulting 

in an assay enzyme concentration of 20 μM. Data was collected for at least 60 s thereafter. 

The measurement of the rate of O2 consumption was done using the rate measurement tool 

within the Oxygraph software itself. Specifically, a line was drawn to fit the data, starting 

from 30s after protein injection and ending at 60 s after protein injection. The ORR activity 

of each Mb variant was measured in triplicate.

The rates of water and ROS formation were determined by measuring O2 consumption rates 

in the absence and presence of the ROS scavenger, catalase, and then plugging these values 

into equations reported earlier.10

Protein crystallography.

A crystal of aquoferric F33W CuBMb was grown by hanging drop vapor diffusion in a 

24-well tray purchased from Hampton Research Inc. Crystallization solution was composed 

of 0.1M MES pH 6.1, 0.2M NaOAc x 3H2O and 25% PEG 6000. Protein was concentrated 

to ~1 mM in 100 mM potassium phosphate pH 7 buffer. Solutions were mixed 1:1 to yield 

a final drop volume of 4 μL, which was equilibrated against 300 μL of well buffer at 4⁰ C. 

Crystals appeared within 1 week. At the time of observation of crystals, the well was not 

sealed completely by the coverslip, likely allowing for faster evaporation than usual for a 

properly sealed well.

Diffraction data were collected at the Advanced Light Source beamline 5.0.2. Data reduction 

and scaling were performed in MOSFLM33 and Aimless, respectively. The structure was 

solved by isomorphous replacement with the polypeptide and heme cofactor of PDB: 

4FWX.10 Phasing and refinement were performed in Phenix34 and model building in Coot.35 

Graphics were generated using PyMol.

Optical Absorption Properties.

UV-Vis spectra shown here and in the main text were collected on a Varian Cary 

5000 spectrophotometer. Extinction coefficients were obtained using an Agilent 8453 

spectrophotometer. Aquoferric heme Soret extinction coefficients were determined by a 

hemochromagen assay described earlier.36 The extinction coefficient of deoxyferrous heme 

Soret bands were obtained by first treating a solution of the aquoferric protein with 

dithionite in an anaerobic chamber. Then, the ratio of the Soret band absorbances of 

deoxyferrous and aquoferric species was calculated (values range from 0.7 – 0.9), and 

this value was multiplied by the extinction coefficient of the corresponding aquoferric heme 

Soret, yielding the extinction coefficient of the deoxyferrous heme Soret.

Electron paramagnetic resonance spectroscopy.

The F33WCuBMb + 1 equiv H2O2 sample was prepared by mixing a solution of 10 mM 

protein containing 20% glycerol with equal volume of 10 mM H2O2, then injecting this 

mixture at 5 seconds directly into liquid nitrogen to yield a final protein concentration of 5 

mM. The frozen reaction solution was then crushed into a powder and loaded into an EPR 

tube (2.00 mm ID, 2.40 mm OD).
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EPR spectra were recorded at the CalEPR center in the Department of Chemistry, University 

of California, Davis. Continuous wave (CW) X-Band (9.39 GHz) spectra were collected 

using a Bruker Biospin EleXsys E500 spectrometer (Billerica, MA) equipped with a super 

high Q resonator (ER4122SHQE). Cryogenic temperatures were controlled and maintained 

through the use of an ESR900 liquid helium cryostat in conjunction with a temperature 

controller (Oxford Instruments ITC503) and a gas flow controller.

Echo-detected field sweep spectra at Q-band (34 GHz) were collected using a Bruker 

Biospin EleXsys E580 spectrometer equipped with a 10 W amplifier and an R. A. Isaacson-

built cylindrical TE011 resonator mounted in an Oxford CF935 cryostat. The standard Hahn 

echo sequence (: π/2 − τ − π − echo) was applied to the sample via the XEPR software at 

various magnetic field values. ENDOR measurements were performed at 50 K by employing 

the Davies pulse sequence: π − RF − π/2 − τ − π − τ‐echo (π/2 = 12 ns, RF pulse = 20 μs, 

τ = 300 ns).

RESULTS AND DISCUSSION:

To determine whether Trp can support ORR activity, we measured the ORR activity of 

F33WCuBMb in comparison with those of CuBMb and F33YCuBMb variants under the same 

conditions. F33WCuBMb reduces O2 to water at 4x the rate of CuBMb, while generating 

the same amount of reactive oxygen species (ROS) (Fig. 2, Table S1). This selective 

enhancement in the rate of water formation, without change in ROS formation, suggests 

that an active-site Trp may indeed replace Tyr and participate in the 4 e− reduction of O2 to 

water, which is unprecedented in biomimetic studies of biological respiration.

To understand why F33WCuBMb and F33YCuBMb display similar ORR activity, we 

obtained a 1.3 Å crystal structure of ferric F33WCuBMb (Fig. 1B, PDB: 8EKO) and 

compared it to the structure of ferric F33YCuBMb (Fig. 1A, PDB: 4FWX).10 First, both 

the overall protein and active site structures of the two variants appear very similar (Fig. 1C, 

RMSD 0.329 Å), including the conformation of the heme cofactors and the orientation of 

the Trp33/Tyr33 sidechains. For example, the distance from Cβ carbons of Trp33 and Tyr33 

to the nearest heme edge sp2 carbon are 10.3 and 9.9 Å, respectively. These observations 

are corroborated by the UV-Vis absorption spectra in solution, which reveal that both the 

ferric (Fig. 3) and deoxyferrous (Fig. S1) forms of F33WCuBMb exhibit spectra that are 

nearly identical to those of F33YCuBMb with regards to the energetic positions of the heme 

Soret and Q bands, indicating similar geometric structures (Table S2). However, the relative 

intensities of these bands, particularly between the Q bands, vary significantly. Previous 

studies have attributed such differences in intensities to the polarity of the environment 

surrounding the heme site,37 presently rendered by Phe, Tyr and Trp. Since polarity may 

influence the strength of the hydrogen bonding network around the heme center and the 

hydrogen bonding network plays an important role in ORR, this difference in Q band 

intensity may help explain their difference in activity.

Importantly, it has previously been shown that Tyr33 organizes a hydrogen bonding network 

involving ordered water molecules in the active-site (Fig. 1a)10 that plays a key role in 

facilitating proton coupled electron transfer from Tyr33 to the heme-bound oxygen. The 
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crystal structure of F33WCuBMb obtained in this work reveals that the indole N of Trp33 

is also capable of organizing a similar hydrogen bonding network involving two water 

molecules (Fig. 1b). Therefore, we attribute this hydrogen bonding network as the major 

contributor enabling ORR activity in F33WCuBMb, and similarly in F33YCuBMb. This 

hydrogen bonding network is also consistent with the crystal structure of F33YCuBMb with 

oxygen bound (PDB: 5HAV), suggesting that the water network we report in the ferric 

crystal structure (Fig. 1b) is relevant to the O2-substrate bound F33WCuBMb.

Although F33WCuBMb exhibits ORR activity and produces a comparable quantity of ROS, 

the rate of water formation is about half that of F33YCuBMb. As a minimal number of 

structural differences are observed between the two variants, we attribute variations in the 

ORR activity of the two variants to the difference in proton-coupled reduction potentials (E°

´) between Tyr and Trp. It is known that free Trp normally exhibits a higher E°´ than Tyr in 

solution.38 While it is usually extremely difficult to measure E°´ for Trp and Tyr in a protein 

matrix due to the presence of Trp and Tyr in other locations of the same protein (as well 

as other redox cofactors such as heme), measurements of E°´ for these residues have been 

reported in a very simple α3X model protein in which there is no such interference.39 The 

E°´ of Trp was found to be 109 mV higher than that of Tyr across the biological pH range. 

While Trp and Tyr can both span a wide range of protein reduction potentials in different 

proteins (due to the effects of different residues surrounding Trp or Tyr), we anticipate that 

this trend - E°´(Trp) > E°´(Tyr) – will hold true when in an otherwise identical environment. 

Based on this reasoning, Trp33 in F33WCuBMb is expected to follow a similar trend as 

in the above α3X model protein and thus exhibit a higher E°´ than Tyr33 in F33YCuBMb. 

Similarly, the pKa of Trp33 is expected to be higher than Tyr33, which would contribute to 

a slower reaction in a proton-dependent process. The free amino acid Trp has a side-chain 

pKa of 16.8, compared to the side-chain pKa of 10.6 for the amino acid Tyr.40,41 In a protein, 

Tyr’s side-chain pKa has been reported at 10.2.42 We believe that in the same structural 

environment such as that between F33WCuBMb and F33YCuBMb, the difference in pKa 

between free amino acids Tyr/Trp will remain.

Consistent with our previous study on F33YCuBMb,12 we have found that reaction of 

the oxidized F33WCuBMb with a single equivalent of H2O2 generates a protein radical 

species. Similar to F33YCuBMb, the resting state F33WCuBMb displays an EPR signal 

typical of water-bound high-spin ferric myoglobin (Fig. S2).43 The radical signal observed 

in F33WCuBMb upon reaction with H2O2 is notably different than the spectrum observed 

in CuBMb without the Phe33 mutations, while also displaying features unique from the 

F33YCuBMb Tyr radical (Fig. 4). After reacting with H2O2, a relatively stable Compound 

II species (Fe(IV)=O, S = 1 EPR-silent) is generated, having first made a short-lived 

Compound I intermediate (Fe(IV)=O + porphyrin radical, or formally an Fe(V) species)44 

which is then reduced by a single electron.

The continuous wave (CW) X-band (9.391 GHz) EPR spectrum of the radical intermediate 

trapped after 5 s reaction time displays a prominent doublet feature, indicating a strong 

hyperfine coupling to magnetic nuclei (Figure 4, top). Tryptophan radical is known to 

exhibit complicated and drastically different EPR features depending on the environment 

in which it is located45 due to extensive hyperfine interactions with N, β-H, as well as 
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aromatic H nuclei.46,47 In our X-band spectrum, the lack of fine structure precludes a 

detailed analysis of the generated radical, although the doublet feature is reminiscent of a 

tryptophan radical generated by H2O2 reaction with the versatile peroxidase in P. eryngii.45 

To further confirm the identity of the generated radical, the same EPR sample was measured 

at Q-band frequency (34.297 GHz). The Q-band echo-detected field-sweep spectrum of 

trapped intermediate in F33WCuBMb oxidation showcases a broad peak centered around 

g = 2.00355 (Figure 4, bottom). The g-tensor obtained from the Q-band spectrum is 

noticeably larger than that of a typical carbon-based radical, suggesting the existence of 

a N-based radical. This value is in good agreement with the values previously reported for 

a tryptophan radical; for example, Trp radicals in azurin (g = [2.004, 2.003, 2.002]),46,47 

versatile peroxidase (isotropic g ~ 2.0027),45 and ribonucleotide reductase (Y122F mutant, 

g = [2.0033, 2.0024, 2.0021]).48,49 We note that tyrosyl radicals exhibit larger g anisotropy 

due to the heavier O atom, such as in F33YCuBMb (g = [2.0076, 2.0044, 2.0021])12 and 

wildtype ribonucleotide reductase (g = [2.0091, 2.0046, 2.0021]).49 We therefore attribute 

the EPR signals observed in F33WCuBMb to a Trp radical on the Trp33 residue (Fig. 4).

Further Q-band 1H ENDOR measurements were performed to resolve the hyperfine 

interactions of the Trp radical (see SI). The resulting spectrum features several sharp 

peaks with hyperfine couplings below 5 MHz and a broad feature spanning ca. 25 MHz 

(Fig. 4, bottom). The broad feature was reasonably simulated by a hyperfine coupling 

tensor A(1H) = [12, 12, 25] MHz, approximately. This value is in reasonable agreement 

with hyperfine coupling to the β-H of Trp reported elsewhere.45–47 Using this A-tensor, 

reasonable simulations of the X- and Q-band data can be obtained (Figure 4, red lines). The 

resulting spectra were simulated using giso = 2.00355, A(14N) = [14, 14, 33] MHz, and three 
1H hyperfine coupling tensors derived from the 1H ENDOR spectrum (Table S4). We note 

that the g anisotropy of the presumed tryptophan radical cannot be fully resolved at Q-band 

frequency, and thus we have treated the simulation with an isotropic model. Discrepancies 

between the data and simulations at X-band may be attributed to this simplification of the 

hyperfine coupling scheme.

Since F33WCuBMb can perform the ORR (which needs both electrons and protons), we 

believe Trp33 is able to perform both proton transfer and electron transfer rather than 

electron transfer alone, coupling a proton transfer step to a solvent water molecule to 

an electron transfer to the ferryl moiety. This step appears to occur concurrently with 

generation of Compound II – this is because the reaction of CuBMb with H2O2 produces 

(similar to wildtype myoglobin) a smooth transition from resting state ferric to Compound 

II, bypassing accumulation of Compound I (Fe(IV) porphyrin cationic radical, formally 

Fe(V)) and instead showing the Fe(IV)=O state (Fig. S6).

Previous work from our group suggests a proton-coupled process for the generation of the 

Tyr• in F33YCuBMb, as replacing the Tyr33 position with noncanonical amino acid tyrosine 

analogues containing halogen substituents (thus spanning a pKa range of 6.4 – 10).13 It was 

observed that the ORR activity in terms of O2 consumption and H2O product formation 

over ROS increased linearly as the Tyr33-analogue’s pKa was lowered. Similarly, we see the 

same effect between Tyr33/Trp33, as the pKa of residue 33 in CuBMb should be elevated (all 

else being equal) and correspondingly H2O product yield decreases (Fig 3). Specifically, we 

Ledray et al. Page 7

Biochemistry. Author manuscript; available in PMC 2023 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have shown that by replacing Tyr with Trp, a similar radical is produced upon reaction with 

H2O2, with a decreased rate of water formation under steady-state conditions that aligns 

with our understanding of Trp’s elevated pKa and E°´.

CONCLUSION:

In conclusion, we have shown for the first time that the Tyr in the active site of a functional 

HCO model in myoglobin can be replaced with Trp while maintaining functional ORR 

activity. We attribute the reduced rate of water formation in the Trp-containing mutant to the 

higher E°´ of Trp33 relative to Tyr33, resulting in a lower driving force for electron transfer 

from Trp33 to the heme-bound oxygen species. While Trp and Tyr seemingly can perform 

the same 1e− redox function, they are highly conserved when playing a role in enzymatic 

redox functions. There are only a few reported exceptions where the residues have been 

interchanged in nature.50–52 However, this kind of mutation is very difficult to carry out in 

native HCOs, where Tyr forms a crosslink with a nearby His. Perturbation of this crosslink 

could very well abolish activity altogether, hindering fine analysis of the role of the chemical 

properties of Tyr versus Trp in oxidase activity. Our findings support a redox role for the 

conserved Trp in cyt bd oxidases while suggesting that HCOs uses Tyr instead of Trp due to 

the higher reactivity observed with Tyr, although Trp can support O2 reduction.

It has long been proposed that biology uses the protein milieu to tune the properties of 

Tyr and Trp for their appropriate functions.53–58 However, very little is known about how 

this is accomplished due to the difficulty in isolating redox events of specific Tyr and 

Trp residues from other amino acids and cofactors in proteins. This work demonstrates 

the unique strength of biosynthetic modeling in teasing out subtle, but critical, structure-

function relationships in complex heteronuclear metalloenzymes driving biological energy 

transduction. While we can only speculate about the evolutionary role a conserved Trp 

residue serves in cyt bd oxidases, we argue that the activities of cyt bd oxidases have been 

refined by residues in the active site to favor O2 reduction at a particular rate - and not 

necessarily the fastest – through a Trp residue that still supports proton-coupled electron 

transfer and the same functional role of a Tyr. Our model suggests that Trp can serve 

as an intermediary electron source through a proton-coupled electron transfer step in our 

functional model of HCO.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Crystal structures of aquoferric forms of a) F33YCuBMb (PDB: 4FWX), b) F33WCuBMb 

(PDB: 8EKO), and c) the overlay of the two structures. There is no copper ion in these 

structures, despite the enzyme name CuBMb – the laboratory has historically investigated 

the CuBMb-series of mutant enzymes with and without copper and uses the terminology 

Cu(I)-CuBMb to reflect Cu(I)-bound CuBMb, and CuBMb to refer to copper-free enzyme.
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Figure 2. 
(a) Measured O2 consumption traces of 20 μM CuBMb (gray), F33YCuBMb (red), and 

F33WCuBMb (blue) in 100 mM KPi pH 6 buffer containing 100 eq. of TMPD and 1000 eq. 

of ascorbate. (b) Calculated rates of water and ROS formation for the three enzyme variants.
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Figure 3. 
UV-Vis absorption spectra of the resting state ferric forms of CuBMb (black), F33YCuBMb 

(red) and F33WCuBMb (blue). Inset: Expanded view of the Q band region.
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Figure 4. 
X-band continuous-wave (top) and Q-band echo-detected field-sweep (bottom) EPR spectra 

of 5 mM F33W-CuBMb with 20% glycerol in 100 mM potassium phosphate buffer pH 

7 after addition of 1 equiv of H2O2, followed by quenching at 5 s via injection into 

liquid N2. Black and red lines represent data and simulations, respectively. The grey trace 

in the Q-band spectrum is the derivative-like plot obtained by pseudo-modulating the 

data at 0.2 mT. The signal denoted with an asterisk is from an impurity in the sample 

(g = 1.999) generated by further decomposition of the product. Experimental conditions 

(X-band): microwave frequency, 9.391 GHz; microwave power, 0.1 mW; temperature, 100 

K; modulation frequency, 100 kHz; modulation amplitude, 3 G. Experimental conditions 

(Q-band): microwave frequency, 34.297 GHz; temperature, 50 K; tau, 300 ns; π/2 pulse 

duration, 12 ns. Simulation parameters are described in the text.
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