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Article
Diffusion as a Ruler: Modeling Kinesin Diffusion
as a Length Sensor for Intraflagellar Transport
Nathan L. Hendel,1,2 Matthew Thomson,3 and Wallace F. Marshall1,*
1Department of Biochemistry and Biophysics and 2Bioinformatics Graduate Group, University of California, San Francisco, San Francisco,
California; and 3Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
ABSTRACT An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle
size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps
size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size
sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical
modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors
for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors
are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication
between the base and the tip and possibly indicating that cells contain somemechanism for measuring flagellar length. Although
it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback sig-
nals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length depen-
dence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to
the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and
simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as
a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without
the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and
IFT recruitment rate that has been observed in quantitative imaging studies.
INTRODUCTION
How does the cell control the size of its organelles? This
question has been puzzling cell biologists for decades. Cells
must have a robust and efficient procedure for building
organelles with a specific size and shape. The stochastic
kinetics of polymerization typically leads to formation of
structures with widely varying sizes in the absence of any
size-dependent assembly or disassembly processes (1).
But organelles are thousands of times bigger than the mate-
rials used to build them, so how can molecular pathways of
assembly sense and respond to organelle size to yield organ-
elles of a necessary size for proper function? This problem is
extremely difficult to solve in the general case considering
the many different types of organelles and their often highly
complex structures. To simplify the problem, we will just
consider the eukaryotic flagellum. Flagella (also known as
‘‘cilia’’) are long whiplike appendages protruding from
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certain cells and are used for both locomotion and sensing.
Unlike a prokaryotic flagellum, which is made of a tube of a
single polymer, the eukaryotic flagellum is a more complex
structure made of nine microtubule doublets underlying a
protrusion of the plasma membrane. These doublets are
nucleated by the basal body. The flagellum is the perfect
organelle to model mathematically because it has a linear
geometry: when it grows, it gets longer but not wider, mak-
ing it essentially a 1D organelle.

Here, we will consider the flagella of Chlamydomonas
reinhardtii, a eukaryotic alga that has two flagella. When
Chlamydomonas develop, their flagella grow with deceler-
ating kinetics, ultimately leveling out to a steady-state
length (2). This slow-down in growth suggests that some
part of the flagellum-building mechanism is feedback-regu-
lated by length such that growth ceases when the flagellum
reaches a certain length. In cells with two flagella, an inter-
action is observed such that when one flagellum is severed,
the other flagellum will shorten until the two flagella reach
the same length (2). This length equalization also suggests
some form of feedback control between the two flagella.
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This study examines how these types of length-dependent
control of assembly might happen.

Most of the flagellum-building machinery is known. To
build a flagellum, cells use a process called ‘‘intraflagellar
transport’’ (IFT) (3–6). IFT, diagrammed in Fig. 1 A, is
mediated by complexes of �20 polypeptides called ‘‘IFT
proteins’’, which contain numerous protein-protein interac-
tion domains capable of binding the building blocks of
flagella such as tubulin and axonemal dynein arms. These
IFT protein complexes associate into linear arrays known
as ‘‘trains’’ (7,8). IFT trains are pulled to the distal tip by
heterotrimeric kinesin-2 motors (9,10). Upon reaching the
tip, the contents of the cargo add to the length of the flagel-
lum. Flagella are thus undergoing continuous incorporation
of new tubulin and other building blocks. To counter this,
tubulin is continually removed from the flagellar tip at a
constant, length-independent rate (11). Because this decay
rate is constant, to achieve a steady state, the rate of IFT
must be length-dependent (11,12).

IFT trains are recruited from docking sites on the basal
bodies (13) into the flagellum to begin transport through a
process called injection. The physical mechanism of injec-
tion is unknown, but it is thought to involve IFT trains mov-
ing through some sort of selective pore or barrier similar to a
nuclear pore (14,15). Although the molecular details of the
injection process remain unclear, quantitative imaging
studies (16) have revealed that motors are recruited into
the flagellum according to a pattern of dynamics similar to
how sand dropped onto a sandpile will fall off (avalanche)
if the pile is high enough. For example, the more time elap-
ses before a train is injected, the larger the train is, and the
FIGURE 1 Agent-based model of IFT. (A) Diagram of IFT. Kinesin-2 motors

microtubule bundle, the tip of the flagellum. Dynein motors carry the IFT particl

base (1), and once the pile is large enough, some are injected into the flagellum w

(3). Once they reach the end, they flagellum gets longer (4), and the kinesin m

absorbed and reenter the pile in the base (6). While this is happening, the flage

go online.
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larger a train is injected, the more time will elapse before the
next injection event. The sizes of the injection events are po-
wer-law distributed, similar to the size of avalanching events
in sandpiles and other avalanching systems. These similar-
ities suggest a simple model in which IFT proteins and mo-
tors accumulate at the basal body, gradually exerting more
force on the pore until eventually a cluster of motors pushes
through the pore, injecting a train (16). In such a scenario
the rate at which motors accumulate at the base would ulti-
mately be what determines the rate of injection.

Quantitative live cell imaging (16,17) has shown that the
rate of injection of motors is anticorrelated with the length
of the flagellum. Furthermore, quantitative analysis of IFT
cargo loading suggests that cargo loading is also length-
dependent (18). These length-dependencies imply some
kind of communication between the base and the tip.
Perhaps some sort of additional signaling pathways have
evolved that can sense length, transduce length into some
form of molecular signal, and then use this signal to modu-
late the injection of IFT proteins at the base of the flagellum.
Several possible models for length-sensing pathways have
been described and analyzed (16,19). Each of these models
invokes additional molecular pathways that could transduce
length into a signal that would gate entry of IFT particles
through a pore. But what if no such additional pathway ex-
ists? Might the IFT machinery itself be capable of respond-
ing to changes in flagellar length?

Herewe consider a model that takes into account the return
of IFT motors from the flagella tip. IFT is a cyclical process:
IFT trains and motors move to the tip, deliver cargo, return
to the cell body, and then are reinjected (20). Experimental
form trains that carry IFT particles containing tubulin to the plus-end of the

es back to the base. (B) Model version of IFT. Kinesin motors pile up at the

ith cargo (2). Each motor constantly moves toward the tip of the flagellum

otors unbind and diffuse (5). Once they diffuse back to the base, they are

llum is shrinking at a length-independent rate. To see this figure in color,



TABLE 1 Parameters Used in Agent-Based Model

Parameter Default Value How Value Was Obtained

Number of motors 200 Marshall and Rosenbaum (11)

Active transport speed 2 mm/s Chien et al. (22)

Diffusion as a Ruler
studies have addressed how motors are recruited into the fla-
gellum, how motors get to the tip, and how the flagellum
grows and shrinks. Two aspects of the IFT system that have
been less intensively studied are how motors are sent to the
pool at the basal body andwhat happens to the anterograde ki-
nesin motors after they deliver their cargo to the tip. We pro-
pose a simple model to answer both of these questions: after
dropping off their cargo, the kinesinmotors unbind anddiffuse
back to the base, where they are then added back into the pool
of accumulated motors waiting to be injected. The initial ev-
idence for a diffusive return of the kinesin motor was the fail-
ure to observe processive retrograde traces in kymographs of
IFT using GFP-tagged kinesin subunits (17), and the fact that
when retrograde IFT is inhibited, IFT proteins accumulate at
the flagellar tip, but the kinesin motor does not (21). Direct
tracking of individual trains by a novel bleach-gate method
has shown that kinesin undergoes diffusion after dissociation
from trains at the distal tip (22). In considering simple models
for IFT that incorporate diffusive return of kinesin, we
observed that the rate of diffusive return of kinesin motors
to the pool at the flagellar base can serve as a proxy for
flagellar length measurement, leading us to propose that the
diffusion of the IFT kinesin motor may, itself, be the long-
sought length sensor that regulates IFT injection. The compli-
cating factor in such amodel is that the source of the diffusing
molecule, kinesin, is itself dependent on the rate of injection,
which in turn is dependent on the rate of diffusive return. This
mutual feedback between injection and return raises the ques-
tion of whether such a system is capable of stably achieving a
unique length at steady state. It is also not obvious how this
type of system will perform when two flagella are considered
simultaneously.

In this article, we investigate this hypothesis using a fine-
grained agent-based model that is analyzed using computer
simulations together with a coarse-grained differential equa-
tion model that can be solved analytically. In the agent-
based model, we explicitly model the flagellum and motors
and run time-dynamics simulations. In the differential equa-
tions model, we solve the steady-state form of the diffusion
equation with boundary conditions that incorporate active
delivery of IFT to the tip and a diffusive return to the
base. Each model is detailed below. The result of our anal-
ysis is that diffusive return of kinesin, when combined with
a simple model for IFT-mediated flagellar assembly, does
indeed predict a stable flagellar length control system
capable of achieving a unique steady-state length and of
equalizing the lengths of flagella in a biflagellate cell,
without the need to add any additional components beyond
what is already known from prior studies of IFT.
Growth size per motor 1.25 nm Marshall and Rosenbaum (11)

Decay rate 0.01 mm/s Marshall and Rosenbaum (11)

Diffusion coefficient 1.75 mm2/s Chien et al. (22)

Weibull distribution power 2.85 Ludington et al. (16)

Weibull distribution

prefactor

10 Arbitrary

Avalanche threshold 30 motors Ludington et al. (16)
MATERIALS AND METHODS

Agent-based models described in Results were implemented using Python’s

built-in object oriented methods. Plots were generated within a Jupyter

Notebook framework.
RESULTS

Agent-based model

As a starting point to look for potential length dependencies
in the IFT system, we implemented a simplified model of
the individual components of the system (Fig. 1 B) and
asked what predictions this model might make about length
dependence. We built an agent-based model to simulate ki-
nesin and microtubule growth dynamics through stochastic
rules grounded in biochemistry. Specifically, we used the
software Python’s built-in object-oriented programming
methods (https://www.python.org/psf/) to explicitly model
individual motors and the flagellum they populate.

The flagellum has attributes such as length and environ-
mental variables that include the decay rate and diffusion
coefficient. Each motor has attributes including position,
transport speed, a Boolean to indicate whether it is in the fla-
gellum or in the base, and another Boolean to indicate
whether it is bound (in active transport) or unbound
(diffusing) if it is in the flagellum. To simulate dynamics,
we cycle through each motor and test a series of conditionals
to determine how it should adjust its position. If it is on the
flagellum and bound, its position increases by a constant. If
its position reaches the flagellum’s length, indicating that it
has reached the tip of the flagellum, it unbinds (changes its
state from active transport to diffusion), and the flagellum
grows by the designated growth increment. If it is in the fla-
gellum and unbound, it moves randomly to the left or to the
right. If it is unbound and reaches the base, it is absorbed
into the base and becomes inactive. At each time step, we
count the number of motors in the base, and if that value
is greater than a variable for avalanche threshold, we use a
Weibull distribution to determine how many avalanche-out
and move into the flagellum, and reactivate into active trans-
port. We chose a Weibull distribution because it can fit the
long-tailed distribution of train sizes that have been experi-
mentally determined (16). The Weibull distribution has a
multiplicative constant that we set to the difference between
the number of motors in the base and the threshold for
avalanching, plus a constant we could vary. Meanwhile, at
each time step, the flagellum shrinks by the decay rate con-
stant. Table 1 lists the parameters we used, and how we ob-
tained the values used for simulation.
Biophysical Journal 114, 663–674, February 6, 2018 665
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It is important to note that this model does not specif-
ically represent the IFT particles. It is assumed that each
motor is associated with an IFT particle carrying a fixed
quantity of material, as represented by the growth size
per motor.

This model lets us consider the journey of a single motor
(Fig. 2 A). In the example shown, it starts in active transport
at position zero. The conditional that checks if it is bound
commands its position to increase by the active transport
step size. This process continues until the position of the
motor is equal to the length of the flagellum. This position
represents the tip, and at this stage, the motor’s bound
parameter is changed to False (representing diffusion), and
the length of the flagellum is increased by the build size
parameter. In the next time step, the conditional that checks
if the motor is bound sees that it is not bound, and this time it
adjusts its position by the root mean square diffusion length
multiplied by either 1 or �1, determined randomly. This
FIGURE 2 Results of agent-based simulation. (A) Blue: Shown here is the j

growth. Green: Shown here is the flagellar length. (B) Given here is flagellar leng

of two simulated flagella’s lengths over time as they approach steady state. The b

rate, and the green trace is for a flagellumwith a larger number of motors, larger d

trace is 1.40 e�3 mm; the standard deviation of the green trace is 6.69 e�3 mm in

motors along flagellum using the average of 103 simulations with identical para

position. Green: Given here is the linear fit. (E) Plot of injection size is given as a f

taking their injection times and sizes, and binning them into measurements of

(F) Given here is a demonstration of the stability of the length control system.

its steady-state length at t ¼ 30 min. Blue shows before the manual increase

The time step in each simulation was 0.01 s. To see this figure in color, go onl
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simulates the randomness of diffusion. Once its position rea-
ches zero (the base), its Boolean value stating whether it is
in the flagellum is set to False to indicate absorption to the
basal pool. Every time step, a random power-law number
generator determines how many motors that are inactive at
the base are injected onto the flagellum. If that number is
zero, or if it is nonzero but this motor is not among those in-
jected, this motor will stay stationary at position zero. Once
it gets injected, it goes back into the flagellum in active
transport, and the entire process repeats for the remainder
of the simulation. By simulating many motors within the
same flagellum (each adding length to the flagellum upon
reaching the tip and then diffusing back), combined with
constant shortening of the flagellum, we can simulate the
overall growth dynamics of a single flagellum (Fig. 2 B).
Simulations over time show that this system allows the fla-
gellum to grow to a defined length with decelerating
kinetics.
ourney of a single motor in a zoomed-in window of the flagellum’s early

th over time in simulated minutes. (C) Shown here is the expanded window

lue trace is for a flagellum with a small number of motors and a small decay

iffusion coefficient, and larger decay rate. The standard deviation of the blue

the time frame shown. (D) Blue: Given here is the distribution of diffusing

meters and a Gaussian kernel density function applied to the means at each

unction of flagellar length. The points were generated by simulating 10 cells,

average injection size per unit time in each of the 50 evenly spaced bins.

Plot shows simulation in which length was manually increased to double

and green shows after, showing restoration to initial steady-state length.

ine.



Diffusion as a Ruler
Because motors undergo random motion as they return
and are released from the base in a way that depends on
the time history of their return, it is expected that flagellar
growth rates will fluctuate, and indeed our simulations
confirm that the length does indeed fluctuate around a
steady-state average length. We found that the magnitude
of this fluctuation varied between simulated flagella with
different parameter values even if they reach the same
steady-state length (Fig. 2 C), indicating that fluctuation
contains additional information about the system beyond
what the steady-state length provides. By counting motors
in different states, we can ask how the pool of diffusing mo-
tors is distributed along the length. We find that the proba-
bility of finding a motor at a given distance from the tip is
approximately linear, consistent with the expected form of
a diffusional gradient with a source at one end and a sink
at the other at steady state (Fig. 2 D).

Having found that the simple agent-based model of
diffusive kinesin return is able to produce a defined flagellar
length, the key question is whether the length-dependence
of IFT injection can be recapitulated. As shown in
Fig. 2 E, the average injection size per unit time of injected
IFT trains in the simulation shows an inverse dependence on
flagellar length, as previously reported in experimental
measurements (16,17).

The length control system modeled here is stable, as indi-
cated by simulated experiments in which the length is tran-
siently perturbed. As illustrated in Fig. 2 F, a transient
externally imposed elongation of a flagellum at steady state,
achieved by simply resetting the length to a longer value, is
followed by a shortening back to the steady-state length.
This implies that the steady-state length is determined by
the input parameters rather than the transient state of the
flagellum.
Dependence of length on model parameters

The agent-based model described above is a minimalist rep-
resentation of the IFT system, but whereas our simulations
show that stable length is achieved, it is not obvious from
the successful simulations why the model works or how
the parameters of the model contribute to the value of the
steady-state length. To gain a physical understanding of
how this model achieves length control, we investigated a
more idealized model that will allow us to solve for the
steady-state solution analytically. By reducing the model
to a classical boundary value problem, we can solve for sys-
tem behavior as a function of key parameters in closed form.
If we make the assumption that active transport time and ex-
pected time delay of injection is small relative to the time-
scale of diffusive return, we can model this system as a
diffusion problem with a constant source of free motor pro-
tein at the tip of the flagellum and a sink at the base. If we
also assume that no diffusing motors rebind to the flagellum,
we can apply Fick’s first law of diffusive flux in steady state.
This law strictly applies to steady state, but we can still use it
to study the dynamics of flagellar growth by invoking a sep-
aration of timescales. We assume that the timescale of
flagellar length changes due to growth and shrinkage (which
happens on the timescale of minutes to hours), is slow rela-
tive to the timescale over which diffusion establishes a sta-
ble gradient, such that the system can be viewed as being in
a quasi-steady state. (This is similar to the classic statistical
mechanics problem of slowly expanding a box containing
gas: when the expansion of the box is slow, the system is
reversible and equilibrium statistical mechanics theory can
be applied. A simple validation of this is that a single motor
reaching the tip increases the length by 1.25 nm in our simu-
lation with default parameters, and it takes 4.5 ns for a
diffusing motor’s mean square displacement to equal
1.25 nm, which is negligible compared to the roughly 18 s
it takes to diffuse back to the base.)

The strategy for deriving an expression for steady-state
length is to determine the expected flux of diffusing motors
arriving at the base, equate the flux to the number of motors
diffusing from the tip (following our assumptions that injec-
tion time and active transport time are very small compared
to diffusion time), convert that flux into a dynamic growth
term, and then find the steady state at which this growth is
balanced with the decay term.

The resulting expression for steady-state length is

Lss ¼
�
2NDdL

d

�1
2

; (1)

where N is the number of diffusing motors,D is the diffusion
coefficient, dL is the increment of flagellar growth when a
motor reaches the tip, and d is the decay rate. The derivation
is below.

The time it takes a random walker to move a root mean
square distance L is

t ¼ L2

2D
:

The current of motors I reaching the base is equal to the
number of diffusing motors N divided by the average time
it takes to diffuse to the base,

I ¼ N

t
¼ 2ND

L2
:

In the approximation in which motors that have reached the
base immediately transport back to the tip, the flagellum
grows at a rate given by the current of motors reaching
the base multiplied by the growth increment per motor dL.
The competing decay term d is length-independent:

dL

dt
¼ 2NDdL

L2
� d:
Biophysical Journal 114, 663–674, February 6, 2018 667
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At steady state, dL/dt ¼ 0, so we can solve for the steady-
state length Lss:

Lss ¼
�
2NDdL

d

�1
2

:

An identical result can be obtained by solving the diffusion
equation for appropriate boundary conditions and ex-
pressing the motor return rate in terms of the flux at steady
state.

This model predicts that the steady-state length of the fla-
gellum is proportional to the square root of its diffusion co-
efficient, motor number, and unit length increase per motor.
It also predicts that steady-state length is inversely propor-
tional to the square root of the decay rate. Note that because
the model proposed does not invoke any unknown trans-
ducer molecules or pathways, but instead directly represents
all of the molecular players, there is no need for any unde-
termined constant of proportionality.
FIGURE 3 Comparison of analytical solution of diffusion equation to agent-

agent-based simulations by varying a single parameter at a time. The varied para

increase per motor dL, (D) decay rate d, and (E) plot of length predicted from E

variations simulated in the plots from (A)–(C) and (E) are plotted in the same grap

the predicted length, then plotted against the final steady-state length simulated

given with randomly selected values for D, N, dL, and d. In this panel, all four va

Each subplot has the curve predicted from Eq. 1 superimposed onto the data i

simulated lengths and the prediction. The points in all panels were uniformly sam

and one order of magnitude below as there are between the default and one ord
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By running simulations in the agent-based model over a
range of parameters, we can verify that this relation matches
the results of fine-grained agent-based simulations (Fig. 3).
Specifically, we see close matches between theory and
simulation as we vary diffusion coefficient (Fig. 3 A),
number of motors (Fig. 3 B), length increase per motor
(Fig. 3 C), and decay rate (Fig. 3 D). When simulated
lengths are plotted versus the prediction of Eq. 1, we
observe a virtually identical match (Fig. 3 E), with <5% de-
viation on average. This is also true when parameters are
varied in combination (Fig. 3 F). To simulate our assump-
tions, these simulations have an avalanching threshold of
one motor and an active transport speed of 200 mm/s
(enough to go the entire length of the flagellum in one
time step). The similarity between the predictions of Eq. 1
and the simulated lengths indicate that Eq. 1 accurately de-
scribes the length of diffusion-regulated flagella. For all
parameter combinations simulated, a single steady-state
length is achieved. We used a Markov model to verify that
based model. Each plot shows the steady-state lengths given by Eq. 1 and

meters are: (A) diffusion coefficient D, (B) number of motors N, (C) length

q. 1 compared to simulation results. In this panel, all individual parameter

h, with the parameter set used in each simulation inserted into Eq. 1 to yield

by the agent-based model. (F) Simulated steady-state lengths of flagella are

riables were simultaneously varied, instead of varied individually as in (E).

n green, along with a root mean square value for the residual between the

pled in log space, so there is the same number of points between the default

er of magnitude above. To see this figure in color, go online.



Diffusion as a Ruler
the presence of a unique stable steady-state solution is
intrinsic to the model (see Fig. S1).

Equation 1 above describes the steady-state flagellar
length in the limit of instantaneous injection and active
transport. To determine whether deviations from these as-
sumptions might have a significant effect over a large re-
gion of parameter space, we simulated flagella with a
wide range of the parameters not included in Eq. 1. Specif-
ically, we scanned over IFT velocity and avalanching pa-
rameters and held all other parameters constant. The
effects on steady-state length are displayed in Fig. 4. The
Weibull distribution used to determine avalanching dy-
namics has two parameters: the power and the prefactor.
Fig. 4 A shows the final lengths generated by varying the
power, and Fig. 4 B shows the finals lengths generated by
varying the prefactor. Both indicate that the Weibull param-
eters do not significantly affect length, implying that the
specifics of IFT injection do not affect final length. This
can be understood by considering that the avalanching dy-
namics dictate that on average, larger injections lead to
more time between injections. So, in steady state, the
FIGURE 4 Effect of remaining parameters on steady-state length. Each plot s

in Eq. 1. The varied parameters are: (A) Weibull distribution power, (B) Weibull

in the base required to trigger an avalanche), and (D) velocity of motors in act

avalanching mechanism. Each panel has a line in green superimposed on the da

In (A) and (B), we claim there is no significant effect. In (C), Eq. 2 is superim

threshold and transport velocity are both randomly generated and simulated, and

lengths and the predictions are displayed in the legends of each panel. To see t
average build rate of the flagella is independent of
avalanching parameters. The avalanching threshold
(Fig. 4 C) affects the final length because increasing the
threshold increases the average number of motors in the
base at any given time, thereby decreasing the number of
diffusing motors and decreasing the steady-state length.
Essentially,

Nflagellum ¼ N � Nthresh: (2)

The velocity of motors only affects the final length in low
velocity regimes (Fig. 4 D). This is also due to the effective
decrease in motors in diffusion. The number of motors in
active transport, diffusion, and the base combined is
conserved, so the longer a motor is in active transport or
waiting at the base, the less often it is diffusing. To calculate
the fraction of motors inside the flagellum in diffusion, we
must consider the time it takes to complete active transport
and diffusion, and treat this as the probability of drawing a
diffusing motor. The time it takes for a particle to diffuse a
root mean square distance L is L2/(2D), and the time it takes
hows the steady-state lengths for simulations altering variables not included

distribution prefactor, (C) avalanching threshold (number of motors built up

ive transport of IFT. The varied parameters in (A)–(C) are involved in the

ta representing the effect that the given variable has on steady-state length.

posed on the simulated data, and (D) has Eq. 3 superimposed. In (E), the

Eq. 4 is superimposed. Root mean square residuals between the simulated

his figure in color, go online.
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for a motor with constant speed v to move a distance L is L/v.
The sum of these two is the mean total time to complete
active transport and diffusion, so the probability of drawing
a diffusing motor is

pdiffusing ¼
L2

2D
L

v
þ L2

2D

;

which simplifies to

pdiffusing ¼ 1

1þ 2D

Lv

: (3)

To confirm the relations in Eqs. 2 and 3, we superimposed
the curves onto Fig. 4, C and D, respectively. The low
root mean square residuals to these curves shows that these
corrective terms adequately describe the changes in length
associated with avalanching threshold and transport veloc-
ity. Combining Eqs. 2 and 3 yields an overall correction
for the N used previously for the number of motors used
to predict steady-state length:

Neff ¼ ðN � NthreshÞ

0
B@ 1

1þ 2D

Lv

1
CA; (4)

where Neff is the effective number of motors, i.e., the num-
ber of motors in diffusion.

Fig. 4 E shows the steady-state length in simulations with
random values for velocity and avalanching threshold. The
predicted length values are generated using Eq. 1 with the
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value for Neff plugged in for N. Note that the final length
is included in the expression for Neff, so instead of solving
for L directly in the prediction, we used the final length
from the simulation in the expression for the prediction,
because our goal is just to show the validity of the equation.
Coordination of multiple flagella

The model as it stands only includes a single flagellum,
whereas Chlamydomonas cells have two. Experimental
evidence shows that the two flagella in a given cell
interact. Indeed, one of the most dramatic experiments
in the length control literature is the demonstration that
cells can equalize the lengths of their two flagella after
one has been cut (called the ‘‘long-zero’’ experiment)
(2). This is crucial for swimming, but more importantly,
it creates the striking visual impression that each flagellum
knows how long the other one is. In models that involve
length sensor pathways, this coordination can be ex-
plained by some sort of molecular cross talk between
the length sensing pathways. In the diffusion-based length
control model described here, there is no length-sensing
pathway per se, and instead length influences growth rates
simply by the timescale of diffusive return. This raises the
question of whether the model can account for length
equalization.

To answer this question, we expanded the model to simu-
late two flagella competing for a common pool of material
(Fig. 5). We imagine the material in question to be tubulin,
but in fact the axoneme is a complex structure with many
proteins in it, some of which are involved in its assembly,
and we do not currently know which axonemal structural
protein is the limiting factor in terms of flagellar length.
To include the effect of pool depletion in our model, we
FIGURE 5 Two-flagella model. Diagram of

model is expanded to include a second flagellum

and a shared pool of material. The amount of build-

ing material each motor carries is proportional to

the remaining amount of shared material in the

pool (Eq. 5). (A) Early on in the growth of the

flagella, the amount of material is high, and there-

fore the amount of building material each motor

carries is high. (B) Later in the growth of the

flagella, the material pool has been partially

depleted to build the flagella, so the build size per

motor has decreased. To see this figure in color,

go online.
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changed the amount that the flagellum grows when a motor
reaches the tip from a constant to a proportion of the size of
the free pool. For a total pool size T, flagellar lengths L1 and
L2, and a constant of proportionality kpool, the build size of
an injected motor becomes

vL ¼ kpoolðT � L1 � L2Þ: (5)
Note that we express the size of the pool T in units of
length, so the pool can be thought of as the maximum
possible total flagellar length. In the early growth phase,
L1 and L2 are small, so the build size of an injected motor
is big (Fig. 5 A). Later, the flagella are longer, so the
smaller amount of available material leads to a smaller
build size (Fig. 5 B). Note that the building material does
not have to be fully depleted for the flagella to stop
growing, because the kinesin availability is still in compe-
tition with the constant decay.
Fig. 6 shows the results of the new simulation. To simu-
late the long-zero experiment, we simulated a two-flagella
cell until it reached steady state then set the length of one
flagellum to zero (Fig. 6 A). The length of the cut flagellum
was subtracted from the total pool size, because the flagellar
material gets lost after being cut. At this stage, we increased
the pool size slowly over time until it returned to its original
value. The cut flagellum then grows as the long flagellum
shrinks. Once they reach the same length, they grow
together to steady state. This is consistent with experimental
long-zero dynamics. We have a new prediction for final
length by replacing the constant vL in Eq. 1 with the pool
size-dependent expression in Eq. 5:

Lss ¼
�
2NeffDkpoolðT � 2LssÞ

d

�1
2

: (6)

Note that in steady state, L1 ¼ L2 ¼ Lss.
FIGURE 6 Simulation with expanded two-fla-

gellum model. (A) Given here is the length-over-

time plots for simulation of two flagella competing

for a common pool of material. At the time point

indicated by the red star, we manually set the length

of flagellum traced in green to zero and subtracted

its prior length from the pool size. We then resumed

the simulation, slowly increasing the pool size until

it reached its original value. This is a simulation of

the long-zero experiment. (B) Here, we compare the

prediction of Eq. 6 to the simulated length. Because

the right-hand side of Eq. 6 includes L, we plotted

the left-hand side of Eq. 6 on the y axis and the

right-hand side on the x axis. The values for

steady-state length were calculated by averaging

the steady-state lengths of the two flagella. The

green line superimposed onto the data is y ¼ x,

showing where the two sides of Eq. 6 are equal.

To see this figure in color, go online.
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We validated the equation by simulating over a wide
range of parameters and comparing the two sides of the
equation (Fig. 6 B). Because Lss is in both sides of Eq. 6,
we plotted the two sides of the equation against each other.
On average, there is <5% deviation between the two sides
of the equation, indicating that Eq. 6 accurately describes
the steady-state lengths of two diffusion-regulated flagella
competing for a common pool of material.

The effect of T on the steady-state length depends on the
relative size of T compared to the other parameters. In re-
gimes with low T compared to the ratio of build terms and
decay terms, the common pool is limiting, and the final
flagellar lengths will approach T/2. In the opposite regime,
with high T, kinesin remains the limiting factor, and the
only effect of T is the steady-state build size.
DISCUSSION

Diffusion as a ruler

In this model of length sensing, the cell does not employ a
sensor, such as the molecular rulers used for bacteriophage
tail length, but rather harnesses the fact that the timescale of
diffusion is a function of the distance over which a particle
must diffuse. This model is similar to a chemical reaction in
which a chemical X has an assembly term and a degradation
term. The concentration of X over time is given by a simple
differential equation, and the steady-state concentration is
determined by a combination of biochemical parameters.
The flagellum is a similar system because the length has as-
sembly anddisassembly terms, and herewepredictwhich spe-
cific biochemical parameters are involved (Eq. 1). There is a
competition between a growth flux term (dL*N*D) and a
decay term d. Two of these parameters, dL and N, implicitly
contain additionalmeaningful parameters such as active trans-
port velocity, avalanching threshold, and the size of the shared
pool of material (Eq. 6). It is important to note that the square
root in Eq. 1 comes from the geometry of the system.

We (19) and others (23) have previously noted that diffu-
sive movement of a signal from one end of the flagellum to
the other could be used as a length-measuring scheme. How-
ever, these prior models always invoked a ‘‘black box’’ in the
form of some machinery that responds to the signal to alter
flagellar dynamics. For example, our previous models (19)
invoked the idea of a flagellar gate or pore whose opening
was regulated by the diffusible signal. Because the nature
of this black boxwas not known, for example its input-output
relation, it was not possible to confidently make predictions
to be compared with experiments. Our model described
here avoids the need for any unspecified black boxes, because
the kinesinmotor that drives IFT is, itself, the diffusing entity.
This allows the parameters of ourmodel to be directly related
to experimental predictions. For example, Eq. 6 can be used
to determine how variation in different experimentally acces-
sible parameters should alter length.
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Relating model to genetics of length control

The simple mechanism modeled here is sufficient to explain
length-dependent IFT injection and stable length control
without needing to invoke any new molecular players
beyond those already known. But this does not mean that
the model works independently of molecular entities. All
of the model parameters are determined by the biophysical
and enzymatic properties of the known molecular compo-
nent of the IFT system. It is to be expected that mutations
in these molecules can alter flagellar length in predictable
ways, potentially allowing the model to help interpret the
mechanistic basis of previously described flagellar length-
altering mutants.

The diffusion coefficient of kinesin is mainly a property of
the size of the molecule and the viscosity of the flagellar ma-
trix, and is thus unlikely to be dramatically altered with point
mutations. But it is not hard to imagine that mutations might
alter the dynamics of the injection systemat the base. Previous
research shows that the lf4mutant makes the flagellum longer
and increases the injection rate but without eliminating the
length dependence of injection (16). Such a phenotype could
correspond to lowering the threshold of motor buildup
required for injection avalanching, which is a parameter in
the agent-based model. High thresholds lead to lower injec-
tion frequency and lower steady-state length, and low thresh-
olds lead to higher injection frequency and higher steady-state
length, as shown in the correction for N in Eq. 4 and its effect
on steady-state length (Eq. 6). This implies that it is possible
that the LF4 gene controls the threshold for how big the pile
can be before an avalanche occurs.

Another mutant that we can examine is the FLA10 gene,
which codes for the kinesin motors (9). Temperature-sensi-
tive fla10 mutants with intact flagella start to lose their
flagella when the temperature shifts into the region that dis-
ables FLA10 (9). Growth of fla10 mutants at intermediate
temperatures, which partially disable the motors, leads to in-
termediate steady-state flagellar lengths (11). In our model,
this translates to a reduction in N, the number of motors in
the system. We note that the square-root dependence of
steady-state length on motor number (Eq. 1) means that
length will decrease sublinearly with decreasing motor num-
ber. To reduce length by a factor of 10 would require a reduc-
tion in motor number by a factor of 100. Thus, one prediction
of this model is that the quantity of motors can be partially
depleted, for example in the fla10 mutation at permissive
temperature, and have little detectable effect on length.
Comparison with other studies

A recent study on mouse axons (24) studies the diffusion of
kinesin motors as a mechanism for recycling. Their model
for simple diffusion has the same linear distribution of
diffusing motors, but they find that the diffusing motors
have a nonzero binding rate onto the flagellum fromdiffusion,
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and therefore the number distribution is exponential. The
mouse axon system has a fixed length, but their work
provides an example in biology of diffusion and recycling
of kinesin.

Models based on diffusion as a length measurement sys-
tem have been proposed by Levy (23) and by Ludington
et al. (16,19). In the model by Levy, the proposed source
of the diffusing molecule was the base, not the tip, and it
was assumed that the diffusing species directly affected as-
sembly, as opposed to our model in which the diffusing mole-
cule affects transport. In the Ludington 2013 model, RanGTP
was the diffusing substance, and the link to injection was in-
direct, requiring a gating of entry by activated Ran (16). In
the diffusion model investigated in Ludington 2015, the iden-
tity of the diffusing molecule was not specified and again a
transducer system was assumed to couple the diffusive mole-
cule to the injection system (19). Finally, we note that
although a strength of our model is that length can be sensed
and converted into length-dependent IFT injection without
the need to invoke any other molecular players, it has been
shown that kinases inside the flagellar compartment do
show length-dependent activity (25,26). Likewise, flagellar
disassembly can become length-dependent when flagella
grow outside of a normal length range (27). It is interesting
to consider whether these molecular activities may be depen-
dent on IFT injection or diffusive return.
Future prospects

A fundamental puzzle of flagellar length control has always
been how a molecular signal could be generated that de-
pends on length. Our prior results indicated that IFT injec-
tion was length-dependent but did not explain the origin
of the length dependence, thus raising the possibility that
some complex length-measuring molecular pathway may
exist. The results presented above establish that diffusive re-
turn of kinesin motors is, at least in principle, capable of
providing a length measurement system for regulating IFT
injection as a function of flagellar length, without requiring
any additional regulatory or sensing components. In other
words, the IFT system may contain its own measurement
method based on the physics of diffusion. It is interesting
to consider whether this type of measuring system could
be at work in other linear cellular structures such as micro-
villi or microtubules.
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