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Robust Linear Regression via �0 Regularization
Jing Liu , Student Member, IEEE, Pamela C. Cosman , Fellow, IEEE, and Bhaskar D. Rao, Fellow, IEEE

Abstract—Linear regression in the presence of outliers is an im-
portant problem and is challenging as the support of outliers is not
known beforehand. Many robust estimators solve this problem via
explicitly or implicitly assuming that outliers are sparse and result
in large observation errors. We propose an algorithm for robust
outlier support identification (AROSI) utilizing a novel objective
function with �0 -“norm” regularization which models the sparsity
of outliers. The optimization procedure naturally utilizes the large
observation error assumption of outliers and directly operates on
the �0 -“norm” and is guaranteed to converge. When only sparse
outliers are present (no dense inlier noise), we show that, under
certain model and algorithm parameter settings, AROSI can re-
cover the solution exactly. In the case, where both dense inlier noise
and sparse outliers are present, we prove that the estimation error
is bounded. Extensive empirical comparisons with state-of-the-art
methods demonstrate the advantage of the proposed method.

Index Terms—�0 regularization, algorithm for robust outlier
support identification, robust linear regression, sparse recovery.

I. INTRODUCTION

IN a linear regression setting, the goal is to estimate the lin-
ear relationship between two variables: a ∈ Rn (explanatory

variable) and y ∈ R (response variable), from m pairs of training
samples {(yi, ai), i = 1, . . . , m}, where m > n. The following
model is commonly assumed:

yi = ai
T x + μi, i = 1, . . . ,m (1)

or in matrix form: y = Ax + μ, where measurements y =
(y1 , . . . , ym )T , and matrix A = [a1 , . . . , am ]T are known.
x ∈ Rn is the model parameter to be estimated, and μ =
(μ1 , . . . , μm )T is the observation error. It is also commonly
assumed that A has full column rank. In many linear regression
data sets, there are some observations yi known as outliers that
have been corrupted by large observation errors [1]. Such out-
liers often lead to the failure of Ordinary Least Square (OLS) es-
timation [2]. The goal of robust linear regression is to accurately
estimate the model parameter in the presence of these trouble-
some outliers. Many robust estimators [3]–[5] have been devel-
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oped in the spirit of Robust Statistics. Recently, this problem
has received considerable interest from the signal processing
community due to its underlying connections with the rapidly
developing Sparse Signal Recovery (SSR) framework, which
aims to recover a sparse solution from an under-determined sys-
tem of linear equations. The SSR formulation often splits the
observation error μ into two terms: μ = η + e, where η ∈ Rm

is small magnitude bounded inlier noise, and e ∈ Rm represents
the large error component that captures outliers. So model (1)
becomes:

y = Ax + η + e. (2)

Additional prior information or assumptions are needed in order
to solve the problem. We make the following two reasonable and
common assumptions about outliers:

1. Outlier entries often have significantly larger observation
errors than inlier entries have, and min{|ei | : ei �= 0} >
‖η‖∞.

2. The fraction of outliers in the whole dataset is usually
small, so the outlier corruptions vector e is sparse, i.e.,
most entries in e are zero.

In Robust Statistics, many robust regression estimators aim
to limit the influence of large error entries under the first as-
sumption. The most popular family of these methods is the
M-estimators [5]. For the second assumption, it is often utilized
under the principle of fitting the majority of the data. Least Me-
dian of Squares (LMedS) [6], Least Trimmed Squares (LTS)
[3], [4], and Random Sample Consensus (RANSAC) [7] are
representative methods. LMedS was introduced by Rousseeuw
[6]; it minimizes the median of squared residuals instead of the
mean (or equivalently, sum). To improve estimation efficiency,
Rousseeuw further introduced LTS [3], [4], which aims to min-
imize

∑h
i=1 r2

(i) , where r2
(1) ≤ r2

(2) · · · ≤ r2
(m ) are the ordered

squared residuals, and the value of h is set between m
2 and m.

RANSAC [7] uses random sampling to calculate possible model
parameters and pick the best among them which can fit most
of the data. However, due to the combinatorial nature, all of
these algorithms are impractical for solving high dimensional
problems.

In contrast to the robust statistics approach, most SSR meth-
ods merely use the first assumption in the final reprojection step
via thresholding, e.g., [8]. One exception is [9], [10], which
developed a general thresholding function based iterative pro-
cedure and [9] was shown to be equivalent to a special class
of M-estimators. For the second assumption, the SSR methods
explicitly model the sparsity of outliers. Recently many works
[11]–[14] address the outliers in the SSR framework, where
x is also sparse (in the typically overcomplete dictionary A),
and the corruptions may also admit a sparse representation in
another general dictionary [15], [16]. Here we focus on the
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traditional linear regression problem, where x is general, A is
over-determined and we have no freedom to design A. Under
this setting, the existing SSR methods deal with outliers in two
major ways, Projection Approach [17] and Joint Approach [18].
Let V denote the subspace spanned by the columns of A, and let
F ∈ R(m−n)×m be a matrix whose rows form an orthobasis of
V ⊥. Then we have FA = 0. The Projection Approach applies
F to the measurements and from (2) we obtain

b
Δ= Fy = FAx + Fe + Fη = Fe + Fη. (3)

The original problem is transferred to the recovery of a sparse
vector e, given the under-determined measurement matrix F
and noisy measurements b. Various SSR methods can be directly
applied to solve this problem, such as BSRR [19] [20] which
is based on Sparse Bayesian Learning (SBL) [21], [22], and
Second-Order Cone Programming (SOCP) [8] which is based
on �1 minimization [23]–[25]. Note that the traditional �1 esti-
mator (arg min

x
‖y − Ax‖1) was shown to be equivalent to the

SOCP case of no dense inlier noise [17]. The Joint Approach re-
formulates the original model into y = [A Im×m ][x

e ] + η, where
[A Im×m ] is under-determined and the lower part of [x

e ] is
sparse. Many existing SSR methods can be extended to deal
with this formulation via restricting the lower part of [x

e ] to
be sparse, e.g., BPRR which is based on �1 minimization [20],
�p(0 < p ≤ 1) regularization which assumes a super-Gaussian
prior for e to encourage sparsity [18], [26], Giannakis’s al-
gorithm for robust sensing [27] that utilizes a log-sum penalty
function [28]–[31], Jin’s empirical Bayesian inference-based al-
gorithm which is extended from SBL [26], and GARD [1] which
is based on Orthogonal Matching Pursuit (OMP) [32], [33]. An
important finding in sparse recovery theory is that although find-
ing the sparsest solution from under-determined linear equations
is also of a combinatorial nature, some polynomial-time sparse
recovery methods are guaranteed to find the sparsest solution
under certain conditions on the sparsity of e and conditioning of
matrix F [34], [35]. It was shown in [20] that BSRR outperforms
LMedS and RANSAC.

The key to successful sparse recovery lies in identifying the
support (nonzero entries), as one can simply add a reprojection
step to estimate magnitude later. We propose a novel objective
function and corresponding algorithm to help identify the sup-
port of outliers. The method is developed under the paradigm of
the Joint Approach, but there is a fundamental difference with
existing SSR methods. The existing methods often tackle the
�0-‘norm’ of e implicitly (e.g., via OMP or SBL), or through the
use of surrogate measures for the �0-‘norm’, such as the log-sum
function or the �p -norm (0 < p ≤ 1). Besides these methods, the
hard thresholding based iterative method [9] shows its equiv-
alence with a family (infinitely many) of nonconvex penalties
for e (plus the �2-norm on the noise term), thus promoting the
sparsity of e (the author noted that this method relies on a prelim-
inary robust fit). In contrast to all these methods, we explicitly
model and operate on the �0-‘norm’ of e, and the optimization
procedure naturally utilizes the large observation error prior, and
does not need a preliminary robust fit. Theoretical guarantees
regarding exact recovery or error bounds are derived to sup-
port the efficacy of the method. The overall best performance
in terms of the quality of recovery and lower complexity (over

TABLE I
ALGORITHM FOR ROBUST OUTLIER SUPPORT IDENTIFICATION (AROSI)

competing methods) further demonstrates the notable benefits
of the proposed method.

The remainder of the paper is organized as follows: In
Section II, we introduce the nonconvex objective function and
the associated optimization procedure to help identify the sup-
port of outliers to be used in the reprojection step. Section III
gives theoretical results regarding its convergence, exact recov-
ery or recovery error. We empirically study the performance of
the proposed method and compare with other state-of-the-art
methods in Section IV. Conclusions are made in Section V.

Notation: Capital letters denote matrices, e.g., A, while low-
ercase letters denote vectors, e.g., e. The ith row of matrix A is
denoted by ai

T , while the ith element of vector e is denoted by
ei . The �0-‘norm’1 of e, i.e., ‖e‖0 , counts the number of nonzero
elements of e. Bold capital letters are reserved for sets, e.g., S,
where Sc and |S| denote the complement and the cardinality
of S respectively, and Sk denotes the set S obtained from the
kth iteration. We use AS to denote the |S| × n submatrix of
A containing the rows indexed by S. Similarly, eS denotes the
subvector of e containing the entries indexed by S. The indicator
function is denoted as I(·).

II. ROBUST LINEAR REGRESSION VIA �0 REGULARIZATION

We propose minimizing the following objective function to
help identify the support of outliers.

J (x, e) = ‖y − Ax − e‖1 + α‖e‖0 (4)

In the second term, we directly use the �0-‘norm’ to enforce
the sparsity in the outlier corruptions e, rather than relaxing it
to the �p -norm (0 < p ≤ 1).

We use the alternating minimization “like” approach to min-
imize the nonconvex objective function in (4). The detailed
procedure is summarized in Table I, where x(k+1) and e(k+1)

denote the updated x and e at the (k + 1)st iteration. Sk is
the complementary set of the support of e(k) , which is the in-
dex set for “valid” entries of y that are estimated to be free of
outliers in the kth iteration. Here the convergence of J(x, e)
means J(x(k+1) , e(k+1)) = J(x(k) , e(k)), and Sk = Sk − 1 is a
sufficient condition for convergence (see Appendix A).

At first glance, it seems more reasonable to use the �2-norm
rather than the �1-norm in the first term of the objective function

1�0 -‘norm’is not a norm as it does not satisfy the axioms of a norm.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 13,2020 at 20:01:56 UTC from IEEE Xplore.  Restrictions apply. 



700 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 3, FEBRUARY 1, 2018

(4) and in Step 1, especially for Gaussian noise. Here we empha-
size that the minimizer of the objective function (4) is not our fi-
nal solution; it will be followed by a reprojection step described
later. In Step 1 of each iteration, we only use our estimated
“valid” outlier free entries/rows indicated by S to estimate x.
However, we do not expect that all the outliers are identified by
the previous iteration; it is very likely that some outliers have
not been removed. So it is safer to use the �1-norm in Step 1,
as the �1 estimator is more robust to outliers than OLS. In case
there are multiple solutions2 [36] for minx‖ySk

− ASk
x‖1 and

x(k) happens to be one of these solutions, we set x(k+1) = x(k)

to make the algorithm more stable.
At the beginning, we have no information about the positions

of outliers except that they are sparse. So we simply initialize
e(0) = 0, and index set S0 := {i : e

(0)
i = 0} = {1, . . . , m}. So

in Step 1 of the first iteration, all the data will be used and it is
equivalent to the �1 estimator, which has been justified by many
authors (e.g., [17], [37]).

In Step 2, when x is fixed, define r
Δ= y − Ax,

min
e

(‖y − Ax − e‖1 + α‖e‖0) = min
e

(‖r − e‖1 + α‖e‖0)

= min
e

m∑

i=1

(|ri − ei | + αI (ei �= 0))

=
m∑

i=1

min
ei

(|ri − ei | + αI (ei �= 0))

êi :=

{
0, |ri | ≤ α

ri, otherwise
∈ arg min

ei

(|ri − ei | + αI (ei �= 0)) ,

(5)

and min
ei

(|ri − ei | + αI(ei �= 0))

= min (|ri | , α) =
{|ri | , |ri | ≤ α

α, otherwise
. (6)

We can see from (5) that Step 2 directly promotes the sparsity
of e via hard thresholding. Any entry of |y − Ax| larger than
α will be considered an outlier corrupted entry. In general, α
should be set at least larger than the inlier noise level. Our
analysis shows that under certain reasonable conditions on the
model parameters, if α is greater than some certain threshold,
we can guarantee that all the inliers are kept in every iteration.
Conservatively, one may use a very large α, aiming to keep
most of the inliers while safely removing some large outliers.
Alternatively, one may use a small α (e.g., 4σ), aiming to get
rid of more outliers, with the possibility one may also lose more
inliers. If there is no prior knowledge of σ, it can be estimated
from the residuals of the �1 estimation (which is also Step 1 of
our first iteration) [4]: σ̂ = 1

0.675 median( |r(1)
i | | r(1)

i �= 0).
Reprojection Step for the Joint Approach: Our theoretical re-

sults in Section III show that AROSI can guarantee the exact
support recovery of outliers. This motivates us to add a reprojec-
tion step in the end. The reprojection step [38] is widely used in

2In practice, when ASk
is full column rank, this rarely happens, and we have

not experienced this in our numerical experiments.

sparse recovery methods; it often improves the estimation of the
magnitudes of the nonzero entries. In the Projection Approach,
as the original problem is transferred to the conventional sparse
recovery problem form, it is straightforward to use reprojection
(e.g., [8]). Here we present the reprojection step for the Joint
Approach. Recall that the original model (2) is reformulated as
y = [A Im×m ][x

e ] + η, where the lower part of [x
e ] is sparse.

With estimated x̃ or ẽ by some Joint Approach algorithm, the
reprojection step is as follows:

1. Estimate the support E of e by thresholding |ẽ| or
|y − Ax̃|, e.g., Ê := {i : |ẽi | > pσ}, where σ is the stan-
dard deviation of the inlier noise, and p is a scaling factor.

2. Regress y onto the selected columns of [A Im×m ], i.e.,
[A (IÊ)T ] by least squares:

ẑ = arg min
z

∥
∥
∥y −

[
A (IÊ)T

]
z
∥
∥
∥

2
(7)

3. Finally, obtain x̂ = ẑ{1,...,n}, and êÊ = ẑ{n+1,...,end},
which is the estimated outlier corruption values corre-
sponding to Ê.

In general, setting p is a tradeoff between false alarms and
false negatives in identifying outliers, and so a relatively small
p is recommended to have fewer false negatives. If it is known
that the magnitudes of outliers are much larger than inlier noise
(or if we are less concerned about the noise level outliers),
a slightly larger p can be employed to decrease false alarms.
When thresholding |y − Ax̃|, since the inlier noise is present
in this residual, the scaling factor p should be greater than 2.
While when thresholding |ẽ|, since e is already separated from
the inlier noise in the model, a small p can be employed, e.g.,
[8] uses p = 1 in their Projection Approach.

A sufficient condition for [A (IÊ)T ] to be full column rank
is |Ê| ≤ max(2𝓂(A) − 1, 0) (defined in Definition 1, guaran-
teed by Theorem 2). When p → ∞, |Ê| → 0. In case the gen-
erated [A (IÊ)T ] is under-determined or not full column rank,
we can always increase the scaling factor p to make [A (IÊ)T ]
full column rank, thus (7) has a unique solution.

The major difference with the reprojection step in the Projec-
tion Approach is the alternative way to estimate the support of
e, i.e., via thresholding |y − Ax̃|, if we have more confidence
in estimated x̃ than ẽ. In AROSI, we are more confident about
the estimated x̃, as it is less sensitive to the parameter α than
ẽ. So, to estimate the support of e, we threshold |y − Ax̃|, i.e.,
Ê := {i : |(y − Ax̃)i | > pσ}.

Complexity: AROSI alternates between �1 estimation (Step 1)
and entrywise thresholding (Step 2). So the main computational
step (complexity) is �1 estimation in each iteration, which can
be recast as Linear Programming. If AROSI converges in K
iterations (usually a few iterations), the worst run time estimate
will be K times the run time of the �1 estimator. In fact, the
total run time is often less than that. This is not only because
some entries are pruned in Step 1, but also because the result of
the previous iteration is used as the initial point for the current
iteration (a.k.a. warm-start). This is usually a good initial point
and improves the speed of �1 .
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III. THEORETICAL ANALYSIS

In this section, we analyze AROSI (without adding the repro-
jection step unless otherwise noted) and establish some theoret-
ical guarantees which support its robustness and effectiveness.
The theoretical results depend on the matrix A, the bounds for
the inlier noise, and the sparsity of the outlier component. The
exact conditions are included as part of the theorem statements.
The main results include the following:

1) Exact recovery of x under any parameter setting (i.e., any
α > 0) in the presence of outliers only, i.e., absence of
dense inlier noise (Theorem 3).

2) The estimation error is bounded in the noisy case
(Theorem 6).

3) Exact support recovery of outliers in both no dense inlier
noise case (Theorem 3) and noisy case (Theorem 6d)).

4) The ability to keep all the inliers and remove signifi-
cant outliers in every iteration (Theorems 3 and 6–7, and
Remark 2).

5) Even if the number of outliers is greater than the regres-
sion breakdown point of the �1 estimator, AROSI can
still guarantee exact recovery (no dense inlier noise case,
Remarks 1 and 2) or bounded estimation error (noisy case,
Remark 5 and Theorem 7).

A. Convergence Property

Note that Step 1 of the algorithm deviates from the standard
alternating minimization approach. Thus, the convergence of the
algorithm is not assured based on the alternating minimization
framework and needs to be established.

Theorem 1: AROSI converges in a finite number of itera-
tions to a fixed point, which is a local optimum. Moreover, the
objective function is strictly decreasing before convergence.

The proof of the theorem is in Appendix A.

B. Characterization of AROSI When Only Outliers Present

Here we discuss the case when there are only sparse outliers
present and no dense inlier noise. Our model in (2) degenerates
to y = Ax + e. The analysis benefits greatly from the analysis
of the �1 estimator in [37], which is equivalent to the Step 1
of our first iteration. We further build and extend the work
to understand AROSI, based on an important property stated
in Lemma 1. We first introduce some definitions and properties
regarding the leverage constants and their related quantity𝓂(A)
for matrix A that are important to the analysis.

Definition 1 (from [37]): Define M ={1, . . . , m} as the
index set of all the observations. Define for every q ∈
{1, . . . , m} the leverage constants cq of A as cq (A) = min E ⊂M

|E|= q

min g ∈Rn

g �= 0

∑
i∈M\E |ai

T g |
∑

i∈M |ai
T g | = min E ⊂M

|E|= q
min g ∈Rn

g 2 = 1

∑
i∈M\E |ai

T g |
∑

i∈M |ai
T g | and

𝓂(A) = max{q ∈ M |cq (A) > 1
2 }.

Note that [39] provides an algorithm to compute 𝓂(A) for
any given A. The complexity is O((m

n )(n3 + m2)), which is
prohibitive for large m and n, making the computation of 𝓂(A)
limited to a small size matrix A.

Proposition 1 (from [37]): c0(A) = 1, cm (A) = 0, and for
every q ∈ {1, . . . , m}, cq (A) ≤ cq − 1(A).

Proposition 2: If 𝓂(A) ≥ q, then we must have cq (A) > 1
2 ,

and m > 2q.
The proof is omitted due to the space limit and can be found

in the supplemental material.
In [37], it is shown that the regression breakdown point of the

�1 estimator is 𝓂(A) + 1. Since in the iterations of AROSI, it
detects and removes ‘outliers’ and uses the remaining entries to
do �1 estimation, two fundamental questions arise: When delet-
ing some entries, 1) will the regression matrix become singular?
2) how does 𝓂(A) change (will it suddenly become 0)? The
following Lemma 1 and Theorem 2 address these concerns.

Lemma 1: Let matrix A be full column rank and 𝓂(A) ≥ q.
Then for any index set T ⊂ M , |T | = t ≤ q, we have that
AT c must be full column rank, 𝓂(AT c) ≥ q − 0.5t ≥ q − t,
and cq−t(AT c) ≥ cq−0.5t(AT c) ≥ cq (A) > 1

2 .
The proof of the lemma is in Appendix B.
Theorem 2: Let matrix A be full column rank and 𝓂(A) ≥

q > 0. Then for any index set T ⊂ M , |T | = t ≤ 2q − 1, we
have that AT c must be full column rank, 𝓂(AT c) ≥ q − 0.5t,
and cq−0.5t(AT c) ≥ cq (A) > 1

2 .
The proof utilizes the above Lemma and is omitted due to the

space limit and can be found in the supplemental material.
The above theorem is significant because it characterizes the

slowly decreasing property of 𝓂(A) w.r.t. m (the number of
rows of A), which enables AROSI to go beyond �1 estimation
and deal with more outliers, as we will show later.

Now we first introduce our main theorem of exact recovery
when ‖e‖0 ≤ 𝓂(A).

Theorem 3: AROSI running with any α > 0 will find x ex-
actly if ‖e‖0 ≤ 𝓂(A). If additionally α < min{|ei | : ei �= 0},
AROSI will find both x and e exactly.

Proof: Proved as a special case of Theorem 6 with η = 0. �
Actually when ‖e‖0 ≤ 𝓂(A), AROSI running with any α >

0 recovers x exactly in every iteration, so it will converge in 2
iterations.

The above theorem shows the robustness of AROSI in two
contexts: First, it succeeds in a wide range of parameter settings;
Second, it is robust to the undetected outliers (even if α is set too
large such that only a few outliers are detected). This robustness
is a result of the slowly decreasing property of 𝓂(A) w.r.t. m.
When only sparse outliers are present, we want the first term
in the objective function (4) to be 0, as there is no dense inlier
noise. We need to put infinitely large weight on the first term, or
equivalently, set α → 0+ in the second term. So α < min{|ei | :
ei �= 0} will be satisfied. Then we can recover both x and e
exactly under the given condition. When α → 0+ , minimizing
the objective function (4) is equivalent to the following problem:

min
e,x

‖e‖0 s.t. y = Ax + e, (8)

which is the problem of interest when there is no dense noise,
under the principle of fitting most of the data, and which would
give exact recovery under mild conditions [20]. To minimize
our objective function (4) with α → 0+ , AROSI starts with
minx‖y − Ax‖1 , which is proven to give exactly the same
solution as (8) under certain conditions [17], [20]. The above
analysis gives a justification for our objective function (4) and
AROSI.

Next, we deal with the case where ‖e‖0 > 𝓂(A).
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Suppose ‖e‖0 ≤ 𝓂(A) is not satisfied for the �1 estimator,
which is also Step 1 in our first iteration. In the following steps
we remove some entries that may contain both inliers and out-
liers. If the number of remaining outliers ‖eSk

‖0 ≤ 𝓂(ASk
),

we can recover x exactly (see quoted Theorem in Appendix C).
The key question is whether it is possible that ‖eSk

‖0 ≤
𝓂(ASk

), given that ‖e‖0 > 𝓂(A). Theorem 2 shows the
slowly decreasing property of 𝓂(A), which makes it possible.

Remark 1: Suppose that ‖e‖0 > 𝓂(A) ≥ q, and that when
AROSI converges at the (k + 1)st iteration, |Sc

k | = t, i.e., we
have removed t entries. Among these t entries, 𝓅× t of them
are outliers, so ‖eSk

‖0 = ‖e‖0 − 𝓅× t. When t ≤ 2q − 1,
from Theorem 2, we know that ASk

is full column rank and
𝓂(ASk

) ≥ q − �0.5t�. So if ‖e‖0 − 𝓅× t ≤ q − �0.5t�, i.e.,
𝓅 ≥ ‖e‖0 +�0.5t�−q

t , we can guarantee the exact recovery of x.
When t > 2q − 1, then a sufficient condition for exact recovery
of x is that ASk

has full column rank and 𝓅 = ‖e‖0
t , i.e., all the

outliers are within the t removed entries.
The exact recovery test in Section IV-A demonstrates that

there are cases where the �1 estimator fails (this must be the case
‖e‖0 > 𝓂(A) according to the quoted theorem in Appendix C)
while AROSI gives exact recovery.

Remark 2: In case both large outliers and moderate outliers
exist, as a special case of Theorem 7 with η = 0, we show that
under certain conditions AROSI can recover x exactly even if
there are up to 1.5 × m(A)� outliers. More specifically, when
0 < 𝓂(A) ≤ ‖e‖0 ≤ 𝓂(A) +  t

2 �, where 1 ≤ t ≤ 𝓂(A),
define G := {indices of 𝓂(A) largest entries of |e|},P :=
{indices of t largest entries of |e|}. If min{|ei | : i ∈ P } >
2

∑
i∈E\G |ei |

c
𝓂(A ) (A)−0.5 , then any α satisfying

∑
i∈E\G |ei |

c
𝓂(A ) (A)−0.5 < α <

min{|ei | : i ∈ P } −
∑

i∈E\G |ei |
c
𝓂(A ) (A)−0.5 guarantees the exact re-

covery of x from the second iteration, and it will converge in
no more than three iterations. It is natural to think about this
guarantee in comparison with the so called “masking effect”
[40], where some extreme outliers (e.g., those indexed by P ),
help hide another group of mild but perhaps more structured
outliers (e.g., indexed by E\G), which are usually more
difficult to detect. AROSI effectively identifies and removes
those extreme outliers, and more importantly, is resistant to the
remaining unidentified outliers and recovers x exactly.

C. Both Dense Noise and Sparse Outliers Present

Now we deal with the more general case where both dense
inlier noise and sparse outliers exist. In the first subsection, we
establish the error bound for AROSI. Then we characterize the
behaviors of AROSI in the second subsection.

1) Recovery Error Bound: We first quote a definition and
theorem from [39] regarding the �1 estimation error bound, and
present our Corollary 1, which establishes the bound for AROSI.

Definition 2 (from [39]): Given an arbitrary q ∈ {0, 1,
. . . ,m}, we call a set B a possibly extreme set if there exists a
set L, L ⊇ B, |L| = m − q, such that the following holds:

∑

i∈B∪Lc

∣
∣ai

T v
∣
∣ ≥

∑

i∈(L\B)

∣
∣ai

T v
∣
∣ (9)

where v is any of the singular vectors corresponding to the
smallest singular value of the |B| × n submatrix AB of A:

‖ABv‖2 = σmin(AB)‖v‖2 . We define Qq to be the set of all
possibly extreme sets for a given q.

Theorem 4 (from [39]): Let y = Ax + e + η, E = supp
(e), the �1 estimation error is bounded as follows:

‖x�1 − x‖2 ≤
(

max
B∈Q|E|

1
σmin (AB)

)

‖η‖2 (10)

It can be proved that if |E| ≤ 𝓂(A), then ∀B ∈ Q|E|,
σmin(AB) > 0.

Now we are ready to establish the error bound for AROSI.
Corollary 1: In the (k + 1)st iteration of AROSI, define

the index set R := E ∩ Sk . If |R| ≤ 𝓂(ASk
), and ASk

has
full column rank, then the following holds for x(k+1) :

∥
∥
∥x(k+1) − x

∥
∥
∥

2
≤

(

max
B′∈Q′

|R|

1
σmin ((ASk

)B′)

)

‖ηSk
‖2 (11)

where σmin((ASk
)B′) > 0, ∀B′ ∈ Q′|R|. Here Q′

q follows the
same definition in Definition 2, except that A is replaced by ASk

,
and m is replaced by the number of rows of ASk

.
Proof: This is apparent from Theorem 4, as x(k+1) is the

�1 estimate on the model ySk
= ASk

x + eSk
+ ηSk

, and R =
E ∩ Sk corresponds to supp(eSk

). �
Remark 3: R := E ∩ Sk is the index set of outliers that

remained in Sk . Note that Corollary 1 does not need the initial
condition |E| ≤ 𝓂(A). It only needs the number of remaining
outliers |R| ≤ 𝓂(ASk

), which can be guaranteed by |E| ≤
𝓂(A) and proper α (see Remark 4) for any k ∈ Z≥0 . Even if
|E| > 𝓂(A), it is still possible that |R| ≤ 𝓂(ASk

) for any
k ∈ Z≥1 , e.g., under the condition of Theorem 7 (details can be
found in the proof).

Then a natural question of interest is whether the bound for
AROSI is better than that of the �1 estimator. The following
theorem provides a positive answer.

Theorem 5: Let y = Ax + e + η, E = supp(e), |E| = q ≤
𝓂(A). In the (k + 1)st iteration of AROSI, if Ec ⊆ Sk , then
‖x(k+1) − x‖2 is bounded as in (11), and the bound is smaller
than or equal to the bound in (10).

The proof of the theorem is in Appendix E.
Theorem 5 is applicable for any iteration. The condition Ec ⊆

Sk required by Theorem 5 can be guaranteed with proper α,
given |E| ≤ m(A), as we will see in Theorem 6a), and it follows
immediately that the bound for Theorem 6c) is smaller than or
equal to the bound for �1 estimation error provided in Theorem 4.

2) Characterization of AROSI in Noisy Case: In this subsec-
tion, we first present Lemma 2, which describes the behavior of
AROSI in any iteration and is an important step in deriving our
main results in Theorems 6 and 7.

Lemma 2: Let y = Ax + e + η and E = supp(e) satisfy-
ing |E| = q ≤ 𝓂(A). Denote r

(k+1)
Sk

= ySk
− ASk

x(k+1) . If
Sk ⊇ Ec for a particular k, then we must have ASk

full col-

umn rank, 𝓂(ASk
) ≥ q − |Sc

k |, and ‖(e + η)Sk
− r

(k+1)
Sk

‖1 ≤√
m − q ‖η‖2
cq (A)−0.5 . Also ∀i ∈ Ec, |r(k+1)

i | ≤ ‖η‖∞ +
√

m − q ‖η‖2
cq (A)−0.5 .

The proof of the theorem is in Appendix F.
Now we are in position to present our main results in the noisy

case. Theorem 6 shows that when ‖e‖0 ≤ 𝓂(A), the estimation
error of AROSI (with proper α) is bounded, and from Theorem 5

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 13,2020 at 20:01:56 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ROBUST LINEAR REGRESSION VIA �0 REGULARIZATION 703

we know its bound is smaller than or equal to the �1 estimation
error bound.

Theorem 6: Let y = Ax + e + η, E = supp(e) and |E| =
q ≤ 𝓂(A). Define C1 =

√
m − q ‖η‖2
cq (A)−0.5 , C2 = max(C1 ,

2
√

m − q ‖η‖2 σm a x (AE)
σm in (AEc ) ), C3 = σm a x (AE)

σm in (AEc ) C1 . For any α > ‖η‖∞
+ C1 , AROSI guarantees that:

a) All the inlier entries (indexed by Ec) are kept in every
iteration (i.e., Ec ⊆ Sk for any k ∈ Z≥0);

b) Significant outlier entries indexed by P := {i : |ei | >
α + ‖η‖∞ + C3} are identified and removed in every it-
eration (i.e., P ⊆ Sc

k+1 for any k ∈ Z≥0);
c) ‖x(k+1) − x‖2 is bounded for any k ∈ Z≥0 .

Moreover, if min{|ei | : ei �= 0} > 2‖η‖∞ + C1 + C2 , then
any α satisfying ‖η‖∞ + C1 < α < min{|ei | : ei �= 0} −
‖η‖∞ − C2 for AROSI guarantees that:

d) AROSI converges in 3 iterations, and the support of e is
recovered exactly;

e) After the reprojection step (whose threshold is within the
range (‖η‖∞ + C1 ,min{|ei | : ei �= 0} − ‖η‖∞ − C2)),
we have ‖x̂ − x‖2 ≤ ‖ηEc‖2/σmin(AEc).

The proof of the theorem is in Appendix G.
Remark 4: In Theorem 6e), x̂ is equivalent to the least

squares solution on all the inlier entries. The bound is tight
and is better than the bound in (10) (details in the proof).
Theorem 6 is an exciting result for the noisy case: If the large
magnitude corruptions are sparse (‖e‖0 ≤ m(A)), with proper
value of α (which depends on the inlier noise level, matrix A,
and the sparsity of outliers, and does not depend on the magni-
tude of outliers), we can guarantee that all the inliers are kept
in every iteration. At the same time, all the removed entries are
guaranteed to be outliers. This shows another aspect of AROSI
robustness: under certain conditions there are no false alarms
when identifying and removing outliers during iterations. Purely
removing some outliers often leads to better signal estimation
in our Step 1 (x(k+1) = arg min

x
‖ySk

− ASk
x‖1) than �1 esti-

mation, especially as we can also guarantee (by Lemma 2) that
ASk

is full column rank and the number of remaining outliers
(|E| − |Sc

k |) ≤ 𝓂(ASk
) for any k ∈ Z≥1 . In addition, we can

also guarantee that the significant outliers, which are usually the
most troublesome ones, are identified and removed in every iter-
ation. Further, if the magnitudes of the corruptions are all large
enough, we can even guarantee all the outliers are removed in
every iteration. Finally, note that we showed that the estimation
error is bounded in every iteration.

The following Remark 5 and Theorem 7 demonstrate that
even if ‖e‖0 > 𝓂(A) (recall that 𝓂(A) + 1 is the regression
breakdown point of the �1 estimator [37]), AROSI can still
provide a bounded estimation error.

Remark 5: When ‖e‖0 > 𝓂(A), we have provided a suf-
ficient requirement in Remark 1 to satisfy the condition of
Corollary 1, thus guaranteeing that the estimation error of x
by AROSI is bounded in the noisy case.

In the following theorem, we establish conditions under
which AROSI is guaranteed to handle more than 𝓂(A)
outliers.

Theorem 7: Suppose y = Ax + e + η, E = supp(e),
0 < 𝓂(A) ≤ |E| = q ≤ 𝓂(A) +  t

2 �, where 1 ≤ t ≤ 𝓂(A).
Define G := {indices of 𝓂(A) largest entries of |e|},P =:

{indices of t largest entries of |e|}, q1 =𝓂(A), q2 =𝓂(AP c),

w1 = max(
√

m−q1 ‖η‖2 +
∑

i∈E\G |ei |
cq 1 (A)−0.5 ,

√
m − q ‖η‖2

cq 2 (AP c )−0.5 ), w2 = max

(
√

m−q1 ‖η‖2 +
∑

i∈E\G |ei |
cq 1 (A)−0.5 ,

σm a x (AP )
√

m − q ‖η‖2
σm in (AEc )×(cq 2 (AP c )−0.5) ). If min

{|ei | : i ∈ P } > 2‖η‖∞ + w1 + w2 , then any α satisfying
‖η‖∞ + w1 <α<min{|ei | : i ∈ P } − ‖η‖∞ − w2 for AROSI
guarantees that:

a) All the inlier entries (indexed by Ec) are kept in every
iteration (i.e., Ec ⊆ Sk for any k ∈ Z≥0);

b) Significant outlier entries indexed by P are identified
and removed in every iteration (i.e., P ⊆ Sc

k+1 for any
k ∈ Z≥0);

c) ‖x(k+1) − x‖2 is bounded for any k ∈ Z≥1 .
The proof of the theorem is in Appendix H.
As our first iteration is equivalent to �1 estimation, we can not

guarantee the estimation error is bounded when there are more
than 𝓂(A) outliers. However, we can guarantee it is bounded
in the following iterations.

The basic idea underlying behind Theorem 7 is based on the
following intuition: when there are ‖e‖0 > 𝓂(A) outliers, if
the smallest ‖e‖0 −𝓂(A) of them are moderate, we can treat
them as very noisy inliers, so the number of outliers reduces to
𝓂(A). Then according to Theorem 6, we can use a large α to
safely remove the very large outliers.

IV. EMPIRICAL STUDIES

Although we provided some theoretical guarantees/bounds
for AROSI, they often involve cq (A), which itself is hard to
compute. In this section, we empirically study the performance
of AROSI (including the reprojection step unless noted) as well
as the following state-of-the-art methods, where the complexity
analysis is presented for m > n.

1. �1 estimator [17]: x�1 = arg min
x

‖y − Ax‖1 . We also

add a reprojection step for comparison.
The complexity in practice is O(m3) [41].

2. Second-Order Cone Programming (SOCP) [8], which is a
direct application (via the Projection Approach) of �1 min-
imization sparse recovery [23]–[25] to model (3). There
is a reprojection step in the end. The complexity of this
method is O(m3) [42].

3. Ideal solution where we know e exactly:

xIdeal = arg min
x

‖y − e − Ax‖2

4. Oracle solution [8] where we know the support of e ex-
actly: xOracle = arg min

x
‖yS − ASx‖2 .

where S := {i : ei = 0} is the index set of all the inliers.
5. Bayesian Sparse Robust Regression (BSRR) [19], which

is a direct application (via the Projection Approach) of
Sparse Bayesian Learning to model (3). The complexity
of each iteration is O(m3). We add a reprojection step.

6. Generalized M-estimators with Bisquare weighting func-
tion [5], [43]–[46]. It is solved via Iteratively Reweighted
Least Squares (IRLS), and the complexity of each iteration
is O(mn2). We set its tuning constant c = 3 to generate
better results than the default value.

7. �1 regularization algorithm [18], [26], which solves
minx,e‖y − Ax − e‖2

2 + λ‖e‖1 , where the parameter λ
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is set as
σ
√

2log(m )
3 according to [26]. It can be solved

using the approach described in [1], where the complexity
is O(m3) per iteration [1]. We add a reprojection step in
the end.

8. Greedy Algorithm for Robust Denoising (GARD) [1],
which aims to minimize the number of outliers via OMP
by restricting the selection over columns of Im×m :

min
x, e

‖e‖0 s.t.

∥
∥
∥
∥y − [A Im×m ]

[
x
e

]∥
∥
∥
∥

2

2
≤ ε2

The total complexity is O(K 3

2 + (m + 3K)n2 + 3Kmn),
where K is the total number of iterations. We add a reprojection
step in the end.

9. Thresholding-based Iterative Procedure for Outlier Detec-
tion (Θ-IPOD) [9], which iterates between least squares
regression and hard thresholding. We initialize it by �1
estimation, and set the threshold to 5σ. The algorithm’s
pre-computation costs O(mn2), and each iteration costs
O(mn). We add a reprojection step in the end.

For AROSI, we fix α as 5σ throughout the experiments un-
less otherwise noted. In the reprojection step of BSRR, SOCP,
AROSI, Θ-IPOD, GARD and the �1 regularization method, the
threshold is tuned individually from {pσ : p = 1, 2, 3, 4, 5} for
each method.

For our experimental setup, below are the general steps:
1. Choose a fraction ρ of grossly corrupted entries and define

the number of corrupted entries as k = round(ρ · m);
2. Generate an m by n standard Gaussian matrix A.
3. Generate x ∈ Rn with i.i.d. N (0, σx

2) entries. Compute
Ax.

4. Select k locations uniformly at random and add corrup-
tions to these locations.

5. Generate the vector η = (η1 , . . . , ηm ) of smaller errors
with ηi i.i.d. N (0, σ2), and add η to the outcome of the
previous step. Obtain y.

6. Estimate x using different methods.
We first set m = 512, σx = 1, and σ = median(|Ax|)/16

as in [8]. The corruption values are drawn from
0.5 ×N (12σ, (4σ)2) + 0.5 ×N (−12σ, (4σ)2). For each n ∈
{256, 128, 64}, we repeat Step 2 - Step 6 fifty times for each
corruption rate. We denote this setting as experimental setup A.

Next, we use the experimental setup in [1] (denoted as ex-
perimental setup B), where m = 600, σx = 5, σ = 1, and the
rows of matrix A are obtained by uniformly sampling an n-
dimensional hypercube centered around the origin; i.e., Aij ∼
U(−1, 1). The corruption values are drawn from {−25, 25}with
equal chance. For each n ∈ {170, 100, 50}, we repeat Step 2 -
Step 6 fifty times for each corruption rate.

For evaluation, each estimate is compared with ground truth
x. We measure its Relative �2-Error [47]: ‖x̂ − x‖2/‖x‖2 . We
also compute the distance between the supports of e and ê.
Denoting the two supports as E and Ê, Ê is estimated by
thresholding |ê| or |y − Ax̂| with pσ, where p is tuned indi-
vidually for each method. The distance is defined as in [47]:

dist(Ê,E) = max{|Ê|,|E|}−|Ê∩E|
max{|Ê|,|E|} . We denote the average of

dist(Ê,E) over Monte Carlo runs as the Probability of Error
in Support (PES) [47].

Fig. 1. Percentage of exact support recovery vs. corruption rate.

A. Exact Recovery Test

In this subsection, we empirically verify the exact recovery
performance of AROSI when only sparse outliers are present,
i.e., y = Ax + e. Recall that in the reprojection step, exact re-
covery of the support of e will suffice for the exact recovery of
both x and e, as long as [A (IE)T ] is full column rank.

We use the same experimental setup as the Support Recovery
Test in [1]. This is under experimental setup B with n = 100,
except that there is no dense inlier noise. Fig. 1 shows the
percentage of exact support recovery for each corruption rate
(over 1000 trials) for each method. The support of BSRR, �1
estimator, Bisquare, AROSI, Θ-IPOD and the �1 regularization
method (all without reprojection) is estimated by thresholding
|ê| or |y − Ax̂| with a small numerical constant 1 × 10−4 .

Over 1000 trials, Bisquare keeps fully exact support recov-
ery up to 29% corruption rate. For BSRR, �1 regularization
method, GARD, �1 estimator, Θ-IPOD, and AROSI, it is up to
11%, 12%, 16%, 42%, 42%, and 44%, respectively. Θ-IPOD
performs similarly to its initialization (�1 estimation), while
AROSI demonstrates an improvement over �1 estimation.

When the corruption rates are 43% and 44%, there are cases
where AROSI has exact support recovery while the �1 estimator
does not. From the quoted theorem in Appendix C, we know
it must be the case that ‖e‖0 > 𝓂(A). Since we also use the
same �1 estimation in our first iteration, we do not have a perfect
initialization. However, at the end of the iterations, we are able to
identify and remove some outliers through the index set Sk . The
number of remaining outliers is very likely less than 𝓂(ASk

),
thus we get the exact solution. This shows the advantage of
AROSI over the �1 estimator.

B. Both Dense Noise and Sparse Outliers Present

In this subsection, we test and compare the performance of
each method in the noisy case under experimental setup A.
Fig. 2 shows the average Relative �2-Error and the PES from 50
samples vs. corruption rate.

In general, AROSI has similar performance to BSRR and
outperforms other methods. We can see that the reprojection step
alone does help improve the performance of the �1 estimator.
However, AROSI performs even better, which verifies that the
advantage of AROSI over the �1 estimator is non-trivial. We
can also see that, under the same corruption rate, increasing the
signal dimension n makes the recovery harder for all methods,
as the number of unknowns gets larger.
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Fig. 2. Average relative �2 -error (left) and PES (right) vs. corruption rate with different n (upper: 256; middle: 128; bottom: 64).

We have also tested on several non-Gaussian regression ma-
trices, which can be found in the supplemental material. The
relative performance of each method is almost unchanged, ex-
cept some degradation of the relative performance of the �1
regularization method under some regression matrices.

C. Phase Transition Curves

We measure the Phase Transition Curves of each method
under experimental setup A. For each dimension of x and each
method, we test each outlier fraction and find the maximum
fraction where the probability of successful recovery (Relative
�2-Error less than 1.3 × that of Oracle) remains greater than
0.5. Fig. 3 shows the Phase Transition Curves of each method.
AROSI outperforms all the other methods. Fig. 3. Phase transition curves.
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Fig. 4. Average relative �2 -error vs. corruption rate for different scales (κσ) of Gaussian corruptions: a) κ = 4; b) κ = 8; c) κ = 12; d) κ = 16.

Fig. 5. Average relative �2 -error vs. corruption rate for �1 estimator and
AROSI with different α. In the reprojection step of AROSI, p = 5.

D. Different Magnitude of Corruptions

In this subsection, we use experimental setup A but with
corruption values drawn from N (0, (κσ)2) instead (recall that
σ = median(|Ax|)/16). We gradually increase the magnitude

Fig. 6. Log scale average run time vs. corruption rate.

of corruptions (by increasing κ) to see how each method be-
haves. Fig. 4 shows the average Relative �2-Error on 50 samples
vs. corruption rate for different scales (κσ) of corruptions. We
can see that, when the magnitude of corruptions is small (e.g.,
κ = 4), even the least squares works well, and all the robust lin-
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Fig. 7. Number of phone calls (million) in the years 1950-1973 fitted by: (a) all methods (with tuned parameter). (b) Least Squares, �1 estimator, AROSI, and
Θ-IPOD (the parameters of AROSI and Θ-IPOD both vary from 3 to 180).

ear regression methods have very nominal differences and are
slightly better than the least squares (we note that the perfor-
mance of AROSI can be slightly improved if we set α larger).
As κ is increased further, the robust linear regression methods
begin to show their benefits. We note that when κ increases from
4 to 16, the performances of the �1 estimator (with or without
the reprojection step), Bisquare, SOCP, and the �1 regulariza-
tion method degrade. In contrast, BSRR and AROSI are quite
resistant to the larger magnitudes of corruptions.

E. Sensitivity to Parameter α of AROSI

SOCP, GARD, �1 regularization method, Θ-IPOD, AROSI,
and the initialization of BSRR all need the knowledge of inlier
noise level. In the previous experiments, we assume we know
the standard deviation σ of the inlier noise, and set α = 5σ for
AROSI. However, in practice, the estimated σ̂ may be slightly
greater or less than the true σ, which is equivalent to setting α
slightly greater or less than 5σ. We test AROSI with α varying
from 2σ to 8σ. In the reprojection step of AROSI and the �1
estimator, we fix p = 5.

Fig. 5 shows the average Relative �2-Error on 50 samples vs.
corruption rate for �1 estimation (with or without the reprojec-
tion step) and AROSI with different α, under experimental setup
A with n = 128.

When the corruption rate is moderate (e.g., ≤ 35% when
n = 128), we have two observations:

� AROSI often performs better than the �1 estimator even
with different α (from 2σ to 8σ).

� With α ranging from 2σ to 8σ, AROSI has similar perfor-
mance, which indicates the method is not very sensitive to
small variations of α.

F. Run Time

In this subsection, we compare run times under experimental
setup A. Fig. 6 shows the Average Run Time (seconds) on 100
samples vs. corruption rate with n = 64. We can see that AROSI
is an order of magnitude faster than BSRR.

G. Real Data

Finally, we compare the performance of each method on a real
dataset, the Belgian Phone data, from the Belgian Statistical Sur-
vey (published by the Ministry of Economy). It contains large
outliers as well as moderate outliers, and the swamping/masking
effects could arise. There are 24 measurements. The response
is the number of international phone calls (in millions), and the
predictor is the year. It is known afterwards that observations
15-20 are large outliers and observations 14 and 21 are moderate
outliers. For such a small size regression matrix A, using the
algorithm provided in [39], we easily get 𝓂(A) = 5, which is
unfortunately smaller than the number of the outliers.

To see the difference between each method more clearly, we
do not perform the reprojection step, except for the Projection
Approach methods, i.e., for BSRR and SOCP, the threshold is
tuned to obtain the best result. The results are plotted in Fig. 7(a).
Most methods have very similar results on this data, and fit the
inliers very well, except for the �1 estimator, SOCP, and the �1
regularization method. We can see that these three methods are
biased by outliers, and the residual of the outlier observation
14 is very small (it is perfectly masked by large outliers), even
smaller than many inlier observations, e.g., observations 1, 2,
22-24. So, even if we add a reprojection step for the �1 estimator
and the �1 regularization method, the outlier observation 14 is
hard to get rid of.
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TABLE II
BEHAVIOR OF AROSI UNDER DIFFERENT α

Though AROSI is equivalent to the �1 estimator at the be-
ginning, it successfully eliminates the effect of outliers with a
wide range of parameter α. Fig. 7(b) shows the results of the
�1 estimator and AROSI with integer α ranging from 3 to 180,
as well as Θ-IPOD with the same threshold ranging from 3 to
180, all without the reprojection step. We can see that even with
very different α, AROSI still fits the inliers very well, and is
better than the �1 estimator. While Θ-IPOD (initialized by the
�1 estimator) is sometimes severely biased by the outliers; it
only works better than the �1 estimator when its threshold is set
properly such that the outlier observations 15-20 are all iden-
tified at the beginning. When the threshold of Θ-IPOD is set
larger than 137 (the outlier observations 19 and 20 can still be
detected at the beginning), it will finally converge to the least
squares solution. This demonstrates one important robustness
property of AROSI over Θ-IPOD: the tolerance to unidentified
outliers.

Table II documents the details of AROSI regarding its esti-
mated outlier support set Sc

k and the corresponding 𝓂(ASk
)

at the end of each iteration k under different α, as well as
the estimated x̂ upon convergence (without the reprojection
step). AROSI converges in either 2 or 3 iterations (note that
Sc

k = Sc
k−1 implies convergence). The least squares gives the

solution x̂LS = (5.041, −260.059), which is severely biased
by the outliers. The �1 estimator gives the solution x̂�1 =
(1.580, −78.522). As 𝓂(A) = 5, which is smaller than the
number of outliers (there are 6 large outliers and 2 moderate
outliers), the performance of the �1 estimator is not guaranteed.
However, we can see that with α ranging from 3 to 121, AROSI
successfully identifies some outliers, and more importantly, the
number of remaining outliers contained in Sk−1 is less than the
corresponding 𝓂(ASk −1 ), which guarantees the performance
of AROSI in the last iteration k.

V. CONCLUSION

We proposed a novel robust linear regression method AROSI
based on �0 regularization. It assumes that outliers are sparse and

result in large observation errors. Several properties of AROSI
such as convergence, exact recovery or recovery error are
derived.

Through extensive simulation studies and comparisons with
state-of-the-art methods, we have shown that AROSI achieves
the overall best quality of recovery (in terms of exact recovery,
recovery error, outlier support recovery), and it runs much faster
than the competing methods like BSRR. Comparisons on a real
dataset further demonstrate the robustness of AROSI and its ad-
vantage over the �1 estimator, Θ-IPOD, and the �1 regularization
method.

APPENDICES

A. Proof of Theorem 1

The proof is divided into the following three parts: a) mono-
tonic decrease in the objective function prior to convergence, b)
convergence in a finite number of steps, and c) local optimality
of the cluster point.
a) Strictly decreasing behavior of J(x(k) , e(k)) before conver-
gence

As defined earlier, Sk := {i : e
(k)
i = 0}. We now denote

its complementary set Sc
k := {i : e

(k)
i �= 0}. Define JSk

(x, e)
Δ=

∑
i∈Sk

(|(y − Ax − e)i | + αI(ei �= 0)) and JSc
k
(x, e) Δ=∑

i∈Sc
k
(|(y − Ax − e)i | + αI(ei �= 0)). So we have J(x, e) =

JSk
(x, e) + JSc

k
(x, e).

For any i ∈ Sk , e
(k)
i = 0. Hence

JSk
(x, e(k)) =

∑

i∈Sk

(∣
∣
∣
(
y − Ax − e(k)

)

i

∣
∣
∣ + αI

(
e

(k)
i �= 0

))

=
∑

i∈Sk

|(y − Ax)i | = ‖ySk
− ASk

x‖1 (12)

In Step 1, since x(k+1) ∈ arg min
x

‖ySk
− ASk

x‖1 , we have

JSk

(
x(k+1) , e(k)

)
≤ JSk

(
x(k) , e(k)

)
, (13)

where the equality holds if and only if
∥
∥
∥ySk

− ASk
x(k+1)

∥
∥
∥

1
=

∥
∥
∥ySk

− ASk
x(k)

∥
∥
∥

1
(14)

In Step 2, JSk
(x(k+1) , e) =

∑
i∈Sk

(|(y − Ax(k+1))i − ei |
+ αI(ei �= 0)), and from (5) we know that e

(k+1)
i ∈

arg min
ei

(|(y − Ax(k+1))i − ei | + αI(ei �= 0)). Thus

JSk

(
x(k+1) , e(k+1)

)
≤ JSk

(
x(k+1) , e(k)

)
.

Utilizing (13) we have JSk
(x(k+1) , e(k+1)) ≤ JSk

(x(k) ,
e(k)).

For any i ∈ Sc
k , e

(k)
i �= 0. From (5)-(6), we know that

the upper bound for JSc
k
(x(j ) , e(j )), j = 1, 2, . . . is α ×

|Sc
k |, and JSc

k
(x(k) , e(k)) equals this upper bound. Hence

JSc
k
(x(k+1) , e(k+1)) ≤ JSc

k
(x(k) , e(k)).

In sum, we have J(x(k+1) , e(k+1)) ≤ J(x(k) , e(k)). So the
value of the objective function is non-increasing in each itera-
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tion. As the objective function is non-negative, it will always
converge.

If J(x(k+1) , e(k+1)) = J(x(k) , e(k)), we must have equality
to hold in (13), which implies x(k+1) = x(k) according to (14)
and Step 1. x(k+1) = x(k) ensures e(k+1) = e(k) and Sk+1 =
Sk . Similarly Sk+1 = Sk implies x(k+2) = x(k+1) , and further
e(k+2) = e(k+1) and Sk+2 = Sk+1 and so on. So (x(k) , e(k)) =
(x(k+1) , e(k+1)) = (x(k+2) , e(k+2)) = . . ., which is a fixed
point of AROSI.

Thus it follows that the objective function is strictly decreas-
ing before convergence.
b) Convergence in a finite number of iterations

Now, we show that the objective function must converge in
a finite number of iterations. As the number of different index
sets Sk is finite (less than 2m ), it suffices to show that the same
index set will not appear again before the objective function
converges.

Note that the value of the objective function J(x(k+1) , e(k+1))
is determined by x(k+1) (as e(k+1) is also determined by x(k+1)

according to Step 2).
We first show that the same index set can not reap-

pear in nearby iterations before convergence. Suppose Sp =
Sp−1 , as x(p) = arg min

x
‖ySp −1 − ASp −1 x‖1 = arg min

x

‖ySp
− ASp

x‖1 , and x(p+1) = arg min
x

‖ySp
− ASp

x‖1 , we

must have ‖ySp
− ASp

x(p+1)‖1 = ‖ySp
− ASp

x(p)‖1 , so the
algorithm sets x(p+1) = x(p) in Step 1. Then we must have
convergence of the objective function.

Then it remains to show that the same index set can not
reappear in non-consecutive iterations before convergence.

Before convergence, we have J(x(1) , e(1)) > . . . >
J(x(p+1) , e(p+1)) > ... > J(x(r) , e(r)) > J(x(r+1) , e(r+1)) >
. . .. The corresponding index sets in Step 1 of each iteration
are S0 , . . . ,Sp , . . . ,Sr−1 ,Sr , . . .. We only need to show
that Sr �= Sp for any r > p + 1. As proved earlier, any
x(r+1) ∈ arg min

x
‖ySr

− ASr
x‖1 ensures J(x(r+1) , e(r+1))

≤ J(x(r) , e(r)), see (13). Suppose Sr = Sp , then for any
x(p+1) ∈ arg min

x
‖ySp

− ASp
x‖1 , x(p+1) ∈ arg min

x

‖ySr
− ASr

x‖1 , thus J(x(p+1) , e(p+1)) ≤ J(x(r) , e(r)),
which is contradictory to J(x(p+1) , e(p+1)) > J(x(r) , e(r)).
c) Convergence to a local optimum

We now prove that when J(x, e) converges (J(x(k+1) ,
e(k+1)) = J(x(k) , e(k))), (x(k) , e(k)) is a local optimum. From
(4), we have

J
(
x(k) , e(k)

)
=

∥
∥
∥y − Ax(k) − e(k)

∥
∥
∥

1
+ α

∥
∥
∥e(k)

∥
∥
∥

0

Let (Δx,Δe) be a small deformation vector around
(x(k) , e(k)). Then

J
(
x(k) + Δx, e(k) + Δe

)

=
∥
∥y − A

(
x(k) + Δx

) − (
e(k) + Δe

)∥
∥

1 + α
∥
∥e(k) + Δe

∥
∥

0
(15)

Next we will show that J(x(k) + Δx, e(k) + Δe) ≥
J(x(k) , e(k)) as long as ‖Δe‖1 is small enough.

Notice that when ‖Δe‖1 is small enough,

αI(e(k)
i + Δei �= 0) =

{
αI(Δei �= 0), e

(k)
i = 0

αI(e(k)
i �= 0), otherwise

So α
∥
∥
∥e(k) + Δe

∥
∥
∥

0
= α

∥
∥
∥e(k)

∥
∥
∥

0
+ α

∑

i∈Sk

I (Δei �= 0)

= α
∥
∥
∥e(k)

∥
∥
∥

0
+ α‖ΔeSk

‖0 (16)

As
∥
∥
∥y − A

(
x(k) + Δx

)
−

(
e(k) + Δe

)∥
∥
∥

1

≥
∥
∥
∥ySk

− ASk

(
x(k) + Δx

)
−

(
e

(k)
Sk

+ ΔeSk

)∥
∥
∥

1

(a)
=

∥
∥
∥ySk

− ASk

(
x(k) + Δx

)
− ΔeSk

∥
∥
∥

1

≥
∥
∥
∥ySk

− ASk

(
x(k) + Δx

)∥
∥
∥

1
− ‖ΔeSk

‖1

(b)
≥

∥
∥
∥ySk

− ASk
x(k+1)

∥
∥
∥

1
− ‖ΔeSk

‖1

(c)
=

∥
∥
∥ySk

− ASk
x(k)

∥
∥
∥

1
− ‖ΔeSk

‖1

(d)
=

∥
∥
∥ySk

− ASk
x(k) − e

(k)
Sk

∥
∥
∥

1
− ‖ΔeSk

‖1

(e)
=

∥
∥
∥y − Ax(k) − e(k)

∥
∥
∥

1
− ‖ΔeSk

‖1 (17)

where step (a) and (d) follow from the fact that e
(k)
Sk

= 0, step
(b) is from our Step 1, step (c) is from the convergence, see (14),
and step (e) is from (5).

Substituting (16) and (17) in (15), we have

J(x(k) + Δx, e(k) + Δe)

≥
∥
∥
∥y − Ax(k)− e(k)

∥
∥
∥

1
+ α

∥
∥
∥e(k)

∥
∥
∥

0
+ α‖ΔeSk

‖0 − ‖ΔeSk
‖1

= J
(
x(k) , e(k)

)
+ α‖ΔeSk

‖0 − ‖ΔeSk
‖1 .

As long as ‖Δe‖1 is small enough (as ‖ΔeSk
‖1 ≤

‖Δe‖1 , then ‖ΔeSk
‖1 is also small enough), we will

have α‖ΔeSk
‖0 − ‖ΔeSk

‖1 ≥ 0, and thus J(x(k) + Δx,
e(k) + Δe) ≥ J(x(k) , e(k)). So (x(k) , e(k)) is a local optimum
of J(x, e).

In the extreme case where Sk = ∅, AROSI also sets x(k+1) =
x(k) . Theorem 1 still holds. �

B. Proof of Lemma 1

Let us first show that AT c must be full column rank for any
T ⊂ M with |T | = t ≤ q. As 𝓂(A) ≥ q ≥ t, from Proposi-
tion 2, ct(A) > 1

2 . If t = 0, AT c = A is full column rank. If t >
0, suppose AT c is not full column rank. Then there exists g ∈ Rn

and g �= 0, such that AT cg = 0. Thus min g ∈Rn

g �= 0

∑
i∈T c |ai

T g |
∑

i∈M |ai
T g | =

0. This contradicts ct(A) = min g ∈T ⊂M
|T |= t

ming ∈Rn

g �=0

∑
i∈T c |ai

T g |
∑

i∈M |ai
T g | >

1
2 , so AT c must be full column rank.
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The following proof is motivated by the proof of Theorem 3.4
in [48].

From Proposition 2, we must have m > 2q. Let q′ = q −
�0.5t�. As 0 ≤ t ≤ q, we have 0 ≤ q′ ≤ q, so m > 2q ≥ t + q′.
For any given index set T ⊂ M with |T | = t, and any index set
R ⊂ T c with |R| = q′, and any g ∈ Rn , g �= 0, define index set
L :={indices of the largest �0.5t� entries of |AT g|}, and index
set E = R ∪ L. As R ⊂ T c and L ⊂ T , so R ∩ L = ∅, |E| =
|R| + |L| = q′ + �0.5t� = q. We have T = (T \L) ∪ L, T c =
R ∪ (T c\R), M = T ∪ T c = (T \L) ∪ L ∪ R ∪ (T c\R) =
(T \L) ∪ E ∪ (T c\R), Ec = (T \L) ∪ (T c\R). As (T \L) ∩
(T c\R) = ∅, we have

∑

i∈T c\R

∣
∣ai

T g
∣
∣ =

∑

i∈Ec

∣
∣ai

T g
∣
∣−

∑

i∈T \L

∣
∣ai

T g
∣
∣.

Let us first consider the case q > 0.
As 𝓂(A) ≥ q = |E|, from Definition 1 we know

∑
i∈M\E |ai

T g |
∑

i∈M |ai
T g | ≥ cq (A) with 1

2 < cq (A) < 1, this leads to
∑

i∈Ec |ai
T g| ≥ cq (A)

1−cq (A)

∑
i∈E |ai

T g|, where cq (A)
1−cq (A) > 1.

So we have
∑

i∈T c\R

∣
∣ai

T g
∣
∣

≥ cq (A)
1 − cq (A)

∑

i∈E

∣
∣ai

T g
∣
∣−

∑

i∈T \L

∣
∣ai

T g
∣
∣

=
cq (A)

1 − cq (A)

(
∑

i∈R

∣
∣ai

T g
∣
∣ +

∑

i∈L

∣
∣ai

T g
∣
∣

)

−
∑

i∈T \L

∣
∣ai

T g
∣
∣

≥ cq (A)
1 − cq (A)

∑

i∈R

∣
∣ai

T g
∣
∣ +

∑

i∈L

∣
∣ai

T g
∣
∣−

∑

i∈T \L

∣
∣ai

T g
∣
∣ (18)

As |T | = t, |L| = �0.5t�, by the definition of index set L, we
must have

∑

i∈L

∣
∣ai

T g
∣
∣−

∑

i∈T \L

∣
∣ai

T g
∣
∣ ≥ 0. (19)

So from (18) and (19), we have
∑

i∈T c\R

∣
∣ai

T g
∣
∣ ≥ cq (A)

1 − cq (A)

∑

i∈R

∣
∣ai

T g
∣
∣. (20)

As 1
2 < cq (A) < 1, (20) implies

∑
i∈T c\R |ai

T g |
∑

i∈T c |ai
T g | ≥ cq (A).

So cq−0.5t(AT c) = min R ⊂T c

|R|= q −�0 . 5 t �
min g ∈Rn

g �= 0

∑
i∈T c\R |ai

T g |
∑

i∈T c |ai
T g | ≥

cq (A).
For the case q = 0, t must be zero. So cq−0.5t(AT c) =

c0(AT c) = 1 = cq (A).
In sum, we have cq−0.5t(AT c) ≥ cq (A). As q − t ≤ q −

�0.5t�, from Proposition 1, we further have cq − t(AT c) ≥
cq−�0.5t�(AT c) ≥ cq (A) > 1

2 . From Definition 1, we must have
𝓂(AT c) ≥ q − �0.5t� ≥ q − t. �

C. Theorem 2 of [37]

Let x ∈ Rn , e ∈ Rm , and set y = Ax + e, where A ∈ Rm×n

is full column rank. Then, x is the unique solution of the

problem ming∈Rn ‖y − Ag‖1 for any ‖e‖0 ≤ q if and only
if q ≤ 𝓂(A).

D. Lemma 3

The following Lemma facilitates the proof of Lemma 2 and
Theorem 7, and is not introduced in the main text.

Let y = Ax + e + η and E = supp(e) satisfying |E| = q
≤ 𝓂(A). Denote r�1 = y − Ax�1 , where x�1 = arg minx ‖y
− Ax‖1 . Then ‖(e + η) − r�1 ‖1 ≤

∑
i∈Ec |ηi |

cq (A)−0.5 ≤
√

m − q ‖η‖2
cq (A)−0.5 .

Proof: Let us first quote an important Lemma, from
Lemma 1 of [37]: Let E ⊂ M , and y, b∗ ∈ Rm , as well as
g∗, g ∈ Rn be arbitrary. Define Ec = M\E. If |E| = q ≤
𝓂(A), then ‖y − Ag − b∗‖1 − ‖y − Ag∗ − b∗‖1 ≥ (2cq (A)
− 1) × ‖A(g − g∗)‖1 − 2

∑
i∈Ec |yi − ai

T g∗ − b∗|.
Setting b∗ = 0, g = x�1 , and g∗ = x in this

Lemma, we have 0 ≥ ‖y − Ax�1 ‖1 − ‖y − Ax‖1 ≥
(2cq (A) − 1) × ‖A(x�1 − x)‖1 − 2

∑
i∈Ec |yi − ai

T x| =
(2cq (A) − 1) × ‖A(x�1 − x)‖1 − 2

∑
i∈Ec |ηi |, where the first

inequality is from the optimality of x�1 , and the last equality is
from the fact that yi = ai

T x + ηi , ∀ i ∈ Ec.
As q ≤ m(A), from Proposition 2, we have cq (A) >

1
2 . So we have

∑
i∈Ec |ηi |

cq (A)−0.5 ≥ ‖A(x�1 − x)‖1 = ‖(y − Ax) −
(y − Ax�1 )‖1 = ‖(e + η) − r�1 ‖1 .

Using the inequality of the norm, we have

∑

i∈Ec

|ηi | ≤
√

|Ec|
√ ∑

i∈Ec

|ηi |2 ≤ √
m − q ‖η‖2

So ‖(e + η) − r�1 ‖1 ≤
∑

i∈Ec |ηi |
cq (A)−0.5 ≤

√
m − q ‖η‖2
cq (A)−0.5 . �

E. Proof of Theorem 5

As |E| = q ≤ m(A) and Ec ⊆ Sk , we have Sc
k ⊆ E and

|R| = |E ∩ Sk | = |E| − |Sc
k | ≤ 𝓂(ASk

), and ASk
is full

column rank from Lemma 2, thus the condition of Corollary 1
is satisfied, ‖x(k+1) − x‖2 is bounded as in (11).

As Sk ⊆ M , for ∀B′ ∈ Q′|R| defined on ASk
, it has

corresponding index set B defined on A, and (ASk
)B′ = AB .

From the definition of Q′|R|, there exists a set L ⊆ Sk (both
defined on A), L ⊇ B, |L| = |Sk | − |R|, such that the
following holds:

∑
i∈B∪(Sk \L) |ai

T v| ≥∑
i∈(L\B) |ai

T v|,
where v is any of the singular vectors corresponding
to the smallest singular value of the |B| × n submatrix
AB (of ASk

): ‖ABv‖2 = σmin(AB)‖v‖2 . Then we have∑
i∈B∪(M\L) |ai

T v| ≥ ∑
i∈B∪(Sk\L) |ai

T v| ≥ ∑
i∈(L\B)

|ai
T v|. As |L| = |Sk | − |R| = |Sk | − (|E| − |Sc

k |) = |Sk |
+ |Sc

k | − |E| = m − |E|, from Definition 2 we know that
B ∈ Q|E|. So Q′|R| (defined in terms of ASk

) corre-
sponds to a subset of Q|E| (defined in terms of A). Thus
{(ASk

)B′ : B′∈Q′|R|}⊆{AB : B ∈ Q|E|}. So maxB′∈Q′
|R|

1
σm in ((ASk

)
B′ )

≤ maxB∈Q|E|
1

σm in (AB) . Together with ‖ηSk
‖2

≤ ‖η‖2 , this shows that the bound in (11) is smaller than or
equal to the bound in (10). �
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F. Proof of Lemma 2

As Sk ⊇ Ec, so Sc
k ⊆ E and |Sc

k | ≤ |E| = q. From
Lemma 1 we know that ASk

is full column rank, 𝓂(ASk
) ≥

q − |Sc
k | and c(q−|Sc

k |)(ASk
) ≥ cq (A) > 1

2 . So

c(q−|Sc
k |) (ASk

) − 0.5 ≥ cq (A) − 0.5 > 0. (21)

As Sc
k ⊆ E, so |supp(eSk

)| = ‖eSk
‖0 = ‖e‖0 − |Sc

k | =
q − |Sc

k | ≤ 𝓂(ASk
). From Lemma 3 and (21), we have

∥
∥
∥(e + η)Sk

− r
(k+1)
Sk

∥
∥
∥

1
≤

√
m − q ‖η‖2

c(q−|Sc
k |) (ASk

) − 0.5

≤
√

m − q ‖η‖2

cq (A) − 0.5
.

For ∀i ∈ Ec ⊆ Sk , ei = 0, |r(k+1)
i | − |ηi | ≤ |ηi − r

(k+1)
i |

= |(e + η)i − r
(k+1)
i | ≤ ‖(e + η)Sk

− r
(k+1)
Sk

‖1 .

So |r(k+1)
i | ≤ |ηi | + ‖(e + η)Sk

− r
(k+1)
Sk

‖1 ≤ ‖η‖∞ +

‖(e + η)Sk
− r

(k+1)
Sk

‖1 ≤ ‖η‖∞ +
√

m − q ‖η‖2
cq (A)−0.5 . �

G. Proof of Theorem 6

a) In Step 1 of the (k + 1)st (e.g., k = 0, 1, . . .) iteration,
if Sk ⊇ Ec, from Lemma 2 we have ∀i ∈ Ec, |r(k+1)

i | ≤
‖η‖∞ + C1 < α, then e

(k+1)
i = 0 according to (5). Then

Sk+1 := {i : e
(k+1)
i = 0} ⊇ Ec.

As S0 = M ⊇ Ec, we will have Sk ⊇ Ec for any k ∈ Z≥0 .
b) As Sk ⊇ Ec for any k ∈ Z≥0 , from Lemma 2 we

have ‖(e + η)Sk
− r

(k+1)
Sk

‖1 ≤
√

m − q ‖η‖2
cq (A)−0.5 for any k ∈ Z≥0 .

From Lemma 1, we know AEc is full column rank and thus
σmin(AEc) > 0. As

√
m−q ‖η‖2

cq (A)−0.5 ≥ ‖(e + η)Sk
− r

(k+1)
Sk

‖1 =

‖(ySk
−ASk

x)−(ySk
−ASk

x(k+1))‖1 =‖ASk
(x−x(k+1))‖1 ≥

‖AEc(x − x(k+1))‖1 ≥‖AEc(x − x(k+1))‖2 ≥σmin(AEc)
‖x−x(k+1)‖2 , we have ‖x−x(k+1)‖2 ≤

√
m − q ‖η‖2

σm in (AEc )×(cq (A)−0.5)
for any k ∈ Z≥0 .

For any k ∈ Z≥0 ,∀i ∈ P ⊆ E, we have |ei | − |ηi | −
|r(k+1)

i | ≤ |(e + η)i | − |r(k+1)
i | ≤ |(e + η)i − r

(k+1)
i | ≤ ‖ (e

+ η − r(k+1))E‖2 = ‖(y − Ax)E − (y − Ax(k+1))E ‖2
= ‖AE(x − x(k+1))‖2 ≤ σmax(AE)‖x − x(k+1)‖2 ≤
σm a x (AE)

√
m − q ‖η‖2

σm in (AEc )×(cq (A)−0.5) = C3 , so |r(k+1)
i | ≥ |ei | − |ηi | − C3 ≥

min{|ei | : i ∈ P } − ‖η‖∞ − C3 > α, then e
(k+1)
i �= 0

according to (5). Then P ⊆ Sc
k+1 := {i : e

(k+1)
i �= 0} for any

k ∈ Z≥0 .
c) For any k ∈ Z≥0 , as Sk ⊇ Ec and |E| = q ≤ m(A), from

Theorem 5 we know ‖x(k+1) − x‖2 is bounded.
d) In Step 1 of the first iteration, as the condition of

Lemma 2 is satisfied, we have ‖e + η − r(1)‖1 ≤ C1 . So
∀i ∈ E, we have |ei | − |ηi | − |r(1)

i | ≤ |(e + η)i | − |r(1)
i | ≤

|(e + η)i − r
(1)
i | ≤ ‖e + η − r(1)‖1 ≤ C1 , thus |r(1)

i | ≥ |ei | −
|ηi | − C1 ≥ min{|ei |: ei �= 0} − ‖η‖∞ − C1 ≥ min{|ei | :
ei �= 0} − ‖η‖∞ − C2 > α. Then e

(1)
i �= 0 according to (5).

Then E ⊆ Sc
1 := {i : e

(1)
i �= 0}. As α > ‖η‖∞ + C1 guaran-

tees S1 ⊇ Ec, we have S1 = Ec.

In Step 1 of the second iteration, as S1 = Ec, from
Lemma 2, we have ‖(e + η)Ec − r

(2)
Ec‖1 ≤

√
m − q ‖η‖2
c0 (A)−0.5 =

2
√

m − q ‖η‖2

As ‖(e + η)Ec − r
(2)
Ec‖1 = ‖(yEc − AEcx) − (yEc −

AEcx(2))‖1 =‖AEc(x −x(2))‖1 ≥‖AEc(x − x(2))‖2 ≥σmin
(AEc)‖x − x(2)‖2 , we have ‖x − x(2)‖2 ≤ 2

√
m − q

‖η‖2/σmin(AEc).
For ∀i ∈ E, we have |ei | − |ηi | − |r(2)

i | ≤ |(e + η)i | −
|r(2)

i |≤ |(e + η)i− r
(2)
i |≤ ‖(e + η −r(2))E‖2 =‖(y − Ax)E

− (y − Ax(2))E‖2 = ‖AE(x − x(2))‖2 ≤ σmax(AE)‖x −x(2)

‖2 ≤ σmax(AE) × 2
√

m − q ‖η‖2
σm in (AEc ) ≤ C2 , thus |r(2)

i | ≥ |ei | −
|ηi | − C2 ≥ min{|ei | : ei �= 0} − ‖η‖∞ − C2 > α. Then
e

(2)
i �= 0 according to (5). Then E ⊆ Sc

2 := {i : e
(2)
i �= 0}. As

α > ‖η‖∞ + C1 guarantees S2 ⊇ Ec, we must have S2 = Ec.
Finally, S2 = Ec = S1 implies x(3) = x(2) , and further

S3 = S2 = Ec. So AROSI converges in 3 iterations and re-
covers the support of outliers exactly.

e) In the reprojection step, with a threshold in the
range of (‖η‖∞ + C1 ,min{|ei | : ei �= 0} − ‖η‖∞ − C2), we
have Ê = E and ẑ = arg minz ‖y − [A (IE)T ]z‖2 , x̂ =
ẑ{1,...,n}. As AEc is full column rank, [A (IE)T ] must
also be full column rank (by inspecting the matrix struc-
ture). Actually, one can verify that the above x̂ is also the
unique solution of minx ‖yEc − AEcx‖2 , so x̂ = AEc

†yEc =
AEc

†(AEcx + ηEc) = x + AEc
†ηEc . We have ‖x̂ − x‖2 =

‖AEc
†ηEc‖2 ≤ ‖AEc

†‖2 ‖ηEc‖2 = ‖ηEc‖2
σm in ( AEc ) .

Next, we want to show that the bound here is better than the
bound in (10). Let v1 be any of the singular vectors correspond-
ing to the smallest singular value of the AEc . Since AEc is full
column rank, we have ‖AEcv1‖2 = σmin(AEc)‖v1‖2 > 0.

In Definition 2, we let the set L = Ec, and let the
set B be a subset of Ec that corresponds to the m −
q −𝓂(A) (according to Proposition 2 it must be positive)
smallest entries of |AEcv1 |. Then |B ∪ Lc| = m −𝓂(A),
and |L\B| = 𝓂(A). Since c

𝓂(A)(A) > 0.5, we must have
(9) holds. So the above set B is a possibly extreme set
with q, i.e., B ∈ Q|E|. Since σmin(AB)‖v1‖2 ≤ ‖ABv1‖2 ≤
‖AEcv1‖2 = σmin(AEc)‖v1‖2 (where the second inequality
becomes a strict inequality as long as 𝓂(A) > 0), we have
σmin(AB) ≤ σmin(AEc). Then it follows that the bound in (10)
is larger or equal to ‖ηEc‖2/σmin( AEc), and is strictly larger
when 𝓂(A) > 0. �
H. Proof of Theorem 7

a-b) By definition, we have |P | = t ≤ 𝓂(A), and P ⊆ G ⊆
E. We can view ei indexed by E\G (can be an empty set) as
part of the noise, i.e., we define the new noise and corruptions

as η′
i =

{
ei + ηi, i ∈ E\G

ηi, otherwise
, e′i =

{
ei, i ∈ G

0, otherwise
, then y =

Ax + e′ + η′ with ‖e′‖0 = |G| = 𝓂(A) = q1 .
In Step 1 of the first iteration, we have ‖(e + η) − r(1)‖1 =

‖(e′ + η′) − r(1)‖1 ≤
∑

i∈Gc |η ′
i |

cq 1 (A)−0.5 from Lemma 3. So ‖(e + η) −
r(1)‖1 ≤

∑
i∈Gc |η ′

i |
cq 1 (A) − 0.5 ≤

∑
i∈Gc |ηi +ei |

cq 1 (A) − 0.5 ≤
∑

i∈Gc |ηi |+
∑

i∈Gc |ei |
cq 1 (A)−0.5

=
∑

i∈Gc |ηi |+
∑

i∈E\G |ei |
cq 1 (A)−0.5 ≤

√
m−q1 η2 +

∑
i∈E\G |ei |

cq 1 (A)−0.5 .
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For ∀i ∈ P , we have |ei | − |ηi | − |r(1)
i | ≤ |(e + η)i | − |r(1)

i |
≤|(e + η)i− r

(1)
i |≤‖e + η − r(1)‖1 ≤

√
m−q1 ‖η‖2 +

∑
i∈E\G |ei |

cq 1 (A)−0.5

≤ w2 , thus |r(1)
i | ≥ |ei | − |ηi | − w2 ≥ min{|ei | : i ∈ P } −

‖η‖∞ − w2 > α. Then e
(1)
i �= 0 according to (5). Then

P ⊆ Sc
1 := {i : e

(1)
i �= 0}.

For ∀i ∈ Ec, ei = 0, |r(1)
i | − |ηi | ≤ |ηi − r

(1)
i | = |(e + η)i

− r
(1)
i | ≤ ‖(e + η) − r(1)‖1 ≤

√
m−q1 ‖η‖2 +

∑
i∈E\G |ei |

cq 1 (A)−0.5 ≤ w1 .

So |r(1)
i | ≤ |ηi | + w1 ≤ ‖η‖∞ + w1 < α. Then e

(1)
i = 0

according to (5). Then Ec ⊆ S1 := {i : e
(1)
i = 0}.

Next we will show for the (k + 1)st (e.g., k = 1, 2, . . .)
iteration, if Ec ⊆ Sk and P ⊆ Sc

k , then we will have Ec ⊆
Sk+1 and P ⊆ Sc

k+1 . Thus Ec ⊆ Sk and P ⊆ Sc
k+1 for any

k ∈ Z≥0 .
As 𝓂(A) ≥ |P |, from Lemma 1, we know that AP c is

full column rank, and 𝓂(AP c) ≥ 𝓂(A) − �0.5 × |P |�.
So 𝓂(A) ≤ 𝓂(AP c) + �0.5 × |P |�. Combined with
|E| ≤ 𝓂(A) +  t

2 � = 𝓂(A) + 0.5 × |P |�, we have |E| ≤
𝓂(AP c) + �0.5 × |P |� + 0.5 × |P |� = 𝓂(AP c) + |P |. So

|E| − |P | ≤ 𝓂 (AP c) . (22)

As P ⊆ Sc
k , so Sk ⊆ P c. We have Ec ⊆ Sk ⊆ P c and

thus |P c\Sk| ≤ |P c\Ec| = |E\P | = |E| − |P | ≤ 𝓂(AP c)
= q2 . From Lemma 1, we have that ASk

is full column rank,
𝓂(ASk

) ≥ 𝓂(AP c) − |P c\Sk | = q2 − |P c\Sk |, and

cq2 −|P c\Sk | (ASk
) ≥ cq2 (AP c) >

1
2
. (23)

Combined with (22), we have

𝓂 (ASk
) ≥ |E| − |P | − |P c\Sk | = |E\P | − |P c\Sk |

= |P c\Ec| − |P c\Sk | = (|P c| − |Ec|) − (|P c| − |Sk |)
= |Sk | − |Ec| = |Sk\Ec| (24)

From Lemma 3, we know that
∥
∥
∥(e + η)Sk

− r
(k+1)
Sk

∥
∥
∥

1
≤

√
m − q ‖η‖2

c|Sk \Ec|(ASk )−0.5
=

√
m − q ‖η‖2

c |P c\Ec |−|P c\Sk |(ASk )−0.5

(25)

As |P c\Ec| ≤ q2 , so |P c\Ec| − |P c\Sk | ≤ q2 − |P c\
Sk |, and from Proposition 1 we have c|P c\Ec|−|P c\Sk |(ASk

)
≥ cq2 −|P c\Sk |(ASk

). Together with (23), we have
c|P c\Ec|−|P c\Sk |(ASk

) − 0.5 ≥ cq2 (AP c) − 0.5 > 0.

Combined with (25) we have ‖(e + η)Sk
− r

(k+1)
Sk

‖1 ≤√
m − q ‖η‖2

cq 2 (AP c )−0.5 .

For ∀i ∈ Ec⊆Sk , ei = 0, |r(k+1)
i | − |ηi |≤|ηi− r

(k+1)
i |=

|(e + η)i − r
(k+1)
i |≤‖(e + η)Sk

− r
(k+1)
Sk

‖1 ≤
√

m − q ‖η‖2
cq 2 (AP c )−0.5 ≤

w1 . So |r(k+1)
i | ≤ |ηi | + w1 ≤ ‖η‖∞ + w1 < α. Then

e
(k+1)
i = 0 according to (5). Then Ec ⊆ Sk+1 :=
{i : e

(k+1)
i = 0}.

As |P c\Ec| ≤ 𝓂(AP c) and AP c is full column rank,
from Lemma 1, we know AEc is also full column rank, so
σmin(AEc) > 0. As

√
m − q ‖η‖2

cq 2 (AP c )−0.5 ≥ ‖(e + η)Sk
− r

(k+1)
Sk

‖1 =

‖(ySk
− ASk

x)−(ySk
− ASk

x(k+1))‖1 =‖ASk
(x − x(k+1))

‖1 ≥‖AEc(x− x(k+1))‖1≥‖AEc(x −x(k+1))‖2 ≥σmin(AEc)
‖x − x(k+1)‖2 , so we have

∥
∥
∥x − x(k+1)

∥
∥
∥

2
≤

√
m − q ‖η‖2

σmin (AEc) × (cq2 (AP c) − 0.5)

For ∀i ∈ P , we have .|ei | − |ηi | − |r(k+1)
i | ≤ |(e + η)i | −

|r(k+1)
i | ≤ |(e + η)i − r

(k+1)
i | ≤ ‖(e + η − r(k+1))P ‖2 =

‖(y − Ax)P − (y − Ax(k+1))P ‖2 = ‖AP (x − x(k+1))‖2 ≤
σmax(AP )‖x − x(k+1)‖2 ≤ σm a x (AP )

√
m − q ‖η‖2

σm in (AEc )×(cq 2 (AP c )−0.5) ≤ w2 ,

so |r(k+1)
i | ≥ |ei | − |ηi | − w2 ≥ min{|ei | : i ∈ P } − ‖η‖∞

− w2 > α, then e
(k+1)
i �= 0 according to (5). Then P ⊆

Sc
k+1 := {i : e

(k+1)
i �= 0}.

c) As for any k ∈ Z≥1 , we have 𝓂(ASk
) ≥ |Sk\Ec| =

|E ∩ Sk | from (24). Since ASk
is full column rank, the

condition of Corollary 1 is satisfied. Thus ‖x(k+1) − x‖2 is
bounded. �
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