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Hematopoietic Cell Transplantation Using Post-Transplant 
Cyclophosphamide
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Abstract

Post-transplant cyclophosphamide (PTCy) has significantly increased the successful use of 

haploidentical donors with relatively low incidence of GVHD. Given its increasing use, we sought 

to determine risk factors for GVHD after haploidentical hematopoietic cell transplantation 

(haploHCT) using PTCy.

Data from the Center for International Blood and Marrow Transplant Research on adult patients 

with AML, ALL, MDS, or CML who underwent PTCy-based haploHCT (2013–2016) were 

analyzed and categorized into 4 groups based on myeloablative (MA) or reduced intensity (RIC) 

conditioning and bone marrow (BM) or peripheral blood (PB) graft source.

646 patients were identified (MA-BM = 79, MA-PB = 183, RIC-BM = 192, RIC-PB = 192). The 

incidence of grade 2–4 aGVHD at 6 months was highest in MA-PB (44%), followed by RIC-PB 

(36%), MA-BM (36%), and RIC-BM (30%) (p=0.002). The incidence of chronic GVHD at 1 year 

was 40%, 34%, 24%, and 20%, respectively (p<0.001). In multivariable analysis, there was no 

impact of stem cell source or conditioning regimen on grade 2–4 acute GVHD; however, older 

donor age (30–49 versus <29 years) was significantly associated with higher rates of grade 2–4 

acute GVHD (HR 1.53, 95% CI 1.11–2.12, p=0.01). In contrast, PB compared to BM as a stem 

cell source was a significant risk factor for the development of chronic GVHD (HR 1.70, 95% CI 

1.11–2.62, p=0.01) in the RIC setting. There were no differences in relapse or overall survival 

between groups.

Donor age and graft source are risk factors for acute and chronic GVHD, respectively, after PTCy-

based haploHCT. Our results indicate that in RIC haploHCT, the risk of chronic GVHD is higher 

with PB stem cells, without any difference in relapse or overall survival.
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Introduction

For adults with advanced hematologic malignancies, haploidentical donors allow patients 

without a matched related or unrelated donor the opportunity to proceed with a potentially 

curative allogeneic hematopoietic cell transplant (HCT).(1–3) The use of post-transplant 

cyclophosphamide (PTCy) as graft-versus-host disease (GVHD) prophylaxis has 

significantly improved outcomes for haploidentical HCT, approaching those in the matched 

related and unrelated donor setting.(4, 5) Studies evaluating T-cell replete haploidentical 

HCT using PTCy have demonstrated rates of acute GVHD in the range of 14–41% and 

chronic GVHD rates of 0–31%, compared to historical rates of 20–80% and 30–70%, 

respectively, in matched related and matched unrelated donor transplants.(6–8) The majority 

of these haplo-transplants were done using reduced-intensity conditioning (RIC) regimens 

with bone marrow (BM) as a graft source.(3–5, 9–21)

Peripheral blood (PB) grafts have also been increasingly used in the haploidentical setting, 

and there have been two retrospective analyses comparing BM and PB. A small study by 

O’Donnell et al., demonstrated no differences in acute GVHD at 100 days, chronic GVHD 

at 2 years, or OS at 2 years between BM (33%, 23%, 58%, respectively) and PB (40%, 19%, 

66%, respectively). However, the rate of relapse was higher with BM compared to PB (19% 

vs 49%).(14) In contrast, a large CIBMTR analysis by Bashey et al. demonstrated a 

significantly lower incidence of grades II-IV acute GVHD (HR 0.45, p<0.001) and chronic 

GVHD (HR 0.35, p<0.001) in BM compared to PB.(9) Relapse was also higher with BM 

compared to PB (HR 1.49, p=0.009) specifically in patients with leukemia, however there 

were no differences in OS or non-relapse mortality (NRM).

Although the incidences of GVHD after haploidentical HCT have been described, there is 

little data describing risk factors for GVHD in this setting. The aim of this study is to 

describe the incidence, characteristics, and risk factors for acute and chronic GVHD in adult 

patients with hematologic malignancies who underwent a PTCy-based haploidentical HCT 

from 2013–2016.

Materials and Methods

Data Source

This was a retrospective analysis using data from the CIBMTR. The CIBMTR is a combined 

research program of the Medical College of Wisconsin and the National Marrow Donor 

Program. The CIBMTR comprises a voluntary network of more than 420 transplantation 

centers worldwide that contribute data on consecutive allogeneic and autologous HCTs to a 

centralized statistical center. Observational studies conducted by the CIBMTR are 

performed in compliance with all applicable federal regulations pertaining to the protection 

of human research participants. Protected health information used in the performance of 

such research is collected and maintained in the capacity of the CIBMTR as a public health 

authority under HIPPAA regulations. The CIBMTR collects data at two levels, Transplant-

Essential Data (TED) and Comprehensive Report Form (CRF). The TED level data is an 

internationally accepted standard of data that contains key variables for all consecutive 
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transplant recipients in the United States. When a transplant is registered with the CIBMTR, 

a subset of patients are selected for the CRF level of data collection. The CRF level data 

capture additional data related to the patient, disease, and transplant. Thus, a greater number 

of patients contribute to TED level data compared to CRF data. Additional details regarding 

the CIBMTR registry have been previously described.(22)

Patients

Eligible patients were ≥18 years with acute myeloid leukemia (AML), acute lymphoblastic 

leukemia (ALL), chronic myeloid leukemia (CML), and myelodysplastic syndrome (MDS). 

All patients underwent HCT from a haploidentical donor (defined in the CIBMTR registry 

as 1 or more antigen-level mismatch among HLA-A, -B, -C, and –DRB1) using BM or PB 

as a graft source and GVHD prophylaxis with PTCy, tacrolimus, and mycophenolate 

mofetil; other PTCy-based prophylaxis regimens were excluded to limit heterogeneity and 

due to low numbers of these regimens. Conditioning regimens included myeloablative 

(MAC) or RIC, with or without total body irradiation (TBI).(23, 24) An RIC regimen was 

defined as a) TBI does of ≤500 cGy as a single fraction or ≤ 800 cGy if fractionated, b) <9 

mg/kg of oral busulfan or intravenous equivalent, or c) <140 mg/m2 of melphalan. 

Transplants using ex-vivo T-cell depletion, antithymocyte globulin (ATG), or alemtuzumab 

were excluded.

Study Endpoints and definitions

The primary endpoints of this study were incidence of grade II-IV acute GVHD and chronic 

GVHD. Secondary endpoints included grade III-IV acute GVHD, relapse, OS, non-relapse 

mortality (NRM), as well as the composite endpoints of GVHD-relapse-free survival 

(GRFS) (including survival without grade 3–4 acute GVHD, chronic GVHD requiring 

systemic treatment, relapse or death); and chronic-GVHD relapse-free survival (CRFS) 

(including survival without chronic GVHD requiring systemic treatment, relapse or death).

(25) GVHD was graded according to consensus criteria.(7, 26, 27) Disease status was 

categorized into early, intermediate, and advanced(28), and the revised Disease Risk Index 

(DRI) was used to categorize patients into low, intermediate, and high/very high groups.(29) 

Relapse was defined by hematologic criteria by submitting centers with non-relapse 

mortality as a competing event. NRM was defined as death without evidence of disease 

recurrence, relapse was considered a competing event. For relapse, and NRM, patients alive 

in continuous complete remission were censored at last follow-up. For GVHD, death 

without the event was considered a competing event. HLA matching was defined as 

described previously.(30)

Statistical methods

Patient, disease, and transplant-related variables for donor types were compared using chi-

square statistics for categorical variables and the Kruskal-Wallis test for continuous 

variables. Univariate analysis with Gray’s test and log-rank test was used for cumulative 

incidence and survival, respectively. Variables tested included: patient and gender, 

Karnofsky performance score, hematopoietic cell transplantation comorbidity index (HCT-

CI)(31), DRI, time from diagnosis to HCT, donor age and relation (parent, offspring, 

sibling), donor/recipient gender, donor/recipient CMV status, use of TBI, and year of 
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transplant. Patients were categorized into 4 groups based on conditioning intensity 

(myeloablative or reduced intensity) and graft source (bone marrow or peripheral blood). 

Graft source and conditioning intensity were included in all models. The primary 

comparisons were RIC-BM versus RIC-PB, and MAC-BM versus MAC-PB.

Multivariable models were built using the Cox’s proportional hazards model. All variables 

were tested to affirm the assumption of proportional hazards and no variables violated the 

proportional hazards assumption. A stepwise model building procedure was used to select 

the adjusted factors for each outcome with a threshold of 0.05 for both entry and stay in the 

model. The ‘center’ effect was adjusted for all endpoints. Two-way interactions between 

‘donor type’ and the adjusted clinical variables in the models were tested, and no significant 

interactions were detected. A threshold p-value 0.05 for the primary endpoint of chronic 

GVHD, and of 0.01 otherwise was used for significance of the main testing variable. A 

threshold of p-value 0.01/2=0.005 (or 0.05/2=0.025 for the primary endpoint of chronic 

GVHD) was recommended for the significance of pairwise comparisons when the main 

variable is significant. The impact of cGVHD on relapse was analyzed by treating cGVHD 

as a time-dependent covariate in the model for relapse. Results were expressed as a hazard 

ratio with 95% confidence intervals. SAS software version 9.4 (SAS Institute, Cary, NC) 

was used in the analysis.

Results

Patients, disease and transplant characteristics

Table 1 shows the characteristics of the study population (N=646) grouped by graft source 

and conditioning intensity. As expected, the median age of patients undergoing MAC 

conditioning (45 and 42 years for MAC-BM and MAC-PB, respectively) was younger than 

those undergoing RIC (60 and 62 years for RIC-BM and RIC-PB, respectively). More 

patients receiving PB grafts had a higher HCT-CI (score ≥3) than those receiving BM: (52% 

MAC-PB compared to 43% MAC-BM, and 62% RIC-PB compared to 42% RIC-BM). 

Likewise, more patients with a low HCT-CI (score 0) received BM (25% MAC-BM 

compared to 12% MAC-PB and 24% RIC-BM compared to 14% RIC-PB). As expected, 

patients receiving PB had overall higher CD34 and CD3 cell doses compared to BM. 47% in 

the MAC groups received TBI as part of conditioning, with a median dose of 1200 (range 

550–1350) while 89% in the RIC groups received TBI, median dose 200 (range 200–400). 

Median follow-up was longer in the RIC groups compared to the MAC groups: 24 (range 2–

53) and 21 (range 6–50) months in RIC-BM and RIC-PB, respectively, versus 13 (range 4–

49) and 14 (range 6–50) months in MAC-BM and MAC-PB, respectively.

GVHD and Engraftment

In univariate analysis, the incidence of grade 2–4 acute GVHD at 100 days was highest in 

MAC-PB at 46% (95% CI 39–54), followed by RIC-PB at 36% (95% CI 29–43), MAC-BM 

at 33% (95% CI 23–44), and RIC-BM at 27% (95% CI 21–33) (p=0.002). A similar pattern 

was observed for chronic GVHD, where the incidence at 1 year was highest in MAC-PB at 

40% (95% CI 32–47), followed by RIC-PB at 34% (95% CI 27–41), MAC-BM at 24% 

(95% CI 15–35) and RIC-BM at 20% (95% CI 14–26) (p<0.001) (Table 2).
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In multivariable analysis, there were no significant difference in grade 2–4 acute GVHD or 

grade 3–4 acute GVHD between conditioning and graft source groups (Table 3). Adjusted 

cumulative incidence of grade 2–4 acute GVHD between all four conditioning and graft 

source groups is shown in Figure 1. The only significant factor for grade 2–4 acute GVHD 

in multivariable analysis was donor age 30–49 versus <29 years (HR 1.53, 95% CI 1.11–

2.12, p=0.01). For grade 3–4 acute GVHD, older donor age was also the only significant 

factor (≥50 versus <29 years, HR 3.89, 95% CI 1.81–8.35, p=0.0005). Despite the impact of 

donor age, donor relation was not a significant factor for acute GVHD. There was a 

significantly higher risk for chronic GVHD in the RIC-PB group compared to RIC-BM (HR 

1.70, 95% CI 1.11–2.62, p=0.01). There was no difference in chronic GVHD between 

MAC-PB and MAC-BM (Table 3). Adjusted cumulative incidence curves for chronic 

GVHD are shown in Figure 2. There were also no differences in chronic GVHD severity 

among any of the groups; overall, 59% were categorized as mild, 28% were moderate, and 

13% were severe (Table 4).

To further determine the significance of graft source on chronic GVHD, subset analyses of 

MAC (N=262) and RIC (N=384) cohorts were performed. This confirmed an increased 

incidence of chronic GVHD with PB compared to BM in both MAC (HR 1.81,95% CI 1.00–

3.28, p=0.05) and RIC (HR 1.72, 95% CI 1.10–2.70, p=0.02) groups, however this only met 

the predetermined significance level in the RIC group. Due to the known differences in age 

between MAC and RIC groups, an age-adjusted analysis for chronic GVHD was also 

performed and demonstrated similar results (data not shown). We further analyzed chronic 

GVHD in a larger cohort of CIBMTR patients receiving a haplo-identical transplant 

(N=1401) using TED level data, and confirmed that in the RIC setting, PB was associated 

with higher rates of chronic GVHD (p=0.0015). (Table 5).

Regarding hematopoietic recovery, neutrophil recovery at 28 days was highest in MAC-PB 

(95%), followed by RIC-BM (94%), RIC-PB (93%), and MAC-BM (92%) (p=0.004). Time 

to neutrophil recovery was comparable across the groups:19 days in MAC-BM (range 5–

125), 16 days in MAC-PB (range 1–90), 18 days in RIC-BM (range 2–48), and 17 days in 

RIC-PB (range 1–105). There was no difference in platelet recovery at 100 days between 

groups (Table 2). Given the small numbers, there was no notable trend regarding graft 

failure: 6 in RIC-PB, 4 in RIC-BM, 4 in MAC-PB, and 1 in MAC-BM.

Relapse and Survival Outcomes

Relapse at 1 year was similar among the groups (Table 2, adjusted cumulative incidence 

shown in Figure 3). In multivariable analysis, revised DRI high/very high versus low (HR 

2.11, 95% CI 1.21–3.68, p=0.008) was the only significant factor for relapse. We further 

analyzed the impact of chronic GVHD on relapse, and found no significant associations 

between chronic GVHD and relapse in the entire cohort (HR 1.00, 95% CI 0.70–1.44, 

p=0.99); nor in subset analysis of MA (p=0.80) and RIC (p=0.75) cohorts.

NRM at 1 year was highest in RIC-PB at 18% (95% CI 13–24) and MAC-PB at 18% (95% 

CI 12–24%), followed by 14% (95% CI 7–23) in MAC-BM, and 9% (95% CI 5–13) in RIC-

BM (p=0.01) (Table 2). In multivariable analysis, there was a higher risk of NRM in RIC-PB 

compared to RIC-BM (HR 2.06, 95% CI 1.15–3.68, p=0.01). There was no difference in 
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NRM between MAC-PB and MAC-BM. Adjusted cumulative incidence of NRM between 

groups (p=0.0292) is shown in Figure 4. The other significant factors for NRM were older 

patient age ≥60 versus 18–29 years (HR 2.31, 95% CI 1.18–4.54, p=0.015) and higher HCT-

CI ≥3 versus 0 (HR 3.32, 95% CI 1.50–7.35, p=0.003).

GRFS and CRFS at 1 year were lowest in the PB groups for both RIC (25% and 26% 

respectively, compared to 41 and 43% in BM groups) and MAC (23% and 26%, compared 

to 38% and 42%) (Table 2), but in multivariable analysis, these outcomes were not 

significantly impacted by graft source or conditioning regimen (adjusted probability, Figure 

5). Donor age ≥50 versus <29 years (HR 1.43, 95% CI 1.08–1.88, p=0.012) and Karnofsky 

performance score 90–100 versus <90 (HR 0.74, 95% CI 0.61–0.90, p=0.003) were 

significant factors for GRFS, whereas patient age 50–59 versus 18–29 years (HR 1.53, 95% 

CI 1.09–1.96, p=0.013) and patient race Non-Caucasian versus Caucasian (HR 1.33, 95% CI 

1.07–1.65, p=0.010) were significant factors for CRFS.

OS at 1 year in univariate analysis was similar among all groups (Table 2). In multivariable 

analysis, patient age 50–59 (HR 1.73, 95% CI 1.12–2.68, p=0.013) or ≥60 years (HR 1.84, 

95% CI 1.20–2.82, p=0.005) versus 18–29 years, donor age ≥50 versus <29 years (HR 1.77, 

95% CI 1.24–2.52, p=0.002), and revised DRI high/very high versus low (HR 2.68, 95% CI 

1.46–4.90, p=0.001) were significant factors contributing to OS. Relapse was the leading 

cause of death in all groups (Table 6).

Discussion

This study demonstrates that donor age and graft source are important risk factors for acute 

and chronic GVHD, respectively, after PTCy-based haploidentical HCT. Similar to previous 

findings in both matched (32–34) and alternative (35) donor settings, PB grafts in RIC 

haplo-transplant were found to be significantly associated with chronic GVHD of any 

severity. Although the impact of specific components of transplant are historically studied as 

distinct entities (36), we report a significant association of graft source and conditioning 

(RIC-PB) on chronic GVHD.

Previous studies have reported incidences of acute and chronic GVHD after PTCy-based 

haploidentical HCT with varying combinations of stem cell sources and conditioning 

regimens, but only 2 prior studies have compared BM and PB grafts. O’Donnell et al. 

reported no difference in GVHD or OS but lower relapse with PB, whereas Bashey et al. 

demonstrated higher incidences of acute and chronic GVHD, as well as lower relapse with 

PB without a difference in OS.(9, 14) Our study confirms the finding of increased chronic 

GVHD with PB grafts, however, only in the reduced intensity conditioning setting. Despite 

the incidence of chronic GVHD at 1 years being highest in the MAC-PB cohort, there was 

no difference confirmed in multivariable analysis in the myeloablative setting. While GRFS 

and CGFRS were inferior in the PB groups in both RIC and MAC groups, there was no 

difference in risk of relapse or overall survival between any of the groups. These results 

suggest that PTCy does not fully negate the risk of chronic GVHD using PB in the RIC 

setting. Moreover, no other factors emerged as significant risk factors for development of 

chronic GVHD after haploidentical HCT with PTCy. Notably, the higher risk of chronic 
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GVHD with the use of PB was not offset by a lower relapse rate nor difference in overall 

survival. The ability to detect these differences in relapse and survival is likely to be limited 

by power. There was also no increase in graft failure with BM compared to PB grafts, with a 

similar time to neutrophil engraftment in all groups.

The effect of both graft source and conditioning was also confirmed in our analyses of a 

larger cohort of CIBMTR patients using TED level data receiving haplo-transplant. Thus 

although conditioning intensity is usually determined by a patient’s age, co-morbidities and 

other non-modifiable factors, graft source is a potentially modifiable variable.

It is also notable that overall incidence of grade 3–4 acute GVHD was low, especially in the 

RIC setting, a similar finding to what has been recently reported by McCurdy et al. 

suggesting that PTCy immunomodulation decreases the risk of severe acute GVHD without 

reduction of grade 2 GVHD, which was significantly associated with higher progression-free 

survival.(37) In contrast to this recent analysis, we demonstrate older donor age as a 

significant risk factor for both grade 2–4 and grade 3–4 acute GVHD, as opposed to donor 

relation which did not have an impact. We were unable to evaluate cell doses for this 

analysis. Of note, the distribution of donor age between RIC and MAC were similar. This 

may have implications on donor selection when there is more than one haploidentical donor 

available (e.g. older sibling versus younger offspring). Other studies have also shown donor 

age to be a factor in outcomes after haploidentical transplant, and our findings support this 

as a recommended consideration in donor selection.(38–40)

There are several limitations that should be considered in interpreting these results. First, 

this was a retrospective analysis based on data submitted to a registry, and thus factors that 

led to decisions regarding stem cell source and conditioning regimen cannot be determined. 

We did restrict the analysis to select conditioning and prophylaxis regimens to limit 

heterogeneity. In addition, although the use of the registry data allowed for a large study 

population, it is possible that we did not have the power to elicit other risk factors 

contributing to GVHD, or significant relationships in the observed trends. The power to 

detect significant differences in chronic GVHD in our subset analysis of MAC and RIC 

groups was just 48% and 66%, respectively, and this may be why we were unable to detect 

significant differences in graft source in the MAC setting for GVHD. Nevertheless, our 

findings of increased chronic GVHD in the RIC groups were further confirmed by a larger 

cohort using TED level data. This was one of the largest analyses of this type, allowing the 

ability to evaluate conditioning regimen and graft source as specific risk factors for GVHD 

after haploidentical HCT. Another limitation includes the duration of follow up for the MAC 

groups, which were only 13 and 14 months, compared to the RIC groups who had 24 and 21 

months of follow up. Notably, the follow up was similar between the BM and the PB groups, 

thus the subset analyses within the MAC and the RIC groups were not impacted by different 

follow up periods. Although most relapse and chronic GVHD occur within 1 year of 

transplant, longer follow up particularly in the MAC groups are necessary, especially given 

that there was not a difference in chronic GVHD between the MAC groups. In addition, we 

excluded patients (N=24) who received in-vivo T-cell depletion with ATG or alemtuzumab, 

as it is known that these agents decrease the incidence of chronic GVHD.(41, 42) Patients 

who received both PTCy and in-vivo T-cell depletion may potentially have had lower risks 
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of chronic GVHD, although this was overall a small number of patients. Finally, we included 

only patients with AML, ALL, CML, and MDS, and thus our findings are applicable to only 

this patient population.

In sum, our results show that PB stem cells contribute to an increased risk of chronic GVHD 

and NRM in RIC PTCy-based haploidentical HCT, and that other outcomes such as relapse 

and overall survival are similar. These results aid in decision making regarding graft source 

in RIC PTCy-based haploidentical HCT. Prospective evaluation of PB versus BM using 

PTCy platforms is needed to confirm these findings.
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Highlights

• In haploidentical HCT with PTCy, conditioning intensity and graft source 

impact GVHD.

• In RIC, PB compared to BM is significantly associated with chronic GVHD.

• Older donor age was associated with higher risk of acute GVHD and NRM.
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Figure 1. 
Incidence of Acute GVHD II-IV by conditioning intensity and graft source.
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Figure 2. 
Incidence of Chronic GVHD by conditioning intensity and graft source.
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Figure 3. 
Incidence of Relapse by conditioning intensity and graft source.
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Figure 4. 
Incidence of Non-relapse mortality by conditioning intensity and graft source.
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Figure 5. 
GVHD-free, relapse free survival by conditioning intensity and graft source.
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Table 1.

Baseline characteristics

Variable MAC-BM MAC-PB RIC-BM RIC-PB P-Value

Number of patients 79 183 192 192

Recipient age at transplant, years
<0.0001

a

 Median (range) 45 (18–72) 42 (18–71) 60 (18–77) 62 (18–76)
<0.0001

b

 18–39 35 (44) 78 (43) 36 (19) 21 (11)

 40–59 24 (30) 77 (42) 56 (29) 55 (28)

 60+ 20 (26) 28 (16) 100 (52) 116 (60)

Recipient gender
0.82

b

 Male 46 (58) 108 (59) 121 (63) 114 (59)

 Female 33 (42) 75 (41) 71 (37) 78 (41)

Recipient gender
0.03

b

 Caucasian 57 (72) 116 (63) 138 (72) 139 (72)

 African-American 13 (16) 56 (31) 34 (18) 38 (20)

 Asian/Pacific Islander 3 (4) 4 (2) 12 (6) 12 (6)

 Other/Missing 6 (8) 7 (3) 8 (4) 3 (1)

Karnofsky performance score prior to transplant
0.002

b

 < 90 30 (38) 96 (52) 77 (40) 101 (53)

 90–100 43 (54) 85 (46) 112 (58) 87 (45)

 Missing 6 (8) 2 (1) 3 (2) 4 (2)

Sorror HCT-CI
<0.0001

b

 0 20 (25) 22 (12) 46 (24) 26 (14)

 1–2 25 (32) 64 (35) 62 (32) 43 (22)

 3+ 34 (43) 95 (52) 81 (42) 119 (62)

 Missing 0 2 (1) 3 (2) 4 (2)

Disease
<0.0001

b

 AML 39 (49) 115 (63) 94 (49) 111 (58)

 ALL 22 (28) 46 (25) 34 (18) 22 (11)

 CML 4 (5) 10 (5) 12 (6) 3 (2)

 MDS 14 (18) 12 (7) 52 (27) 56 (29)

Disease Risk Index

 AML 39 115 94 111
0.10

b

  Low 2 (3) 11 (6) 7 (4) 7 (4)

  Intermediate 20 (25) 57 (31) 66 (34) 69 (36)

  High/Very high 15 (19) 44 (24) 18 (9) 29 (15)

  Missing 2 (3) 3 (2) 3 (2) 6 (3)

 ALL 22 46 34 22
0.49

b

  Intermediate 15 (19) 23 (13) 20 (10) 14 (7)
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Variable MAC-BM MAC-PB RIC-BM RIC-PB P-Value

  High/Very high 7 (9) 23 (13) 14 (7) 8 (4)

 CML 4 10 12 3
0.03

b

  Low 4 (5) 9 (5) 12 (6) 1 (1)

  Intermediate 0 1 (1) 0 1 (1)

  High/Very high 0 0 0 1 (1)

 MDS 14 12 52 56
0.15

b

  Intermediate 7 (9) 4 (2) 27 (14) 14 (7)

  High/Very high 6 (8) 7 (4) 23 (12) 37 (19)

  Missing 1 (1) 1 (1) 2 (1) 5 (3)

HLA matching
0.19

b

 Haploidentical (1-antigen mismatch) 5 (6) 8 (4) 6 (3) 10 (5)

 Haploidentical (≥2-antigen mismatches) 74 (94) 173 (95) 181 (94) 182 (95)

 Haploidentical (mismatch number unknown) 0 2 (1) 5 (3) 0

Donor type
< 0.001

b

 Parent donor 11 (14) 37 (20) 14 (7) 9 (5)

 Offspring donor 30 (38) 58 (32) 120 (63) 124 (65)

 Sibling donor 34 (43) 88 (48) 56 (29) 54 (28)

 Missing 4 (5) 0 2 (1) 5 (3)

Donor age, years
< 0.001

b

 Median (range) 38 (12–65) 37 (9–68) 37 (8–73) 39 (8–71)
0.44

a

 < 29 25 (32) 52 (28) 55 (29) 43 (22)

 30–49 38 (48) 70 (38) 98 (51) 112 (58)

 ≥50 12 (15) 60 (33) 35 (18) 34 (18)

 Missing 4 (5) 1 (1) 4 (2) 3 (2)

Time from diagnosis to transplant, months
0.13

b

 Median (range) 6 (3–180) 8 (2–144) 9 (<1–291) 8 (2–171)
0.16

a

 < 6 38 (48) 75 (41) 58 (30) 77 (40)

 6 – <12 18 (23) 47 (26) 64 (33) 52 (27)

 ≥ 12 23 (29) 61 (33) 70 (36) 63 (33)

CD34 cell dose, × 106/kg <0.001
b

 Median (range) 3 (0–8) 5 (0–21) 3 (0–13) 6 (0–20)
<0.001

a

 < 2 28 (35) 4 (2) 49 (26) 8 (4)

 2 – <4 31 (39) 24 (13) 91 (47) 20 (10)

 4 – <8 17 (22) 96 (52) 37 (19) 107 (56)

 ≥ 8 0 33 (18) 4 (2) 44 (23)

 Missing 3 (4) 26 (14) 11 (6) 13 (7)

CD3 cell dose, × 106/kg <0.001
b

 Median (range) 0 (0–1) 2 (0–11) 0 (0–12) 2 (0–14)
<0.001

a
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Variable MAC-BM MAC-PB RIC-BM RIC-PB P-Value

 < 2 55 (70) 48 (26) 120 (63) 70 (36)

 2 – <4 0 54 (30) 0 73 (38)

 4 – <8 0 18 (10) 0 12 (6)

 ≥ 8 0 2 (1) 1 (1) 1 (1)

 Missing 24 (30) 61 (33) 71 (37) 36 (19)

D-R gender mismatch
0.69

b

 M/M 34 (43) 62 (34) 82 (43) 74 (39)

 M/F 21 (27) 47 (26) 46 (24) 45 (23)

 F/M 12 (15) 46 (25) 39 (20) 40 (21)

 F/F 12 (15) 28 (15) 25 (13) 33 (17)

D-R CMV status
0.03

b

 −/− 16 (20) 31 (17) 48 (25) 37 (19)

 −/+ 27 (34) 41 (22) 66 (34) 62 (32)

 +/− 7 (9) 16 (9) 16 (8) 14 (7)

 +/+ 29 (37) 90 (49) 61 (32) 78 (41)

 Missing 0 5 (3) 1 (1) 1 (1)

Conditioning regimen N/A

 BU+FLU/CY (MAC) 35 (44) 80 (44) 0 0

 TBI±FLU/CY (MAC) 24 (30) 100 (55) 0 0

 TBI±FLU/CY (RIC) 0 0 159 (83) 167 (87)

 FLU+MEL (RIC) 0 0 29 (15) 19 (10)

 Others 20 (25) 3 (2) 4 (2) 6 (3)

TBI dose, cGy

 Median (range) 1200 (200–1350) 1200 (200–1200) 200 (200–300) 200 (200–400)
<0.001

a

Year of transplant
< 0.001

b

 2013 6 (8) 11 (6) 52 (27) 13 (7)

 2014 16 (20) 38 (21) 48 (25) 39 (20)

 2015 20 (25) 61 (33) 40 (21) 69 (36)

 2016 37 (47) 73 (40) 52 (27) 71 (37)

Follow-up of survivors, months, median (range) 13 (4–49) 14 (6–50) 24 (2–53) 21 (6–50)

Abbreviations: MAC = Myeloablative, BM = Bone Marrow, PB = Peripheral Blood, RIC = Reduced Intensity Conditioning, HCT-CI = 
Hematopoietic stem cell transplant comorbidity index, AML = Acute myelogenous leukemia, ALL = Acute lymphoblastic leukemia, CML = 
Chronic myelogenous leukemia, MDS = Myelodysplastic syndromes, N/A = Not applicable, BU = Busulfan, FLU = Fludarabine, CY = 
Cyclophosphamide, MEL = Melphalan.

The P-Values were obtained by the following statistical hypothesis tests:

a
Kruskal-Wallis test

b
Pearson Chi-Square test
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Table 2.

Univariate analysis of transplant outcomes by stem cell source and conditioning regimen intensity

MAC-BM (N = 79) MAC-PB (N = 183) RIC-BM (N = 192) RIC-PB (N = 192)

Outcomes N (95% CI) N (95% CI) N (95% CI) N (95% CI) p-value

Grade 2–4 acute GVHD at 6 months 36 (25–46)% 46 (39–54)% 30 (23–36)% 36 (30–43)% 0.002

Chronic GVHD at 1 years 24 (15–35)% 40 (32–47)% 20 (14–26)% 34 (27–41)% <0.001

Grade 3–4 acute GVHD 13 (6–21)% 14 (10–20)% 5 (3–9)% 9 (6–14)% 0.06

Relapse at 1 years 28 (18–39)% 26 (20–33)% 37 (30–44)% 36 (29–43)% 0.16

Non-relapse mortality at 1 years 14 (7–23)% 18 (12–24)% 9 (5–13)% 18 (13–24)% 0.01

GVHD-free, relapse-free survival at 1 
years

38 (28–49)% 23 (17–30)% 41 (34–49)% 25 (19–32)% 0.002

cGVHD-free, relapse-free survival at 
1 years

42 (31–53)% 26 (20–33)% 43 (36–50)% 26 (19–32)% 0.002

Overall survival at 1 years 67 (56–77-)% 64 (57–71)% 70 (63–76)% 58(51–65)% 0.07

Neutrophil recovery at 100 days* 92 (85–97)% 95 (91–98)% 94 (90–97)% 93 (89–96)% 0.004

Platelet recovery at 100 days 78 (67–86)% 85 (79–90)% 90 (85–94)% 89 (84–93)% 0.10

*:
Number of graft failures: MAC-BM (n=1), MAC-PB (n=4), RIC-BM (n=4), RIC-PB (n=6).
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Table 3.

Multivariate analysis of transplant outcomes by stem cell source and conditioning regimen intensity

Outcome Variable HR (95% CI) P-value

Primary Endpoints

Acute GVHD grade II-IV

MAC-PB vs MAC-BM 1.10 (0.66–1.82) 0.73

RIC-PB vs RIC-BM 1.24 (0.84–1.82) 0.28

Chronic GVHD

MAC-PB vs MAC-BM 1.56 (0.86–2.82) 0.14

RIC-PB vs RIC-BM 1.70 (1.11–2.62) 0.01

Secondary Endpoints

Acute GVHD grade III-IV

MAC-PB vs MAC-BM 0.78 (0.38–1.60) 0.49

RIC-PB vs RIC-BM 1.93 (0.94–3.96) 0.07

Relapse

MAC-PB vs MAC-BM 0.95 (0.59–1.52) 0.82

RIC-PB vs RIC-BM 0.90 (0.65–1.26) 0.55

Non-relapse mortality

MAC-PB vs MAC-BM 1.31 (0.62–2.78) 0.48

RIC-PB vs RIC-BM 2.06 (1.15–3.68) 0.01

GVHD-free, relapse-free survival

MAC-PB vs MAC-BM 1.32 (0.94–1.85) 0.11

RIC-PB vs RIC-BM 1.31 (1.02–1.69) 0.03

Chronic GVHD-free, relapse-free survival

MAC-PB vs MAC-BM 1.36 (0.94–1.98) 0.10

RIC-PB vs RIC-BM 1.23 (0.94–1.61) 0.12

Overall survival

MAC-PB vs MAC-BM 1.02 (0.64–1.62) 0.93

RIC-PB vs RIC-BM 1.17 (0.86–1.61) 0.32
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Table 4.

Chronic GVHD severity by stem cell source and conditioning regimen

Characteristic MAC-BM MAC-PB RIC-BM RIC-PB P-value

Number of patients with chronic GVHD 19 70 43 65

N (%) N (%) N (%) N (%)

Chronic GVHD severity 0.44

Mild 13 (68) 33 (47) 26 (60) 44 (68)

Moderate 5 (26) 25 (36) 12 (28) 13 (20)

Severe 1 (5) 11 (16) 5 (12) 8 (12)

Missing 1 (1)
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Table 5.

Multivariate analysis of chronic GVHD by stem cell source and conditioning regimen intensity based on TED 

level data

Outcome Variable HR (95% CI) P-value

Chronic GVHD

MAC-PB vs MAC-BM 1.44 (0.96–2.16) 0.08

RIC-PB vs RIC-BM 1.75 (1.24–2.47) 0.0015
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Table 6.

Causes of death

MAC-BM (N = 79) MAC-PB (N = 183) RIC-BM (N = 192) RIC-PB (N = 192)

No. of dead patients 32 75 84 99

Cause of death - no. (%)

 Primary disease 16 (50) 35 (47) 60 (71) 45 (45)

 Graft failure 1 (3) 1 (1) 2 (2) 0

 GVHD 1 (3) 7 (9) 4 (5) 3 (3)

 Infection 3 (9) 6 (8) 3 (4) 2 (2)

 IPn/ARD 6 (19) 12 (16) 8 (10) 16 (16)

 Organ failure 2 (6) 6 (8) 3 (4) 17 (17)

 Secondary malignancy 1 (3) 8 (11) 3 (4) 14 (14)

 Others 2 (6) 0 1 (1) 2 (2)
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