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Pulmonary hypertension (PH), defined by a mean pulmonary arterial
pressure (mPAP) greater than 20 mmHg, is characterized by increased pul-
monary vascular resistance and decreased pulmonary arterial compliance.
There are few measurable biomarkers of PH progression, but a conclusive
diagnosis of the disease requires invasive right heart catheterization
(RHC). Patient-specific cardiovascular systems-level computational models
provide a potential non-invasive tool for determining additional indicators
of disease severity. Using computational modelling, this study quantifies
physiological parameters indicative of disease severity in nine PH patients.
The model includes all four heart chambers, the pulmonary and systemic
circulations. We consider two sets of calibration data: static (systolic and
diastolic values) RHC data and a combination of static and continuous,
time-series waveform data. We determine a subset of identifiable parameters
for model calibration using sensitivity analyses and multi-start inference and
perform posterior uncertainty quantification. Results show that additional
waveform data enables accurate calibration of the right atrial reservoir and
pump function across the PH cohort. Model outcomes, including stroke
work and pulmonary resistance-compliance relations, reflect typical right
heart dynamics in PH phenotypes. Lastly, we show that estimated par-
ameters agree with previous, non-modelling studies, supporting this type
of analysis in translational PH research.
1. Introduction
Patients with a resting mean pulmonary arterial blood pressure (mPAP) greater
than 20 mmHg are diagnosed with pulmonary hypertension (PH) [1]. This dis-
ease has no cure and, if left untreated, progresses rapidly, leading to thickening
and stiffening of the pulmonary vasculature, vascular-ventricular decoupling
and right ventricular failure [2,3]. There are five main PH etiologies:
pulmonary arterial hypertension (PAH, group 1), PH due to left heart disease
(group 2), PH due to lung disease and/or hypoxia (group 3), chronic thrombo-
embolic PH (CTEPH, group 4) and PH with unclear multi-factorial mechanisms
(group 5) [4]. Only patients in groups 1 and 4 have PH as their primary disease;
in groups 2–5, PH is a comorbidity. Patients with PAH (group 1) and CTEPH
(group 4) experience common symptoms early on, including shortness of
breath, dizziness, fainting, fatigue, and swelling of the legs and abdomen [5].
Early diagnosis is difficult. Therefore, patients with suspected PH undergo sev-
eral tests. A definite diagnosis requires invasive pulmonary arterial blood
pressure measurements from right heart cardiac catheterization (RHC) [5,6].
PH symptoms do not appear until 1–2 years after disease onset [3]. At this
time, patients have typically undergone significant disease progression before
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diagnosis, limiting and reducing treatment outcomes. Under-
standing how cardiovascular parameters (e.g. pulmonary
vascular resistance (PVR), and compliance) are modulated
with the disease can assist in early detection and better thera-
peutic interventions. We use systems-level computational
models with RHC data to study how model parameters
and outcomes are modulated with PH.

Mathematical modelling is useful for monitoring and
understanding cardiovascular disease progression. Systems-
level models with multiple cardiovascular compartments
have successfully analysed in vivo dynamics [7–9]. For
example, Colunga et al. [9] used a zero-dimensional
systems-level model to predict pressure–volume loops and
left ventricular power to understand heart transplant recov-
ery. Kung et al. [7] used a similar model to quantify
exercise capacity in Fontan patients, an essential indicator
of patient survival. The study by Shimizu et al. [8] used a
zero-dimensional model to study post-operative dynamics
in patients with a hypoplastic right ventricle. Their results
show that the effectiveness of ventricular repair can be
predicted by right ventricular stiffness. These studies used
models to predict patient outcomes. As noted by Colunga
et al. [9], reliable results require that model parameters are
identifiable given the model structure and available data. Par-
ameters are identifiable if they influence the model output
and can be uniquely determined by available data. A par-
ameter’s influence on model predictions is quantified using
local [10,11] and global [12–14] sensitivity analyses. Subset
selection algorithms [11,15] determine parameter interdepen-
dence and reduce identifiability issues. Schiavazzi et al. [16]
estimated cardiovascular model parameters by fitting simu-
lations to data from single-ventricle patients with a
Norwood physiology. They show that combining local and
global identifiability techniques, a priori, provides unique
and consistent parameter estimates given the available data.
Our group [9] used similar methods to analyse data from
heart-transplant patients, finding that model predictions
align with static RHC data measured at one point and over
longitudinal patient recordings.

These previous studies use non-invasive or static data,
while others use dynamic time-series data, including
pressure waveforms, for model calibration. Marquis et al.
[17] developed a compartment model of the systemic circula-
tion. This model was calibrated by inferring five identifiable
model parameters to simultaneously recorded left ventricular
pressure and volume waveforms in rats. Their results showed
that estimating these parameters agreed between the
dynamic model prediction and the waveform data. The
study by Bjørdalsbakke et al. [18] compared model sensitivity
using static or dynamic outputs from a systemic circulation
model. They found that time-averaged global sensitivities of
aortic pressure were less influential to systemic resistance
than static systolic and diastolic pressure outputs. Gerringer
et al. [19] used three- and four-element Windkessel models
to predict main pulmonary artery pressure waveforms in con-
trol and PAH mice. The study matched model simulations to
dynamic main pulmonary artery data, showing good agree-
ment with the data. However, the authors did not consider
a closed-loop model. These studies demonstrate the impor-
tance of employing sensitivity analyses and parameter
reduction but they do not discuss what data, static and/or
dynamic, are informative for parameter inference. Most clini-
cal protocols only use static data in electronic health records.
Though static measurements are extracted from waveform
data, storing patient static and dynamic pressure adds com-
plexity to data storage. However, PH time-series pressure
data may reveal important markers of disease severity.

The objective of this study is twofold: we investigate (i) how
systems-level model calibration is improved by adding dynamic
RHC data and (ii) if patient-specific cardiovascular parameters
are consistent with the physiological understanding of PH.
To do so, we study the impact of model parameters on haemo-
dynamic predictions using local and global sensitivity analyses.
To quantify the benefits of adding waveform data in parameter
inference, we consider two weighted residual vectors compar-
ing model predictions with static data (systolic, diastolic
and mean pressures and cardiac output, CO) and using a
combination of static and dynamic data (RHC time-series wave-
forms). By integrating mathematical modelling, patient-specific
data and physiological intuition, we categorize each patient’s
functional state, including right atrial, right ventricular, and
main pulmonary artery temporal dynamics. In addition, we
calculate patient-specific physiological biomarkers, including
pressure–volume loops and other markers of PH severity.
2. Methods
2.1. Ethics and approval
Patient-specific data are obtained from two hospitals, adhering
to their respective institutional review board guidelines.
De-identified RHC patient data are obtained from the Scottish
Pulmonary Vascular Unit at the Golden Jubilee National Hospi-
tal, Glasgow, UK, and from the Center for Pulmonary Vascular
Disease at Duke University Medical Center, Durham, NC.

2.2. Blood pressure data
This study uses clinically de-identified RHC data from nine
patients with confirmed PH: five with PAH and four with
CTEPH. Three CTEPH and three PAH datasets are from Duke
University, and one CTEPH and two PAH datasets are from
the Scottish Pulmonary Vascular Unit. Static data include
height (cm), weight (kg), sex (male (m) or female (f )), age
(years), heart rate (bpm), and systolic, diastolic and mean sys-
temic blood pressure (mmHg) measured by a blood
pressure cuff. The patients underwent RHC, where a catheter is
advanced from the right atrium, to the right ventricle, and to
the main pulmonary artery. Dynamic pressure waveforms are
recorded in each compartment. The pulmonary arterial wedge
pressure (PAWP, mmHg), an estimate of left atrial pressure, is
also recorded. CO (l min−1) is measured during the RHC by ther-
modilution. All pressure readings are obtained over 7–8
heartbeats. Demographics are provided in table 1.

2.3. Data extraction
Time-series data are extracted from clinical RHC reports using
GraphClick v. 3.0.3 for Mac OS and Map Digitizer available on
the Apple AppStore. Beat-to-beat haemodynamic profiles for
each patient are extracted, and the RHC pressure waveforms
are aligned to the electrocardiogram signals. The waveforms
are separated by R-R interval and stored as separate files. For
this study, a single representative right atrium, right ventricle
and main pulmonary artery waveform is chosen for each patient
(figure 1). Since RHC data are not measured simultaneously, the
representative waveforms are selected during end-expiration and
assigned a cardiac cycle length equal to the averaged pressure
cycle length. To align the signals within the cardiac cycle, we



Table 1. Patient demographics; group 1: pulmonary arterial hypertension (PAH); group 4: chronic thromboembolic pulmonary hypertension (CTEPH).

patient PH age (years) sex height (cm) weight (kg) CO (l min−1)

1 1 64 male 164.0 72.6 4.0

2 4 58 male 161.0 70.0 4.3

3 1 27 female 151.0 81.1 2.6

4 4 71 female 167.6 93.3 6.1

5 4 51 male 179.1 117.2 3.6

6 1 — male 178.0 108.0 6.4

7 1 — male 179.0 74.0 6.3

8 1 — female 183.0 82.0 5.6

9 4 — female 154.9 67.4 4.0

CO, cardiac output; PH, pulmonary hypertension. For patients 6–9, age was not included in the medical records.
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Figure 1. Data processing. Dynamic data from the right atrium (RA), right ventricle (RV) and main pulmonary artery (PA) for each patient are digitized from right
heart catheterization recordings and used for model calibration.
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shift the right atrium and main pulmonary artery signals to
ensure that right atrial contraction occurs before the start of
right ventricular isovolumic contraction and that peak right ven-
tricular pressure occurs immediately before peak of the pressure
in the main pulmonary artery. Magnitudes of the right atrium,
right ventricle and main pulmonary artery pressure signals are
shifted slightly to ensure physiological valve dynamics. Dynamic
pressure waveforms from the RHC are shown in figure 1. Lastly,
we construct a normotensive, control patient using pressure and
volume values from literature [20,21]; these pressure values are
displayed in table 2. Control parameters and model predictions
are compared with those obtained using PH data.
2.4. Mathematical model
This study uses a systems-level, ordinary differential equations
(ODE) model (shown in figure 2) that simulates dynamic
pressure p (mmHg), flow q (ml s−1) and volume V (ml). The
model comprises eight compartments: the left and right atria
and ventricles, the systemic and pulmonary arteries and veins.
The model is formulated using an electrical circuit analogy,
with pressure analogous to voltage, flow to current, volume to
charge and compliance to capacitance. We include four heart
valves, two semilunar (tricuspid and mitral) and two atrioventri-
cular (pulmonary and aortic). An additional systemic venous
valve is also included. To ensure proper flow between compart-
ments, heart valves are modelled as diodes, i.e. the valves are
either open or closed depending on the pressure gradient
between compartments. Equivalent to an RC circuit, equations
relating to the three dependent quantities are given by

dVs,i

dt
¼ qi�1 � qi, ð2:1Þ

qi ¼ pi � piþ1

Ri
, ð2:2Þ

and Vs,i ¼ Vi � Vun,i ¼ Ciðpi � piþ1Þ, ð2:3Þ
where the subscripts i− 1, i, i + 1 refer to the prior, current
and proceeding compartments in the system. Vs,i (ml) denotes
the stressed volume (the circulating volume), and Vun,i (ml) is
the unstressed volume (assumed constant). Ri (mmHg s ml−1)
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Figure 2. Model schematic. Follows an electrical circuit analogue. The model has eight compartments: the systemic and pulmonary arteries and veins, two atria and
two ventricles. Each compartment is modelled as compliant and is separated by a resistor element. The right atrium, right ventricle and pulmonary arteries (red
boxes) have both dynamic and static data. The pulmonary veins and systemic arteries have only static data. RHC, right heart catheterization; CO, cardiac output.

Table 2. Static pressure values (mmHg) from patient data (denoted by subscript d) used for nominal parameter calculations. Mean and standard deviations are
calculated for the PH data only.

data control P1 P2 P3 P4 P5 P6 P7 P8 P9 mean ± s.d.

pdM,ra 12 14 24 28 16 31 15 24 25 15 21 ± 6

pdm,ra 3 5 16 20 8 23 11 15 22 8 14 ± 7

pdM,rv 21 87 91 93 69 81 54 76 61 53 74 ± 15

pdm,rv 2 3 5 3 1 17 8 12 16 4 8 ± 6

pdM,pa 21 86 90 92 68 81 53 75 60 52 73 ± 15

pdm,pa 8 32 38 34 20 36 28 37 34 19 31 ± 7

pdpa 12 48 55 54 41 53 37 51 45 34 46 ± 8

pdW 5‡ 4 5 8 11 20 10 17 22 12 12 ± 6

pdM,sa 120 112 112 127 148 118 133 127 89 123 121 ± 16

pdm,sa 80 76 76 90 78 77 87 92 68 65 79 ± 9

pdsa 93 88 88 102 101 91 102 103 75 84 93 ± 10
†control values obtained from [20,21].
‡left atrial diastolic value used in place of PAWP.
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denotes the resistance between two compartments, and Ci

(ml mmHg−1) denotes the compartment compliance. Equation
(2.1) ensures conservation of volume, equation (2.2) is the ana-
logue of Ohm’s Law, and equation (2.3) relates volume
and pressure.

We model each heart chamber by a time-varying elastance
function Ei(t) (mmHg ·ml−1) [10,17], which relates pressure and
volume by

pi(t) ¼ Ei(~t)Vs,i, ð2:4Þ

where i = ra, la, rv, lv denote the left (l ) and right (r) atria (a) and
ventricles (v). The time within the cardiac cycle is denoted by
~t ¼ modðt, T) (s), where T(s) is the length of the cardiac cycle.
The ventricular elastance function Evð~tÞ mmHgml−1 is given by
the piece-wise continuous function [10]

Evð~tÞ ¼

EM;v�Em;v
2 cos p~t

Tc;v

� �� �
þ Em;v, 0 � ~t � Tc;v

EM;v�Em;v
2 1þ cos

p
�
~t�Tc;v

��
Tr;v�Tc;v

�� �� �
þ Em;v, Tc;v , ~t � Tr;v

Em;v, Tr;v , ~t � T,

8>>>><
>>>>:

ð2:5Þ

where Em,v and EM,v (mmHg ml−1) are the minimal and maximal
ventricular elastances, and Tc,v and Tr,v(s) denote the duration of
ventricular contraction and relaxation. The atrial elastance
function (shown in figure 3) is prescribed in a similar fashion [22]

Eað~tÞ ¼

EM,a�Em,a
2 1� cos

p
�
~t�Tr,a

��
T�Tc,aþTr,a

� �� �
þ Em,a, 0 � ~t � Tr,a

Em,a, Tr,a , ~t � tc,a

EM,a�Em,a
2 1� cos

p
�
~t�tc,a

��
Tc,a�tc,a

�� �� �
þ Em,a, tc,a , ~t � Tc,a

EM,a�Em,a
2 1þ cos

p
�
~t�Tc,a

��
T�Tc,aþTr,a

�� �� �
þ Em,a, Tc,a , ~t � T:

8>>>>>>>>>><
>>>>>>>>>>:

ð2:6Þ
Here,Em,a andEM,a (mmHg ml−1) are theminimumandmaximum
elastances of the atria and Tr,a, τc,a and Tc,a (s) denote the start of
atrial relaxation, the start of atrial contraction and the point of
maximum atrial contraction. The elastance model is parametrized
such that 0 � Tr,a � tc,a � Tc,a � T. Figure 3 shows a representa-
tive elastance time course in the atria and ventricles.

2.5. Model outcomes
Clinically, PH diagnosis requires invasive measurements of pul-
monary blood pressure by RHC. These measurements are
typically combined with systolic and diastolic systemic arterial
pressure and cardiac output measurements. These measurements
describe arterial dynamics but lack detailed information related
to ventricular function. Our model predicts pressure, flow and
volume in each compartment, augmenting information obtained
from measurements. By combining these predictions, we can
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gain additional insight into the state of the cardiovascular
system. Specifically, we compute:

(i) Stroke work refers to the integral of the pressure–volume
loop ð

V
pðtÞdV0,

for each heart chamber. This is a clinicalmeasure of ventricu-
lar function [9,23,24]. We convert stroke work to Joules (J)
using the conversion that 1 J = 7.5 × 103 mmHgml.

(ii) Resistance ratio: the pulmonary and systemic resistance
ratio is defined as Rp/Rs (non-dimensional) [23].

(iii) Compliance ratio of pulmonary and systemic arterial
compliance, Cpa/Csa (non-dimensional).

(iv) Pulsatility index (PI) refers to to the ratio of pulmonary
arterial pulse pressure to average right atrial pressure,
ðpM,pa � pm,paÞ=�pra [25].

2.6. Parameter values and initial conditions
The sparse haemodynamic data and many model parameters
make it imperative that nominal parameter values and initial
conditions are set in a physiologically and patient-specific
manner. Following previous approaches [9,17], we use a combi-
nation of patient-specific data (where available) and literature
values. Table 3 lists the nominal parameter values and their
calculation.

2.6.1. Compartment volumes and cardiac output
Using Hidalgo’s formula [26], each patients’ total blood volume
Vtot (ml) is calculated as a function of height H (cm), weight W
(kg) and sex [27] as

Vtot ¼ 3:47 � BSA� 1:954 � 1000, if female
3:29 � BSA� 1:229 � 1000, if male

�
, ð2:7Þ

where BSA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W �H=3600

p ðm2Þ is the body surface area [28].
The heart’s initial stressed volumes (initial conditions) are

calculated using BSA-indexed values. By contrast, stressed
volumes in the vasculature are based on blood volume pro-
portions [29]. The BSA-indexed end-diastolic (maximal)
volumes VM;i (ml) for the right heart are based on Tello et al.
[30], with VM;ra ¼ 58:9 � BSA and VM;rv ¼ 116:9 � BSA. We
assume that the left heart chamber volumes (also in ml) are
unaffected by PH. We assume that VM;la ¼ 30 � BSA and
VM;lv ¼ 80 � BSA [21]. Note that these values determine the
blood volume distributions for PH patients. The normotensive
control simulation used VM;ra ¼ 30 � BSA and VM;rv ¼ 78 � BSA,
VM;la ¼ 30 � BSA and VM;lv ¼ 78 � BSA [21].

The total volumes for the systemic and pulmonary arteries
are 13% and 3% of Vtot, of which the stressed volumes are 27%
and 58% of the total volume. Pulmonary venous blood volume
is 11% of Vtot, and 11% of this volume is stressed. These values
are from previous studies [10,17]. To ensure that blood volume
distributions add to 100%, we calculate total systemic venous
blood volume as the remaining volume

Vsv% ¼ 100� 13� 3� 11� VH%,

where VH% is the percentage of total blood volume within the
heart. CO is calculated assuming that the total blood volume cir-
culates in 1 min [10,20].

2.6.2. Pressure
Pulmonary circulation pressures are extracted from the RHC
data, while the systemic arterial pressure is determined from
cuff measurements. These values are listed in table 2. Nominal
pressure values for compartments for which we do not have
measurements (i.e. the left atrium, left ventricle and systemic
veins) are calculated by scaling pressures in their adjacent,
data-calibrated compartments [27]. We use the following
relationships for compartments for which we do not have data:

psv ¼ maxð10, 1:15 pm,rvÞ, ð2:8Þ
pm,la ¼ 0:95 ppv, ð2:9Þ
pM,la ¼ pm,la þ 5, ð2:10Þ
pm,lv ¼ 0:97 pM,la, ð2:11Þ
pM,lv ¼ 1:01 pM,sa: ð2:12Þ

The subscripts sa, sv, la and pv denote the systemic arteries, sys-
temic veins, left atrium and pulmonary veins, respectively. The
additional subscripts m and M denote the minimum and maxi-
mum values. We assume a pulse pressure of 5 mmHg for the
left atrium, consistent with previous studies [31].

2.6.3. Resistance
Each compartment is separated by a resistance to flow. Using
Ohm’s Law, the nominal vascular resistance (mmHg s ml−1) is
calculated as

Ri ¼ Dp
CO

, ð2:13Þ

where the resistance in compartment i depends on the pressure
gradient, Δp (mmHg), and the CO; refer to table 3 for more
details. The aortic and pulmonary valve resistances are
calculated as

Rava ¼ pM,lv � pM,sa

CO
and Rpva ¼

pM,rv � pM,pa

CO
: ð2:14Þ

For PH patients, right atrial and pulmonary venous pressures are
elevated [32], and resistance equations overestimate atrioventri-
cular valve resistance. To circumvent this, we set Rtva = 0.03
and Rmva = 0.01 (mmHg s ml−1) for all nine PH patients.

2.6.4. Compliance
The compliance is defined as the relative change in volume for a
given change in pressure [33] and quantifies the ability of the
vasculature to distend under load. In this study, nominal compli-
ance (ml mmHg−1) estimates are

Ci ¼ Vi � Vun,i

~pi
, ð2:15Þ

where ~pi ðmmHgÞ is a compartment-specific pressure [9]; see
table 3 for more details.



Table 3. Parameters in the zero-dimensional model and the methods for calculating their nominal values.

parameter description units equation reference

heart valves

Rava aortic valve resistance mmHg s ml−1 ( pM,lv− pM,sa)/qtot Ohm’s Law

Rmva mitral valve resistance mmHg s ml−1 0.01 —

Rpva pulmonary valve resistance mmHg s ml−1 ( pM,rv− pM,pa)/qtot Ohm’s Law

Rtva tricuspid valve resistance mmHg s ml−1 0.03 —

Rsv systemic venous resistance mmHg s ml−1 ð�psv � pm,raÞ=qtot Ohm’s Law

Rpv pulmonary venous resistance mmHg s ml−1 ð�ppv � pm,laÞ=qtot Ohm’s Law

systemic vasculature

Rs systemic resistance mmHg s ml−1 ðpm,sa � �psvÞ=qtot Ohm’s Law

Csa systemic arterial compliance ml mmHg−1 (VM,sa− Vun,sa)/pm,sa [9]

Csv systemic venous compliance ml mmHg−1 ðVM,sv � Vun,svÞ=�psv [9]

pulmonary vasculature

Rp pulmonary resistance mmHg s ml−1 ðpm,pa � �p pvÞ=qtot Ohm’s Law

Cpa pulmonary arterial compliance ml mmHg−1 (VM,pa − Vun,pa)/pm,pa [9]

Cpv pulmonary venous compliance ml mmHg−1 ðVM,pv � V un,pvÞ=�p pv [9]

heart elastance

EM,rv maximal right ventricular elastance mmHg ml−1 pM,rv/Vm,rv − Vun,rv [17]

Em,rv minimal right ventricular elastance mmHg ml−1 pm,rv/(VM,rv− Vun,rv) [17]

EM,ra maximal right atrial elastance mmHg ml−1 pM,ra/(Vm,ra− Vun,ra) [17]

Em,ra minimal right atrial elastance mmHg ml−1 pm,ra/(VM,ra− Vun,ra) [17]

EM,lv maximal left ventricular elastance mmHg ml−1 pM,lv/(Vm,lv− Vun,lv) [17]

Em,lv minimal left ventricular elastance mmHg ml−1 pm,lv/(VM,lv− Vun,lv) [17]

EM,la maximal left atrial elastance mmHg ml−1 pM,la/(Vm,la − Vun,la) [17]

Em,la minimal left atrial elastance mmHg ml−1 pm,la/(VM,la − Vun,la) [17]

heart timing

τr,a beginning of atrial contraction s data —

Tc,a peak atrial contraction s data —

Tr,a end of atrial systole s data —

Tc,v peak ventricular systole s data —

Tr,v beginning of ventricular diastole s data —
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2.6.5. Heart parameters
The heart model includes elastance and timing parameters.
Noting that compliance is the inverse of elastance and that the
compliance in the heart is minimal during end-systole (computed
at the maximum pressure and minimal volume) [17], we calcu-
late the maximum and minimum elastances (mmHg ml−1) as

EM,i ¼ pM,i

Vm,i � Vun,i
and Em, i ¼ pm,i

VM,i � Vun,i
, ð2:16Þ

where i = la, ra, lv, rv.
Nominal timing parameters for the right atrial and

ventricular elastance functions are extracted from the time-
series data. Maximum and minimum right ventricular elastance
occur at peak systole and the beginning of diastole, correspond-
ing to Tc,v and Tv,r, respectively. Right atrium data are used to
determine the end of atrial systole, the start of atrial contraction
and peak atrial contraction, i.e. Tr,a, τc,a and Tc,a. Since dynamic
data are unavailable for the left atrium and ventricle, we set
left-heart chamber timing parameters equal to the right-heart
timing parameters.

2.7. Model summary
The model consists of a system of eight ODEs describing the
stressed volumes, Vs,i (ml), for each compartment, with 25
parameters. The system is written as

y ¼ gðt, x; uÞ,
dx
dt

¼ f ðt, x; uÞ,

x ¼ fVla, Vlv, Vsa, Vsv, Vra, Vrv, Vpa, Vpvg,

9>>>>=
>>>>;

ð2:17Þ

where

u ¼ fRs, Rp, Rava, Rmva, Rpva, Rtva, Rpv, Rsv, Csa, Csv, Cpa, Cpv,

EM,la, Em,la, EM,ra, Em,ra, EM,lv, Em,lv, EM,rv, Em,rv

Tr,a, tc,a, Tc,a, Tc,v, Tr,v,g:
ð2:18Þ
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Here, x denotes the state variables (Vs,i in compartment i).
The functions f(t, x; θ) denote the evolution of the states (equation
(2.1)), and u are the parameters. The vector y is the model output
computed as function g(t, x; θ) of time, the state variables and the
model parameters. The output include predictions of pressure
(mmHg) and CO (l min−1), used for parameter inference.

2.8. Parameter inference
We estimate model parameters, some corresponding to disease bio-
markers, by minimizing the least-squares error between model
predictions and data. We use the Levenberg–Marquardt algorithm
to solve the generalized least-squares problem [34]. The observed
data yd (static or time series) is assumed to be of the form

yd ¼ gðt, x; uÞ þ 1, ð2:19Þ
where g(t, x; θ) are the model predictions (here, pressure and CO),
and 1 is the measurement error, assumed to be independent
and identically distributed (iid) white Gaussian noise, i.e.
1 � N ð0, s2

1IÞ. Using this framework, we estimate parameters
that minimize the sum of squared errors, J = rTr, where r is the
weighted residual vector. The residual encompasses the differences
between the measured data yd and model predictions y = g(t, x; θ).
Since the data have different units and order of magnitude, each
residual component is weighted relative to the data.

The static residual (including systolic, diastolic and mean
blood pressure in addition to CO values) is defined as

rs ¼ 1ffiffiffiffiffiffi
Ns

p y� yd

yd
, ð2:20Þ

where the vector y = {pM,ra, pm,ra, pM,rv, pm,rv, pM,pa, pm,pa, pM,sa,
pm,sa, pm,pv, CO}, includes model outputs, yd is the corresponding
data and Ns is the number of points. The three dynamic residuals
(used to fit the waveform data) are given by

rra ¼ 1ffiffiffiffiffiffiffi
Nra

p praðt; uÞ � pdraðtÞ
pdraðtÞ

, ð2:21Þ

rrv ¼ 1ffiffiffiffiffiffiffi
Nrv

p prvðt; uÞ � pdrvðtÞ
pdrvðtÞ

, ð2:22Þ

r pa ¼ 1ffiffiffiffiffiffiffiffi
Npa

p p paðt; uÞ � pdpaðtÞ
pdpaðtÞ

, ð2:23Þ

where piðt; uÞ, pdi ðtÞ andNi are the time-series pressure predictions,
time-series pressure data and number of residual points for the
right atrium, right ventricle, and main pulmonary artery. We
consider two combined residuals as our quantity of interest

r1 ¼ rs

and

r2 ¼ frs, rra, rrv, r pag:
Similar to the approach in [17], each residual is computed over the
last 30 cycles of the model predictions. Since we do not have
volume data, we include four penalty terms in the inference pro-
cedure to constrain heart chamber volumes. PAH and CTEPH
patients have an enlarged right heart, increasing the volume of
the right atrium and ventricle [30]. We penalize end-diastolic
model predictions below a BSA-indexed volume threshold, as
defined in §2.6.1. The penalty functions are defined by

Jpenalty,i ¼ max 0,
Vd

M,i �maxðV iÞ
Vd

M,i

 !
, ð2:24Þ

where i = la, lv, ra, rv and Vi are the predicted chamber volumes.

2.9. Sensitivity analyses
To determine what parameters can be estimated given the model
and the available data, we first compute each parameter’s
influence on the residual model. To do so, we calculate the sen-
sitivity of the residual vectors r1 and r2 with respect to the model
parameters.

Both local, derivative-based, and global, variance-based, sen-
sitivity analyses are used. The former methods are valid within a
small neighbourhood of the nominal parameter values and
quantify the gradient of the residual vectors r1 and r2 with
respect to the parameters. The latter measures the sensitivity
throughout the physiological parameter space, simultaneously
varying multiple factors. Both methods provide valuable and
distinct information. Therefore, we combine local and global sen-
sitivity analysis to identify non-influential parameters. These are
fixed at their nominal values before subset selection.

The local sensitivity of the residual for a parameter θi at time t
is denoted by χi(t). Sensitivities are approximated numerically
via the complex-step method [35]. We rank parameters from
most to least influential by calculating the 2-norm of each
sensitivity [9,17]

kxiðtÞk22 ¼
XN
l¼1

x2i ðtlÞ
 !1=2

, ð2:25Þ

where i ¼ 1, 2, . . ., M is the number of parameters and l = 1, 2,
…, N is the length of the time vector.

While global sensitivity analysis is more computationally
expensive than local methods, its ability to vary multiple
parameters at a time may expose undiscovered relationships
between parameters [12]. In this study, we use variance-based
global sensitivity analysis methods, computing first (Si) and
total order (STi ) Sobol’ indices [36]). The former measures the par-
ameters’ individual contribution to the total output variance of the
cost function, and the latter the individual contributions and
higher-order interactions between the parameters on the variance.
STi are used to order parameters from most to least influential.
A more detailed description of the local and global methods is
given in Section S2 of the electronic supplementary material.

2.10. Parameter subset selection
Once the sensitivity analysis is performed, additional steps are
taken to determine if the parameters are practically identifiable,
i.e. unique parameter estimates are associated with the minimum
of our objective function [37,38]. The model used in this study is
analogous to an electrical resistor–capacitor circuit. Circuit theory
dictates that resistors and capacitors in series and parallel can be
combined to give an equivalent resistor and capacitor. Therefore,
if no data is available between two components, their parameters
cannot be estimated uniquely, i.e. they are non-identifiable.
Given the limited data and a large number of parameters
(found in (2.18)), we expect identifiability problems if all par-
ameters are inferred from data [9,17]. We take several steps to
determine an identifiable and influential subset with respect to
the residual vectors. The subset selection process begins by ana-
lysing the global sensitivity results. Parameters with STi � 0 are
considered non-influential and fixed at their nominal values
[12,39]. After excluding these parameters, we use a singular
value decomposition (SVD) QR factorization method to deter-
mine local pairwise parameter interactions [37]. Lastly, we use
multi-start inference to reduce the subset further until we miti-
gate all identifiability issues.

2.10.1. Singular value decomposition-QR
The SVD-QR method [40] decomposes the sensitivity matrix as
x ¼ USV`, where U is the matrix of left orthonormal eigenvec-
tors, S is a diagonal matrix of singular values and V is the matrix
of right orthonormal eigenvectors. The total number of identifi-
able parameters, ρ, is the numerical rank of S and is used to
partition V as V ¼ ½Vr VP�r�. The permutation matrix ~P is
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determined by QR factorization such that V`
r
~P ¼ QR. Here, Q is

an orthogonal matrix, and the first ρ columns of R form an upper
triangular matrix consisting of diagonal entries in decreasing
order. The first ρ entries of ~P establish the identifiable parameters
for the subset.

2.10.2. Multi-start inference
The previous methods ensure that the parameters are locally and
linearly identifiable. However, they do not guarantee practically
identifiable parameter subsets if the model has nonlinear behav-
iour in output space [39]. Thus, we determine our final subset by
inferring parameters from multiple initial guesses randomly
selected between + 20% of the nominal values. Non-identifiable
parameters probably approach different values, whereas identifi-
able parameters, converge to the same value regardless of initial
guess [16]. We assess identifiability by calculating each patient’s
coefficient of variance (CoV; the standard deviation relative to
the mean) for each parameter after multi-start inference. Subsets
that exhibit parameter CoV . 10% are reduced by fixing the least
influential parameter above this threshold. The multi-start infer-
ence is iteratively run until the CoV for each parameter is below
the 10% threshold.

2.11. Confidence and prediction intervals
Model parameter and output uncertainty are quantified using
asymptotic analyses [41]. Under the assumption that the noise
1 is iid, we compute the variance estimator ŝ2

e and parameter
covariance estimator Ĉ ¼ ŝ2

eðx̂`x̂Þ�1 using asymptotic analysis
for nonlinear least-squares [42]. We note that asymptotic analyses
use the model outputs instead of the residual vector; hence x

here is the sensitivity of the model outputs.
The 95% parameter confidence intervals for each inferred

parameter, ûi, are computed as

½̂uCI�i , û
CIþ
i � ¼ ûi + t0:975N�r

ffiffiffiffiffiffiffi
Ĉi,i

q
, ð2:26Þ

where t1�a=2
N�M0 is a two-sided t-statistic with a 1� a=2 ¼ 95% con-

fidence level, and
ffiffiffiffiffiffiffi
Ĉi,i

q
represents the standard error for the ith

parameter estimator. Throughout we denote these confidence
intervals by mean ± 2 s.d., i.e. ûi + 2sui . The confidence and pre-
diction intervals for the optimal model output ŷj at time tj are

given by

½ŷCI�j , ŷCIþj � ¼ ŷj + t0:975N�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂T

j Ĉi,ix̂ j

q
ð2:27Þ

and

½ŷPI�j , ŷPIþj � ¼ ŷj + t0:975N�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1 þ x̂T

j Ĉi,ix̂ j

q
, ð2:28Þ

where x̂T
j is the sensitivity vector at tj evaluated at

û ¼ f̂ur, uM�rg. Note that the prediction intervals account for
the variance in both the model output and the data, hence they
are wider.

2.12. Simulations
To study the impact of PH, we run several simulations compar-
ing PH patients with a normotensive control subject.

Control: Simulations for a control patient are conducted using
normotensive pressure and volume values given in table 2.
Haemodynamic predictions are compared with those from PH
patients.

Static: Similar to Colunga et al. [9], we calibrate model predic-
tions using only static pressure and CO data for each PH patient,
i.e. r1. We use this as a benchmark procedure to determine the
effects of adding dynamic waveforms.
Dynamic waveforms: Model predictions of systolic, diastolic
and mean pressure are computed in combination with dynamic
right atrium and ventricle and pulmonary artery predictions
using residual r2.
3. Results
Local and global sensitivity analyses of both residuals r1 and
r2 distinguish influential and non-influential parameters.
Next, SVD-QR and multi-start inference are used to construct
subsets of identifiable parameters. Model predictions are cali-
brated to measured RHC data using the identifiable subset,
and other outcomes, such as pressure–volume loops, are
computed. Uncertainty of parameter estimates and model
outputs are compared for the two residual vectors and are
shown here for a single representative patient; results for
the remaining patients are given in the electronic supplemen-
tary material.

3.1. Sensitivity analyses
Figure 4a,b shows the patient-specific local sensitivity par-
ameter ranking for r1 (static values only, a) and r2 (static
and time-series data, b). Sensitivities are normalized by the
largest magnitude for each patient and residual, and par-
ameters are sorted based on their median ranking across all
nine patients.

Parameters are ranked similarly for the two residual vectors;
however, accounting for dynamic predictions makes the timing
parameter τc,a more influential on r2. The most influential par-
ameters for both residuals are Csa, Cpa, Cpv and EM,rv. Seven of
the nine patients display consistent parameter rankings for
both residual vectors. Parameter τc,a is less influential for
patients 3 and 5 than for the other patients. Overall, the local
analysis shows that resistancesRava,Rmva,Rpva,Rpv, the elastance
EM,la and the timing parameter Tr,a are below the dashed line
denoting a normalized sensitivity ≤10−1 in figure 4. We further
examine these parameters using global sensitivity analysis to
determine if they are non-influential.

For the global sensitivity analysis, n = 104 samples are
generated for each parameter using a Sobol’ sequence. This
sample size provided robust results in parameter ranking
when compared with 5 × 104 samples (results not shown).
The average first order (Si) and total (STi ) effects across all
nine patients are shown in figure 4c,d for the cost functional
J(θ) using residuals r1 and r2. Sobol’ indices are similar
across all patients, and the parameter ranking using the
total Sobol’ index agrees with the local results. A total
index, STi , near zero (≤10−2) suggests that the corresponding
parameter is non-influential. Results show that STi is ≤0.005
for parameters Rava, Rpva, Rpv, Rmva, EM,la and Tr,a, consistent
with the local sensitivity results, suggesting that these par-
ameters can be fixed at their nominal values. The STi is also
approximately zero for Tc,v and Tr,v. Since the local sensitivity
marked Tc,v and Tr,v as influential, we include these in our
subset selection procedure.

3.2. Parameter subsets and inference
Both SVD-QR and multi-start inference are used for par-
ameter subset selection. The non-influential parameters,
θNI = {Rava, Rmva, Rpva, Rpv, EM,la, Tr,a} are fixed prior to SVD-
QR. Previous studies [27] found that the maximum and
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minimum elastance cannot be inferred simultaneously. Since
the minimum elastance affects both the amplitude and base-
line elastance, this parameter contains more information and
is, therefore, more important to infer. The study by Domogo
& Ottesen [43] focused on left atrial dynamics using a zero-
dimensional computational model. They found that changes
in atrial volume are sensitive to maximal atrial compliance
(i.e. minimal atrial elastance). This observation supports our
exclusion of maximal elastance parameters in subset selec-
tion. The remaining maximal elastances, {EM,ra, EM,rv, EM,lv},
are also fixed prior to SVD-QR. We generate a subset for
each residual, including parameters consistently identified
by SVD-QR across all nine patients. Parameters that are
inconsistent using SVD-QR are depicted in blue in tables S1
and S2 of the electronic supplementary material.

We run the multi-start inference with these reduced SVD-
QR subsets. For instances of multi-start inference that have
parameters with a high CoV( >0.10) (purple in tables S1 and
S2 in the electronic supplementary material), the least influen-
tial parameter is removed from the subset and fixed at its
nominal value. The final subsets used for each residual are

u r1 ¼ {Rs, Rp, Rtva, Csa, Csv, Cpa, Em,ra, Em,rv, Em,lv, Tc,a, Tr,v}

ð3:1Þ
and

u r2 ¼ {Rs, Rp, Rtva, Rsv, Csa, Csv, Cpa, Em,ra, Em,rv,

Em,lv, tc,a, Tc,a, Tc,v, Tr,v}:
ð3:2Þ

Figure 5 shows the CoV of the final subsets for r1 and r2. Tables
4 and 5 list the estimated parameters using either r1 or r2.
These optimal values reflect the optimization starting from
the nominal guesses for each patient. We also calculate the
95% parameter confidence intervals using equation (2.26).

We display the relative change between estimated PH and
normotensive parameters in figure 6 as box-and-whisker
plots to understand how parameters change with PH. Note
that estimated parameters shared between u r1 and u r2 are
nearly identical even with additional parameters in u r2 .
Parameters Rp, Rtva, Em,ra, Em,rv and Em,lv are consistently elev-
ated in all PH patients. The normotensive value of Rtva is
substantially smaller than the PH patients, which explains
the larger relative change compared with other parameters
in the subset. The timing parameters for the heart chambers,
compartment compliance and systemic resistance Rs and Rsv

remain relatively close to normotensive values. The Rp ·Cpa

(RC) relaxation times were determined from the inferred par-
ameters. As shown in figure 7, there is a clear inverse
relationship between Rp and Cpa with the curve of best fit
being Cpa = 0.6518/(0.1005 +Rp), R

2 = 0.77, and constant RC
relaxation time Rp ·Cpa = 0.55 ± 0.15 (s).

3.3. Model forecasts and uncertainty
Post-inference predictions of pressure and CO using either r1
or r2 are depicted in figure 8a along with the measured data
from patient 7. Predictions for all PH patients are included in
the electronic supplementary material. Both r1 and r2 infer-
ence procedures can match the static data well. Using r2
minimizes the mismatch between the dynamic model out-
puts and the time-series data. Predictions of the right atrial
dynamics improve drastically when including time-series
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data. By contrast, right ventricular and main pulmonary
artery predictions improve only marginally. For five patients,
CO predictions are only slightly worse when matched using
r2 versus r1. However, the maximum and minimum pressure
values still match the data well.

A benefit of computational models is that essential but
unmeasurable outcomes, such as pressure–volume loops, can
be predicted. We contrast pressure–volume loops from all
four heart chambers for the normotensive subject to the nine
PH patients (using estimated parameters from r2) in figure 9.
Except for patients 1 and 2, all PH patients have increased
left atrial pressure. By contrast, the right atrial pressure–
volume loops display higher volumes and pressures than the
normotensive simulation. The right and left ventricular
pressure–volume loops have similar shapes. Yet, the right ven-
tricular pressure–volume loops in the PH group have a more
drastic rise in pressure during isovolumic contraction com-
pared with the normotensive results.

We calculate stroke work for all four heart chambers by
integrating simulated ventricular pressure predictions with
respect to volume. These results and other model outcomes,
including the resistance and compliance ratios, Rp/Rs and
Cpa/Csa, and the pulsatility index PI, are shown in table 6.
Left atrial stroke work is lower in PH for all but patient 5,
and right atrial stroke work is higher in all PH patients rela-
tive to the normotensive value. All PH patients have a lower
left ventricular stroke work and an elevated right ventricular
stroke work relative to the normotensive value. In general,
there is a drastic increase in Rp/Rs and a decrease in Cpa/
Csa in PH relative to normotensive conditions. The pulsatility
(PI) decreased in PH except in patient 1.

Parameters confidence intervals are provided in table 5.
Model confidence and prediction intervals for patient 7 are
shown in figure 10 (see the electronic supplementary material
for results from all nine patients) using either residual vector.
The confidence and prediction intervals show uncertainty in
mean pulmonary venous pressure (matched to PAWP data),
CO, and systolic and diastolic pressures in the systemic
arteries, right atrium, right ventricle and the main pulmonary
artery. The confidence intervals for the right ventricle and
main pulmonary artery are smaller than the ones for the
right atrium. We attribute this discrepancy to the more sig-
nificant mismatch between right atrium data and model
predictions. Adding dynamic data in r2 increases the magni-
tude of the sum of squared residuals, thus increasing the
prediction intervals in figure 10b. Note that the right
atrium, right ventricle and main pulmonary artery data
nearly all fall within the 95% prediction intervals shown in
figure 10b.
4. Discussion
Electronic health records typically include RHC blood pressure
measurements, estimates of cardiac output, and systemic
systolic and diastolic blood pressure measurements. Tradition-
ally, static pressures (e.g. systolic and diastolic) are recorded,
though the RHC also generates blood pressure waveforms.
Our goal is to examine if additional waveform data improve
model calibration and, therefore, characterization of PH and
its phenotypes. We use a systems-level cardiovascular model
to characterize patient-specific changes due to PH. We use a
combination of sensitivity analyses, subset selection and
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multi-start inference to determine informative and identifiable
parameter subsets and estimate these parameters to patient
RHC data. Results show that the proposed model captures
the hallmarks of PH both with and without waveform data.
We find increased right atrial, right ventricular and main pul-
monary artery pressures, elevated pulmonary vascular
resistance and reduced pulmonary arterial compliance in all
PH patients. In addition, we show that additional waveform
data are essential in quantifying the right atrial reservoir and
pump function. Overall, our results show that systems-level
models can capture patient-specific PH dynamics and parallel
the current clinical understanding of the disease.
4.1. Sensitivity analyses
Sensitivity analysis is crucial for determining which par-
ameters influence the model output. Our model has 25
parameters, yet limited data and the structure of the model
make inferring all the parameters infeasible. We use local
and global sensitivity analyses on two residual vectors: one
comparing static outputs and another static and dynamic
outputs. Both methods consistently identify six non-influen-
tial parameters independent of the technique and residual.
The systemic venous resistance Rsv and timing parameters
Tc,v and Tr,v are not consistently influential across the two
techniques. The influential parameters are candidates to be
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inferred, while the non-influential parameters are fixed at
their nominal value.

The pulmonary valve resistance Rpva is non-influential; this
parameter is directly associated with the coupling between the
right ventricle and the main pulmonary artery. However, none
of the PH patients in this study have a history of pulmonary
valve stenosis. Thus it is reasonable to keep this parameter
fixed at its nominal value. The pulmonary venous Rpv and
mitral valve Rmva resistances are also not influential. Since
we do not have left heart data, the residuals do not include
left heart quantities, and therefore we expect these to be
non-influential. This finding agrees with previous studies
[10,17,45] that fix the valve resistances. In general, the data
available for model calibration will dictate which components
of the model to include in the sensitivity analysis. Additional
data that involve states not analysed here (e.g. left ventricle
volume or tricuspid flow velocity) may affect which
parameters are the most influential.

Both local and global analysis techniques are essential as they
each highlight model features. Global sensitivities identify influ-
ential parameters over the physiological parameter range, while
local sensitivities are evaluated at known values. Global
sensitivity analysis sample parameters over the physiological
range, but due to nonlinear model behaviour, this could include
combinations that generate a non-physiological output. Yet, the
local analysis only provides a snapshot of the sensitivities;
again, since the model is nonlinear, the parameter influence
may change if a parameter is changed, i.e. a parameter influential
before optimization could be non-influential after optimization.
For example (figure 4), the atrial timing parameter τc,a is less
influential for patients 3 and 5 than for the other PH patients,
and the left ventrcular maximal elastance EM,la is less influential
for patient 4. These results agree with Marquis et al. [17], where
left ventricle elastance and systolic timing parameters varied
across each nominal parameter set. Global sensitivity analysis
cannot identify these discrepancies, as it integrates the sensitivity
over the physiological parameter space.

While influential parameters are consistent between
methods, individual parameters may have a different ranking.
As shown in figure 4, the maximal atrial elastance EM,ra is the
second most influential parameter in the global analysis,
whereas the local analysis ranks the parameter significantly
lower. This can be attributed to interactions between the
right atrial maximal and minimal elastance, EM,ra and Em,ra,
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Table 6. Model outcomes from normotensive and PH simulations.

stroke work (J)

patient LA LV RA RV Rp/Rs C pa=Csa PI

norm 0.031 1.676 0.013 0.223 0.08 3.84 4.25

1 0.009 1.416 0.058 0.802 0.63 0.64 5.37

2 0.014 0.642 0.031 0.393 0.79 0.64 2.40

3 0.023 1.127 0.033 0.605 0.60 0.59 2.52

4 0.017 1.352 0.035 0.531 0.30 1.33 3.94

5 0.032 0.662 0.037 0.313 0.50 0.83 1.63

6 0.012 1.676 0.034 0.474 0.31 1.74 1.87

7 0.009 1.586 0.042 0.627 0.45 0.84 1.76

8 0.027 0.640 0.016 0.303 0.44 0.71 1.07

9 0.017 0.728 0.028 0.267 0.27 1.44 2.85

Indices include stroke work ( joules) in all four heart chambers, resistance ratios (dimensionless), compliance ratios (dimensionless) and pulsatility index (PI,
dimensionless) calculated after estimating parameters using r2. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.
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which account for the right atrial reservoir and pump function.
Note that small changes in minimal elastance Em,ra drastically
affect maximum and minimum pressure values, while changes
in maximal elastance EM,ra only affect the model output when
EM,ra≫ Em,ra. Though the ranking of EM,ra differs, Em,ra is
always influential. These differences in parameter influence
and model sensitivity highlight the importance of using
multiple methods for parameter subset reduction.

Deficiencies in right atrial reservoir and contractile function
are strong predictors of mortality in PH [46]. Systemic venous
dynamics and tricuspid valve integrity dictate right atrial fill-
ing during ventricular diastole. In the model, the right atrial
systolic and diastolic pressures are determined by minimum
elastance Em,ra, which is always influential. The tricuspid
valve resistance Rtva forms the interface for right atrial and
ventricular interaction. Hence, this parameter influences the
relationship between the two heart chambers throughout the
cardiac cycle. The high sensitivity of right atrial predictions
to these parameters mimics the current physiological
understanding of altered right atrial function in PH [46].

Two of the three parameters characterized differently
between the local and global methods are timing parameters
dictating contraction and relaxation of the heart. The timing
of heart contraction and relaxation are well approximated
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from dynamic pressure data. Hence, the uncertainty in these
parameters (i.e. the bounds for global sensitivity sampling) is
substantially smaller (+10–15%) than other model parameter
uncertainty (+400%). This contributes to why the Sobol’
indices are smaller than the local analysis. Since our nominal
timing parameter values are well informed, the local analysis
is more relevant and used to determine timing parameter
influence.

The final parameter with varying influence is the systemic
venous resistance Rsv. This parameter impacts central venous
pressure and right atrial filling. This parameter is situated at
the border between influential and non-influential. The par-
ameter is essential to predict atrial dynamics and therefore
included in the subset.
4.2. Parameter inference and subset selection
We fix non-influential parameters at their nominal values; how-
ever, this does not guarantee that the parameter subset is
practically identifiable [15,45]. We combine SVD-QR subset
selection and multi-start parameter inference to determine an
identifiable parameter subset. SVD-QR methods reduce the
number of parameters [37], and multi-start inference tests if sol-
utions to the inverse problem are unique. For each patient, our
results provide consistent parameter estimates across both
residuals. Results reveal that the model with static data has
11 identifiable parameters, while the model with static and
dynamic data has 14 identifiable parameters. An important
observation is that the identifiable parameter subsets are sub-
sets of each other, i.e. u r1 , u r2 . These results demonstrate
that the patient-specific model is robust.

Our finding that sensitivity analysis alone is inadequate
for determining identifiable parameters agrees with previous
results. For example, Schiavazzi et al. [16] reported that sensi-
tivity analyses do not guarantee unique parameter estimates.
The authors use multi-start inference to interrogate parameter
identifiability and reduce their parameter subset. We use a
similar technique. A CoV cut-off of 10%, shown in figure 5,
ensures that parameter estimates are robust to simulations
with 20% uncertainty in initial guesses.

As shown in figure 6, identifiable parameters, including the
pulmonary vascular resistance Rp, the tricuspid valve resistance
Rtva, minimum right atrial elastance Em,ra and the minimum
ventricular elastances, Em,rv and Em,lv, are elevated in PH. The
parameters Rp and Rtva have the largest relative increase. Pul-
monary vascular resistance (PVR) is a known biomarker of
PH disease severity. It is elevated for both PAH and CTEPH
patients [47,48]. The increase in minimum elastance in the
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right atrium and ventricle indicates chamber stiffening, as
reported in PH [30]. An elevated end-diastolic elastance, Em,rv,
is negatively correlated with right atrial reservoir, passive and
active strain [30], suggesting that right atrial and ventricular
function deteriorates during PH progression. We also observe
a slight elevation in minimal left ventricle elastance, Em,lv.
PAH and CTEPH directly affect right ventricular function, yet
right ventricular dysfunction will affect the left ventricle in
severe cases. E.g. impaired left ventricular function can be
attributed to rightward septal bulging in severe PH and may
suggest decompensated heart failure [49]. Both Rp and Em,rv
contribute to pulmonary circulation pressure but Rp has a
more significant effect on pulmonary artery systolic and pulse
pressure. Another important disease biomarker is pulmonary
arterial compliance Cpa, which is similar to arterial distensibility.
Figure 6 shows a relative decrease in Cpawith PH, which reflects
stiffening of the proximal pulmonary arteries due to constitu-
tive changes (e.g. collagen accumulation) [50,51].

Several studies [44,48,50,52,53] have emphasized the
inverse relationship between pulmonary resistance Rp and
compliance Cpa, often referred to as RC-time, τ =RpCpa.
Tedford et al. [44] report an inverse-hyperbolic relationship
from analysis of data from 1009 patients with PH and
normal pulmonary capillary wedge pressure with best-fit
curve Cpa = 0.564/(0.047 + Rp) and RC time τ = 0.48 ± 0.17 (s).
Similarly, the retrospective study by Assad et al. [52] found
that the RC time is τ = 0.7 ± 0.34 in PAH patients (n = 593)
with a best-fit curve Cpa = 0.775/(0.045 +Rp). They also
noted that the inverse-hyperbolic RC-time relationship is
nearly identical for PAH and group 2 PH patients. Figure 7
shows this relationship from our patient cohort. The best-fit
curve Cpa= 0.6518/(0.1105 +Rp) and constant RC time τ =
0.55 ± 0.15 are consistent with results from these studies
[44,52]. Our results were obtained from analysis of a closed-
loop model, whereas the original RC times are computed
using an isolated Windkesel model. This suggests that our sys-
tems-level model reproduces key features across large PH
cohorts. Patients 1, 2, 3 and 5, located in the lower right portion
of figure 7, have the greatest systolic right ventricular and main
pulmonary aretery pressure. Prior studies [44] have also found
this correlation between disease severity and RC-time.

The parameters in the static and dynamic residuals,
including the systemic venous resistance controlling flow
from the systemic veins to the right atrium, significantly
affect right atrial filling. PH patients have a slight reduction
in systemic venous resistance Rsv relative to the normotensive
patient, increasing systemic venous inflow and diastolic
right atrial filling. Growing evidence suggests that right
atrial function is impaired during PH, though little is
known about how the coupling of the right atrium and ven-
tricle is altered with disease progression [2,46]. Using
dynamic right atrium data for model calibration provide
insight into the mechanisms of right atrial contractile and
reservoir deterioration with right ventricular dysfunction.
Changes in right atrial contractile timing can only be
observed with dynamic pressure data. Other parameters
only in the dynamic residual include ventricular and atrial
timing parameters Tc,v, Tc,a and τc,a. These parameters are
associated with the timing of heart function, i.e. the gener-
ation of the waveforms. Alenezi et al. [46] studied right
atrial strain across 67 PAH subjects using speckle-tracking
imaging. They found that right atrial dysfunction is an inde-
pendent predictor of mortality and that the right atrial strain
rate (time-dependent) correlates with PAH severity. Future
investigations using right atrial pressure and strain data
modelling may reveal additional indicators of right atrial dys-
function and PAH severity.

As shown in figure 8, including more data in the
parameter inference procedure increases the number of ident-
ifiable parameters and changes model predictions. Both
residuals account for systolic, diastolic and mean values,
which are well matched by the model across all patients.
Dynamic pulmonary artery and right ventricular predictions
are unchanged between r1 and r2. This is attributed to good
nominal estimates of the ventricular timing parameters Tc,v

and Tr,v, i.e. the optimized values are close to nominal
values. By contrast, there is a significant change in simulated
right atrial dynamics when calibrating the model to dynamic
pressure data. The intricate dynamics of atrial filling and con-
traction make it challenging to visually identify the right atrial
timing parameters from pressure data. The atrial pressure–
volume loops in figure 8 vary significantly when comparing
r1 with r2. The study by Domogo and Ottesen [43] studied
left atrial dynamics using a systems-level model. Their
model has a more sophisticated atrioventricular coupling,
but the authors noted that an elastance model can capture
dynamic atrial data. The time-varying dynamics of the atria
are more complex, demonstrating the need for dynamic
rather than static data for model calibration. The right atrium
is gaining traction as a biomarker for PH severity [30,46].
Hence our ability to calibrate right atrial dynamics may pro-
vide further insight into the progression of right atrial–right
ventricular–main pulmonary artery dysfunction in PH.

Since we do not have volume data, we included additional
volume constraints in our inference procedure. It is well estab-
lished that both PAH and CTEPH cause increased right
ventircular myocardial remodelling, including wall thickening
and dilatation [30]. Penalizing the inference procedure to
ensure BSA-indexed blood volumes in all cardiac chambers
constrains the model forecasts to volumes seen in clinical
studies [30]. The addition of constraints leads to increased
right atrial filling volumes and pressure magnitudes, as
noted by Tello et al. [30]. Moreover, as shown in figure 9, the
right ventricular pressure–volume loop has a rightward
shift but is comparable in shape to its left ventricle
counterpart. This shift is known to occur in PH [54], increasing
the end-systolic elastance. Our results show a reduction in left
ventricle stroke volume due to right ventricular dysfunction
in several patients. A recent study by Jayasekera et al. [55]
reported significant decreases in left ventricular strain and
mechanical dyssynchrony in a cohort of PAH patients.

PH diagnosis uses RHC to determine right ventricle and
pulmonary circulation pressures. However, these data alone
provide little information on cardiac function or how the sys-
temic circulation has adapted to disease. Simulation-derived
outcomes provide these details, including stroke work, resist-
ance, compliance ratios, and the pulsatility index. This study
predicted cardiac stroke work, a known indicator of cardiac
oxygen consumption and overall cardiomyocyte function.
Clinically, stroke work is calculated as the product of stroke
volume and mean arterial pressure; using the model, stroke
work is calculated by determining the area of the pressure–
volume loop. Both left and right ventricular stroke work,
listed in table 6, change in PH. Left ventricular stroke work
generally decreases, while right ventricular stroke work
increases in PH. These findings agree with the retrospective
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clinical analysis by Chemla et al. [56], who found that right
ventricular stroke work doubled in PH. Increased right ven-
tricular stroke work is linked to severe paediatric PAH in a
study by Yang et al. [23], who also use a compartment
model to generate pressure–volume loops. Without volume
data, our model can provide these indicators of disease sever-
ity, making them clinically relevant. Obtaining ventricular
volumes during RHC would increase the number of identifi-
able parameters in the system. Several clinician-scientists
advocate this [55,57], but it requires access to advanced
imaging technologies. Given this disparity in access, compu-
tational models can provide additional simulated quantities
without measurements.
J.R.Soc.Interface
20:20220735
4.3. Uncertainty quantification
We efficiently determined both parameter and output uncer-
tainty using frequentist analyses. This study only infers
identifiable parameters. More influential parameters have
narrower confidence intervals compared with less influential
ones (table 5). A consequence of narrow parameter bounds is
that the model confidence and prediction intervals sensitive
to these influential parameters contain the measured data
remarkably well for both residuals.

Output uncertainty is compared in figure 10 for the two
residuals r1 or r2. Model outputs computed using r1 have
relatively small uncertainty for static targets. For r2, including
both static and dynamic data, the uncertainty increases signifi-
cantly, probably due to the increased complexity of the inverse
problem. The least squares error is considerably higher, and
even though the model does an excellent job fitting data,
there are parts of the waveform that the simple lumped
model used here cannot reproduce. However, we gain infor-
mation about the dynamic output uncertainty in the
dynamic right atrial, right ventriccular and main pulmonary
artery predictions using r2. This better quantifies the expected
beat-to-beat variation we would expect to see on continuous
RHC monitoring. In general, a more liberal estimate of uncer-
tainty, as shown from r2, reduces the chance of having a biased
prediction due to a single heartbeat of data.

Other groups have performed uncertainty quantification
on cardiovascular models. The study by Harrod et al. [45]
investigated PA pressure uncertainty using Markov chain
Monte Carlo sampling. Their study focuses on model outputs
and parameter uncertainties using normotensive and PH
data, similar to our analysis. Several authors have performed
uncertainty quantification using one-dimensional [41,58] or
three-dimensional [59] fluid dynamics models, which are
fundamentally different from the systems-level model used
here. Colebank et al. [41] found that uncertainty bounds
around main pulmonary artery pressures were nearly identi-
cal between frequentist or Bayesian methods. The study also
compared uncertainty across normotensive and hypoxia-
induced PH mice. It revealed a larger uncertainty in the
normotensive mice due to a more significant discrepancy in
the model fit to data. Our results show a similar trend,
with larger uncertainty typically attributed to patients with
more complex RA dynamics (see electronic supplementary
material). Our zero-dimensional model cannot capture the
dynamics of wave reflections suitable for a zero-dimensional
haemodynamics model. Yet, it does capture the global dias-
tolic decay in pulmonary artery pressure, as shown in
figure 10. We match the model to right ventricular dynamics
exceptionally well; note the narrow confidence and predic-
tion intervals in figure 10. The study by Yang et al. [23]
captured right ventricular mechanics in PH using a simpli-
fied, open-loop model. We show that a more complex
model accounting for the systemic circulation and left heart
can still accurately predict right ventricular dynamics.
4.4. Limitations
This study has several limitations. Our model accounts for
left and right ventricular dynamics without including inter-
ventricular interaction via the septal wall. Several studies
have included this mechanism [49], which is essential for
understanding how the right ventricle affects left ventricular
function. Adding this model component provides a next step
in understanding biventricular function during PH pro-
gression [55]. We use data from nine patients, four with
CTEPH and five with PAH. We do not have a sufficiently
large sample size to deduce differences in PH phenotypes,
though recent studies have found differences in the biome-
chanics of the two subgroups [57]. However, we show that
our zero-dimensional systems-level model can efficiently
integrate multi-modal data and deduce markers of PH sever-
ity. Our inference procedure enforces cardiac volumes that
match previously recorded BSA-indexed values; additional
volume data (e.g. from a conductance catheter) would
better inform the model calibration. Yet these were not avail-
able for all patients studied here.

Moreover, the data are measured using different technol-
ogies, probably with varying measurement errors. Another
source of variability comes from physiological beat-to-beat
variations in signals (e.g. due to respiration, circadian rhythms
and anxiety). The model used here is relatively simple. Hence
model mismatch provides another source of uncertainty. To
prevent adding unwarranted bias, this study scaled residuals
by the data generating residuals weighted to unity. We recog-
nize that this choice of residual vector is problem specific.
Therefore, any study using the methodology proposed here
should assess this question in detail. However, the data used
here are routinely collected during RHC and are consequently
informative for future PH studies. As a result, studies using
similar data and models can use the approach presented
here, demonstrating that adding waveform data improves par-
ameter inference and model calibration.

Parameter and output uncertainty is determined from
asymptotic analyses, yet these rely on a Gaussian sampling dis-
tribution assumption. In our previous studies, Colunga et al. [9]
and Marquis et al. [17] compared asymptotic predictions with
Bayesian inference for a similar model. Results showed that
the methods provide similar uncertainty estimates. The control
patient was defined using literature pressure and volume
measurements. Establishing a representative control cohort
using sampling methodologies [45] probably would provide
more robust comparisons between normotensive and PH
model parameters. Lastly, it is well established that PH dispro-
portionately affects women, with sex differences being a
significant area of attention in the PH community [60]. Combin-
ing a larger, more diverse patient cohort in the parameter
inference performed here may elucidate sex-dependent differ-
ences in right atrium, right ventricle and pulmonary artery,
parameters. Our study is a proof of concept that patient-specific
models can be constructed from RHC data, laying the
foundation for future studies on a larger population of patients.
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5. Conclusion
This study uses a zero-dimensional, systems-level haemo-
dynamics model to predict changes in cardiovascular
parameters in PH. We use sensitivity analyses and subset
selection to deduce the best parameter subsets for two
residuals: one with static data and one with additional
dynamic right atrial, right ventricular and main pulmonary
artery pressure waveforms. Our results show that adding
time-series waveform data allows for additional parameters:
systemic venous resistance Rsv, the start of atrial contraction
τc,a, and peak ventricular contraction Tc,v to be estimated
without altering estimates in the static-only residual. These
additional parameters better describe the right atrial pump
and reservoir function, which has been the focus of recent
attention in the PH community [46]. Overall, model outcomes
are consistent with the physiological understanding of the
disease; PH induces increased pulmonary vascular resistance,
decreased pulmonary arterial compliance, and elevated
minimum right atrial and ventricular elastance, leading to
increased mean pulmonary arterial pressure. While the
uncertainty in model predictions is smaller for the static
residual, adding time-series data provide valuable insight
into uncertainty in dynamic predictions. Our study proves
that systems-level models can be tuned to fit PH data. The
model can predict the right atrial function by adding static
and dynamic data, essential for differentiating PH subtypes.
The framework devised here may be able to explain the
mechanisms contributing to abnormal right atrial, right
ventricular and main pulmonary artery function in PH.
6. Citation diversity statement
In agreement with the editorial from the Biomedical Engin-
eering Society [61] on biases in citation practices, we have
analysed the gender and race of our bibliography. This is
done manually, though automatic probabilistic tools exist
(e.g. https://zenodo.org/record/4104748#.YvVXpnbMI2z).
We recognize existing race and gender biases in citation prac-
tices and promote the use of diversity statements
encouraging fair gender and racial author inclusion.

Our references, including those in the electronic sup-
plementary material, contain 15.15% woman (first)/
woman (last), 13.64% man/woman, 16.67% woman/man
and 54.55% man/man. This binary gender categorization is
limited because it cannot account for intersex, non-binary or
transgender people. In addition, our references contain 6.06%
author of colour (first)/author of colour (last), 12.12% white
author/author of colour, 18.18% author of colour/white
author and 63.64% white author/white author. Our approach
to gender and race categorization is limited in that gender and
race are assigned by us based on publicly available infor-
mation and online media. We look forward to future
databases allowing all authors to self-identify race and
gender in an appropriately, anonymized and searchable
fashion and new research that enables and supports equitable
practices in science.
Data accessibility. This study uses retrospective data available along with
computer code at https://github.com/mjcolebank/CDG_NCSU/.
The data are provided in electronic supplementary material [62].
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