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Rare genetic variants explain missing heritability in smoking

A full list of authors and affiliations appears at the end of the article.

Abstract

Common genetic variants explain less variation in complex phenotypes than inferred from family-

based studies, and there is a debate on the source of this “missing heritability”. We investigated 

the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 

26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. 

Across four smoking traits, SNP-based heritability (h2
SNP) was estimated from .13 to .28 (SEs 

.10-.13) in European ancestries with 35–74% of it attributable to rare variants with minor allele 

frequencies between 0.01% and 1%. These heritability estimates are 1.5–4 times higher than past 

estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based 

estimates of narrow-sense heritability (h2
ped: .18~.34). In African ancestry samples, h2

SNP was 

estimated from .03 to .33 (SEs .09-.14) across the four smoking traits. These results suggest that 

rare variants are important contributors to the heritability of smoking.
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Introduction

Characterizing genetic architecture of complex phenotypes is fundamental to understanding 

genetic influences on human individual differences and has implications in diverse fields 

including medicine and psychology. The joint distribution of genetic effect sizes and 

minor allele frequency (MAF) is shaped by natural selection and population history1,2 and 

informs our understanding of human evolution and gene-mapping strategies for complex 

traits. The past decade of genome-wide association studies (GWAS) of common genetic 

variants has expanded our knowledge of this genetic architecture by discovering tens of 

thousands of genomic loci associated with a wide range of complex phenotypes such as 

height3, lipids4, diabetes5, and schizophrenia6, to name a few. However, the aggregate 
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effect of common genetic variation typically explains less phenotypic variation than that 

inferred from traditional family-based studies (e.g., twins, or siblings, or larger pedigrees)7, 

a difference often referred to as “missing heritability”.

Tobacco use is a complex behavioral trait of high public health concern8–10 and 

demonstrated genetic and environmental (e.g., policy) influences11,12. Not only is tobacco 

use a leading cause of global morbidity and mortality, but measures of tobacco use are 

strong indicators of addiction to nicotine. For example, the number of cigarettes smoked per 

day is genetically highly correlated (r=.95) with nicotine dependence13 and other commonly 

used substances14,15. Tobacco use is also considered a part of externalizing dimensions 

of personality and psychopathology along with other substance use and hyperactive 

behaviors16. Heritability of smoking behaviors has been estimated at approximately 50% 

(SE 5%)17 in twin studies, comparable to many other complex behavioral traits.

At the same time, estimates of tobacco use heritability from GWAS of single nucleotide 

polymorphisms (SNPs) have routinely found much lower SNP-based heritability (h2
SNP) 

estimates18,19. Such analyses to date have been based on common variants with MAF > 

1% from GWAS of imputed microarrays. In a recent GWAS of tobacco use in up to 1.1 

million individuals, Liu et al. reported h2
SNP estimates ranging between 5% and 11%18 

with smoking initiation and age of smoking initiation showing the highest and the lowest 

estimates, respectively18. Even more recently, Evans et al.20 reported h2
SNP estimates of 

5%–18% for smoking traits in UK Biobank imputed genotypes of up to 323,068 individuals. 

In this latter study, the estimated contribution of rare variants to the heritability was minimal, 

likely due to poor imputation of rare variants <1% MAF. Similar to results for other complex 

traits17,21, some but far from all of the twin-based heritability of smoking behaviors can be 

attributed to common variants obtained through imputation of microarray genotypes.

There is an extensive literature regarding the possible contributors to missing heritability, 

including inflated family-based heritability estimates22, increased phenotypic heterogeneity 

in GWAS compared to family-based studies23, epistasis24, and genetic variants not 

in linkage disequilibrium (LD) with common variants, including structural21 and rare 

variants25. Rare genetic variants are one compelling explanation for the missing heritability 

of fitness-related traits, as one expects negative selection to force deleterious alleles to low 

frequencies26,27. Common variants, on the other hand, are expected to explain most trait 

variance under a neutral model where most mutations have little selective effects27,28. The 

contribution of rare variants can inform competing explanations for the missing heritability 

as well as competing population genetics models, but this requires large samples of 

extremely well-imputed microarrays or whole genome sequencing.

To date, SNP-based heritability estimates of complex behaviors have been based on a few 

million common variants. With imputed variants, the quality of imputation depends on 

the reference panel used29,30, and even the best imputation strategies perform poorly for 

variants with MAF < 1% in population-based samples31,32 of unrelated individuals. With the 

advent of relatively affordable deep whole-genome sequencing (WGS), it is now possible to 

directly genotype variants of lower frequency in larger samples. While genetic association 

studies may be underpowered to detect an association between a given single rare variant 
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and a complex trait33, recent extensions of mixed-effects models allows one to estimate a 

random effect representing the aggregate contribution of rare variants to phenotypic variance 

over and above common variation31,32. To date, a small number of recent whole-genome 

sequencing studies have reported evidence that rare variants account for a substantial part 

of the heritability of anthropometric, transcriptomic, and medical phenotypes34–37 (but see 

also 38,39 for counterexamples). Notably, rare variants, especially those in regions of low 

LD, captured a large part of the missing heritability for height and BMI, albeit with large 

standard errors40.

Here, we used deep whole-genome sequencing (mean depth 30x) from the Trans-Omics for 

Precision Medicine (TOPMed) program to estimate the heritability explained by variants as 

rare as MAF of 1 in 10,000 for individuals of European ancestry (up to 26,257 individuals), 

and 1 in 1,000 for African admixed individuals (up to 11,743 individuals). We performed 

extensive sensitivity analyses to test the influence of rare-variant population structure along 

with various analytic parameters on our SNP-based heritability estimates for tobacco use. 

The study protocol was approved by the Institutional Review Board at the University of 

Minnesota and the Trans-Omics for Precision Medicine (TOPMed) consortium. Informed 

consent was obtained originally by participating studies.

Results

Heritability estimates

We estimated heritability of four smoking phenotypes in samples of European ancestries: 

1) age of smoking initiation (AgeSmk, N=14,709) which measures the age at which an 

individual started regularly smoking; 2) cigarettes smoked per day (CigDay, N=15,384), an 

index of heaviness of smoking and the average number of cigarettes smoked per day as a 

current or former smoker, grouped into five bins, with higher numbers indicating greater 

use; 3) smoking cessation (SmkCes, N =17,827), a binary variable indicating whether 

a person is a current smoker; and 4) smoking initiation (SmkInit, N=26,257), a binary 

variable indicating people who ever smoked regularly (i.e., over 100 cigarettes) in their 

life. We stratified SNPs and short indels by their MAF and linkage disequilibrium (LD) 

so that we have a total of six bins (MAF 5–50%-high LD, MAF 5–50%-low LD, MAF 

1–5%-high LD, MAF 1–5%-low LD, MAF 0.1–1%, MAF 0.01–0.1%)32. Variants were 

assigned to the high-LD group when their LD scores were higher than the median of 

the variants in the same MAF bin (Table 1). After adjusting for the fixed effects of 10 

common variant principle components (PCs), 10 rare variant PCs, age, sex, and a random 

effect of study, total SNP-based heritability (ℎ2
SNP) from variants of all MAF was .226 

(SE: .116) for AgeSmk, .134 (.095) for CigDay, .283 (.127) for SmkCes, and .225 (.096) 

for SmkInit (Fig. 1). Heritability estimates from the two common-variant bins (i.e., MAF 

1–50%) – which includes one bin for variants with high LD scores and one bin for variants 

with low LD scores – were summed to compute total heritability attributable to common 

variants (ℎ2
common). Rare-variant heritability (ℎ2

rare) was computed likewise from the two 

MAF 0.01–1% bins, which were not grouped by LD score because most rare variants 

have low LD (see Methods). Across four smoking phenotypes, rare variants accounted for 

35~74% of the total heritability. The majority of the heritability attributable to rare variants 
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was in the rarest frequency bin (MAF 0.01–0.1%), except for CigDay where most ℎ2
rare

was attributed to variants with MAF 0.1–1% (Supplementary Table 1). When we further 

partitioned rare variants into their functional impact, most of the heritability was localized to 

lower functional impact (non-protein altering) variants (Supplementary Table 2).

Sensitivity analyses

We used a variety of sensitivity analyses to evaluate the influence of residual population 

structure and cryptic relatedness.

First, we evaluated the influence of increasing the number of PCs from 20 to 40 and 100 

(half of which derived from common and rare variants) on ℎ2
SNP to test whether greater 

number of PCs account for potential residual population structure. Results for AgeSmk, 

SmkCes, and SmkInit were unaffected (Fig. 2 and Supplementary Table 3). We observed 

model convergence issues when correcting CigDay for large number of PCs, resulting in 

negative ℎ2
SNP (e.g., −.12) attributable to the rarest MAF bin, which we deemed well 

outside the plausible range.

Second, we tested whether ℎ2
SNP, especially that of rare variants, were driven by individuals 

sharing long identity-by-descent (IBD) segments. Using FastSMC41, we detected about 

7.5 million IBD segments longer than 2cM and shared among at least two individuals 

(mean length=2.50cM, SD=0.50cM). After removing up to 178 individuals whose shared 

IBD segments stretch longer than 2.5% of the total genome length, ℎ2
SNP did not show 

meaningful differences with changes in ℎ2
SNP ranging from – 0.025 to 0.031 (Fig. 3 

and Supplementary Table 3). Third, to assess the influence of distant family structure on 

heritability estimates, we adjusted for the top 20 PCs from an IBD-based relatedness matrix 

in addition to the 20 PCs from rare and common variants and found ℎ2
SNP was not affected 

with the largest change in ℎ2
SNP being 0.013(Fig. 3 and Supplementary Table 3).

Fourth, previous studies indicated that rare variants are more likely to show geographical 

specificity42. While such geographic specificity was at least partially captured by our 

inclusion of study as a random effect, we went further by including a random effect of 

recruitment site (which is nested within a given study) in the model. After adjustment of site, 

ℎ2
rare of SmkCes was about 50% of the original estimate while ℎ2

SNP of other smoking traits 

showed little change (Fig. 3 and Supplementary Table 3).

Fifth, we obtained approximate null distribution of ℎ2
SNP  under the assumption that 

population structure explains the observed SNP-based heritability (i.e., genotypes of 

ancestrally close individuals are exchangeable). This was done by estimating ℎ2
SNP in 

samples randomly permuted within individuals close in ancestry as determined by a 

weighted sum of top 10 PCs with weights proportional to their corresponding eigenvalues43. 

We computed ℎ2
null from 100 permuted trials and found limited evidence of inflation as 

Jang et al. Page 4

Nat Hum Behav. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mean heritability estimates from permuted trials were near zero across all bins of four 

smoking phenotypes (Supplementary Table 4).

Sixth and finally, we estimated ℎ2
SNP in samples with decreasing control of population 

stratification by ascertaining samples with less stringent PC-based ancestry filtering 

thresholds (see Methods). The largest change in ℎ2
SNP was observed for SmkCes where 

the estimates were up to .10 higher in samples with less stringent PC-based filtering than 

in primary analysis, possibly reflecting sampling variations and residual population structure 

(Supplementary Fig.1 and Supplementary Table 3).

In summary, out of 36 comparisons (4 phenotypes × 9 conditions), ℎ2
SNP showed relatively 

large changes (ℎ2
SNP ± − . 10),  only for SmkCes when we adjusted for geographical site, 

or relaxed ancestry filtering. Our primary results presented in Fig. 1 are from the most 

stringent PC-filtering condition.

Pedigree-based heritability estimates

We removed closely related individuals when estimating the heritabilities described above. 

However, we were able to leverage thousands of related family members in TOPMed 

to independently estimate total narrow-sense heritability of our four smoking phenotypes 

in pedigrees (ℎ2
ped). These heritability estimates were derived using a single genetic 

relatedness matrix that included all individuals with at least one other close relative in 

TOPMed. The relatedness of closely related individuals was estimated from common 

variants which, when estimated for close family members, serves as a proxy for rare and 

common variant sharing. The relatedness of classically unrelated individuals (relatedness 

estimate (π)<.05) was set to be zero (same as KIBS>t in Zaitlen et al, 201322). This procedure 

provides an upper bound on the narrow-sense heritability estimate, to which we can compare 

the estimates of ℎ2
SNP described in the previous section and quantify any of the remaining 

missing heritability.

Using related individuals in TOPMed across cohorts (N up to 21,546), narrow-sense 

heritabilities for AgeSmk, CigDay, SmkCes, and SmkInit were estimated .343 (.075), .175 

(.066), .179 (.067) and .288 (.057), respectively. To check whether ℎ2
ped  was downwardly 

estimated due to relatively large proportion of unrelated pairs, we also estimated pedigree-

based heritability in Framingham Heart Study (N up to 3,024) which is composed of 

families as part of the study design. Similar estimates (AgeSmk .225, CigDay .244, SmkCes 

.195, SmkInit .299) were obtained in Framingham Heart Study as in the larger analysis of all 

available families, albeit with larger SEs. Estimates from pedigree analysis are presented in 

Fig. 3 and Supplementary Table 5.

Heritability estimates in African ancestries

We explored ℎ2
SNP  attributable to variants with MAF down to 0.1–1% for SmkInit 

(N=11,743) and common variants for other smoking phenotypes (N=6,796–7,549). After 
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adjusting for 100 PCs, admixture proportions of five ancestries, local ancestry, and the same 

demographic covariates as in European ancestry, common-variant-based SNP heritability 

was estimated as following: .098 (.091) for AgeSmk, .028 (.113) for CigDay, .075 (.120) 

for SmkCes, and .085 (.10) for SmkInit. Variants from MAF 0.1–1% additionally accounted 

for about 24% of phenotypic variance of SmkInit, leading to total SNP-based heritability 

(combining both common and low frequency variants) of SmkInit: .329 (.144). Heritability 

estimates for individual bins are reported in Table 2 and Supplementary Table 6.

Discussion

Using up to 26,257 whole-genome sequences, we found that about 13–28% of phenotypic 

variance of four smoking phenotypes in European ancestry individuals could be attributed to 

genetic variants with minimum minor-allele frequencies as rare as 1 in 10,000. This is about 

1.5–4.5 times larger than the previous SNP-based heritability estimates based on common 

variants alone.

This increase was largely driven by inclusion of rare variants with MAF 0.1–0.01%, which 

accounted for 35–74% of the estimated SNP-based heritability of smoking phenotypes in 

samples of European ancestries. Smoking cessation showed the highest ℎ2
rare (.209; SE 

.123), followed by age of smoking initiation (.153; SE .114), smoking initiation (.079; 

SE .091) and cigarettes per day (.054; SE .092). Different smoking phenotypes would 

in principle vary in their genetic architectures if they differentially relate to fitness or 

fitness-related traits. However, standard errors associated with these estimates prevent us 

from drawing strong conclusions about their relative magnitudes.

The contribution of rare variants observed here seem consistent with the action of negative 

selection. Under negative selection, harmful mutations are maintained at low frequency in 

the population, whereas under neutral model, common variants are expected to explain 

the majority (>90%) of the heritability28. The same selective pressures may apply to the 

heritability patterns found for common variants in this study. We found that most of the 

heritability from common variants was attributed to low LD variants in European ancestry 

samples. Consistent with this, Gazal et al. 201744 reported that common variants with low 

LD in low-recombination rate regions had larger per-SNP heritability than those with high 

LD. One possible explanation for this finding is that low LD common variants are more 

likely to arise recently than high LD variants. Therefore, the low LD variants have had less 

time to be pushed to low frequency or fixation by selection pressure, comprising a major 

source of the heritability attributed to common variants44.

Our suggestion that smoking traits have been under negative selection might seem 

surprising. While nicotine itself has been pervasive in the environment for millions of years, 

tobacco in its cigarette form represents an evolutionarily novel environment for humans and 

the selection against such traits is likely to be weak due to its recency. Nevertheless, genetic 

variants influencing smoking can affect multiple different traits more directly related to 

evolutionary fitness. For example, smoking is highly genetically correlated with age at onset 

of reproductive behaviors (especially with age of smoking initiation45), and many social 

and health outcomes such as education and metabolic diseases. Therefore, selection pressure 
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on these correlated traits can influence genetic architecture of smoking phenotypes45. More 

studies are needed to understand mechanisms that maintain the contribution of rare genetic 

variants to the heritability of smoking phenotypes in population.

We found that almost all the contribution from rare variants to ℎ2
SNP was attributed to 

genetic variants classified as having relatively low expected protein altering consequences. 

This may suggest an importance of rare regulatory genetic variation in the etiology 

of smoking behaviors. Despite limited contributions to heritability from protein-altering 

variants, it is still possible that they explain higher heritability individually40 given the 

smaller number of such variants (about 0.2 million protein-altering v.s. 20 million non-

protein-altering variants in MAF 0.01–0.1%) and presumably higher selective pressure 

against them. Unfortunately, high standard errors and overall small heritabilities from 

protein altering variants bin prevented us from drawing strong conclusions in the present 

data.

Current SNP-based heritability estimates were largely robust to our sensitivity checks. 

Heritability changed little after increasing the number of PCs and testing finer-scale 

population structure via permutation. The estimates also largely remained unaffected by 

removing individuals that share several long IBD segments or adjusting for top 20 PCs 

from the IBD relatedness matrix. Controlling for site of recruitment led to about a 50% 

reduction in rare-variant heritability of smoking cessation, while the three other smoking 

phenotypes were little unaffected. One explanation is that genetic risk of smoking cessation 

is stratified geographically46,47 and rare variants are sensitive to capturing such ecological 

clustering. However, it is not clear why the same pattern is not observed for other 

closely related measures of smoking. Alternatively, for practical reasons, studies recruited 

samples from sites with systematic differences in current smoking rates or disease status 

(e.g., clinical samples versus community controls), leading to a site and smoking status 

confounded. Therefore, we consider ℎ2
SNP of smoking cessation, obtained after adjusting for 

geographical site as a conservative lower bound.

There is a long, ongoing debate on the source of missing heritability for virtually all 

complex traits. We found that current ℎ2
SNP accounted for 60% to 100% of the pedigree-

based, narrow-sense heritability estimates (ℎ2
ped) across the four phenotypes, closing the 

missing heritability gap for smoking phenotypes. Note that our ℎ2
ped values are estimated 

from pedigrees from multiple cohorts, who also may span different generations (e.g., 

parents-offspring) and share markedly different smoking environments. We consider our 

ℎ2
ped  as the most relevant benchmark by which to compare ℎ2

SNP from our GREML results 

and past GWAS studies which also have varying sources of sample heterogeneity, including 

gene-environment interaction48 and varying heritability49. Twin studies, on the other hand, 

usually consist of large homogeneous cohort with well-defined pedigrees sharing most of the 

demography (i.e., monozygotic and dizygotic twins).

For individuals of African ancestries, we found that common SNPs and indels (MAF > 1%) 

accounted for 3~15% of phenotypic variance of smoking phenotypes, similar in magnitude 
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to existing studies18,20. We observed an additional contribution of rare variants (MAF 0.1–

1%) for smoking initiation, accounting for about 25% of smoking initiation liability. Note 

that estimating heritability in samples with complex population structure is in its infancy and 

how recent admixture influences causal allele frequency spectrum is not well understood. 

More research on this topic will be welcome.

Our findings should be interpreted in light of several limitations. First, although we used 

the largest WGS sample reported to date for heritability analysis, even larger datasets 

will be important. Larger sample sizes would allow greater precision in estimation and 

a more comprehensive assessment of the genetic architecture of these complex traits by 

finer partitioning by MAF and functional annotations. Second, even with the use of deep 

sequences, we did not fully reach the trait heritability, either as estimated using available 

pedigrees, or twin heritability reported in the literature. There remain many explanations, 

including ultra-rare variants (MAF <= .01%), other types of genetic variations (e.g., copy 

number variations) that are not in LD with the variants used here, and still other sources of 

heritable variation. Cigarettes per day showed the lowest SNP-based heritability and often 

encountered model convergence issues especially with a large number of covariates. Since it 

is a binned variable, its heritability may be more robustly estimated on liability scale50.

Third, although we carefully assessed the potential influence of population structure in 

extensive sensitivity analyses, existing methods may not be entirely capturing population 

stratification of rare variants 51,52. More studies are needed to understand the extent and best 

ways to handle it, although we are also sensitive to the possibility that such corrections may 

be counterproductive, removing meaningful heritable variance.

Fourth, our pedigree-based heritability estimates may be inflated by shared environment 

as we were unable to model genetic similarity and environmental similarity separately. 

Therefore, pedigree estimates may best be interpreted as an upper-bound on the SNP-based 

narrow-sense heritability. However, we expect the magnitude of inflation due to shared 

environment to be smaller than in typical twin studies given that our pedigree sample 

includes multiple classes of family relations who share much less of their environments than 

twins would.

Fifth, there is ample documentation of spousal similarity in smoking behaviors53–55 and 

one of the potential sources of this similarity, assortative mating, can artifactually inflate 

marker-based heritability estimates56. While recent studies have not found evidence for 

primary assortative mating on smoking traits in the genome57, more research is needed on 

this topic.

Sixth, genetic association signals of human behavioral traits can arise from multiple sources, 

not only from variants’ downstream biological influences on a phenotype of interest but 

also from its genetically correlated traits (e.g., education, income) along with indirect effect 

of parents and siblings’ genetics58–60. Current SNP-based heritability estimates include 

influences from multiple sources and could overlap with polygenic signals of socioeconomic 

factors given their substantial genetic correlations with smoking (|r|=.26~.55)18. With bigger 

sample sizes and studies of close families, future research can localize the origins of 
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SNP-based heritability and examine the genetic architecture of shared and distinct genetic 

components of smoking and its correlated phenotypes (e.g., education, income)61.

Seventh, smoking phenotypes were measured by one or two questions and were limited 

to those commonly collected in biomedical studies like those in TOPMed. This allows 

accumulations of large sample sizes across multiple independently-collected samples, but 

each measure is noisy and may reflect idiosyncrasies of participating studies. We attempted 

to account for the latter through inclusion of a random effect of study.

In conclusion, the present study expanded our understanding of the genetic architecture of 

tobacco use by showing that much of the missing heritability of smoking phenotypes can 

be explained by rare genetic variants. The use of WGS allows less biased estimation of 

SNP-based heritability by including virtually all potential causal SNPs down to a MAF 

of 0.01% in individuals of European ancestries and 0.1% in African ancestry, rather than 

relying on the degree to which imputed variants tag causal variants. The current study 

informs the genetic etiology of nicotine addiction and provides a benchmark for the future 

study of other complex behavioral traits.

Methods

Sample

We considered individuals of European ancestries in TOPMed (freeze 8, mean depth 

>30)62 measured for at least one of four smoking phenotypes for inclusion. Our data 

access application was approved by relevant cohorts in TOPMed. We determined European 

ancestries in two steps. First, we identified an initial ancestry-inclusive set by projecting 

TOPMed genotypes (N=137,977) onto genetic principal component (PC) axes from the 

1000 Genomes project8 (1000G) then used a k-nearest neighbor method to assign ancestry 

of TOPMed individuals with 1000G as a reference set. More specifically, we used online 

augmentation-decomposition-transformation to calculate PC scores of TOPMed individuals, 

which implements Procrustes transformation with an augmented data set (i.e., combining 

TOPMed and 1000G reference genomes together; https://github.com/daviddaiweizhang/

fraposa)63. Then, for a given TOPMed sample, we chose the top 20 reference individuals in 

1000G who were closest in terms of the Euclidean distance of 20 PC scores and assigned 

European ancestry when at least 87.5% of the reference individuals had European ancestry 

(Supplementary Note). This resulted in 38,915 individuals initially classified as European 

ancestry who also had at least one smoking phenotype. Second, after visually inspecting PCs 

1–4 of the selected individuals, we suspected residual population heterogeneity, especially 

in PC 4 (Supplementary Fig. 2). We then further restricted samples to those whose summed 

Euclidean distance of PCs 1–4 fell within the 1 interquartile range (IQR) of the European 

sample (N=38,915) identified in the first step. We additionally created samples using 1.5, 

2, 3 IQR and reserved them for sensitivity analysis (Supplementary Fig. 1–2). After IQR 

filtering, we only retained unrelated individuals. Relatedness was estimated with HapMap3 

variants (HWE p-value > 10−6, MAF > 0.01) using GCTAv1.92 to obtain a list of nominally 

unrelated individuals with pairwise relatedness (π < .025). We additionally removed 76–

190 individuals who showed very high rare-variant sharing (π > .25 in MAF 0.01–0.1% bin) 

who seemed to inherited small IBD segments inherited from distant non-European ancestors. 
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This resulted in the following final sample size per phenotype in Table 1 (N ranging from 

14,709 to 26,257).

Phenotypes

TOPMed is a consortium of independent studies, where DNA samples were sequenced and 

called in a unified way. Smoking phenotypes had previously been collected independently 

in each of the constituent TOPMed studies. Four smoking phenotypes, each representing 

self-report questions assessing different stages of tobacco use, were available across most 

TOPMed studies. We used the same definition and coding scheme as Liu et al., 201918. Age 

of smoking initiation (AgeSmk) measures the age at which an individual started regularly 

smoking. Cigarettes smoked per day (CigDay) was the average number of cigarettes smoked 

per day as a current or former smoker and grouped into five bins with higher numbers 

indicating greater use. For both AgeSmk and CigDay, lifelong non-smokers are excluded 

(set to missing). Smoking cessation (SmkCes) and initiation (SmkInit) are binary variables 

indicating former versus current smokers and never versus ever regular smoker, with case 

defined as current and ever smoker, respectively. These four variables were correlated 

but not redundant, each measuring distinct aspects of smoking (Supplementary Note, 

Supplementary Table 7). Descriptive statistics for each phenotype across cohorts can be 

found in Supplementary Table 8.

Genotypes, LD scores, GRM, and GREML-LDMS-I

Genome-based restricted maximum likelihood (GREML) estimates heritability by 

comparing phenotypic similarity to observed genetic similarity among distantly related 

individuals using a linear mixed model64. GREML yields biased estimates when causal 

variants are unevenly distributed as a function of LD and MAF31. To mitigate this bias, 

the GREML-LDMS-I method partitions SNPs into different LD × MAF bins32. We initially 

considered ~710 million genotypes that passed strict quality filters described elsewhere65. 

We additionally removed 95,750 variants with Hardy-Weinberg equilibrium p-values less 

than 10−6 in the European ancestry sample (N=38,915). Then, we calculated allele frequency 

separately for each phenotype using plink1.9 in a final sample that went through PC, 

IQR, and relatedness filtering. We stratified variants by MAF and then further stratified 

by linkage disequilibrium (LD) scores using the median LD scores within the two most 

common MAF bins. This resulted in six bins: MAF (0.05, 0.5] high LD, MAF (0.05, 0.5] 

low LD, MAF (0.01, 0.05] high LD, MAF (0.01, 0.05] low LD, MAF (0.001, 0.01], and 

finally MAF (0.0001, 0.001]. We stratified only the common variant bins by LD because 

most low-frequency and rare variants have low LD scores, and because more bins decrease 

estimate precision. LD scores, defined as the sum of squared correlations (r2) between a 

variant and all the variants in a region, were calculated using GCTA1.92 with default 10Mb 

window in the final sample combined across four smoking phenotypes (summary of LD 

scores presented in Supplementary Table 9). This process resulted in approximately 35 

million SNPs and indels (Table 1).

For each phenotype, we performed GREML-LDMS-I with the GRMs for the above-

mentioned six bins and cohort indicator matrix as random effects. The cohort matrix 

was an N × N matrix indicating whether a given pair of individuals belongs to the 
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same study (1, otherwise 0). The variance explained by cohort was included in total 

phenotypic variance, which could yield somewhat smaller heritability estimates than when 

the heritability is conditioned on cohort. We regressed out age, age2, sex and their two-

way interaction terms66–68 from quantitative phenotypes (i.e., AgeSmk and CigDay) and 

used residuals. Residuals of CigDay were further inverse-rank normalized to facilitate 

model convergence by smoothing its distribution. GREML-LDMS-I results from other 

types of transformations for AgeSmk and CigDay are presented in Supplementary Table 

3. We calculated 10 PCs from common variants (MAF>=1%) and another 10 PCs from 

rare variants (0.01%<MAF<1%) after LD pruning (plink –indep-pairwise 100 5 0.2 for 

common and 2000 10 0.02 for rare variants). These 20 PCs and sequencing center were 

entered as fixed effects in linear mixed model. The same demographic variables and 20 

PCs were entered as fixed effects for binary variables. We used GCTAv1.92 for both 

construction of GRM and GREML-LDMS-I analysis. We replaced original GRM diagonals 

with 1+ inbreeding coefficients (Fhat3 computed from the GCTA software) given the 

original formula tended to yield far higher variance of diagonals for rare variants than 

expected in theory (Supplementary Table 10)69. We allowed the estimates to be negative 

to obtain unbiased estimates. Heritabilities for binary phenotypes were analyzed under a 

liability threshold model70. Population prevalence was set at 0.15 and 0.42 for SmkCes and 

SmkInit, respectively, based on smoking prevalence in the UK Biobank dataset, to allow 

for ready comparison with this publicly available and widely-used dataset. For all traits, 

total heritability was calculated by adding heritability estimates of the six bins with SEs 

approximated by the delta method71.

Partitioning rare variant heritability

To further interrogate sources of rare-variant heritability, we divided rare variant bins into 

protein-altering versus non-protein-altering variant bins72. Functional impact of variants 

was assessed by snpEff 4.3 with “HIGH” and “MODERATE” impact categorized as 

protein-altering while “LOW” and “MODIFIER” categorized as non-protein-altering73. 

“HIGH” includes variants expected to have a disruptive impact in the protein, such as 

protein truncation and loss of function. “MODERATE” includes variants that are expected 

to influence effectiveness of the protein, such as missense and splice region variants. 

“MODIFIER” and “LOW” includes variants that influences non-coding genes or located in 

non-coding region and are usually considered harmless to protein behaviors. Details of this 

classification can be found in its website (https://pcingola.github.io/SnpEff/se_inputoutput/). 

Variance components were then estimated for a total of eight bins.

Sensitivity analyses

To evaluate the degree of sensitivity of our results to residual population structure, especially 

that of rare variants, and various analytic decisions, we conducted extensive sensitivity 

analyses. First, we performed GREML-LDMS-I with 40 PCs (20 common, 20 rare) and 100 

PCs (50 common, 50 rare) as fixed effects. Second, we estimated heritability after removing 

individuals whose total length of shared IBD segments stretch more than 2.5% of the 

genome (N=121–177 depending on phenotypes) to test whether heritability attributed to rare 

variants is primarily driven by a subset of samples sharing recent ancestors and presumably 

higher environmental similarity. Third, we also adjusted for 20 PCs from the IBD-based 
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relatedness matrix, in addition to the 10 PCs from common variants and 10 PCs from 

rare variants (40 total PCs). IBD-segments were estimated using 632,008 common variants 

(LD pruned by plink --indep-pairwise 1,000 50 0.6) with FastSMC70 with default settings, 

except we set the minimum IBD length >= 2cM. We used decoding files precomputed by 

the authors of FastSMC and only retained IBD segments with quality score > 0.1. The 

IBD-based GRM matrix was created by summing the length of the shared IBD segments 

in a given pair of individuals and dividing it by the length of the diploid human genome 

(3608 × 2 cM). Then, we derived principal components from the IBD-based relatedness 

matrix. Fourth, we added 53 recruitment sites nested within the cohorts as random effects. 

This additional control is meant to better account for rare variants that may geographically 

cluster. Fifth, we performed GREML-LDMS-I with permuted samples within genetically 

close neighbors35,43,74. For this, we created an N × N distance matrix populated by scaled 

Euclidian distance of PC 1–10 calculated from LD-pruned common variants for every pair 

of individuals. Then, we randomly exchanged genotypes of a given individual with one of 

their 100 nearest neighbors using sampling algorithms from LocPerm which is developed to 

control for populations structure in rare variant association test43. We estimated heritability 

in 100 replicates of permuted genotypes with the same demographic covariates and cohort 

used in the main analysis. Mean (ℎ2
null)  and SD of heritability estimates from 100 replicates 

were calculated for each bin and were tested against zero using a one-sided Z-test as 

heritability is bounded above zero (Supplementary Note). Last, we estimated heritability in 

samples with increasingly less strict PC-based ancestry filtering mentioned earlier (1.5, 2, 

3 IQR). The greater the IQR threshold, the more ancestral variation can be present in the 

resulting sample, the larger the sample, and the greater the chance of observing effects of 

population stratification.

Pedigree-based heritability

We created a GRM with all available samples including related ones after excluding 

pairs related greater than .80 to exclude identical twins and duplicates. To aid in model 

identification, we included cohorts that had at least 10 first-degree relatives defined as 

relatedness greater than .375. A list of cohorts included in this analysis is presented in 

Supplementary Table 11. We created GRM using common variants (MAF > 5%) and set 

GRM entries of pairs related less than .05 as zero and retained the rest of the entries as they 

were. This GRM was fitted together with a cohort matrix and the same set of fixed effect 

covariates used in the primary analysis. To test whether resulting ℎ2
ped is underestimated 

due to relatively low level of relatedness structure in the sample, we repeated the analysis 

without a random effect of cohort, using only Framingham Heart Study (FHS) which has 

high proportions of related individuals.

SNP-based heritability in African ancestries

We initially had 19,788 individuals who had either one of smoking phenotypes and were 

classified as African ancestry by the ancestry assignment procedure described earlier. We 

selected unrelated individuals (π < 0.025 by  applying pcairPartition function in the 

GENESIS package on kinship coefficients from pcrelate75 where familial relatedness 

is estimated with MAF (<1%) and LD-pruned (|LD|<.32) variants after accounting for 
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population structure. We additionally excluded 58 individuals who showed more than two-

way admixture as determined by global ancestry proportions of either South-Central Asia, 

East Asia, Native America, or Middle East greater than 10%. This resulted in sample 

size in Table 2. The resulting samples were predominantly African ancestry with recent 

European ancestry admixture (mean African ancestry proportion=83% (SD: 8.9%) and mean 

European ancestry proportion=15% (SD: 8.4%)). Ancestry proportions of each individual 

were estimated from local ancestry inference by RFMix76 which estimates ancestry of 

admixed individuals at each genomic segment of two homologous chromosomes, using the 

Human Genome Diversity Panel (HGDP) as a reference panel77 (Supplementary Fig. 3). 

Given the smaller sample size of African ancestry samples, we restricted the variants to 

be analyzed to MAF 0.1–1% for SmkInit (N=11,744) and common variants for the other 

three phenotypes (N=6,796~7,549). We applied the same analytic procedure as in European 

ancestry samples: 1) selected genetic variants with MAF > 2 and HWE p-value > 10−6, 2) 

partitioned variants into MAF (0.05, 0.5] high LD, MAF (0.05, 0.5] low LD, MAF (0.01, 

0.05] high LD, MAF (0.01, 0.05] low LD, and additionally MAF (0.001, 0.01] for SmkInit 

(Table 2), 3) calculated GRM for each bin and performed GREML-LDMS-I with the same 

set of demographic and cohort covariates as in European ancestry analyses. We additionally 

included 50 common- and 50 rare variant-based PCs, global ancestry proportions of five 

continents (Sub-Saharan Africa, South-Central Asia, East Asia, Native America, and Middle 

East) as fixed effects and local ancestry kinship (Supplementary Note) as a random effect to 

account for complex population structure in the admixed sample43,44
. Pedigree heritability 

was not estimated for individuals of African ancestries as SNP-based relatedness is no 

longer proportional to IBD in admixed population78.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SNP-based heritability estimates in the European ancestry sample for each of the six 

MAF/LD bins, and sums across bins.

Error bars represent standard errors. The “Rare” bin is the sum of the MAF 0.1–1% and 

MAF 0.01–0.1%. “Common” is the sum of the other MAF bins. “Total” is the sum of “Rare” 

and “Common”. HI and LO each indicate high and low LD. All estimates were adjusted for 

by demographic variables and 20 PCs (half of them from rare variants) as fixed effects along 
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with random effect of cohort except for CigDay which was adjusted for 5 common PCs to 

allow model convergence.
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Figure 2. 
SNP-based heritability estimates in the European ancestry sample from sensitivity analyses

Error bars represent standard errors. The figure shows SNP-based heritability estimates from 

different sensitivity conditions. Heritability was estimated after adjusting for 20 common 

and 20 rare variant PCs (“40 PCs”), 50 common and 50 rare variant PCs (“100 PCs”), after 

removing individuals who share IBD segments more than 2.5% of the total genome length 

(“long IBD”), after adjusting for the top 20 PCs from the IBD-based GRM matrix (“IBD 

PCs”), and after adjusting for recruitment site as a random effect (“Site”).
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Figure 3. 
Comparison of heritability estimates between current and published studies.

The figure shows SNP heritability estimates across different studies. Error bars denote 

standard errors. “Pedigree” and “Pedigree-FHS” refer to ℎ2
ped from whole TOPMed 

pedigree samples and FHS only. “WGS_EUR” and “WGS_AFR” refer to WGS-based 

SNP heritability estimates in individuals of European and African ancestries. Note that 

WGS_AFR is based on common variants only for all phenotypes except for SmkInit which 

includes the contribution from MAF 0.1–1% variants additionally. “Evans_imputed” and 

“Liu_LDSC” each refer to SNP heritability estimates from Evans et al. (MAF:1–50%, 

relatedness threshold=.0279) and LDSC analysis from a recent meta-analysis of tobacco 

use18. The red dotted line indicates the heritability estimate of smoking from a recent large 

meta-analysis of twin studies17.
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Table 1.

Sample size and number of variants per MAF/LD bin in European ancestry sample

Number of variants per bin (MAF and Linkage Disequilibrium) 
a

Sample size
b

5–50% - HI
c 5–50% - LO 1–5% - HI 1–5% - LO 0.1–1% 0.01–0.1%

AgeSmk 14,709 3,092,517 3,092,534 1,342,734 1,342,736 5,392,813 28,280,118

CigDay 15,384 3,092,240 3,092,269 1,341,881 1,341,882 5,435,505 20,415,037

SmkCes 17,827 3,092,593 3,092,594 1,340,764 1,340,771 5,413,019 23,483,166

SmkInit 26,257 3,092,454 3,092,475 1,341,068 1,341,071 5,395,579 21,108,704

a
This shows the number of variants per bin in 1IQR unrelated samples (π < .025).

b
Sample size of unrelated individuals

c
HI=high LD, LO=low LD
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Table 2.

Number of variants and SNP-based heritability in African Ancestry sample

Number of SNPs

5–50% -HI 5–50% -LO 1–5% - HI 1–5% - LO 0.1–1% Sample size

AgeSmk 4,298,268 4,298,322 3,415,787 3,415,847 - 6,909

CigDay 4,298,370 4,298,421 3,412,719 3,412,799 - 6,796

SmkCes 4,296,858 4,296,926 3,416,336 3,416,395 - 7,549

SmkInit 4,297,927 4,297,954 3,411,149 3,411,191 13,667,521 11,743

ℎ2
SNP

5–50% -HI 5–50% -LO 1–5% - HI 1–5% - LO 0.1–1% Total
a

AgeSmk .089 (.043) −.028 (.082) .016 (.051) .022 (.099) .098 (.091)

CigDay .076 (.041) .001 (.084) −.013 (.048) −.036 (.109) - .028 (.113)

SmkCes .008 (.040) .060 (.090) .031 (.054) −.024 (.115) - .075 (.120)

SmkInit .052 (.035) .023 (.072) −.022 (.041) .031 (.095) .243 (.133) .329 (.144)

a
Total=sum across five bins with MAF 0.1–50% for SmkInit and sum across four bins with MAF1–50% for the rest
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