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ABSTRACT

. ; . . L N NEL
etween the electronic configurations (n£)  and (nt)

Trteraction b
P WL N
Vnoat can bz ented for (nf)" by the addition of effective three-

1

varticle operzicrs To the Hamiltonian, the effective two-particie parts

neing athorbed by Cpevators already present in the elementary linear theory
of interaction. For f electrons, the three-particle cperatocrs

nine operators ti that are lebelled by irreducible repre-
£ R and G.. The effects of three ¢f them can be reproduced by
Twe farﬁiﬂle oterators; hence only six additicnal parameters are regquired to
descrih@bthe interaction. Tables of matrix.elements are given, and the prop-

Ccperators % with respect to symplectic symmetry and guasi-spin

Iy
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I. INTRODUCTION

The use of effective operators is a.common feature of atomic spectros-
copy. For example, the spin-orbit interaction for a many-electron system is
Zig(ri)gi-gi; but within a given Russell-Saunders multiplet it can be replaced
by the effective operator AS-L, where S and g  are the vector sums of the
spins Sy and orbital angular momenta ji of all the electrons i. The ﬁaram-
eter. A depends on the detailed character of t(r), but for the purpose of
fitting the levels of a multiplet, it is often convenient to regard it as an
adjustable parameter.

This principle can be extended to allow for the term displacements
produced by configuration interaction. The effective operator qg?; which
possesses elgenvalues OL(L+1), significantly improves the‘energy—level struc-
ture of configurations of d electrons.l This is ascribed to its ability to
represent ﬁhe pérturbing effect of those configurations that involve two-elec-
tron excitations.2 Formally, another operator BQ‘ should also be included to
make the substitution rigorous to second order in perturbation theory. Although

>

more difficult to detect, its existence is now beyond dispute. For f electrons,

a third operator is necessary to take into account two-electron excitations; it

I
has been introduced by Trees in his analysis of PrITI MfB. A convenient gen-
eral form for these operatﬁrs is
(k) (k)
v = o (1, >'yﬂ- )
ik
where the tensor operator Xﬂk) is related to the unit'dperator 3‘K> by

k
the equation5 Xﬂk) = B‘ )[k]l/g. The operator q@?, for example, 1s simply

© related to ¥y the remaining effective operators involve other scalar products

Vi for which k 1is odd. ©Since the ordinary Coulomb interaction within a
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configuration (nz)N can be expanded in terms of the yk for which 'k 1is even, :
the total electrostatic Hamiltonian, including both real and effective parts.,
can be expressed as a linear combination of the y(k) for which 0 < k <.24. _ S
The question how to representvthe single-particle excitations has been
recently aftacked by Réjnak and Wybourne.6 They'found that effective operators
can again be constructed to absorb such interactions; but unlike those so far
considered, these operators_have necessarily to include three-electron compon-
ents of the type
s

y(kk‘k”) = ) >

-1 1"
| k k' k )<v (k)
hELE) “q.q',q”

aq' g

[——

The reason for the occurrence of three-electron operators can be most easily

seen 1if the method of second quantization is used.7
The number of parameters that are needed to preface. the various oper-

ators V(kk’kf) is not as large as might at first appear. If either k; k'

or k' is zero, V(kk'k") reduces to an operator of the type Vi It also

turns out that k, k' and kJ must all be even, and that an interchange of

any two of them leaves V(kk'k") invariant. Their upper bound is set at 2%

by the triangular conditions. For f electrons, these considerations limit

the triad (kk'k") to the ten possibilities-{222), (22L4), (2kk), (2L6), (Lhk),

s
2

Y
2

(LLe), (266), (L66), (666), and (226). This accounts for the statement that

_ , ~ 6,8
ten parameters are needed to completely describe the three-electron operators. ’

A partial parametrization has recently been made by Rajnak,8 who greatly im-

5. In order to probe the »5

proved the fit with the observed levels of PrIII Lf
nature of the perturbing configurations, she took as operators the linear v v

combinations
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L))

.
X(',20) = 22 (7P ey A {]f; 5 G o),
where the sum runs over even values of k”, exclﬁding k" = 0. The various
X(kk',£') for a given 4' re sufficient to répresent the three-particle
part of the effect of (nﬂ)Nil(n’ﬂ’);l oﬁ (nﬂ)N. The assumption that exci-
tations of the tyﬁev f -h :caﬁ:be neglected limits £' <+to 1 and 3, for -
which there are nine operators X(kk’,z') in all. Howeyer, Rajnék found
fhat five of these operators are sufficlent to obtain a good fit with experi-
ment, and thaf £he‘inclusi§n_of more operators leads to little improvement.
There ié littlé_doubt that analyées of free-ion configurations such
as fu, f5; or f6 will be.attempted‘soon. The uséfalness of the three-par-
ticle effecfive operators will theﬁ be tested much more'critically than has
been rossible for fB. It is_the yurpose of this paper to present a detailed
analysis.of these operators, thereby giving a theoreticai basis to the method
of parametrizaﬁion. From a.practical standpoint, fhe pfincipal yesult is
that for f electrons the number of additional parameters that are needed to
represent the'three-particie operators are not ten, as appears from the argu-
ment above, but only. .six. To arrive at this result, a study is made of the
symmetbtry properties of the operators. These properfies are of considerable

interest in themselvés, and strikingly illustrate the great value of the

thecry of continuous groups in atomic spectroscopy.
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II. TWO-PARTICLE OPERATORS
In his analysis of the Coulomb interaction within configurations of
equivalent f electrons, Racah9 constructed the following linear combinations

of the operators Yy : ' S 5

In terms of the irreducible representations W and U of the groups ’R7 and

G, .respectively, these linear combinations correspond to WU = (OOO)(OO),

2
(000)(00), (4%00)(k0), and (220)(22). By using W and U +%to label the eigen-

functions as well, Racah was able to relate matrix elements of each e, *to
others with similar WUSL descriptions. This technique éxposes the properties
of the Coulomb interaction in a striking aﬁdvprofound manner. It also suggests
an approach to the paraﬁeterization of the three-particle operators. For sup-
pose linear combinations ti of the V(kk'k") are constructed that correspond.
to definite representations AWU. If we find a WU designation that has already
arisen in the treatment of the e then there is a possibilit& that the effect
of the corresponding operator ‘ti can be taken up merely by chahging t©the pa-

rameters of the Coulomb interaction.
.

Since operators .Tor odd k have also been included 'in the Hamil-

Ix

tonian, the number of irreducible operators available for absorbing the effects ¥

of the operators €. 1s even larger than might at first appear. The possible v
i ,

WU designations that arise from this source are easily found. The cperators

{~ Q
V\L), X(5): and XK5) transform like the representation (110) of R. (see Racah”);

7
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_operators G for G, and R.. In order, they are 5G(R7) - 3N (for eh);
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the scalar products Vi must therefore correspond to the S. states that occur

in the Kronecker product (110) X (110). Including the appropriate representa-

tions U of Gg, we find that the operators Y for odd k can be assembled

into three linear combinations e, e., and e, for which WU = (000)(00),
A h

b(lll)(OO), and (220)(22) respectively. A detailed construction (with arbitrary

normalization) gives

= + +

= s - 2 + 5

66 llyl - 3y5.

9

The eigenvalues of e)» s and

The operator e, 1s identical to Q0 of Racah. 5

unlike those for'eé and 65’ can be easily expressed in terms of Casimir's
2 {

lEG(Gg) - lOG(R7) (for e and lL(L +1) - lQG(GE) (for e6). The parameters

5)} §

i Co .
E assoclated with the operators e, (1 > L) are related to the parameters

&, B, and 7y of Rajnak and Wybourne6 through the identity

EM[D'G(R?)-BN] + E5[12G(G2)-10G(R7)] + E6[%L(L+i)-12G(G2)]

= o L(L+1) + 8 G(Gg) + y‘G(RY) + 5 .

This corresponds tc using
6
L e

i=0

BT
1

as the total two-particle part of the effective electrostatic Hamiltonian for

the configuration fN.
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III. COUPLED TENSORS

The tensors"x(z), v(u) and Xﬁ6) are the'basic operators for the con- ]

strﬁction of the linear combinations ti of the V(kk'k"). They comprise 27
components in all, and transform according to the representations WU = (200)(20).
Sinée the ti must be totally symmetric under the interchange of any two elec-
trons, they must all Qorrespond to the representation [3] of the-unitary'group
U27. The branching rules for the reduction Qf several representations [A] of

U27

uously determined by dimensional considerations and the knowledge that [2] must

to representations W of R7 are given in Table I. They can be unambig-

contain the representations associated with the completely symmetric operators
e, (0 <1 < k). The dimensions D[A] are included in the table.

oS

To find the group-theoretical descriptions of the operators b, we have
only to pick out the representations W that occur in [3] and that at the same
time contain a representation DK of R5 for which K = 0. Nine such representa-
tions exisﬁ; they are listed wifh the accompanying repreéeﬁtations U of G2
in Table II. Each, ti is a linear combination of the V(kk'k"). Since we have
given ten possible triads (kk'k") in Sec. I, it might appear that Table II is
incomplete. However, v(226) is iden%iéallyizero, since the triangular condi-
tion on k, k' and k" is not satisfied. This fact, wﬁich reduces the nﬁmber of
three-particle parameters to at most nine, seems to have been overlooked in
previcus work.

The actual constructién of the operators ti involvés coupling coef- "
ficients in which representations of U27, R7, GE’ R5) and‘R2 appear. For some
representations U, a givenvrepreséntation of R5 occasionally occurs more than ¢

once; the additicnal symbol 7 is then required to make the designation unam-

biguous. The operator
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£(WU) = 2 ([11(20Q)(20)kq; [11(200)(20)qu*i[2]w’U’¢'k”,_q”)

X ([Q]W*U'T'k",-g”; [13(200)(20)x"q" | [3]WU00)

where the sum runs over W'U't'kk'k"qq'q", is the scalar component of a gen-
' eralized tensor transforming as WU. On factoring out the vector-coupling (VC)
coefficients and summing over hﬁi%j, 1t becomes

t(wu) = 5 (kk*k"iwu) V(kk*k*) , | - | (1)

where the sum runs over even non-zero values of k, k' and k"; and where

(xx'k"|WU) = éu_w, ({11(200)(20)x + [1](200)(20)k* [(2lw'utt k")
: w'u't! : : .
x ([2]W'Ur ek + [1](200)(20)k"] [5]W00) . (2)

The operators b, ére»idéntified with the t(wu) according to the listing in
Table I. Thus t, = ((hao)(ﬁe)). |

To find the coefficients (kk'g"[WU),‘the two coupling coefficients of
Eq. (2) must be calcuiated; Tt is conv%nient to use atheorem of Racah9 to
‘make the factorization |

([zjw'U'T'k“ + [1](200)(20)&“[[3]wvo)

= ([zjw"+ [l](éOO)l[5]W)(W’U'T'k"7+ (206)(20)k”[WUo).

Thé factor ([11(200) + [l](QOOjILEJW'), which arises when an.analogous decom-

position 1s carried out for the other coupling coefficient, can be taken equal

to +*1. The part that remains can be easily calculated in this case by means of-
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the Wigner-Eckart theorem. In this way we get, for k, k' and k" even,
((200)(20)k + (200)(20)x'|(200)(20)x")

= (7/55[k"])l/2 (fg(edo)(zo)lknv(k')Hfg(zoo)(eo)lk”),

((200)(20)k + (200)(20)x' | {220)Ux")

- (5/120x" )2 (£*(200) (20) v’ E £t (220) k)

((éoo)(eo)k + (2009 (20)x ' | (400 ) (40) k")

= (7750 M2 (£%(220) (20) v )1 £0(222) (20) k")

. ' ‘
The reduced matrix elements of y‘k ). can be readily obtained by using the

relation yﬁk') = [k']l/g H‘k‘>

and referring to the tables of Nielson and
Koster.lo The numerical constants in the above equations are determined by

insisting that the coefficients be normalized according to

: .71vl!
S (WK | WUy K+ WUt K ) (WU K+ WQUZTQKQ}M U't'K)

- 8w H) (0,00 B(n 1)
where the sum runs 6ver UlUQTlTeKlKQ . |
The coefficients (W'U't'k" +"(zdo)(zo)k“|wuo) are rather more dif-
ficulf to evaluate, since some of them involve'reéresentations W and U
that do.not occur in the classification of the states of £ . To deal with
them, we adapt the projection method used by Nufter and Nielson for fractional

parentage c_oefficients.ll Taking the labels a and b to refer to the two

parts W'U'Tt'k" and (200)(20)k" of a coupled system, we write

|wuo) = 2 : (W'u't'x" + (200)(20)x"|WUO)|W'U't'k", (200)(20)k", 0)
u',t',k" 2 :
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and solve for the coefficients by operating first with

56(W) - 56(w') - 5G(200) - b G(U) + 4k G(ur) + & a(20) (3)
. and then with the equivalent~operator 2(25(5)°E£<§)) . On equating the two

results, a system of simultaneous linear equations is obtained from which the
coefficients can be calculated. This is the immediate extension to the group

of the method of Stevens for calculatiﬁg vC coefficients.12

(5)'Vb(5>)-

Ry

" A difficulty arises in using (Eé Its matrix elements are

given by

(wute'x", (200)(20)k",01(Xé(5>135<5>)|W‘UhT"k', (200)(20)k',0)

=.-[[k'1[k”1}‘l/2 (W'U'T'k”HV(B?HW'U"T”k‘)((eoo><2o>k”nv(5)n(200><eo>k'>,

but the reduced matrix elements for W' = (400) do not appear in the tables of
Nielson and Koster.lo Fortunately, c¢((40)(10)(40)), the number of times the
identity representation occurs in the triple Kronecker product (40) x (1C) x (Lo),

in unity. Moreoyer,_(%OO) contains the sole répresentatiOn.(MO) of G,. Hence

we can write

((uoo)U'T'k“Hv(5)H(uoo)U"T”k') ; A ((222)(uo)¢'k”Hv(5)H(222)(ud)T”k*).

The constant A 1s immediately found to be -2 by plcking out the states of

highest weight and using the fact that in terms of Weyl's operators Hi Tor

)6-1/2 13

0 o .3
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An accidental degeneracy occurs for W' = (400). For both pairs (420)(L0)
and (600)(60) of WU, the expression (3) is 8/3. To separate the coefficients,

we extend the projection method to G2. As equivalent operators, we use

(g 5.y (9,

) ~b gnd ‘ ' ' 4

2¢(u) - 2 G(d’) - 2 ¢(20) + x" (x"+1)/28 .

By these techniques, the reéuired‘coupling coefficients (W'U't'k" + (eoo)(eo)x”1WUo)
cén be found. They are assembled in Tables III and iV;

The factor LB w2 + [1](200)) remains. It can be calculated for
the W' of interest by demandlng that (kk' k"[WU) be symmetric with respect to the
interchange of any two of the triad. kk k! The results are set out in Table V
The (kk'k"|WU) themselves are given in Table VI. This table completely defines

the operators ti. The rows are orthonormal in the sense that
= n(xk'k") (kk 'k WU) (ke k" [W'UT) = s(wWW') s(UU') ,
where the sum runs over the nine distinct triads (kk'k"), each with associated

degeneracy n(kk'k"). TFor convenience, n(kk'k") is listed in Table VII.

It is interesting to note that
| o 1/2. K k' k"L
(kk'k"[(000)(00)) = {28[x][x"][k"])/1L485) 53 3 f .
It follows that for the complete scalar tl.,

- (28/1485)1/2 = e Ix(ke,3)

where the sum runs over even non-zero values of k and k'.
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IV. MATRIX ELEMENTS

By means of Eq. (1) and Table VI, the matrix elements of the operators
ty can be rapidly exéressed in terms of those for V(kkfk”). The latter were
very kindly supplied by Dr. K. Rajnak, wﬁo had already caléulated them as an
intermediate step to finding the métrix elements of X(kk’,ﬂ').8 The results
for the ti gre given in Table VIII; the numbers F are multiplicative constants
common to all members of a column. - The abbreviated notation of Nielson and
Kosterlo is used to labéi the étates Y and V¥' of f5; for example, MS-sfands
for (111)(00)4s, and 2D1 for (210)(20)2D.

.Table VIII is extremely rich in examples .of a group-theoretical nature.
Every zero corresponds to the absence of an identity representation in a triple
Kronecker product, that is, to the vanishing of c(WW'W") or c(UU'U"). For
éxample, the equation e((1r)(22)(11)) = 0 implies (2Hl|t6|2H2) = 0, since
2Hl, %y, and 2H2 correéppnd to the representations (ll),'(Eé) and (21) of Gy
Whén an identity representation ocpurlence in'a triple Kronecker product,
the WignerfEckart-tﬁeorem cén often be applied to relaté the matrix elements

of different operators. For example, the equations

i5h(26)l/2‘(f5 (210)(11)2L|t2|f5 (210)(11)°1)
22(35)%/2
1/2

(£ (210)(11)2LL¢6|f5 (210)(11)%1)

= 5(13) 2 (¢ (210)(11)2-Llé5|f3 (210)(11)°)

~hold for both values of L (1 or 5) because tg; t6’ and e, all correspond to

3
. the representation (22), for which c((11)(22)(11)) = 1.
Sometimes the numbers ‘¢(WW'W") and c(UU'U") exceed unity. Instead

of being simply proportional the matrix elements ofioperators belonging to the
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same representation are now related by linear equations. For example, c((21)
(Lo)(21)) = 2. TFor the operator e, [which corresponds to U = (40)], Racah
introduced the quantities ((21 lxl 1(21 and ((21){X2(L)!(21)), in terms

of which the matrix elements of e, can be expressed for anj representation (21)

in the f shell. These quantities can equally well serve as suitable basic sets

for the operators t, t5, and t7, all of which correspond to (4C). Thus we

find
112 (£7(210)(21)L] 6, | £7(210)(21)°L)
- (15/2001)7/2 (1) % ()](21) + 5(21/715>1/2(<21)\xg(L)!(21>)
and
112(5005)1/2 (f5 (210)(21) th [f 216)(21)2L)
= -y (ie)) - 7 <<21).’,X2,<L>.H21))
for allr L. |

V. PARAMETERS
The methods of the previous section can be eXﬁended to solve the
parametrization problem raised in Sec. II. To begin with, we.note that
c(ww'(600)) = O for all representations W and W' thét.occur in the clas-
sification of the f electron state;. It follows that the matrix elements of
t9 are always null, and hence this operator can beldropped from the effective
Hamiltonian. Secéndly, é(WW‘(MOO)) is zero for all pairs W and W' theat

3

occur in f7 except one, .namely that defined by W = W' = (210).' In this case

it is unity. Hence the matrix elements of t5 [which corresponds to (400)]

-3
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are proportional to those of st From Table VIII, the exact relationship is

found to be
1u(u290)1/2 (f5Y|t5|f5W') = - (f5 Y]eglfB v

Since % is a three-particle operator while: e, is a two-particle operator,

5

the generalization to fN-runs
1&(&290)1/2 (fNYIt5|fNY’) = - (N-E)(fNYIeE]fNY')

It is clear that the effect of t in the effective Hamiltonian is completely

>

absorbed by the parameter E2 assoclated with the operator e,
The matrix elements of the complete scélar tl are dilagonal with
respect t0 all gquantum numbers. For fB, they take on just three values,

corresponding to W = (111), (100), and (210). . However, the two-particle -

effective Hamiltonian already contains three independent completely scalar

operaﬁcrs, namely €y’ €5 and S It follows that the effect of tl can be

I
absorbed by the parameters EO, El, and E . (In actual fact, EO and El suf-

fice.) Thus t like . ¢ can be dropped from the effective Hamiltonian.

l) 5}

Although this is as far as we can go on strictly general grounds, there
remains the possibility that other operators are dispensable. This would be
the case if the matrix elements of t2 were reproducible by some combination of

those of e and eg (which correspond to the same WU as t2) for all the states

of f3, or 1f the matrix elements of t5 could be constructed from those of 5>

e e, and e_. [which, like % correspond to U = (00)] for all the states of

l) 5 5)
f5. Detailed analyses show that fortuitous simplifications such as these do

Z
not occur. Nor does any linear relationship exist for all the states of £’

between matrix elements of tu, t7 and €5, although the operators all corres-

pond to U = (40). The actual numerical values of the matrix elements of the
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operators ti do not permit us to go beyond what is allowed on generallgroup-
theoretical principles. We conclude that the effect of. the three-particle
'operators can be adequately represented by the addition of

£ 10 t5T5 + tuTu + t6T6 - t7T7 - t8T8
to the two—farticle Hamiltonian, provided the parameters .Ef ‘énd Ti, are
regarded as freely adjuétablei Thus only six, and. not ten; additional param-
" eters afe required to describe the effect.of the three-particle operators.

t is>extremely likel& that this is the reason why Rajnak found that more than
five additional parameters led to littie improvément in the'fit bétween theory
and experiment for PrIII. The objection that she réached the limit with five
rather thaﬂ six parameters largely disappears when 1t is noticed that the uppér
2F multiplet has npt.been observed experimentally.. Being essentially of a léwer
seniority than all the others, it is quite likely that its futufe inclusion in
the analysis will demand = sixth additional parameter. However, too much weight
should not be put on arguments of this kind, since the residual discrepancies

‘bétween experiment and theory are of the same order of magnitude as néglected
interactions, such as'SPin—spin and spin-other-orbit; and what constitutes a
meaningful improvement in the fit is not altogether clear.

To express the strengths of the operators X(kk',£'), Rajnak introduced
the paraméters Y(kk',£'). For £' = 1 and 3, there.are nine of them in all.
Unfortunately, they cannot be unambiguously related to the parameters Ti. This
is because the operators X(kk',£'), on close examination, turn out to be related

through the equation

S 1ax(22,1) + 2Lx(22,3) + 5(22)1/2x(u2,1) = 66X(42,3).

wr



-15- ) UCRL-16321

They are therefore not linearly independent, and the values of Y(kk',4') given

by Rajnak for PrIII cannot be used to derive unique values for the Ti'

VI. SENICRITY
The treatment so far has been confined to the configuration fB. The
straightforward way to_find the matrix elements of‘the operators ti for any
configuration fN is to set up a.chain calculation with f5 as its starting point.

The matrix eleménts'for'fN aré related to those of fN—l by means of the formula
: y — o N-l— \iy
(e ) = 31 (v (T T s | 0, ()

wheré the éum runs over ¥ and ¥Y'. The fractional parentage cocefficients

(Y(1¥) and (¥'(|¥') have been tabulated by Nielson‘and Koster. *O Fquation (M).
is the extension fo tﬁree-particle operators of Eq. (1) of Racah.” -

Although Eq. (h) completely éolves the'problem of finding the matrix

A elemenfs of the operatqrs ‘ti’ it isiof great interest to investigate the im-
plicaﬁions of group theory. Many of the numbers c(uu'u") and c(WW'W'")

éhat are required have already been given by Racah in his analysis of tﬁe
operators ei; those that remain ére set out in Tables IX, X, and XI. The
'LKrpnécker products listed by Nutterlu were extremely useful in Qonstructing
.these tables. - Their funétion i; to allow us to extend the arggments used in
lSec. IV %o relate.the matrix elements in different chfigufations. For example,
the fact that c((21)(21>(h2))-=.l implies that the numbef A in the equation

(wa(21)3L1t8lwa3(21)SL)r= A(f?(ElO)(El)SLit8lf5(210)(21)SL)
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b

is independent of L. A detailed description of such methods is given elsewhere.

-

N

No use has yet been made of the idea of seniority or of its group-theo-
retical counterpart, symplectic symmetry. It might seem scarcely worthwhile to
pursue the subject, since the basic operators Xﬂg)) Xﬂh)} and‘x<6> from which
the ti are constructed do not span a complete representation of the symplectic

group Splh' Hence 1t appears that we cannot assign irreducible representations
(c) of Splk to our operators. However, 1t is only necessary that the matrix
elehents for a given ti Qithin f3 be- proportional to those of an operatorv

of well-defined symplectic symmetryvfor us to enjoy the advantages of fhis Sym-
metry throughquﬁ the entire f shell. XEven if a direct proportionalitylof this
kind is unobtainabie, there is always the possibility that two or more operators
of well-defined symplectic symmetry can be found to reproduce the métrix elements

of the given operator ti.

To this end, we introduce the three-particle operators

K k' k"yik k' k"

1 i

/
Wik 'k",kk'k") = zg

U

=
=

where the sum runs over mnm'm" qq'q” and h £ 1 £ j. The amplitude of the

(kk)

double tensors W is defined by

(s 2l sn) = 112 Y2

The tensors 'K(Kk> for ktk - even transform accordling to the representation

1
(1100000) of Splh' 5 Just as we found the permissible representations W and
U  to which the linear combinations ti of the V(kk'k") belong, we may find
the representations (o) of Spiu to which the linear combinations u, of the

Rl

W(kKk'k",kk'k") belong. We impose the condition that k+k, k'+k', and k'"+k

L 1S

TR n

A e O e Sy s

YL et

,_.___._.,_. .."_:’.a.. PO

.o

TRt i
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be even. The branching rules U27 —>R7 are replaced by U90 _>SP1M' The complete

~ tensorial character of the u;  may be found by studying the reduction Splh—>

SU2 X R7’ which separates out the spin and orbital structure. Representations
of SU2 are written DK. The descriptions of the operators u, are given in
Table XII. There are 30 of them; this number coincides with the number of pos-.

(k) (with

sible operators W(KK;K”,kk’k”) that can be constructed from the w
K+k even) without violating any triangular conditions.

At first sight, Table XII appears discouraging, since every WU used in
labelling the t, (1= 2,/3, h; 6, 7, 8) occurs against at least two different
operators u; - This seems to imply that‘every ti has first to be expressed as a
linear combination of the Uy before useful applicationscan be made. However,
the irreducible representations (0) used to describe the étates oflfN are all
of the type (11+--10:+:0), in which v symbols 1 and 7-v symbols O appear. |
[Such a representation is conveniently abbreviated to (v)!] It turns out that
c((v)(v')(55000OO)) =0 for all v and,v’Q. Hence the 11 operators oy (EOEiEBO)

-all have zero matrix elements, and can be ignored.. Thﬁs the matrix elements of
t6, t7, and t8 are proportional to those of uli, u18’ and u19’ sincé these are
the only three u, remaining that correspond to W = (L20). For calculating. their
matrix elements, the operators t6, t7, and. t8 can therefore be regarded as be-
longing to the representation (2211000) of Spiﬁ. The numbers c((v){v')(2211000))
are given in Table XITT.

The representation (222), coriesponding to the operators t5 and -t
occurs in the decomposition of both (1111116) and (2211000). The situation for
t2 is worse, since (220) occurs in the decomposifion of three représentations
(6). In these cases, the operators themselves must be broken down to determine

how their matrix elements stand with respect to seniority. In doing this, it

is convenlent to introduce the concept of quasi-spin, this being the most
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natural way to study the dependence of the matrix elements on N.  For complete-

ness, c((v)(v')(1111110)) is given at this point in Table XIV.

VII. QUASI-SPIN
The theory of quasi-spin can be based oh the triple tensor operators
éﬁqsz)) which are related to the usual creation and annihilation operators by

the equations_

aiqii)m - a; m,
2 Vg g, s
s+
a(Q_S£> _ (—:L)S ﬁ*‘ms‘hnz a .
—A_m -m msmf
27" 1

The coupled tensors §KKKK) = (éﬂqsl)‘%(qsl))(KKk) contain as special cases the

(Kk)).

éecond-quantized forms for the double tensors Zi Qy

5= - %[ﬂ]l/g x‘OlO) The gquantity —%[2]1/2 X(lOO)

For example,

is defined as the quasi-

spin Q.

oA

- Its quantum numbers (Q, MQ)lcan be used to label eigenfunétions, and it

turns cut that for the states of EN with seniority v,

Q = (21+1-v)/2, My = -(2g+1-w)/2

1f we know that one of our operatbrs ti behaves as a tensor of rank X with
respect to quasi-spin, then the dependenée on N of its matrix elements between

- states of fixed quasi-spin Q and Q’ is contained in the expression

»
¥

(-1)%Mg] LR
M

My O Mg

R NP o
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This result follows from an application of the Wigner—Eckart_theorem to quasi-
spin; a détailed account is given in Ref. 7. It may happen, of course, that a
given ti does not correspond to a unlque rank KQ In_this case, it must be de-
composed into component operators with well-defined XK values.

To begin the program of assigning ranks X to the operators ti, we
use the fact that for f. electrons the X(KKk) with K+k+k odd can be regarded

as the infinitesimal operators of the group R28' Furthermore, the states of

£ ith even N form the basis for the irreducible representation (1/2, 1/2...
1/2, 1/2); those with 0dd N span- (1/2, 1/2 ... 1/2, -1/2). These results are
proved elsewhere.7 It can also be shown that

(1/2, 1/2...1/2, *1/2) x (1/2, 1/2...1/2, ¥1/2)

= (0...0) + (110...0) + (11110...0) + ... + (11...1 #*1), (6)
in which either the upper or the lower sign is taken throﬁghout. -If we
construct operators that transform accofding to irreducible representations
(w) of R28’ only those corresponding to the representations on-the‘right-hand
éide of Eq. (6) have non-zero matrix elements. 'Nowj§(loo) and‘ﬁ(OKF) (with
K+k odd)jform the operafors of the subgroup SUQ,X Splh of R28. Hence we
have only to find the decomposition of those representations of R28 on the
right in Eq. (6) into representations of SU, x 8p,, to obtain the association
between quasi-spin and symplectic symmetry. In the quasi-spin formalism, an
r-particle operator is "expressed aé sums over 2r-fold products of the operators
. a (qsl). The 28 cbmponents of a(qs£> transform like (10...0) of R28* so it
~ 1s clear that fof three-particle operators we may reétrict our attention to
representations (ll...lO...C) which contain no morevthan.six symbols 1. The
brahching rules for the relevant representatioﬁs of R28 are given in Table XV.

The gquasi-spin multiplicity i1s represented by a superscript to the represen-

 tations (o) of 8Py -
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VIII. OPERATORS

It can be seen from Table'XV that the representation (2211000) of : s

'Splh occurs once only, and with a qua;i—spin rank XK of 1. t follows that
the dependeﬁce of t6, t7, and t8 on N is contained ;n the expression (5) if

we put K = 1. Thus we obtain

(va‘lfltilfNV‘i") = [(7-1)/(7-v)] <vaW(til.fva‘) RS
(7)
(e, | e - [(16-v-n)(rev)/b(8-v) 12 (Vv le, |2y ),

where, in both equations, i = 6, 7, or 8. These equations completely solve

e s oA A St bt e

the problem of the N dependence of fhe matrix elements of t6, t7, and tS
taken between states of given seniority. The coefficients in the above equa-

tilons are characteristic of K = 1 tensors and are identical to those in Egs.

5

(69b) and (67) of Racah,l which correspond to the component 5(llOOOOO) in

the reduction of (110...0) of Rg-

The operators t5 and t) correspond to W = (222), and, as mentioned
in Sec. VI, they share the characteristics of (2211000) and (1111110). For
- )
7, their only non-zero matrix elements are diagonal with respect to (111) and

(210). Moreover

c((lll)(lll)(222))'= c((elo)(élo)(Eez)) =1.

S0, in constructing other sets of matrix elements corresponding to (222), we
have only one useful parameter-—the magnitude of the matrix elements of the
guartets rélative to those of the doublets. A particular value of this parém-

eter will give the matrix elements of U corresponding to (1111110)(222)(00).

‘ b 2
Now the grandparents of 20 of f5 are 1, ?I, K, ?L, and the two 2H terms of

2

£,  But 20 nas a seniority of 5, for which ¢((5)(5)(1111110)) = O; hence the
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matrix element (QOlu7]20) must. be 2ero. This condition can be used to fix

the parameter in question and thus determine the matrix elements of u7 for

f5. They are tabulated with.a convenient normalization under the heading
(Y‘t%i?‘) in Table XVI. The matrix elements oﬁ Uy corresponding to
(2211000)(222)(00), are easily obtained (apart from an arbitrary normaliza-
tion) by interpreting the orthogonality of functions corresponding to (2211000)
and (1111110) in terms of matrix elements. They are entered'in'Table XVI under
the headiﬁg (Y\tg\%‘). A precisely similar analysis can be performed for.tu;

the entries in Table XVI under tj and b correspond to (o) = (1111110) and

(2211000) respectively. The equations

uo(lo5)l/2 t5 = Bté - 3!
(8)

280(15015)1/2 t), = 8ti-5tﬁ

decompose t, and t) into parts that correspond to (1111110) and (2211000).

3
From Table XV, we see that (1111110) is associated with the unidue quasi-spin
K = 3; and we have already found that.(EEllOOO) corresponds to K=1. The de-
pendences on N of the matrix elements. of the component parts'of t5 and th’
taken between states of given seniority, are thus completely determined. For
our purposes,_the primed and doubly-primed operators aré closely enough defined
by the entries of Table XVI and the knowledge that they behave like three-
particle operators. Equatioﬁ (4) can be used to construct their matrix ele-
ments for states for which v 5 3.

There only remains te, for which W = (220). This operator is more

complicated to treat than t5 or th’ but the general.approach is similar. The



2. UCRL-16%21

only new feature is that the representations (1111000) and (2200000) [which
both contain (220)] occur in the reduction of (11110...0) of R,g @8 well as
(1111110...0). This means that operators of well-defined K may comprise both
three-partiéle and two-particle parts. The final result may be written in

several different ways. The most convenient appears to be

1400 V2 t,= 8t} - 3ty + 206" . ' | - (9)

In this_equation, the operator té possesses a guasi-spin of 3 and corresponds
to (o) = (1111000); the operator tg possesses a quasi-spin of 1 and corresponds
to a mixture of (1111000) and (2211000). The matrix elements of t) and tg for
f5 are given‘in Table XVI; each'column has been broken down into contributions
from the two-particle part (lisﬁed first) and the three-particle part (listed
after a plus or minus sign). To construct the matrix elements of té and té for
statés of fN for which v > 3, we must use Eq. (4) for the three-particle part
and Eq. (1) of Racah’ for the two—pérticlé‘part. At each stage of the chain
calculation, the'two—particle parts cancel when the sum Sté - Btg of Eg. (9)

is performed; but it is essential to preserve them in order to generate sets of

matrix elements corresponding to Qnique values of the quasi-spin XK. The bper-

ator tg is a three-particle operator whose matrix elements_fdr.f5 are identical
to those of e5;.hence‘
, : { , .
(Myfegtielen) = (ne) (e leg £y ) (10)

‘The quasi-spin of té” is 11l-defined, but since we may use the tables of
Nielson and Koster " to evaluate the right-hand side of Eq. (10), this dis-

advantage is of no practical importance. Moreover, if the T" and B are
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treated as ffeely adjustable parameters, the effect of tg' can be absorbed into

e, .

5

There is thus no need to evaluate the matrix elements. ‘of té'at all.
We conclude this section with an example of the use of Egs. (8) and (9).
, _ N
Suppose the diagonal matrix element of t5 is required for the term L (v = 3)

of‘fs. We put Q@ = Q'

il

2 in expression (5), corresponding to v = 3. The ratio

[2re2\ ffexe w
/

_(1 o -1/ \2 0 Qz

is =2 for K = 3 and 1/2 for K = 1. TFrom Egs. (8) and Table XVI, we find

(_f5 211t5lf5 ;’1) = [8(-2)(2) i 3(1/2)(-8)1/%0(105)2 = - (se0) /2,

-IX. CONCLUSION
The main result is this: When configuration interaction is extended
from two-particle excitations to include the interaction between fN and excited
. . ’ NE1, | \F1 . N
configurations of the type £ ~(n'f') = the effect on the levels of f can be
adequately represented by the addition to the Hamiltonian of the six terms

' tiTl (i =2, 3, L4 6,17, 8). The T are parameters, and the t, are three-
. ) 5

particle operators whose matrix elements for £~ are given in Table VII. The

dependence on N of matrix elements involving states of given seniorities can
be found from Egs. (7), (8), (9), and Table XVI. Egquations (8) and (9) can

be regarded as the analogs of Racah's decomposition

e3 = (63 +Q) -0 ,

which breaks e 'up-into opefators corresponding to quasi-spins K = 2 dand X =0

>

respectively. [The operator e is a pure K = O operator, which accounts for

the simplicity of Eq. (73) of Racah.9]
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All parts of the operators ti that are not absorbed by the e possess

odd quasi-spin. For a half-filled shell, M, = O, and the 3-j symbol of (5)

Q
vanishes if Q + Q' 1s even. The.Coulomb interaction within the half-filled
shell leads to states ¢ which are mixtures either of Q odd or of Q even.Y

It follows that all matrix elements of the t; not absorbed by the e, are zero.
if diagonal with respect to ¢. In other words, there is no need to consider
any three-particle operators at all for f7, provided the configuration is close
to Russell-Saunders coupling and that their effect is suffi;iently small that
matrix elements off-diagonal in ¢ can be neglected.

The methods described above can be extended to other configurations of
the type EN. An analysis by Feneuillel6 indicates that for dN, four three-
particle operators ti can be constructed, corre5pondihg to the representations
(OO); (22), (k2), and (60) of R5. The first can be absorbed into co-existing

two—particle'operétors, and the last ignored because its matrix elements are

all null. Only two parameters'are thds réquired to describe the three-particle

N
operators in 4 .
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Table I. Branching rules for the reduction U27 ->R7-

378
351
3654
6552
2925

(A] , W

(11 (200)

[2] ~ (000) (200) (220) (400)

[11] (110) (310) '

3] (000) (200) #(220) (222) (310) (400) (420) (600)

[21] '(110)(200)2(211)(220)(310)2(321)(hoo)(hzo)(slo)
f112] (110) (211) (310) (330) (k11)




Table II. Description of operators.

i WUK

t) (000) (00)0
ty (220) (22)0

; ' (222) (00)0
ty, (222) (k0)0
t5 (400) (k0)0
tg (420) (22)0
t7 (420) (}0)0
tg (420) (42)0
‘t (600) (60)0

UCRL-16321
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Table III. The coefficients (W'U'k" + (200)(2o)k”IWUo) for W' # (400).

k”
w'y! WU 2 L 6

(200) (20)  (000) (00) (s/en? (1/3)+/2 (13/27) /2
(220) (22) - (55/126) /2 - 8/ M? (91/108) /2
(400) (40) (13/378) /2 - (130/231) /2 (35/504) /2

© (220)(20)  (220) (22) (5/2016) /2 (/16902 - (91/34818) Y2

(222) (00) - (s/2n)? - (/) E (13/2nM2
(222)(h0)  (715/21168)2 - (325/6u68)72  (25/5752)Y/2
(h20)(22) © (325/78M M2 (585/5029) M2 - (8u5/1036)Y/2
(:20)(30) - (w3/18WYE  (585/2156) 1/2 - (5/176)2

(220) (21)  (220) (22) (100/693)*/2 <325/1386>1/2 J
(222)(40) (26/’1&7)1/2 --(16/147)1/2 0
(420) (22) - (416/2ho55) 2 . (676/2hos5) > 2 0
(420) (40) _ (130/4&1)1/2 - (80/441 1/2 0 -

(220)(22)  (220)(22)  (3e5/2056)Y/2 (325/2178)1/2 (5525/34848) Y/ 2
(222)(h0) - (1/112) /2 (361/020 M2 - (119/528)%/2
(b20) (22) (7/2610) -2 (7/5445)2  (119/87120) /2
(420) (40) (1/1680) %2 . (361/13860)2/2  (i19/7920)%/2
(520) (42) 17/35)M2 - (51/385) 12 (21/55) /2




Table IV. The coefficients ((400)(40)7k" + (200)(20)k"|wuo).
2 Al A6
(100) (ko) (11/225)1/ WM - epfe) P (s/em) P - (sms/ees
(420) (22) (11/63)%/2 - (16/189)Y/2 (133/279) /2
- (1849630002 - (1638u/51975) 2 (136/675)2  (532/3069)72 - (51/3100
(420) (42) - 5y Y2 L (us/1s75) M2 0 - (31/100)
(600) (60) (616/1575) /2 (616/5775) /2 - (238/3069) 2 - (1/775)

'68 -

T2E9T-TI00
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Table V. The coefficients ([31w|[2]w* + [1](200)).

UCRL-16321

»
(000) (200) (220) (400)
0 1 0 "0
0 /)R (1/5)2 0
0 0 1 0]

o (5? 0 (6/11)Y/2
0 o (592 2/3
.




Table VI. The coefficients (kk'k" |WU) .

{kk'k"}
WU {022} | {224} {24k} {246}
(000) (00) - (/13?2 (1/189) 2 (1/8um) /2 (26/3267) M/ %
(220) (22) (605/5292) /2 - (6760/43659) 2 - (1805/30131 2~ (n160/758677) /2
(222)(00)  (32761/889056) /2. (33/1372) 2 - (/339572 - (13/260) Y2
(222)(w0)  (3525/889056) 2 - (385/37041) /2 - (shoas/37352m) (625/26136) /2
(400)(40) - (17303/396900 72 (116/33075)/2 - (117/296450) M 2 (256/571725) M 2
(420) (22) - (1573/8232) Y2 - (15028/305613) Y2 (4693/12326391) Y 2 (1568/107811) Y/ 2
(220) (10) (261407/823200) 72 (e8717/2778300) 2 - (1273597/28014525) y1/2 (841/1960200) -/ 2
(h20) (42)  (21879/274h00) Y2 - (373u9/926100) M2 8495%/9338175)1/2 - (17/653100) /2
(600)(60) - (x6189/231525) /2 - (8308/6ous75) /2 - (134368/3112725) /2 - (15827/2Ms025) /2

’TE‘

T2E9T-I0N



Table VI (Cont'd)

{kx'k"}
() (a6} (266) (466} (666)

- (6877/139755) %/ 2 (117/1330Y/2  (2275/19602) 1/ (12376/179685) >/ 2 (41.99/539055) -/ 2
(55016/T17h00) Y2 - (195/20k978) 2 (1625/13748) Y 2 (88100/1185021) 2 (29393/790614) /2
(hoo2/622545) Y/ 2 (52/1089) %2 (325/199584) Y/ 2 - (uh2/12705)2  (205751/781080) Y/ 2

(02480/1369599) 2 (s29/11919) 2 (688o/e1050m) 2 - (10880/251559) Y2 - (79135/1720976) /2

(178802/978285)1/2 - (2025/1863&)1/2 71/198 - (1088/179685)1/2 (2261A£mmlo)l/2

_ (e97680/5021863) Y2 - (ko/395307) M2 - (1/223608)%/2 - (174080/8301k47) M2 (79135/175692) /2
- (719104/2282665) /2 - (1369/35937) /2 (625/81312)Y2 - (8704/3773385) %/ 2 (15827/319450) /2
- (736%h/2282665) Y/ 2 ©8/119719) Y2 (zr1/enonM? - (103058/1257795) Y2 - (8379/106480) Y2
- (2584/18365) /2 0 (323/22860) -/ 2 - (19/31185) %2 - (98/1485) /2

_Zg_

T2E9T-T0N
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Table VIT. The numbers n(kk'k").

{kk'k"} n(kk'k")
{222} 1
{224} 3
{2k} 3
{246} 6
{hh} 1
(Lh6) 3
(266} 3
(466} 3
{666} 1
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Table XVI. The matrix elements (Wlti]W’) and (W]t;lW')-

1

$

]

1

The singly-primed operators correspond to quasi-spin K = 3; the doubly-primed to K = 1. Matrix elements for t2 and

2

t! are broken up into contributions from the two-particle part and the three-particle part, given in that order.

vy

4s
Lp
LF
el
LT
op

2nl

ep2

2F1

2F2

2G1

2G2

2H1

2H2

21

2L

Wl

Ls
LD
Ly
e
L1
2P
2D1

2D2

a2

2F2

2re
2G1
262
2G2
2H1
2H2
2H2

0

2L

(vleghv)  (vleglvn) (eleglv) (v]eylv) (v]enlv) (vl e5]v)
72 - 288 0 0 0+ 0 0+ 0
2 -8 - 2002 8008 - 231+ 77 - 616 - 308
- 18 72 0 0 0+0 0+0
2 -8 1820 - 7280 - 84 + 28 - 224 - 112
2 -8 - 490 1960 147 - U9 392 + 1%
- 48 - 48 0 0 231 - 77 616 - 112
32 32 - 11hk - 114k 165 - 55 ‘uho - Lo
0 0 4B(33) Y2 weeM? (- 36+ 1202 (- 96 + h3e/11) (33) Y2
-3 -3 " 3237 3237 171 - 57 456 + 468/11
0 0 o 0 0+0 A 0+ 0
0 o 0 0 (63 + 21) (22) /2 (168 - 8Y)(22)Y/2
-3 -3 " 1365 1365 - 189 + 63 - 504 + 4368/11
32 32 1040 1040 60 - 20 160 - 160/11
0 vd- - 2&(&290)1/2 - 2&(&290)1/2 (-3 + 1)(&290)1/2 (- 8+ 36/11)(&290)1/2
-3 -3 - 2475 - 2475 - 165 + 55 - 4ho + 320 -
- 48 - 18 0 0 - 63+ 21 - 168 + 336/11
0 0 8l (s5) /2 8l (55 H/ 2 0+ 0 0+ 0
-3 -3 - 1995 - 1995 315 - 105 810 - 20h0/11
32 32 - 280 - 280 - 105 + 35 - 280 + 280/11
-3 -3 1827 1827 ho - 1k 112 - 1484/11
-3 -3 - 525 - 525 - 126 + 42 - 336 - 588/11 '




Table IX. The numbers c{WW'(222)).

W
W (000) (100) (110) (200) (111) (210) (211) (220) (221) (222)
(000) 0 0 0 0 0 0 0 0 0 1
(100) 0 0 0 0 0 0 0 0 1 1
(110) 0 o 0 0 0 0 1 0 1 1
(200) 0 0 o‘ 0 0 0 0 1 1 1
(111) 0 0 0 0 1 0 1 0 1 1
(210) 0 0 0 0 0 | 1 1 1 2 1
(211) 0 0 1 0 1 1 2 1 2 1
(220) 0 0 0 1 0 1 1 1 1 1
(221) 0 1 1 1 1 2 2 1 2 1
(222) 1 1 1 1 1 1 1 1 1
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Table X. The numbers c(WW'(L420)).
W
W (000) (100) (110) (200) (111) (210) (211) (220) (221) (222)
(000) e 0 | 0 0 0 0 0 0 0 0
(100) 0 0 0 0 0 0 0 0 0 0
(110) 0 0 0 0 0 0 0 0 0 0
(200) 0 0 0 0 0 0 0 1 0 0
(111) 0 0 0 0 0 0 0 0 0 0
(210) 0 0 0 0 0 1 0 0 1 0
(211) 0 0 0 0 0 0 1 1 1 0
(220) 0 o 0 1 0 0 1 1 o) 1
(221) 0 0 0 0 0 1 1 0 2 1
(222) o 0 0 0 0 0 0 L 1 1

i
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Table XI. The numbers c(UU'(42)).
U
U (00)  (20) (11) (20) (21) (30) (22) (31) (%0)
(00) 0 0 0 0 0 0 0 0 0
(10) 0 0 0 0 0 0 0 0 0
(11) 0 0 0 0 0 0 0 1 0
(20) 0 0 0 0 0 0 1 1 1
(21) 0 0 0 0 1 1 1 2 2
(30) 0 0 0 0 1 1 1 3 2
(22) 0 0 0 1 1 1 1 2 2
(31) 0 0 1 1 2 '3 2 5 N
(ko) 0 0 0 ‘1 2 2 2 I I
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Table XIT.

(G)WURK

Description of operators.

O O O O O O O O O O 9O O O O
o O O O O O O O O O O O o o
TN TN TN TN TN TN TN TN N TN TN TN TN
O N O O N O O O O N O O o o
O N O O N 44 O 44 O N O g4 N £

et et Nl e S N e N N s S N S

O O O O O O O O O O ©o O ©
C O O O O O O O O O O O o
AN TN TN TN TN TN TN TN TS TN TN N N
O N O N O O NN O O A O o O
=4 4 O N O =4+ N 4 £ N g £ O
et Nl N e e e N N N N S N

TN SN ST AN TN N TN N N
O O O O N N4 4 O O O O O
N O NN NN 4 O NN AN O
4 4 O N AN N o on S 4 g 4 O
M N’ N S N N S N e SN N S S

P e e e T an T e B e Tt T T B e e e B st et o s e e B e e B eh s N e T e B e

O A N o
A N N 4 N0 -0 O A A A A
5 8 83 8 5 B

o O O
o O O
N N TN
A O
[Q VR N e}
e N N
— ~ O
[QVEEE QA
N oM
R
o O 9O
o O O
o O O
e
— o~
A
Ao d
NN \O I~
—~ 4
po S & S

© (3300000
(3300000

O O O d N o 4 IO >0 O O
[ S o B SV I VA 4 U A e R QN AN A AV AV QU o |
5 82 3 3 838 38 838 35 858 35 3 3 3
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Table XITII. The numbers c((v)(v')(2211000)).
v
1 2 3 L 5 6 7
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 0
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Table XIV. The numbers c((v)(v')(1111110)).

UCRL~16321

= W

"
1 2 3 i 5 6 7
0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
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Teble XV. Branching rules for the reduction Rug 4>SU2 X 8py) -

2K+l(g)

(11110...0) -

(1111110...0)

l(ooooooo)

l(2oooooo)

3(0000000) (1100000)
X
3(1100000) (2000000) (2110000)

2 (0000000) (1100000) (1111000)

l(2oooooo)(2110000)(2220000)

3(0000000) (2200000) (1100000) 2

0000000} ( 11.00000) (2200000)

3(1111000) (2110000) ( 2211000)

2 (1100000) (2000000) ( 2110000)

2 (1111000) (2111100)

7(0000000) (1100000) (1111000) (1111110)
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Table VIII. The matrix elements (‘l']tilly').

1

ks
4p
LF
el
41
2p
2Dl

2p2

2Fl

261

.62

2H]

22

21

2L

t
o=
F

[

4s
Lp
LF
Le
L
2P
2p1
202
202

2F1

2F2
2G1
262
2G2
2H1
2H2
2H2

21

2L

t

t

t

by

t

%

t, ‘bB

1 2 3 5 7
(33/6860)2 - (2M?/2156 (672002 1/56(1505) % 3/aoamen) 2 1/oeu(uss)2 1/168(5005) 2 (163363202 1
6 0 288 0 o 0 o 0 )
6 1694 8 - 8008 0 0 0 ) 0
6 0 - 72 0 0 0 0 0 o
6 616 8 7280 o ~ 0 0 0 0
6 - 1078 8 - 1966 0 0 0 ) 0 0
-1 - 385 - 48 ) 0 . 30030 0 0 o‘
-1 - 319 32 -~ 1144 286 12870 10296 0 0
0 36(33)1/2 , o 168(33) /2 156(33) Y2 - 62u(33)Y/? 156(33) /2 0 0
-1 - 423 -3 3237 - 377 - 1677 - 1833 4Bh41 0
- 15 0 0 0 0 0 0 0 0
0 231(22) /2 0 ) 0 0 "o 0 0
-1 - 21 -3 1365 - k55 1365 - 1365 - 3315 0
-1 - 116 32 1040 - 260 4680 - 9360 ‘ 0 0
0 3(l+29o)l/2 0 - 2&(&290)1/2 - 8(&290)1/2 - 52(&290)1/2 - 8(1+29o)1/2 0 0
-1 11 -3 - 2475 561 1221 1947 1309 ]
-.1> 105 - 48 0o ', 0 8190 0 | 0 o
0 ) 0 Bu(us5) /2 - o8(iss) /2 0 252(k55) /2 0 0
-1 - 399 -3 - 1995 - 49 - 2709 567. - 1071 0
-1 203 32 - 280 70 - 8190 2520 0 0
-1 ‘56 B -3 1827 315 - 252 21 - 1071 o .
-1 336 k -3 - 525 - 245 1260 - 315 945 o]




This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, '"person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








