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Abstract 
Purpose: Stack-of-radial MRI allows free-breathing abdominal scans, however, it 

requires relatively long acquisition time. Undersampling reduces scan time but can 

cause streaking artifacts and degrade image quality. This study developed deep 

learning networks with adversarial loss and evaluated the performance of reducing 

streaking artifacts and preserving perceptual image sharpness. 

Methods: A 3D generative adversarial network (GAN) was developed for reducing 

streaking artifacts in stack-of-radial abdominal scans. Training and validation datasets 

were self-gated to 5 respiratory states to reduce motion artifacts and to effectively 

augment the data. The network used a combination of three loss functions to constrain 

the anatomy and preserve image quality: adversarial loss, mean-squared-error loss and 

structural similarity index loss. The performance of the network was investigated for 3-5 

times undersampled data from 2 institutions. The performance of the GAN for 5 times 

accelerated images was compared with a 3D U-Net and evaluated using quantitative 

NMSE, SSIM and region of interest (ROI) measurements as well as qualitative scores of 

radiologists. 

Results: The 3D GAN showed similar NMSE (0.0657 vs. 0.0559, p=0.5217) and 

significantly higher SSIM (0.841 vs. 0.798, p<.0001) compared to U-Net. ROI analysis 

showed GAN removed streaks in both the background air and the tissue and was not 

significantly different from the reference mean and variations. Radiologists’ scores 

showed GAN had a significant improvement of 1.6 point (p=0.004) on a 4-point scale in 

streaking score while no significant difference in sharpness score compared to the 

input. 

Conclusion: 3D GAN removes streaking artifacts and preserves perceptual image 

details.   

  



1. Introduction  
Free-breathing abdominal MRI techniques can achieve volumetric coverage, high 

spatial resolution and high signal-to-noise ratio (SNR) for subjects with breath-hold 

difficulties, such as pediatric or elderly patients, and patients with disabilities, 

neurological disorders or inability to comply with operator instructions.1–3 A promising 

approach to enabling abdominal free-breathing scans is 3D stack-of-radial MRI.4–8 

However, to reduce respiratory motion artifacts, stack-of-radial abdominal MR images 

require self-gating and sufficient number of radial spokes to achieve good image quality, 

resulting in a relatively long acquisition time compared to breath-hold techniques. The 

typical acquisition time of clinically used free-breathing stack-of-radial technique is 

approximately 7 times that of the clinically used breath-hold Cartesian technique.9,10 

 One of the practical acceleration approaches is to undersample the radial k-

space and reconstruct images from the acquired radial data by using a priori information 

about the data, e.g., incoherency in the sampling pattern and redundant information in 

the temporal or channel direction of the data. Reconstruction methods such as parallel 

imaging11,12 and compressed sensing6,7,13 have been extensively studied. However, 

parallel imaging and compressed sensing methods cannot completely remove streaking 

artifacts with high acceleration rates.14,15 

Deep neural networks such as convolutional neural networks (CNNs) and 

generative adversarial networks (GANs) have been recently used to reduce image 

artifacts and noise.16–21 In particular, convolutional U-Nets have gained much attention 

in non-Cartesian image artifact reduction17–19,22–24 and image reconstruction25–28 

problems. Hauptmann et al.17 demonstrated the feasibility of using a residual U-Net to 

suppress streaking artifacts of undersampled real-time cardiovascular MRI. El-Rewaidy 

et al.26 achieved fast and accurate reconstruction of dynamic cardiac MRI by using k-

space and image domain CNNs and spatial-temporal information among neighboring 

time frames. However, these studies all used pixel-wise loss functions (i.e., L1/L2-norm) 

to train the networks, resulting in image blurring and loss of image details.21,29,30 In 

addition, these networks were only tested using the data acquired in a single institution, 

while imaging parameters typically vary in different institution. Their performance on 



data acquired in different institutions and with different acceleration factors remains to 

be investigated.  

GANs have been shown to improve perceptual sharpness and image quality 

through an adversarial training process.21,30–34 Yang et al.21 demonstrated that the 

conditional GAN preserved image details for MRI de-aliasing tasks better than CNNs 

trained solely on pixel-wise losses. Mardani et al.34 demonstrated that the combination of 

adversarial loss and pixel-wise loss resulted in high-resolution and visually appealing 

images. Although there has been extensive research on denoising and de-aliasing for 

accelerated Cartesian images,21,34–39 the performance of the adversarial loss on 

destreaking tasks for non-Cartesian imaging, specifically radial k-space sampling 

trajectories, has not been extensively investigated. The streaking artifacts are high-

frequency incoherent artifacts which are inherently different from noise and aliasing 

artifacts with Cartesian sampling. The controversy is that removing the streaking artifacts 

may remove the high-frequency image content at the same time. Thus, the feasibility of 

using the adversarial loss to remove streaking artifacts and preserve image details is of 

interest. Liu et al.40 proposed to train the 2D adversarial network using varying 

undersampling patterns and showed increased robustness of the network in removing 

undersampling artifacts. However, the performance of a 3D network to utilize the inter-

slice information has not been investigated and systematically evaluated. 

This study aimed to investigate the feasibility and performance of GAN for reducing 

streaking artifacts in free-breathing undersampled stack-of-radial abdominal images. 

Specifically, a 3D GAN with the adversarial and image content losses, i.e., structural 

similarity index (SSIM) and L2 norm, was developed and trained. A novel data 

augmentation by respiratory gating into multiple respiratory states was proposed and 

implemented. The 3D GAN was compared to a traditional artifact-reduction pixel-wise U-

Net approach with regard to streaking artifact reduction for undersampled radial k-space 

data with various acceleration factors. Lastly, the 3D GAN was assessed with preliminary 

testing data from another institution. 

 

2. Material and Methods 
2.1 Data Acquisition  



The study was compliant with the Health Insurance Portability and Accountability Act 

and approved by the local Institutional Review Board or in accordance with the local 

regulatory provisions. Written informed consent was obtained for each subject. A 

prototype free-breathing 3D golden-angle stack-of-radial gradient echo sequence was 

used to acquire multi-echo and single-echo images.8,41,9,42 At the first institution, 17 

healthy subjects (Dataset A) and 15 patients (Dataset B) were scanned. Additionally, 4 

healthy subjects were scanned at the second institution (Dataset C) for a preliminary 

testing of the generalization of the network on data from different institutions. In 

addition, multi-echo images and images from different areas were collected to increase 

the diversity of the training datasets with regard to image contrast and geometry. 

2.1.1 Dataset A 
Reference multi-echo and single-echo images were acquired on 17 healthy subjects (4 

females, 27.3±6.3 years, body mass index (BMI): 23.0±2.8 kg/m2; age and BMI were 

not recorded for two subjects) using two 3T MRI scanners (all on MAGNETOM Prismafit 

except one subject on MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). 

To increase the size and diversity of the training and validation data, we scanned the 

pelvis, thigh and leg regions in addition to the abdomen region. There were totally 231 

sets of 3D images (33 x 6 multi-echo and 33 single-echo images). The parameters for 

the multi-echo images were: TEs: 1.23, 2.46, 3.69, 4.92, 6.15, 7.38ms, TR=9ms, 

acquisition time=9.5 minutes, matrix size=160x160, 1500 radial spokes per partition 

(except 1306 radial spokes per partition for one subject), FOV=450x450mm2, slice 

thickness=3.5mm, 64 slices with 2 times interpolation. The parameters for the single-

echo images were the same as multi-echo images except that matrix size=256x256, 

3500 spokes per partition, TE=1.23ms, TR=3ms, and acquisition time=7.2 minutes. 

2.1.2 Dataset B 
Reference multi-echo images were retrospectively obtained from 15 patients diagnosed 

with non-alcoholic fatty liver disease (6 females, 54.7±14.9 years, BMI: 29.3±2.3 kg/m2) 

on a 3T MRI scanner (MAGNETOM Prismafit, Siemens Healthcare, Erlangen, 

Germany). The parameters for the multi-echo images were: TEs: 1.23, 2.46, 3.69, 4.92, 

6.15, 7.38ms, TR=8.85ms, acquisition time=2-3 minutes, matrix size=256x256 (except 



288x288 for 4 subjects), 404 radial spokes per partition, FOV=410x410 mm2, slice 

thickness=5mm, 36 slices (except 40 slices for 1 subject and 48 slices for 1 subject). 

2.1.3 Dataset C 
Reference 2-echo MR images for 4 healthy subjects (a total of 9 acquisitions at different 

locations; biographical information was not recorded) on a 3T scanner (Biograph mMR, 

Siemens Healthcare, Erlangen, Germany) at the second institution were retrospectively 

collected. The acquisition parameters were: TEs: 1.29, 2.52ms, TR=4.12ms, acquisition 

time 5.5 minutes, matrix size=256x256, 1700 radial spokes per partition, 

FOV=400x400mm2, slice thickness=3 mm, 72 slices with 2 times interpolation. 

 

2.2 Data Preparation 
A prototype retrospective undersampling framework was implemented with the image 

reconstruction framework of the MRI scanner (Siemens Healthcare, Erlangen, 

Germany), MATLAB (MathWorks, Natick, MA, USA), and command scripts. As 

illustrated in Figure 1, undersampling was performed by extracting a specified number 

of spokes from the reference data. The reference and undersampled data were then 

sorted into M respiratory states using self-gating and corresponding images were 

reconstructed using gridding followed by inverse Fourier Transform.9,42–44 Gridding of 

the radial data was completed by using convolution kernels to weigh the contribution of 

each radial data point in a rectilinear neighborhood.45 An adaptive coil combination 

method was used to reconstruct the phased-array MR images to improve the image 

quality under low signal-to-noise and reserve the phase data of the image.46 The deep 

learning networks did not handle undersampling in slice direction. 

The workflow of generating the training, validation and testing datasets is shown 

in Supporting Information Figure 3. Dataset A was divided into training (111 sets of 3D 

images from 8 subjects), validation (29 sets of 3D images from 2 subjects), and testing 

(91 sets of 3D images from 7 subjects) subsets. Datasets B and C were completely 

used as the testing data (108 sets of 3D images). There was no overlap between 

training and testing datasets. To increase the size of the training and validation 

datasets, data augmentation was applied by extracting and reconstructing 5 respiratory 

states, each consisting of approximately 20% of the total acquisition.  



As shown in Figure 1, the streaking artifacts in different respiratory states 

differed, which equivalently augmented the data size by 5 times. The 5 respiratory 

states were independently fed into the network and yielded 555 pairs of 3D complex 

images for training and 145 pairs of 3D complex images for validation. According to 

Nyquist sampling theorem, fully sampled radial images need 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑝𝑜𝑖𝑛𝑡𝑠 × !
"
 

spokes,6 corresponding to 251 and 402 spokes for matrix sizes of 160x160 and 

256x256, respectively. The images with matrix sizes of 160x160 and 256x256 had 50 

and 80 spokes on average after self-gating, respectively, which was equivalent to an 

acceleration factor of 5 with respect to the fully sampled radial k-space data.  

Respiratory gating of a 40% acceptance rate achieved a good balance between 

motion artifact removal and scan efficiency9,42 and was used for the testing dataset. To 

test the performance of the networks with different acceleration factors, we applied 3x, 

4x, and 5x accelerations on the testing dataset, which corresponded to 84, 62, and 50 

spokes for a matrix size of 160x160; 134, 100, and 80 spokes for a matrix size of 

256x256; and 151, 114, and 91 spokes for a matrix size of 288x288, respectively. For 

single-echo image acquisitions, 3x, 4x, and 5x accelerations correspond to 41s, 30s, 

and 24s acquisition times for a matrix size of 256x256, and 26s, 19s, and 15s for a 

matrix size of 160x160. For multi-echo image acquisitions, 3x, 4x, and 5x accelerations 

correspond to 123s, 90s, and 72s acquisition times for a matrix size of 256x256, and 

78s, 57s, and 45s for a matrix size of 160x160. In total, there were 199 sets of 3D 

testing images for each acceleration factor. 

 

2.3 Network Architecture 
The proposed GAN consisted of a generator network 𝐺 and a discriminator network 𝐷. 

The generator 𝐺 tried to imitate the distribution of a reference dataset 𝑥 with the input of 

artifact-contaminated images 𝑥#. The discriminator	𝐷 aimed to distinguish between the 

real artifact-free images 𝑥 and the synthesized fake images 𝐺(𝑥#). The adversarial 

setting was a competing process between the generator 𝐺$!(𝑥#): 𝑥# ↦ 𝑥 and the 

discriminator 𝐷$"(𝑥): 𝑥 ↦ [0, 1], where 𝜃% and 𝜃& are the parameters of networks 𝐺 and 

𝐷, respectively. 



As shown in Figure 2, the generator 𝐺 was adapted from a 3D U-Net. The U-Net 

consisted of contracting and expanding paths and same-scale skip connections from 

the contracting path to the expanding path. The size of the 3D convolutional kernels 

was 3x3x3.  Leaky Rectified Linear Unit (LeakyReLU) was used as a nonlinear 

activation function. The output of the generator and the reference images were inputs of 

the discriminator. The discriminator 𝐷 consisted of 5 convolutional layers of size 3x3x3 

interleaved with 3 average pooling layers, followed by 2 fully-connected layers with a 

0.5 dropout. The output of the discriminator was fake or real (0 or 1).  

The input data were complex images with real and imaginary parts as two 

channels (𝑁') and the output data were magnitude images with one channel. Training 

and validation images were randomly cropped to 64x64x64x2 (64x64x64x1 for the 

output) (𝑁( × 𝑁) × 𝑁* × 𝑁') patches, while testing images were directly fed into the 

network without cropping. 

 

2.4 Network Loss Functions 
The training process of a general GAN can be mathematically formulated as a minmax 

optimization problem to find the optimal network parameters 𝜃% and 𝜃&: 

min
$!

max
$"

ℒ%+,(𝜃% , 𝜃&) = 𝔼(~.#$%&'(()Clog𝐷$"(𝑥)G + 𝔼((~.!((()[log I1 − 𝐷$" K𝐺$!(𝑥#)LM](1) 

where 𝔼[∙] is the expectation operator. The generator loss ℒ% tries to minimize the 

above function, while the discriminator loss ℒ& tries to maximize it. 

The adversarial loss shown in Eq. (1) can imitate the distributions of the 

reference image but may cause anatomical mismatch by overemphasizing the high 

frequency texture. Therefore, a pixel-wise mean-squared-error (MSE) loss, i.e., L2 loss, 

and a SSIM loss were added to constrain the output of the generator. MSE loss aims at 

minimizing the squared Euclidian distance between the output and the reference: 

min
$!

ℒ1)(𝜃%) = O𝐺$!(𝑥#) − 𝑥O"
"       (2) 

where ‖∙‖" denotes the L2 norm. SSIM loss promotes the similarities between the local 

patches of the output of the generator and the reference images: 

min
$!

ℒ2234(𝜃%) = −𝑆𝑆𝐼𝑀(𝑥, 𝐺$!(𝑥#))      (3) 



Supporting Information Document S1 details the 𝑆𝑆𝐼𝑀(∙) function.  

By combining the adversarial loss of the generator, L2 loss and SSIM loss, the 

total loss can be defined as: 

 ℒ565+7 = 𝛼ℒ% + 𝛽ℒ1) + 𝛾ℒ2234       (4) 

Here 𝛼, 𝛽, 𝛾 are the weights of each loss respectively, and 𝛼 + 𝛽 + 𝛾 = 1. Different 

combinations of the weights were investigated. The weights for each training were: 
[𝛼, 𝛽, 𝛾] = {[0.6, 0.2, 0.2], [0.4, 0.4, 0.2], [0.2, 0.6, 0.2]}, which were referred to as GAN1, 

GAN2 and GAN3, respectively. Based on our experience, a weight of 0.2 for the SSIM 

loss was sufficient to constrain the local structures, therefore the SSIM weight of 0.2 

was used for the experiments. 

 

2.5 Network Training 
The network was trained with 100 epochs using an adaptive moment estimation 

optimization (Adam) algorithm47 with a momentum parameter β = 0.9. A mini-batch 

training was performed with 16 batches per iteration. Initial learning rates were 0.0001 

for the generator and 0.00001 for the discriminator, respectively. An exponential decay 

annealing procedure with a decay rate of 0.96 for every 2000 iterations was 

implemented. Weights for the networks were initiated with random normal distributions 

with a variance σ = 0.01 and mean μ = 0. 

Implementation and training of the GAN were completed in Python version 3.5 

(Python Software Foundation, https://www.python.org/) using the Pytorch library version 

1.4.0.48 The training and testing were performed on a commercially available graphics 

processing unit (NVIDIA Titan RTX, 24GB memory). The total training time was about 

72 hours. To determine if there were sufficient number of subjects in the training 

dataset, we mainly looked at two indicators: (1) if the network could converge to an 

equilibrium state by monitoring the training loss, and (2) if the network is overfitted to the 

training data by testing on unseen data (Datasets B and C). 

 

2.6 Performance Evaluation 
To evaluate the performance of the proposed network compared to the state-of-the-art 

deep learning method, a 3D U-Net with the same self-gated reference and 



undersampled data was also trained as a baseline comparison. The 3D U-Net had the 

same structure as the generator with minimal adjustments to stabilize and optimize the 

network, including adding instance normalization layers before the convolutional layers 

and having 2 channel complex outputs. The MSE loss was used to train the 3D U-Net 

using an Adam optimizer with an initial learning rate of 0.01 which was reduced with a 

factor of 0.7 if no improvement for 200 iterations and a maximum of 100 epochs. 

To test the networks for different acceleration factors, 3x, 4x and 5x accelerated 

images were used for testing while the network was trained only with 5x accelerated 

images. In addition, the networks were tested retrospectively with 2-echo images 

(Dataset C) to evaluate its performance on datasets acquired on a different scanner at a 

different institution.  

The performance of the proposed network compared to the input (undersampled 

gridding reconstruction) and U-Net with respect to the reference was evaluated 

quantitatively by the normalized MSE (NMSE) and SSIM metrics, where lower NMSE 

and higher SSIM values indicated higher similarity compared to the reference.  

Single-echo abdominal images from each testing subject were used for 

quantitative ROI analysis and qualitative image quality evaluations. A total of 28 

abdominal images were selected for evaluation. Quantitative ROI analysis was 

conducted to compare the mean, standard deviation (SD), and coefficient of variation 

(CV=SD/mean) of GAN, U-Net and the input with respect to the reference. Two ROIs in 

the background air and two ROIs inside the liver were selected for three representative 

slices (near-dome, mid-level, and inferior liver).  

The image quality was evaluated in a two-step process by three abdominal 

radiologists with an average of 8 years of abdominal image reading experience. First, to 

compare the performance of three GANs, ranking of 30 sets of single-echo abdominal 

images was performed. Resultant images of three GANs were blindly presented to the 

radiologists in a random order, and each radiologist independently selected the best 

images among the three GANs to evaluate the streaking artifacts and the perceptual 

sharpness. The GAN with the highest ranking was identified for further scoring. Second, 

28 sets of images of four methods (the GAN with the highest ranking in the first step, U-

Net, the input and the reference) were blindly presented to the radiologists. Each 



radiologist independently scored each 3D image with a scale of 1 to 4 based on these 

criteria: (1) streaking artifacts (1=non-diagnostic, 2=severe, 3=moderate, 

4=mild/minimal) and (2) visual sharpness (1=poor, 2=adequate, 3=good, 4=excellent). 

The radiologists rated the images for the entire abdomen and individual abdominal 

organs including the liver, gallbladder, and kidneys. 

 

2.7 Statistical Analysis 
 All statistical analysis was done in R.49  

 For quantitative evaluations, both NMSE and SSIM data were fitted to a full 

factorial linear model with the image method and the acceleration as fixed effects. For 

the ROI analysis, mean, SD, and CV values were fitted to a linear mixed-effects model 

with the method and the tissue type being the fixed effects and subjects being a random 

effect.  

 For image ranking of the 3 GANs, the results were fitted to a linear mixed-effects 

model with the method being the fixed effect and both radiologists and subjects being 

random effects. For image scoring of four methods, Fleiss’ kappa score was 

calculated50 for both streaking and sharpness scores to assess the inter-rater reliability 

scores. Both streaking and sharpness scores were fitted to a linear mixed-effects model 

with the image method and health status (healthy vs patient) being the fixed effects and 

both radiologists and subjects being random effects. The random effects structure was 

kept maximal following the approach of Barr et al.51  

For all linear model analysis, data were post hoc analyzed to determine 

estimated marginal means (emmeans) and their differences.52 All possible pairwise 

comparisons between methods were calculated and tested for statistical significance. 

The p-values were corrected using Tukey’s method.53 P-values < 0.05 were considered 

significant. 

 

3. Results 
Figure 3 shows a healthy subject example of the 5x accelerated single-echo images of 

three GANs, U-Net, and the input compared to the reference. All three GANs and U-Net 

showed fewer streaking artifacts compared to the input image. Statistical analysis of the 



radiologists’ ranking showed no significant difference between the three GANs (p>0.82), 

except one radiologist preferred GAN1 over GAN3 (p=0.0432). The three GANs had 

similar rankings, and GAN1 had slightly fewer streaking artifacts compared to the other 

two GANs. Therefore, GAN1 was chosen for the remaining evaluations, and referred to 

as “GAN” for simplicity hereafter in this paper. 

Supporting Information Figure S1 shows the training loss and intermediate 

results of GAN1. For the generator, the adversarial loss is plotted, which indicates the 

performance of the generator in fooling the discriminator. The discriminator contains two 

components associated with classification performance for both real and fake images. 

As shown in Figure (A), all three components converge to an equilibrium state (0.7). 

Figure (B) shows examples of the intermediate results, which shows the image quality 

improved steadily as the training progressed. 

Figure 4 shows GAN, U-Net, and input single-echo images of a healthy subject 

(Dataset A) compared to the reference for 3-5x accelerations. GAN and U-Net trained 

only with 5x accelerated images successfully reduced streaking artifacts for 3x and 4x 

accelerated images. Consistent with 5x acceleration results, GAN and U-Net had fewer 

streaking artifacts compared to the input, while GAN better preserved the image details 

compared to U-Net. 

Figure 5 shows representative 5x accelerated multi-echo images of two patients 

reconstructed using GAN and U-Net, along with the input and reference images. GAN 

and U-Net have fewer streaking artifacts compared to the input, and GAN has sharper 

images than U-Net. The second patient was identified with a lobulated hyperintensity 

lesion on the liver, as pointed out by the red arrow. This hyperintensity lesion could be 

detected on both the input and the GAN images, however, the lesion was better 

delineated on the GAN images compared to on the input images. 

Figure 6 shows the performance of GAN, U-Net and the input compared to the 

reference on 5x accelerated 2-echo images acquired at a different institution (Dataset 

C). Consistent with the previous results, GAN and U-Net had fewer streaking artifacts 

compared to input and GAN preserved image details compared to U-Net. 

Quantitative assessment of all the testing data by NMSE and SSIM are shown in 

Table 1. The GAN and U-Net images did not have a significantly different (p>0.521) 



NMSE regardless of acceleration. Both U-Net and GAN had a significantly lower 

(p<0.01) NMSE than the input image for all acceleration factors. At all acceleration 

factors GAN had significantly higher SSIM (p<.0001) than both the U-Net and the input 

images (5x acceleration: 0.841 vs. 0.798 and 0.729, 4x acceleration: 0.857 vs. 0.807 

and 0.779, 3x acceleration: 0.864 vs. 0.806 and 0.830). 

Quantitative ROI analysis showed different performance of GAN and U-Net in the 

background air and the liver in the images. In both the air and the liver, the input images 

have an elevated mean (air: 12.8, p=0.0684; liver: 79.77, p=0.0062) compared to the 

reference images (air: 8.19, liver: 73.56). In the destreaking process, GAN removed this 

elevated signal and approached the mean signal of the reference images (air: 7.82, 

p=0.9977; liver: 68.65, p=0.0599), whereas U-Net removed the elevated signal only in 

the air (2.88, p=0.0287) and maintained a higher mean in the liver (80.92, p=0.0009). 

For the SD in the air, both GAN (2.17, p<.0431) and U-Net (0.80, p<.0001) were 

significantly lower than the input (6.56) and the reference (3.335). Both U-Net (0.07, 

p=0.001) and GAN (0.08, p<.0001) methods had a lower CV in the liver compared to 

the input images (0.15), meaning that both methods reduced the streaking. In the liver, 

both GAN (p=1) and U-Net (p=0.9496) had similar CVs as the reference (0.05), 

indicating that the tissue signal variations were not influenced. 

Qualitative assessment by radiologists’ scores of the 5x accelerated abdominal 

images is shown in Figure 7. Radiologist c appeared to differ substantially from the 

others for the streaking scores of both reference and U-Net and for the sharpness 

scores of the U-Net (blue markers in Figure 7). The Fleiss’ kappa was 0.337 for the 

streaking scores, and 0.303 for the sharpness scores, indicating the disagreement 

between the radiologists. For streaking scores, the GAN images were 1.6 points better 

(p=0.004) than the input images but 0.8 points worse (p=0.008) than the reference 

images, and not significantly different from the U-Net images (p=0.9218). The U-Net 

images were 1.5 points better (p=0.005) than the input images, but not significantly 

different (p>0.083) from the reference images. There was no significant (p>0.055) 

difference in sharpness between GAN images and either the input or the U-Net images. 

The U-Net images were 1.4 points less (p=0.015) sharp than the input images. In 

summary, despite the radiologist reading variation in this study, both U-Net (p=0.005) 



and GAN (p=0.004) significantly improved streaking relative to the input images, and 

GAN was not different from the input images in terms of sharpness (p=0.055) while U-

Net was significantly blurrier than the input images (p=0.015). 

 

4. Discussion 
In this study, a 3D deep adversarial learning–based network was developed to remove 

streaking artifacts in free-breathing undersampled stack-of-radial MR images. The 

developed 3D GAN showed significantly lower NMSE and significantly higher SSIM 

than the input, indicating that it reduced the streaking artifacts and preserved the 

perceptual sharpness. The GAN also achieved significantly higher SSIM compared to 

deep neural networks based on the pixel-wise loss. Radiologists’ evaluation showed 

GAN was not significantly different from the input images in terms of sharpness while U-

Net was significantly blurrier than the input images. 

 Inspired by the recent development of deep adversarial networks, the adversarial 

loss was utilized in this study to learn the different distributions of the streaking artifacts 

and the tissue. Although studies have shown GANs could remove aliasing artifacts for 

Cartesian trajectories,21,34,35,54 removing streaking artifacts was still challenging because 

of their high-frequency nature. The capability of the proposed GAN to reduce streaking 

artifacts and preserve perceptual sharpness is likely attributed to the ability of the 

adversarial network to distinguish the different signal distributions of the streaking 

artifacts and the normal tissue.21,31,54 To preserve the consistency in the image domain, 

we constrained the network by adding L2 loss and SSIM loss. In choosing the loss 

weights, we used a narrow search of the different combinations of the weights. The 

main obstacle in finding the proper weights for the different loss components is the lack 

of a well-defined quantitative image quality metric34,55, which could be a good direction 

for future studies. 

In this study, 3D convolutional kernels were applied to utilize the volumetric 

information of 3D images. It is known that 3D CNNs have the ability to leverage 

interslice context and can lead to improved performance.56–58 In Supporting Information 

Figure S2, we show comparison of the 2D and 3D GAN results. The 2D GAN images 

suffer from severe residual streaking artifacts. Our finding was consistent with the 



literature which shows that the 3D network outperformed the 2D network for volumetric 

data,59 especially when there was a relatively large number of training data and when 

the inter-slice resolution was close to the inner-slice resolution. 

Generally, deep learning relies on a large amount of training data, which can be 

challenging to acquire or access. In this work, a novel data augmentation approach was 

implemented to use multi-bin self-gating to reconstruct images of multiple respiratory 

states for training. Although typical data augmentation methods such as scaling, 

flipping, rotation and translation can expand the data size, they do not apply to specific 

scenarios such as different breathing states. A previous study40 demonstrated data 

augmentation by varying sampling pattern could improve the network robustness. We 

further improved the data augmentation by generating multi-bin data using respiratory 

gating. Self-gating not only minimized the motion artifacts in each respiratory state but 

also generated five volumes with different radial spokes and different motion states. 

Those images had inherently different streaking artifacts, which made the multi-bin self-

gating an effective data augmentation method. In this study, the data were self-gated to 

5 bins, but more bins could potentially be used to generate the training data if sufficient 

radial spokes were acquired to maintain a high SNR and minimal streaks in the 

originally acquired data. Additionally, multi-echo images with different image contrasts 

and images with different anatomical locations were acquired to increase the size and 

diversity of the training data. With all these data augmentation strategies, even the 

training data size was not significantly large in this study, the proposed network showed 

promising performance to reduce streaking artifacts and preserve image quality. 

The networks in this study were trained solely on 5x accelerated images. Yet it 

was demonstrated that the proposed networks could reduce streaking artifacts on 3-5x 

accelerated testing data. The golden-angle radial trajectory enabled flexible 

undersampling and self-gating strategies and resulted in varying streaking artifact 

patterns in the reconstructed images. It was beneficial to train the network to learn a 

wide variety of streaking artifact patterns. This nature contributed to the flexibility of the 

proposed network to handle input data with various acceleration factors. Based on our 

experience, an acceleration factor of 5 was feasible and recommended for accelerated 



radial acquisitions, and the proposed network could effectively reduce the streaking 

artifacts due to undersampling. 

A common concern of deep learning models is whether the network trained with 

data from one institution can generate good results for the input data acquired from a 

different institution. In general, trained neural networks can be viewed as combinations 

of sequential weights, biases, and activation functions that are potentially sensitive to 

minor changes, e.g., intensity variations in the input data. One solution for this issue 

could be to expand the diversity of the training datasets, which can be achieved by 

acquiring more data from a large population, preferably from different institutions, but 

this could be very challenging practically. Another possible remedy might be the data 

augmentation strategies. Although the data size was very limited, this study showed 

promising preliminary results of the proposed network when applied on data from a 

different institution. Future studies are warranted to evaluate the proposed network 

using test data with a larger size from multiple institutions. 

In image reconstruction tasks, especially Cartesian-type problems, it is common 

to include MR physics-based prior information to enforce data consistency by 

implementing a forward operation. Although this could improve the performance of the 

neural network, defining a forward operation model for the radial acquisition is 

challenging and requires a separate study. The proposed network in this study is an 

image-to-image operation without directly dealing with the k-space data. This offers 

special advantages in practice. For example, this proposed approach could be used in 

tandem to remove any residual streaking artifacts after conventional streaking-artifact 

reduction methods and/or image reconstruction algorithms. Alternatively, it could be 

further trained and applied to reduce the streaking artifacts from different sources. 

In this study, the radiologists were not in particularly good agreement for the 

scores of different methods. Qualitative evaluation can directly assess the image quality 

but has the disadvantage of being subjective and not reproducible. We designed our 

study to mitigate this issue as much as possible, through our detailed instructions and a 

radiologist training session designed to elicit comparable responses between 

radiologists. However, radiologist c appeared to have distinct preferences and concepts 

of image quality and differ substantially from the others for the streaking scores of the 



reference and the U-Net and for the sharpness scores of the U-Net, particularly in the 

patient population. Despite the variation, both U-Net and GAN significantly improved 

streaking relative to the input images, and GAN was not different from the input images 

in terms of sharpness while U-Net was significantly blurrier than the input images. The 

GAN method achieved more consistent agreement among radiologists and was more 

preferable to obtain a consensual improvement in destreaking. 

During the data acquisition, the various breathing patterns of the subjects were 

not investigated. Subjects were instructed to breathe normally and avoid coughing 

during the scan. The various breathing patterns could impact the self-gating accuracy 

and the image quality. While the impact of breathing patterns and/or sudden movement 

on the self-gated images is of interest, our study focused on removing streaking artifacts 

caused by radial undersampling rather than self-gating imperfections. It is out of scope 

in this study and requires a separate investigational study in the future. In addition, the 

network investigated in this study generate only magnitude images. Future studies are 

warranted to output complex (real/imaginary) images which can be used for fat/water 

separation and PDFF estimation purposes. 

 

5. Conclusion 
A 3D deep adversarial network was developed to reduce streaking artifacts and 

preserve perceptual image details for free-breathing radial MRI and was evaluated in 

healthy subjects and patients. This study showed the feasibility and performance of the 

proposed network for destreaking compared to the results of a traditional U-Net 

approach, using undersampled radial data with different acceleration factors, as well as 

testing data from an institution different from where the training data were acquired. This 

proposed method allows accelerated free-breathing stack-of-radial MRI with reduced 

streaking artifacts and preserved perceptual image sharpness. 
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GAN: generative adversarial network 

CNN: convolutional neural network 

ROI: region of interest 

SNR: signal-to-noise ratio 

FOV: field of view 
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SSIM: structural similarity index 
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Figures and tables: 
Figure 1. Data preparation for building the proposed network including retrospective 

undersampling and self-gated reconstruction. Undersampling was performed by 

extracting specified number of radial spokes from the reference k-space. The reference 

and undersampled k-space data were sorted into M respiratory states using self-gating 

and gridding followed by inverse Fourier transform. Different respiratory states had 

different angle distribution of the spokes, resulting in different streaking artifacts. The k-

space images were density compensated for illustration purposes only. The 

window/level settings of different images were adjusted separately for optimal 

visualization.  

 



Figure 2. The 3D GAN architecture for streaking artifact reduction. The network 

consists of a generator 𝐺 and a discriminator 𝐷. The generator is adapted from a 3D U-

Net. The numbers on top of the blue cubes denote the number of channels of each 

layer. The complex input images are cropped to 64x64x64x2 (𝑁( × 𝑁) × 𝑁* × 𝑁') 

patches before they are input into the network. The output and the reference images are 

64x64x64 magnitude images and are inputs of the discriminator. The discriminator 

consists of five 3x3x3 convolution layers (with LeakyReLU) interleaved with three 

average pooling layers to downsample the images followed by two fully-connected (FC) 

layers to classify the images as real or fake. 

 
  



Figure 3. Representative 5x accelerated single-echo images of a healthy subject based 

on the three GANs tested and the U-Net, along with the input and reference images. 

The GANs and U-Net have superior image quality and fewer streaking artifacts 

compared to the input. GANs preserve the perceptual sharpness better than U-Net. 
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Figure 4. Representative single-echo images of a healthy subject based on GAN 1, U-

Net and the undersampled input images of 3-5x accelerations compared to the 

reference. The top panel shows the reference image, followed by images with different 

acceleration factors. Comparing images of each acceleration factor, GAN and U-Net 

have fewer streaking artifacts compared to the input while GAN appears sharper than 

U-Net. 

 
  



Figure 5. Representative 5x accelerated multi-echo images of two patients 

reconstructed using GAN 1 and U-Net, along with the input and reference images. The 

two panels show the images of two patients, respectively. GAN and U-Net have fewer 

streaking artifacts compared to the input, and GAN has sharper images than U-Net. The 

second patient was identified with a lobulated hyperintensity lesion on the liver, as 

pointed out by the red arrow. This hyperintensity lesion could be detected on both the 

input and the GAN images, however, the lesion was better delineated on the GAN 

images compared to on the input images. 

 
  



Figure 6. Representative 5x accelerated images reconstructed using GAN 1 and U-Net, 

along with the input and reference images for a healthy subject scanned on an MR-PET 

scanner the second institution. The results show that GAN and U-Net are effective at 

removing streaking artifacts for multi-center images and appear to be generalizable to a 

different platform at a different institution. GAN consistently shows better perceptual 

sharpness compared to U-Net. 

 
  



Figure 7. Radiologists’ scores for streaking artifacts and perceptual sharpness. For 

streaking scores, the GAN images were 1.6 points better (p=0.004) than the input 

images but 0.8 points worse (p=0.008) than the reference images, and not significantly 

different from the U-Net images (p=0.9218). The U-Net images were 1.5 points better 

(p=0.005) than the input images, but not significantly different (p>0.083) from the 

reference images. There was no significant (p>0.055) difference in sharpness between 

GAN images and either the input or the U-Net images. The U-Net images were 1.4 

points less (p=0.015) sharp than the input images. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  



Table 1. Quantitative assessment by NMSE and SSIM of GAN, U-Net and the input. P-

values are reported by pairwise comparisons between the GAN and the other methods. 

Estimates are reported as estimated marginal mean ± margin of error. The values in the 

bold text marked with asterisks (*) denote statistically significant differences compared 

to GAN (p-value < 0.05).   

 
NMSE  SSIM 

Estimate p-value  Estimate  p-value   

3x Acceleration     

GAN 0.0571 ± 0.0124 - 0.864 ± 0.011 - 

U-Net 0.0504 ± 0.0124 0.7321 0.806 ± 0.011 <.0001* 
Input 0.0832 ± 0.0124 0.0100* 0.830 ± 0.011 <.0001* 

4x Acceleration     

GAN 0.0553 ± 0.0124 - 0.857 ± 0.011 - 

U-Net 0.0477 ± 0.0124 0.6745 0.807 ± 0.011 <.0001* 
Input 0.1111 ± 0.0124 <.0001* 0.779 ± 0.011 <.0001* 

5x Acceleration     

GAN 0.0657 ± 0.0124 - 0.841 ± 0.011 - 

U-Net 0.0559 ± 0.0124 0.5217 0.798 ± 0.011 <.0001* 
Input 0.1636 ± 0.0124 <.0001* 0.729 ± 0.011 <.0001* 
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