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A dose response model 
for Staphylococcus aureus
Srikiran Chandrasekaran* & Sunny C. Jiang

Dose-response models (DRMs) are used to predict the probability of microbial infection when a person 
is exposed to a given number of pathogens. In this study, we propose a new DRM for Staphylococcus 
aureus (SA), which causes skin and soft-tissue infections. The current approach to SA dose-response 
is only partially mechanistic and assumes that individual bacteria do not interact with each other. 
Our proposed two-compartment (2C) model assumes that bacteria that have not adjusted to the host 
environment decay. After adjusting to the host, they exhibit logistic/cooperative growth, eventually 
causing disease. The transition between the adjusted and un-adjusted states is a stochastic process, 
which the 2C DRM explicitly models to predict response probabilities. By fitting the 2C model to SA 
pathogenesis data, we show that cooperation between individual SA bacteria is sufficient (and, within 
the scope of the 2C model, necessary) to characterize the dose-response. This is a departure from 
the classical single-hit theory of dose-response, where complete independence is assumed between 
individual pathogens. From a quantitative microbial risk assessment standpoint, the mechanistic basis 
of the 2C DRM enables transparent modeling of dose-response of antibiotic-resistant SA that has not 
been possible before. It also enables the modeling of scenarios having multiple/non-instantaneous 
exposures, with minimal assumptions.

The opportunistic pathogen, Staphylococcus aureus (henceforth SA), is carried by 10 to 20 percent of the human 
 population1. It causes infections of the skin and soft tissue, but can also invade the bloodstream. Methicillin-
resistant SA or MRSA, is used to describe the SA strains that are resistant to penicillinase-stable beta-lactam 
antibiotics such as  methicillin2 (unless specified otherwise, SA refers to methicillin-sensitive SA). The Centers 
for Disease Control and Prevention (CDC) estimated 80,461 invasive infections and 11,285 deaths due to MRSA 
in the US in  20113.

Modeling infectious disease dynamics has helped inform policy for disease  management4. In the case of SA, 
past studies have investigated person-to-person transmission dynamics in  hospitals5–7. The transmission of SA 
from the environment to humans has received comparatively less attention although SA has been detected in 
various environmental  compartments8,9. Infectious disease models that account for environmental pathogen 
loads build upon the SIR (susceptible, infected, recovered)  model10–12. In such models, the human population 
is split into three compartments: susceptible(S), infected(I) and recovered(R). The total population size is held 
constant and people move between compartments at rates defined in the model  (see11,12 for details). Pertaining to 
the environment, susceptible individuals become infected individuals at a rate dependent on the bacterial load in 
the environment, which is tracked in a fourth  compartment11,12. The relationship between bacterial load (dose) 
and the rate of a susceptible person becoming infected (showing response) is understood using dose-response 
models (DRMs), which are well studied in the context of quantitative microbial risk assessment (QMRA)13. 
Classical DRMs relate the dose of pathogen a person is exposed to and the probability of that person showing 
observable symptoms/response.

The current DRM for SA is reported by Rose and  Haas14. It is based on the experiments of Singh and 
 colleagues15, where volunteers’ forearms were inoculated with SA. Their skin was cleaned with alcohol before-
hand to reduce the resident microflora and potentially enhance SA growth. Measurements of SA density on the 
skin (growth data) and the probability of developing lesions (dose-response data) were reported for multiple 
initial doses of SA. The Rose-Haas (RH) DRM begins with a quasi-mechanistic model of SA growth on skin, 
fitted to the growth data of Singh et al.’s experiments. This model of growth is used to compute a revised dose, 
which is used with the classical exponential  DRM13 to predict the probability of a person developing lesions. 
The revised dose was set to the area under the SA density vs. time curve (limited to 6 days), to account for the 
effect of the duration of SA on the skin. We refer to this as the RH model in the rest of this study. Additional 
experiments were performed by Rose and  Haas14 to elucidate what happens in the initial stages when the skin 
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resident microflora is not removed. These conditions are assumed to better reflect a real exposure to SA, and the 
RH model parameters were tweaked to fit this data.

In this study, we present an alternate model of infection kinetics called the two-compartment or 2C model. 
Simulating this model as a stochastic process gives rise to dose-response probabilities, and we fit this model to 
the SA data from Singh et al. In comparison with the RH model, the 2C model has a fully mechanistic basis 
in the kinetics of SA growth. This allows it to be applied in cases with (1) non-instantaneous  exposures16, (2) 
environment-host transmission dynamics with multiple exposures, without assuming independence between 
exposures and (3) antibiotic treatment and presence of an antibiotic resistant  strain17. Simulating non-instanta-
neous or multiple exposures with classical DRMs may require assuming that each of the two doses are independ-
ent of each other, without accounting for the duration between the two doses. Antibiotic concentrations and an 
antibiotic-resistant subpopulation may affect disease outcomes (e.g, if the patient can be treated with a certain 
antibiotic or not)17. A fully mechanistic model fitted to sensitive strains can be applied to resistant strains with 
transparent assumptions e.g., any difference in fitness between strains can be attributed to the change in one or 
more parameters.

The 2C model is also able to estimate the probability of becoming a carrier—individuals who harbor the 
pathogen but do not show symptoms. These individuals form a significant proportion of the population in the 
case of SA exposure 18. In comparison with the RH model, and approaches in classical dose-response19,20, there 
isn’t a need for additional data on carrier response (also called infection response, in contrast with symptomatic 
or illness response)—the estimates are generated directly from data on symptomatic response and stochastic 
simulations of the 2C model.

The manuscript is organized as follows. We first introduce the 2C model, going over the associated assump-
tions and mathematical behaviors of the deterministic model. Then we investigate the stochastic analogue of 
the 2C model, which provides a method to computationally evaluate (symptomatic) dose-response and carrier 
probabilities. We then describe the relevant experiments and data on SA infection reported in the Singh et al. 
study and the Rose and Haas  study14,15. We proceed to fit the 2C model to the experimental data and determine 
the unknown parameters. Finally, we close with a simple example on how this modeling approach may be applied 
to determine infection probabilities of MRSA in the environment.

Results
Deterministic model of kinetics. It has been observed that bacteria transferred to a host sometimes 
undergo an initial decay before growing in numbers to cause  infection15,21,22. We hypothesize that this is due to 
the existence of two distinct states of the bacterium, S1 and S2 (Fig. 1a). Bacteria in S1 experience decay upon 
encountering the human host. This is because they are in the lag phase, adjusting to the nutrient availability in 
the host  medium23. Meanwhile, the host’s immune response coupled with the lack of active cell division in the 
lag phase results in a net reduction of numbers. Bacteria in S1 can transition to the state S2, in which they are 
well adjusted to the host. The transition from S1 to S2 captures the activation of virulence genes and the range 
of mechanisms adopted for pathogenesis by the bacteria e.g. adhesion, invasion, etc. In this state, they exhibit 
density-dependent or logistic growth, which consists of the log and stationary phases. Suppose h(t) and i(t) rep-
resent the density of bacteria in S1 and S2 respectively. The differential equation representing S1-S2 dynamics 
is given by:

Here, r1 (units: day−1 ) is the rate of death of cells in S1. r2 (units: day−1 ) is the S1 to S2 transition rate. r3 
(units: cm2/(CFU day)) is the logistic growth rate of cells in S2 and imax (units: CFU/cm2 ) is the logistic carry-
ing capacity. The r1h(t) term captures decay in the S1 state and r2h(t) captures transfer from S1 to S2 state. The 
r3i(t)(imax − i(t)) represents the density-dependent growth, since growth is slowed down at extreme values of i(t) 
(e.g. i(t) = 0 or i(t) = imax ) and is higher at intermediate values of i(t). r3 controls the overall growth rate at all 
values of i(t). In contrast with the commonly used Monod model, the logistic model does not explicitly account 
for substrate concentration. In addition to this, other effects e.g. space limitations are implicitly captured in the 
density-dependent term. We call this model the two-compartment or 2C model (Fig 1a). We note that the units 
of r3 and imax are in terms of two-dimensional skin surface area on which SA is being studied here.

The model has two critical points at (0, 0) and (0, imax) (Fig 1b). The former is unstable whereas the latter is 
asymptotically stable. In other words, if the system is nudged away from the unstable critical point at (0, 0) (by 
addition of bacteria to the system), it will move towards the other critical point at (0, imax) . This system repre-
sents the density of bacteria and not their numbers, as differential equations are not restricted to integer values.

Stochastic model of dose-response. The stochastic version of the 2C model is captured with continu-
ous-time Markov chains (CTMC)24, which restrict bacterial numbers to integer values. The first order reactions 
associated with r1 and r2 in Eq. (1) are easily represented in this framework by a simple death  processes24 with 
death rates r1 and r2 respectively. The r2 term in Eq. (2) is represented by a simple birth process with birth rate r2.

Interestingly, the stochastic version of the logistic growth in Eq. (2) ( r3i(t)(imax − i(t)) ) is more involved, and 
can be modeled using the logistic growth  process24. In essence, the logistic growth process captures stochasticity 

(1)
dh(t)

dt
= −r1h(t)− r2h(t)

(2)
di(t)

dt
= r2h(t)+ r3i(t)(imax − i(t))
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that arises in logistic growth, when the number of species in the system is small. It consists of two birth processes 
(rate constants b1 , b2 ) and two death processes (rate constants d1 , d2 ), given by the elementary reactions defined 
in Table 1. The relationship between the rate constants of these elementary reactions and the rate constants of 
deterministic logistic growth ( r3 and imax ) is discussed  elsewhere24 and shown in Eq. (3).

Here, we note that the factor 2/A stems from the size of the system (2D system with surface area = A), which 
needs to be accounted for in systems with second order  kinetics25. The first order components (associated with d1 
and b1 ) are density independent and reflect the death and division (birth) of cells independent of other cells. The 
second order components (associated with d2 and b2 ) are density-dependent and reflect the growth and death of 
cells as influenced by the number of cells in their neighborhood. d2 can be viewed as the effect of resources com-
petition among cells, creating an upper limit on the population size. We interpret b2 as the effect of cooperation 

(3)
b1 − d1 = r3imax

b2 − d2 = 2(−r3)/A

Figure 1.  Model overview. (a) 2C model schematic. (b) Phase plot of 2C model. (c) Variations in 2C stochastic 
simulation (each region bounds mean ± SD of 50 simulations). (d) Human health outcome classification 
according to SA dynamics.

Table 1.  Elementary reactions of logistic growth process.

Reaction Type Order Rate constant Rate constant units

I
d1
−→ φ Death 1 d1 day−1

I
b1
−→ I + I Birth 1 b1 day−1

I + I
d2
−→ I Death 2 d2 bacteria−1 day−1

I + I
b2
−→ I + I + I Birth 2 b2 bacteria−1 day−1
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between individual SA cells, where signals from one (or more) cell(s) enhance the fitness (growth rate) of other 
cells e.g. by quorum sensing. This effect increases with increasing cell numbers.

These first and second order rate constants ( d1 , b1 , d2 and b2 ) affect the total S1 + S2 population dynamics 
in interesting ways. To explore this, we start with the case where the numerical values of the deterministic rate 
constants ( r1 , r2 , r3 and imax ) are known. These numerical values along with the constraints imposed by Eq. (3) 
mean that among { d1 , b1 , d2 , b2 }, only two need to be picked to fully determine the behavior of the system. Picking 
d1 and b2 , we examine 3 cases i) b2 = d1 = 0 ii) b2 = 0 , d1 > 0 and iii) d1 = 0 , b2 > 0 . For each of these cases, we 
examine the variance in total bacterial load (in states S1 + S2, given by (h(t)+ i(t))× A ) around the mean total 
bacterial load. The mean is obtained by numerically solving the differential equations (1) and (2).

Setting b2 = d1 = 0 (no density-dependent division + no density-independent death) results in a small vari-
ance around the mean S1+S2 (see Fig. 1c). Setting either b2 or d1 to nonzero values increases this variance dra-
matically. This increased variance increases the probability of the total bacterial load reaching 0, in which case 
the person will not develop disease. This result indicates that b2 and d1 serve as knobs that control variance in 
bacterial populations, to influence pathogenesis and dose-response outcomes. Increasing b2 or d1 increases the 
odds of the bacterial population going to 0 and causing no disease symptoms.

We took this idea further to estimate the response probabilities using the concept of individual effective dose 
or  IED26, which we first illustrate conceptually. Individuals with a total bacterial load above IED are assumed to 
develop  symptoms16,27. The total bacterial load is given by (h(t)+ i(t))× A and IED is represented by ithresh (units 
CFU) (see Fig.1d). Individuals in whom bacteria die out completely are assumed to be unaffected. Individuals 
who fit neither category, in whom the bacterial load takes an intermediate value, are assumed to be the asymp-
tomatic carrier population. Here, h(t) and i(t) (units CFU/cm2 ) are multiplied by A to match the units of ithresh.

Here we have assumed bacteria in the un-adjusted S1 state contribute to the response probabilities. This 
assumption is valid if the contribution of h(t) to the sum h(t)+ i(t) is small. This is the case if 1) bacteria in S2 
are growing while bacteria (see Eq. (2)) in S1 are dwindling (see Eq. (1)) in numbers, with passing time and 2) 
bacteria in S1 die faster than bacteria in S2 grow ( r1 > r2).

This concept is implemented in practice by repeatedly performing stochastic simulations. The probability of 
showing symptoms or response ( ̂Pres ) is found by calculating the fraction of simulations where total bacterial 
load exceeds ithresh as represented by Eq. (4)

where n is the number of stochastic simulation repetitions performed.

Parameterizing 2C model for SA. We parameterized the model with data from the Singh et al.  study15. 
Singh et al. performed a clinical trial wherein the participants’ hands were cleaned with alcohol and inoculated 
with a known dose of SA. The area was covered immediately with a patch of polyethylene film to uniformly dis-
tribute the inoculum underneath it. Bacterial densities in the covered area were measured over 6 days (growth 
data). This was used to identify the parameters r1 , r2 , r3 and imax by minimizing the sum of squared errors in the 
log10 bacterial loads as given below.

Here fSSE is the minimized objective function value and y is the observed SA density. The subscript c sums over 
the 3 different initial inoculating densities used in Singh et al.’s experiment while the subscript j sums over the 
observation time points. Since initially none of the bacteria have adjusted to the host, we set i(0) to 0 and h(0) 
to the initial inoculating density i.e., hc(0) = yc(0) . Using this objective function assumes that both un-adjusted 
and adjusted cells are picked up while taking measurements.

Singh et al. also counted the number of people who developed lesions by day 6 for a given dose (dose-response 
data, see Supplementary Table S1). These data were used to identify the rate parameters ( b2 and d1 ) and the IED 
( ithresh ). For this, the response probability was estimated using Eq. (4). This predicted response probability ( ̂Pres ) 
was used to minimize the  deviance13 given below.

Here fdev is the minimized deviance. The subscript index j distinguishes the different SA doses that were admin-
istered. n̂res is the total number of people showing response for a given dose of SA. Pres and P̂res are the observed 
and predicted response probabilities. n̂tot is the total number of people given a particular dose of SA. The dose-
response data was verified to exhibit a trend according to the one-tailed Cochran-Armitage  test13 with ZCA = 6.29 
(P= 1.55× 10−10 , n=6, significance level = 0.05 ). Minimization of Eq. (6) was carried out by an optimization 
approach outlined in the Methods.

Some points of note are: (1) The probabilities of unaffected and carrier outcomes are computed by their 
corresponding fractions of simulations i.e., simulations with zero load and simulations with intermediate load 
( 0 < (h(t)+ i(t))A < ithresh ). (2) The b and d values discussed in this paper correspond to stochastic rate con-
stants ( cµ as discussed in Gillespie’s  paper25) and not the standard (deterministic) rate constants. Stochastic rate 
constants are used for simulating bacterial numbers (CFU) with CTMC, whereas standard rate constants are 
used for simulating concentrations or densities (CFU/cm2 ) with differential equations. (3) imax , the carrying 

(4)P̂res =
no. of simulations with (h(t)+ i(t))A ≥ ithresh

n

(5)fSSE = min.
∑

c

∑

j

(

log10
(

hc(tj)+ ic(tj)
)

− log10
(

yc(tj)
)

)2

(6)fdev = min.
∑

j

−2

(

n̂res,j log

(

Pres,j

P̂res,j

)

+ (n̂tot,j − n̂res,j) log

(

1− Pres,j

1− P̂res,j

))
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capacity, is interpreted as the mean of the SA densities observed in a population of individuals in whom SA is 
not wiped out. It differs from the IED ( ithresh ), which is interpreted as the SA load above which an individual 
from the population will develop skin lesions.

In summary, we used the data from SA growth on the skin to identify the parameters of the 2C model’s dif-
ferential equations (Eq. (1), (2) which are r1 , r2 , r3 and imax ). And we use these parameters, along with the data 
on dose-response for skin lesions, to identify the parameters of the 2C models’ logistic growth process (which 
are b2 , d1 and ithresh).

Assessing deterministic model fit. We first present the fit of the 2C model to SA growth data and the 
determination of the parameters r1 , r2 , r3 and imax . We used a Bayesian algorithm for fitting these parameters, 
which provided samples from the posterior distributions of the parameters. These samples differed in parameter 
combinations, and how well they fit the growth data (given by fSSE , see Eq. (5)). A subset of the outcomes was 
used to identify the parameters of the logistic growth process. Specifically, we used the top 100 samples ranked 
by fSSE , and also present the quality of these for completeness.

As expected from its design, the 2C model recapitulates the broad trends in the growth data of Singh et al. 
as seen in Fig. 2a. These include the initial dip in SA density, followed by an increase and stabilization at a high 
SA density that is independent of the initial inoculation. Both rank 1 and rank 100 solutions by fSSE appear to 
fit the data well. This fit is better (lower value of fSSE ) than that exhibited by the earlier RH  model14, which also 
exhibits a sharper dip.

Among the fitted parameters, r3 and imax were identifiable while r1 and r2 were not tightly constrained by the 
data (Fig. 2b–f). The top 100 of these parameters are more tightly constrained, with log10 r1 largely lying in [0, 2] 
and log10 r2 largely lying in [-2, 0]. The joint posterior of log10 r1 and log10 r2 (Fig. 2d) shows a somewhat linear 
relationship between these parameters, with a majority of r1 > r2.

Assessing stochastic model fit. The stochastic component of the 2C model fits the dose-response data, 
with some samples performing better (or having lower fdev ) than others (Fig. 3a). This trade-off helps distin-

Figure 2.  2C deterministic model fit and parameters. (a) 2C model fit to growth data. (b, c, e, f) Posterior 
distribution of parameters with top 100 solutions ranked by objective value Eq. (5). (d) Joint distribution of the 
posteriors of r1 and r2 parameters.
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guish the suboptimal solutions (those solutions which have a higher fdev and a higher fSSE than some other solu-
tion) from the optimal ones. We refer to these optimal solutions as Pareto rank 1 solutions (squares in Fig 3a), 
which form a boundary referred to as the Pareto front.

The Pareto rank 1 solutions (Supplementary Table S2) presented above were found by setting d1 = 0 & 
b2 > 0 in the 2C stochastic model. We compare two of these Pareto rank 1 solutions with other baseline models 
including: (1) the approximate beta-Poisson (aBP)  model13, (2) the quasi-mechanistic DRM of Rose and Haas 
(RH model)14 and (3) the 2C model with b2 = 0, d1 > 0 with results presented in Table 2 and Fig 3b. The 2C 
model with d1 = 0 fits the data as well as the aBP and RH models at the 0.05 significance level. Setting b2 = 0 
fails to fit the data at the 0.05 significance level, and this hypothesis is rejected. Since b2 cannot be zero, we fail 
to reject the hypothesis that cooperation between individual SA cells is necessary for pathogenesis of SA . The 
unaffected, carrier and response probabilities for the 2C model with d1 = 0 are presented in Fig. 3c. As expected 
with increasing dose, the unaffected probability decreases and the response (lesion) probability increases. The 
carrier probability increases to a maximum around a dose of 103 CFU before dwindling.

Parameters in the absence of alcohol pre-treatment. As mentioned earlier, Singh et  al.15 treated 
their subjects with alcohol before administering SA, effectively reducing the resident microflora load on the skin. 
In comparison, Rose and  Haas14 reported an experiment similar to Singh et al.15 but the subjects were inoculated 
with SA without alcohol pre-treatment (skin was only cleaned by soap 24 hours before the experiment). We pos-
tulate the skin microflora in the Rose and Haas experiment exerts a competitive pressure that acts as a constant 
first order death rate on SA.

Figure 3.  2C stochastic model fit and parameters. (a) Comparison of fits to the growth data ( fSSE ) and dose-
response data ( fdev ). (b) Dose-response probabilities for the 2C model cases, along with RH and aBP models. 
Two colored 2C models with d1 = 0 are the solutions at the extremes of the Pareto front in A. (c) Outcome 
probabilities as a function of dose for the 2C model with d1 = 0 and fdev = 6.34.

Table 2.  Summary of model fits.

Model fdev χ
2
degrees,0.05

P Conclusion

2C(d1 = 0) 6.34 χ2
4,0.05 = 9.49 0.18 Fail to reject

2C(b2 = 0) 16.24 χ2
4,0.05 = 9.49 2.71×10−3 Reject

approx. Beta-Poisson 6.40 χ2
4,0.05 = 9.49 0.17 Fail to reject

RH model 5.50 χ2
5,0.05 = 11.07 0.36 Fail to reject
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To determine the fit of 2C model to this more realistic scenario, we explore the model fit under the following 
two hypotheses. The first hypothesis (which we call r∗1 ) assumes that only the un-adjusted SA are affected by the 
resident microflora (see Supplementary Methods, Supplementary Fig. S1a, S1c). The second hypothesis (which 
we call rmf  ) assumes that both un-adjusted and adjusted SA are affected by resident microflora to an equal extent 
(see Supplementary Methods, Supplementary Fig. S1b, S1d). We note that other hypotheses may also fit the data 
from Rose and  Haas14. However, we restrict ourselves to the hypotheses that can be modeled with one additional 
parameter. This is because there are only 4 data points including the initial condition. Using 2 parameters to fit 
the 3 remaining data points will result in over-fitting. For example, the corrected Akaike Information Criterion 
(AICc, which corrects for small sample sizes)28 for such a case (3 data points, 2 parameters) will be infinity. The 
limited data also hindered testing of absolute goodness of fit. Other hypotheses that can be captured by a single 
parameter change (e.g., resident microbiota affecting r2 ) did not yield good fits (data not presented).

The fit of these two hypotheses, along with the approach of Rose and  Haas14 are compared in Fig. 4a. The 
RH model fits the data better because of the additional parameter. The r∗1 hypothesis shows a sharper decline 
than the rmf  hypothesis, but the available data does not strongly support either hypothesis as indicated by their 
similar SSE values.

The difference between the hypotheses is striking when looking at their outcome probabilities with increasing 
dose. The r∗1 hypothesis predicts a significant Pres at higher doses (Fig. 4b) whereas the rmf  hypothesis predicts 
almost zero Pres and carrier probability (Fig. 4c). This is because the adjusted SA also dies out from the inhibiting 
effect of the resident microflora.

Discussion
A 2C model for SA dynamics on the human skin was developed and fitted to data on SA pathogenesis. By assum-
ing that SA transitions from an un-adjusted state to an adjusted state, the model is grounded in first principles. 
The stochastic aspect of SA dose-response emerges naturally from a stochastic simulation of the growth kinetics. 
In addition, the model predicts carrier outcomes without additional data.

The 2C model fits the data on SA pathogenesis well, which is similar to the fit of the classical aBP DRM and 
the RH model. Yet, these models differ in their assumptions and the underlying biological mechanism they 
represent. For instance, the aBP assumes within-host variability of bacterial infectiousness and that the net 
bacterial load on an individual decreases with time. This decrease in bacterial numbers happens until the infec-
tion begins (initiated by one pathogen - the single hit hypothesis), and the model does not account for the SA 
regrowth observed in the kinetic  data15 thereafter. The quasi-mechanistic RH model accounts for SA regrowth, 
and applies the exponential model to a revised dose which includes regrowth. This revised dose accounts for 
duration of SA presence on the skin explicitly. The 2C model accounts for the duration implicitly, since any SA 
that stays longer on the skin is likely to seed the explosive growth around the 3 day mark.

A second way in which the biological underpinnings of the 2C model differ from the aBP and RH models 
has to do with the cooperation hypothesis. The aBP stems from the single hit hypothesis and assumes complete 
independence between the bacteria in causing infection. The RH model does not assume complete independence 
between the bacteria - the logistic term assumes that the SA interact with each other to limit their growth rate, 
resulting in a negative feedback loop. An example of this is the competition for a limited resource such as physi-
cal space, nutrients, etc. in the stationary phase. In addition to this negative feedback loop, the 2C model with 
b2 > 0 posits the existence of a positive feedback loop. That is, there is some mechanism by which SA cooperate 
to produce a response, and the magnitude of this response is greater than that expected from the sum of the 
contributions of each bacterium. We note here that the cooperation discussed herein differs from the classical 

Figure 4.  2C model in the absence of alcohol pre-treatment. Two different hypotheses ( r∗
1
 and rmf , described in 

text) were investigated. (a) Fit of the two hypotheses to data from Rose and  Haas14. (b) Outcome probabilities 
for r∗

1
 hypothesis. (c) rmf hypothesis respectively.
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interpretation of cooperation in the context of the multi-hit  hypothesis13. The multi-hit hypothesis posits that 
the barrier to infection is slowly broken down by the accumulated stress from multiple infectious pathogen units. 
There is no notion of direct cooperation between different infectious units as in the 2C model.

One possible explanation for the cooperative behavior above is the existence of one or more molecular 
pathways with signaling molecules that enhance growth. In addition, the agr quorum sensing  system29–31 and 
the LexA/RecA SOS response  system32,33 activate virulence genes to enhance pathogenesis and likely play a role. 
Hence it is possible to interpret the S2 compartment as a mathematical abstraction that accounts for factors 
that increase pathogenicity e.g. toxin production. Of course, other hypotheses such as within-host variability 
(as modeled by the aBP dose-response model) are also sufficient to explain the dose-response data. For future 
validation of the cooperation hypothesis, we suggest a dose-challenge experiment involving two treatments in a 
suitable host system. In the first treatment, a known dose of SA (say N1 ) is applied to a known area of A1cm

2 . In 
the second treatment, the same dose of SA is applied to a larger area A2 such that A2 > A1 . If there is cooperation 
between the bacterial units (as predicted by the 2C model), one would expect more responses (such as develop-
ment of lesions in the host) in the first treatment. A few challenges arise such as ensuring uniform dispersal 
of SA in the inoculating dose. Additionally, there should be sufficient difference between A1 and A2 such that 
the posited signal can diffuse in treatment 1 but is diffusion-limited in treatment 2. The effects of between-host 
variability and acquired immunity can be reduced by performing both treatments simultaneously in each host.

We believe that the 2C model proposed here is a natural extension of our previous work—the Simple Death 
dose-response model (SD)17. Both models attempt to derive dose-response in a host as a consequence of stochas-
tic kinetics of the pathogen in the host. This stochastic kinetics is modeled with CTMC, and response probability 
is evaluated based on the outcomes from a large number of stochastic simulations. A kinetics-based approach 
also allows us to apply the same DRM to antibiotic-resistant counterparts of pathogens, with the underlying 
assumptions being clear and intuitive. For example, we investigated the outcome probabilities for patients in a 
hospital where the bedrails are contaminated with MRSA (see Supplement). The results largely depend on the 
choice of hypothesis ( r∗1 or rmf  ), assuming that MRSA kinetics on the skin mirrors that of its methicillin-sensitive 
counterpart. If there is evidence of greater (or lesser) virulence of a MRSA strain, perturbations to the kinetic 
parameters, such as a higher r3 or lower ithresh , may be investigated. So far, there has not been an effective model to 
predict the risk of MRSA. The 2C model framework provides a unique opportunity for MRSA risk computation.

Some key differences between the 2C and SD DRM include the underlying kinetic processes considered, and 
the final form of the model. The SD DRM only accounts for bacterial die-out and predicts response if the bacteria 
survive past a threshold time point. The 2C model does not define such a threshold time point, and predicts 
response if pathogen numbers explode and cross a defined value (the IED). This also allows the 2C model to 
elegantly recover the carrier probability by evaluating the simulations.

This power of the 2C model comes at the price of challenges in implementing and parameterizing the 2C 
model. The SD model has an analytical expression which is trivial to evaluate and fit given traditional dose-
response data. In comparison, the 2C model needs a large number of stochastic simulations to evaluate its 
parameters. This task is certainly computationally intensive, but modern clusters and software allow large-scale 
parallelization to navigate this challenge. Perhaps a bigger impediment to the 2C model is its requirement for 
kinetic data (in addition to dose-response data) to evaluate its parameters, which are not easily available for 
other pathogens. Parameterizing the 2C model for SA in the absence of alcohol pre-treatment was hindered by 
limited data as well. Experiments generating relevant kinetic data, and analytical expressions/approximations 
for the response and carrier probabilities of the 2C model are topics for further research.

Data availability
Codes reproducing the results in this publication are available on GitHub at https:// github. com/ Jiang LabUCI/ 
TwoCo mpart ment.
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