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Summary

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced 

algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on 
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large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor 

exomes (comprising all 33 The Cancer Genome Atlas projects) and using 26 computational tools 

to catalogue driver genes and mutations. We identify 299 driver genes with implications regarding 

their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified 

>3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental 

validation confirmed 60–85% of predicted mutations as likely drivers. We found that >300 MSI 

tumors are associated with high PD-1/PD-L1 and 57% of tumors analyzed harbor putative 

clinically actionable events. Our study represents the most comprehensive discovery of cancer 

genes and mutations to date and will serve as a blueprint for future biological and clinical 

endeavors.

ITI

A comprehensive analysis of oncogenic driver genes and mutations in >9,000 tumors across 33 

cancer types highlights the prevalence of clinically actionable cancer driver events in TCGA tumor 

samples.

Keywords

Oncology; driver discovery; structure analysis; mutations of clinical relevance

Introduction

Over the past decade, The Cancer Genome Atlas (TCGA) has coordinated a monumental 

enterprise of data generation and genomic investigation across 33 cancer types. Numerous 

notable findings have emerged from this project (https://cancergenome.nih.gov/

publications). The individual TCGA projects motivated the development of many 

bioinformatic algorithms oriented toward discovery, characterization, and prioritization of 

cellular processes driving cancer based on pathways (Creixell et al., 2015), genes (Ding et 
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al., 2014), or individual variations (Pathways and Group, 2013) (Key Resources Table and 

Methods). Despite this remarkable progress, algorithms do not entirely agree on certain 

candidate cancer driver genes and mutations, necessitating expert curation to filter likely 

false positive findings. Previous PanCancer analyses(Tamborero et al., 2013b) have been 

limited to fewer cancer types and have largely avoided nominating rare driver mutations.

TCGA is now concluding the most sweeping cross-cancer analysis yet undertaken, namely 

the “PanCanAtlas project”. This project includes the uniform analysis of all TCGA exome 

data by the Multi-Center Mutation-Calling in Multiple Cancers (MC3) network, yielding 

unbiased interpretation of the entire 10,437 tumor samples dataset. Here, we describe our 

analysis of the MC3 somatic mutation set using 26 diverse bioinformatics tools (Figure 

S1A). Merging results from these tools and manual curation ultimately identified 299 cancer 

genes. In parallel with functional validation in cell lines, 8 other tools and 1 novel 

aggregating algorithm characterized mutations having the strongest phenotypic 

consequences. Four additional tools leveraged protein structural data to elucidate clusters of 

mutations in 3-dimensional space. Finally, the 5 remaining tools expounded on copy-

number, RNA-abundance, and clinical association using networks, machine learning, and 

database mining algorithms to further corroborate mutation level findings. The systematic 

and deep nature of these findings will serve cancer research far into the future.

Results

Mutational dataset and driver gene identification power

Mutation calls were produced by the Multi-Center Mutation Calling in Multiple Cancers 

(MC3) working group that harmonized results of 7 algorithms (Ellrott et al.) (Methods). To 

reduce the false positive rate for driver gene discovery, we implemented three strategies to 

optimize driver detection and data quality (Figure S1B and Methods). Briefly, we excluded 

344 hypermutator samples because of artifactual sensitivity to high background mutation 

rates (Figure 1A). All mutations that passed the MC3 filter criteria were included. In 

addition, a less stringent filter was applied to samples from the OV and LAML projects, as 

exome data for these two cancer types have distinct characteristics not amenable to our 

standard filtering. Finally, samples marked with inconsistent pathology were excluded. Our 

driver detection dataset ultimately consisted of 9,079 samples having 1,457,702 total 

mutations (Figure S1B), where the number of mutations per sample was widely distributed 

across cancer types, as previously noted (Figures 1B and 1C).(Kandoth et al., 2013; 

Lawrence et al., 2013; Tamborero et al., 2013b)

For individual cancer types, analyses were sufficiently powered to detect genes mutated at a 

median of 6.1% above background mutation rates (Figure 1D). Power largely correlated with 

cohort size, with lower values observed for DLBC (25.5%, n=37), CHOL (20.5%, n=34), 

and UCS (14.9%, n=55), and the highest statistical power for BRCA (2.3%, n=779), LGG 

(2.8%, n=510), and THCA (2.3%, n=491). We saw modest increase in statistical power for 

12 individual cancer types previously analyzed by the TCGA PanCancer effort (Kandoth et 

al., 2013), but the addition of 21 individual cancer types to our current PanCancer analysis 

increased power to <1% prevalence (Figure S1C).
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The landscape of cancer driver genes

The final consensus list consists of 299 unique genes: 258 genes obtained from a systematic 

approach and 41 additional genes recovered after manual curation of previous TCGA marker 

papers with the majority (26 out of 41, 63%) supported by additional -omic network tools 

not used in original significantly mutated gene (SMG) detection studies (Methods, Figure 

1A, Figure S2 and Table S1). We focus here on the 258 genes set, but acknowledge the 

limitations of a systematic approach by including the 41 manually rescued genes in our final 

list.

The list recovers most of the previously described driver genes for the majority of cancer 

types. In fact, in 20 out the 31 cancer types included in our study that had either been 

previously published or for which we had an internal list of known cancer driver genes, the 

recovery rate is 80% or higher (Figures S2D and S2E). The most significant outliers are 

STAD and the previous PanCancer study, for which we only recovered around 70% of the 

previously described genes (Figure S2D). The consensus list also includes 59 novel genes 

that had not been described previously and other known drivers not previously associated 

with a given tissue (Methods, Table S1). Predictions of known cancer driver genes in new 

cancer types include ATRX in ACC, KMT2C, CTNNB1 and PTEN in BLCA, and ARID1A 
and KRAS in BRCA. Entirely novel predictions include GNA13 in BLCA (a homologue of 

the known drivers GNAQ and GNA11), RRAS2 in UCEC (with shared homology in KRAS 
and HRAS), and KIF1A in HNSC (a kinesin of the same family of the cancer driver KIF5B).

The number of detected cancer driver genes varies among cancer types, with KICH having 

the fewest (2 genes) and UCEC having the most (55 genes). Furthermore, the ratio of 

predicted tumor suppressor genes to oncogenes vary widely by tissue (Figure S4B). We 

observed a significant positive correlation (Pearson R=0.66, P value=4.1e-5) between 

average mutation burden in a cancer type and the number of identified consensus genes 

(Figure S3B). Study-based calculations for powered effect size in each cancer type did not 

entirely explain this phenomenon (Pearson R=−0.31, P value=0.09) (Figure S3C). Regarding 

the associations of driver genes with different cancer types, many genes (142 out of 258) are 

associated with a single cancer, whereas 87 genes have driver roles in two or more cancer 

types, with an additional 29 genes uniquely identified using PanCancer approaches on all 

samples combined. As expected, TP53 is the most extreme case (27 cancer types), followed 

by PIK3CA, KRAS, PTEN and ARID1A, each of which is associated with 15 or more 

cancer types (Figure 2A and Figure S4A).

We clustered cancer types according to the consensus scores of their associated genes. 

Remarkably, some cancer types grouped by tissue of origin, such as LGG and GBM; others 

by cell of origin. The most significant of the cell origin clusters spans all squamous cancer 

types (BLCA, CESC, ESCA, HNSC and LUSC, (permutation test, adjusted p < 0.01) and 

includes several transcription factors (ZNF750, NFE2L2 or KLF5), chromatin and histone 

modifiers (KMT2D, EP300, or NSD1), and various PI3K pathway genes (PIK3CA, PTEN 
or MAPK1). We found two additional significant clusters (permutation test, adjusted p < 

0.05) that group gynecological (UCS, CESC, UCEC, OV, and BRCA), as well as 
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gastrointestinal cancers (COADREAD, PAAD, ESCA and STAD) (Figure 2A, Figure S4A 

and Methods).

Finally, we classified the consensus driver genes according to cancer-related biological 

processes and associated pathways (Figure 2B and Table S2). For most genes, the categories 

(excluding “other” and “other signaling”) clearly reflect known processes involved in 

carcinogenesis, namely “transcription factor” (39 genes), “RTK signaling” (16) and “RNA 

abundance” (15), “protein homeostasis/ubiquitination” (15), “chromatin histone modifiers” 

(15), “genome integrity” (14), “chromatin other” (14) and “immune signaling” (10). The last 

group is of particular interest, given the connection between driver genes and immune 

response(Thorsson et al.). In terms of cancer types, most have at least one cancer driver that 

belongs to either genome integrity (28 out of 33 cancer types) or the MAPK or PI3K 

signaling pathways (24 and 22 cancer types, respectively). Notably, squamous cancer types 

have higher proportions of chromatin histone modification genes, as well as receptor-

tyrosine kinase and immune signaling.

Approaches to Driver Mutation Discovery—Not all mutations in a cancer driver gene 

have equal impact (Torkamani and Schork, 2008), with consequences frequently depending 

on position within the protein and amino acid change (Carter et al., 2009). We explored this 

issue across the entire PanCancer dataset, classifying 751,876 unique missense mutations by 

examining the 299 identified cancer driver genes, according to their predicted oncogenic 

effect. We combined the output of three different categories of tools into consensuses 

approaches (Methods): (I) tools distinguishing benign versus pathogenic mutations using 

sequence (CTAT-population); (II) tools distinguishing driver versus passenger mutations 

using sequence (CTAT-cancer); and (III) tools discovering statistically significant three-

dimensional clusters of missense mutations (Structure-based). These tool groups identified 

10,098 (1.3% of total missense mutations), 4,595 (0.6%), and 1,469 (0.2%) unique amino 

acid substitutions, respectively (Figure 3A). Differences in the number of predicted driver 

mutations for each approach are likely due to tool design and requirements, i.e., dependence 

of structural clustering tools on available three-dimensional protein structures (either 

experimental or homology-based) yields fewer predicted driver mutations.

When benchmarked against OncoKB (Chakravarty et al., 2017), a manually curated dataset 

of cancer mutations annotated according to likely oncogenic effect, cancer-focused 

algorithms had superior predictive value than algorithms distinguishing benign and 

pathogenic mutations (Figure S5). The CTAT-cancer score outperformed all individual 

sequence-based approaches.

Overall, 9,919 predicted cancer driver mutations in our cohort (3,437 unique mutations) 

were identified by ≥2 approaches from CTAT-population, CTAT-cancer, or structural 

clustering. These mutations affect 5,782 tumor samples. These missense driver mutations 

represent a greater fraction of the total mutations in oncogenes than in tumor suppressors 

(Figure 3B). In this latter group, most mutations seem to be truncations or frameshifts, 

consistent with previous observations (Vogelstein and Kinzler, 2004). Nevertheless, there are 

also tumor suppressor genes having high numbers of missense driver mutations, such as 

EP300, CREBBP, CASP8, PIK3R1, and TP53 (Figure 3B). An interesting example is 
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CDH1, which is primarily affected by truncating or frameshift mutations in BRCA (75 out 

of 85 mutations), but mostly targeted by missense driver mutations in STAD (21 out of 25 

mutations). This suggests differing roles for CDH1 in these two cancer types.

We were intrigued by missense driver mutations detected in cancer types where the gene was 

not predicted to be a driver. This subset is particularly important for genotype-driven clinical 

trials (Gagan and Van Allen, 2015). Overall, there are 1,719 tissue-unmatched likely driver 

mutations (19% of the total) in 1,431 patients (16%) and 502 patients whose only predicted 

missense driver mutations affect genes not yet known to play a role in that cancer type. For 

example, we identified 28 patients with predicted EGFR driver mutations in cancer types 

where EGFR is not yet identified as a common driver gene, such as HNSC, STAD, LUSC, 

UCEC, ESCA, and LIHC. In extreme cases, such as ERBB4 or GNAS, these mutations 

actually represent the majority of predicted driver missense mutations in the gene (Figure 

3B). Additionally, we found that 2% (10/457) of IDH1 missense events that occur at position 

R132 are found in cancers not typically known to carry such mutations, i.e. BLCA (n=2), 

BRCA (2), COADREAD (2), LUAD (2), PCPG (1), and THYM (1) (Figure 3C). 

Furthermore, we observed that RRAS2Q72, a predicted oncogene in UCEC (n=5 samples) 

with strong homology to KRASQ61 and HRASQ61, was exceptionally mutated in cancer 

types where it was not previously recognized: UCS (n=1), LUSC (1), LUAD (1), PRAD (1), 

HNSC (1), and TCGT (1). Any analysis focusing only on driver genes and mutations known 

in that cancer type would very likely miss presumed driver mutations for those patients.

Functionally Validated Mutations Confirm Structure-based Analysis—We used 

an independent dataset of 1,049 experimentally tested somatic mutations to validate our 

driver mutation prediction (Ng et al., 2018). Briefly, mutations were introduced in two 

cancer cell lines, Ba/F3 and MCF10A, and were evaluated for oncogenicity based on 

survival and growth (Methods). In total, 160 mutations from 19 genes were validated in this 

dataset. The percentage of functionally validated mutations increased from 60% predicted 

with CTAT-population, to 61% for those found by CTAT-cancer, and 78% for Structure-

based analysis (Figure 4A). Among the 579 mutations predicted by all three approaches 

(Table S4), 39 of the 46 tested (85%) were validated. Further, the sensitivity and specificity 

of identifying driver mutations annotated by OncoKB suggests performance is generalizable 

to larger gene sets. (Figure S5E). These results support the value of the prediction algorithms 

used in our study and the advantage of combining multiple tools. Also, we would like to 

note that this approach only addresses true positive findings and represents a floor estimate 

for computational predictions.

Structural-based mutations clustered on 66 proteins, including one cluster on KLF5, a gene 

not previously identified in PanCancer studies and ranked among the top 30 clusters by 

PanCancer mutation frequency (Figure 4B). We sought to further examine predictions of the 

three approaches in various well-established cancer driver genes, such as PIK3CA/PIK3R1, 
BRAF, and KEAP1/NFE2L2 (Figures 4C–4H). The interface between PIK3CA and PIK3R1 

contains a cluster of mutations found by at least 2 of the approaches and includes both 

validated mutations and some not tested. D560G, N564D, and K567E are validated 

mutations that cluster closely to non-tested mutations R577P/Q, S565R, and P568T in 

PIK3R1. Similarly, PIK3CA contains validated mutations C378Y, V344G/M, N345T/I/K, 
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P471L, C420R, and E418K clustering with non-tested mutations S379T, N380S, and 

E418K. These non-tested mutations are excellent candidates for further experimental 

validation due both to their close proximity to known validated driver mutations and support 

from sequence-based approaches (Figures 4C and 4D). BRAF also contains clusters similar 

to this PIK3CA/PIK3R1 cluster, with a mixture of validated and novel mutations (Figures 

4E and 4F).

Additionally, there are many genes that contain mutations found by all three approaches, but 

that were not tested experimentally, including KEAP1, NFE2L2, RHOA, MTOR, MAP2K1, 

and VHL. Nevertheless, many of these driver mutations have orthogonal evidence from 

OncoKB. For example, G333D/S mutations in KEAP1 have an OncoKB status of likely 

oncogenic and oncogenic, respectively (Figures 4G and 4H). There are also NFE2L2 
mutations that cluster closely with KEAP1 mutations along the protein-protein interface 

(D77, E82, G81, E79). While they were not experimentally validated, all have an OncoKB 

status of either likely-oncogenic or oncogenic. Other KEAP1 mutations in the same cluster 

found by all three approaches are R483C, Y525C, G524C, G571D, and R413H. However, 

none of these mutations were tested in our dataset, nor have evidence from OncoKB. Given 

their proximity to the validated KEAP1 sites and the bioinformatic evidence that we found, 

these mutations are ideal candidates for follow-up validation experiments.

Overall, this analysis demonstrates the complementarity of sequence-based and structure-

based approaches. For example, E365V, C604R, and C901F in PIK3CA, F646S in PIK3R1, 

and H725Y and P731S in BRAF were found only by the former and were experimentally 

validated (Figures 4D and 4F). Conversely, R462T in BRAF was only found by the latter 

and is annotated as likely oncogenic in OncoKB (Figures 4F and 4H).

Hypermutated phenotypes and immune infiltrates—Environmental and biological 

factors such as tobacco exposure, ultraviolet radiation (UV), and microsatellite instability 

(MSI), contribute to the tumorigenic hypermutator phenotype (Roberts and Gordenin, 2014). 

Because many hypermutated samples were excluded in the driver-discovery dataset, we 

performed additional analyses to explore genes associated with this phenotype. Using 

mutation signature analysis, we found that 90% (309/344) of the samples that we labeled as 

hypermutated have MSI, UV, POLE, APOBEC, or smoking as their primary signature 

(Figure 5A). MSI and POLE, are particularly prevalent, accounting for 56% of the 

hypermutated samples. As expected, many cancer genes involved in MSI and mismatch 

repair (MMR), i.e. POLE, MLH1, MSH3, and MSH2 (Alexandrov et al., 2013; Kim et al., 

2013), are frequently mutated in these samples (Table S5, and Methods).

We expanded our analysis on mutation signatures by estimating MSI status using MSIsensor 

(Niu et al., 2013) across all samples (n=9,423). 338 tumors have a score >4 (indicative of an 

MSI-High phenotype). MSIsensor scores were correlated with validated gel assays in a 

subset of hypermuated samples (n=180, multiple regression model, p-value < 2×10−16, 

r2=0.504, Methods). We identified canonical MSI cancer types (UCEC, COAD, and STAD) 

as having the highest average MSI scores across all samples (Figure 5B). We also observed 

73 tumors with high MSI-scores from non-canonical cancers i.e., 2% of OV (n=7), and 2% 

of CESC (n=5). We observed that OV tumors have a higher mean MSIsensor score when 
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compared to other tissues, which is consistent with previous findings (Cortes-Ciriano et al., 

2017). 4 of 5 CESC MSI samples harbored mutations in genes known to be involved in MSI, 

including 1 sample with 2,644 somatic mutations that carried frameshift deletions in both 

MLH3 and MSH3.

MSI cases show improved response to immune checkpoint therapy, independent of 

histology(Brahmer et al., 2012; Gryfe et al., 2000; Le et al., 2015). Thus, we tested whether 

the samples with high MSIsensor scores exhibited similar patterns of immune infiltration 

between environmental and biological mechanisms. Using RNA-Seq abundance data, we 

calculated PD-L1, PD-L2, PD-1, CD8A, and CD8B expression in MSI-High and 

microsatellite stable (MSS) samples to identify via association those samples that would 

likely benefit from immunotherapy (Figure 5C, Methods). We observed a significant 

difference between immune infiltrates when comparing samples with high MSIsensor scores 

(≥4) to others with low MSIsensor scores (<4) from COADREAD, STAD, and UCEC 

(Figures 5C), in agreement with previous findings about these cancer types. We then tested 

whether the other 3 most prevalent signatures in hypermutators, i.e. smoking, UV, and 

APOBEC, have similar patterns of immune infiltrate expression. However, only suggestive 

evidence (t-test, p-value < 0.05) was found for PD-1 overexpression in hypermutated bladder 

cancer (BLCA) samples with the APOBEC signature (Figure 5D). Together, these findings 

corroborate the known relationship between total mutational burden and expression of 

immune modulators, but suggest that MSI may be particularly immunogenic. Additionally, 

an examination of BRCA samples revealed that 11 of 12 hypermutated samples harbor at 

least one mutation in MSI associated genes (1 with hypermethylated MLH1) and had 

increased expression in PD-L1, PD-L2, and CD8A when compared to non-hypermutated 

cases (t-test p-values <0.01, <0.01 and <0.05 respectively, Figure S7A). Similar findings in 

CESC and LUSC illustrate potential driver mechanisms in a subset of cases often 

overlooked in driver gene discovery analysis (Figures S7B and S7C).

Therapeutic implications of molecular events—We used two different databases to 

assess therapeutic implications of molecular events in our dataset: Precision Heuristics for 

Interpreting the Alteration Landscape (PHIAL) (Van Allen et al., 2014) and Database of 

Evidence for Precision Oncology (DEPO, http://depo-dinglab.ddns.net). Both databases cast 

therapeutic projections based on FDA-approved therapies, clinical trials, published clinical 

evidence and, in the case of PHIAL, the TARGET database. PHIAL works at the gene level, 

whereas DEPO focuses on specific mutations (Methods). We emphasize that, while the 

implications and results of this section have been curated based on the literature, many of 

these results are still undergoing rigorous scientific/clinical testing. However, eligibility for 

clinical trials based on demonstration a particular driver mutation still falls within the rubric 

of a clinically actionable mutation.

We observed that both the fraction of samples and proportion of alteration types varied 

across tissue types. By PHIAL heuristics, 52% of all samples contained at least one 

putatively actionable alteration (Figure 6A), while 65% of samples had at least one 

putatively actionable or biologically relevant alteration from TARGET. Using DEPO, we 

found that 30% of samples in our dataset had at least one clinically actionable mutation 

(Figure 6B).
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Using PHIAL, the most common putatively actionable alterations across the entire dataset 

were CDKN2A deletions (13%), PIK3CA mutations (12%), MYC amplifications (8%), 

BRAF mutations and amplifications (8%), and KRAS mutations (7%). CDKN2A loss may 

predict sensitivity to CDK4/6 inhibitors and affects over 40% of GBM, MESO, and ESCA 

patients. PIK3CA mutations, which may predict sensitivity to PIK3CA inhibitors, affected 

45% of patients with UCEC; MYC amplifications, prognostic in glioma and pancreatic 

cancer, were also present in 33% of OV samples. BRAF mutant samples made up over half 

of THCA and SKCM patients, suggesting sensitivity to RAF inhibitors. Finally, we also 

found high fractions of patients with pancreatic, colon, rectum, and lung adenocarcinomas 

with KRAS mutations (between 70% and 30% in all cases). While these mutations are 

currently of limited utility in untreated pancreatic and lung adenocarcinomas, they predict 

resistance to anti-EGFR therapies in colorectal adenocarcinoma.

Similar to PHIAL, PIK3CA, BRAF, and KRAS contributed to the most number of samples 

with potentially actionable alterations from DEPO. SKCM, UVM, LGG, PAAD, COAD, 

and THCA have higher prevalence of clinically actionable alterations. When looking at the 

most common clinically actionable alterations by cancer type (Figure S7D), some of the 

same genes as PHIAL are key avenues for potential targeting, such as BRAF (V600E) for 

SKCM. Some key differences occur for uveal melanoma (UVM), in which GNAQ (Q209P) 

and GNA11 (Q209P/L) mutations are present in 34% and 43% of cases, respectively. These 

mutations may be sensitive to MEK inhibitors in SKCM undergoing clinical trials. 

Additionally, MEK inhibitors are being deployed for UVM to target the GNAQ/GNA11 
mutations, but may require additional agents to show clinical benefit (Carvajal et al., 2014). 

For THCA, in addition to BRAF, NRAS mutations (Q61R/K) are present in 8% of samples 

and could be sensitive to MEK inhibitors via repurposing; some NRAS mutations are 

sensitive in SKCM to MEK inhibition in clinical trials, particularly when combined with 

CDK4 inhibition (Adjei et al., 2008; Ascierto et al., 2013; Dummer et al., 2017; Iams et al., 

2017). PIK3CA mutations (H1047R/E545K/E542K) are also prevalent in BRCA, CESC, 

and COAD at 24%, 20%, and 16%, respectively, in addition to UCEC, and each of these 

cancer types could also benefit from PI3K inhibition. Due to clinical realities and context 

specific pathogenesis, these percentages likely represent a ceiling of current molecular 

intervention potential.

Discussion

We performed a PanCancer and PanSoftware analysis on one of the largest available cancer 

genomics datasets, identifying 299 cancer driver genes. The gene list is limited by focus on 

point mutations and small indels without consideration of copy-number variations(Zack et 

al., 2013), genomic fusions(Yoshihara et al., 2014), or methylation events(De Carvalho et 

al., 2012). Nevertheless, it represents the most comprehensive effort thus far to identify 

cancer driver genes and will serve as an important research asset.

Many important issues in the field remain unresolved, for example the similarity of driver 

gene sets across cancer types(Hoadley et al., 2014), mutation order and timing (founder 

versus progression mutations) (Ding et al., 2012; McGranahan et al., 2015), interactions 

among mutations (Raimondi et al., 2016), the consequences of different mutations affecting 
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the same gene (Torkamani and Schork, 2008), reliable tools for distinguishing driver 

mutations from passengers (Greenman et al., 2007), relationships between mutational 

signatures and driver genes (Alexandrov et al., 2013), differences between mutation burden 

and neoantigen load(Rizvi et al., 2015), and the implications for therapeutics(Van Allen et 

al., 2014). Using the consensus genes and the functional mutations found in this study, we 

provided partial answers to these important questions. For example, we identified a series of 

clusters grouping various cancer types according to their cellular origin, highlighting the 

importance of the Pan-squamous, Pan-gynecological, and Pan-gastrointestinal studies of the 

PanCanAtlas.

Another important result is the dataset of 3,442 predicted driver mutations from both 

sequence-based and three-dimensional structure-based approaches. Because not all 

mutations in driver genes are actually drivers themselves, identifying the true-driver 

mutation subset remains a key challenge. We also used an external, independent 

experimental dataset to successfully validate predictions from three different approaches that 

predict cancer driver mutations. Our results suggest that cancer-specific sequence-based 

approaches outperform those aimed at detecting pathogenic variants in general. Structure-

based approaches are more specific than sequence-based approaches at predicting driver 

mutations, but with reduced sensitivity. While functional validation confirmed true positive 

predictions, it gives no information regarding false negatives. Thus, what is reported here 

represents a lower bound. Our assay was unable to capture other factors relevant to positive 

selection, such as tumor microenvironment, metastasis, interactions with treatment, or the 

immune system. While caution must be taken when extrapolating, these observations are 

consistent with other functional studies on individual proteins or a subset of the proteome 

that have shown that mutations affecting the same three-dimensional functional regions are 

likely to have similar phenotypes(Brenan et al., 2016). However, we also found several 

instances in which sequence-based approaches captured driver mutations overlooked by 

structure-based approaches. Considering both approaches as complementary can improve 

prediction sensitivity.

We estimate that approximately half of the 10,000 TCGA samples studied here harbor a 

clinically relevant mutation, by predicting either sensitivity or resistance to certain 

treatments or clinical trial eligibility. For instance, the finding of GNAQ or GNA11 mutation 

in uveal melanoma does not have a standard of care treatment, but a canonical activating 

mutation in one of these genes does allow consideration of a suite of rationally designed 

clinical trials (such MEK ± PI3K inhibitors and other approaches). Under these broader 

considerations, we estimate that 57% (std=26.7%) of the TCGA cases harbor at least one 

potentially clinically actionable target.

The findings reported here and by the larger TCGA enterprise represent early steps toward a 

new era in cancer research and ultimately in cancer treatment. Studies will move beyond 

focusing on individual genes toward systematically integrating the myriad aspects of the 

cancer genome, including the interrelationships among its somatic and germline 

variations(Carter et al., 2017) and the tumor microenvironment and the immune 

system(Thorsson et al.). Although this study represents the largest cancer gene and mutation 

study to date, we are mindful that the corpus of cancer driver genes and mutations may still 
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be incomplete. However, it is likely that the community is nearing the beginning of the end 

of this phase of research, as larger cohorts continue to be examined with longer-range and 

longer-read sequencing technologies.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Li Ding: lding@wustl.edu.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Cancer Genome Atlas (TCGA) collected both tumor and non-tumor biospecimens from 

10,224 human samples with informed consent under authorization of local institutional 

review boards (https://cancergenome.nih.gov/abouttcga/policies/informedconsent). Here we 

used variants recently uniformly re-annotated that are publically available in mutation 

annotation file (MAF) format at the GDC (will provide link).

METHOD DETAILS

DATA PREPARATION—A publicly available MAF file (syn7824274, GDC LINK) was 

recently compiled by the MC3 Working Group and is annotated with filter flags to highlight 

potential artifacts or discrepancies. This dataset represents the most uniform attempt to 

systematically provide mutation calls for TCGA tumors. The MC3 effort provided 

consensus calls from 7 software packages(Ellrott et al.). Flagged artifacts include: non-

exonic regions, whole-genome amplified (WGA) samples, exclusion lists, blood/tumor 

derived pairs, strand-bias, contamination estimations, oxo-guanine artifacts, low normal read 

depth, polymorphisms common in EXAC(Lek et al., 2016), mutations present in a panel of 

normal samples, non preferred tumor normal pairs, and mutations outside the regions of 

interest for any caller. If a mutation was not assigned any flag and was called by 2 or more 

variant calling software packages, it received a ‘PASS’ identifier. We restricted our analysis 

to PASS calls with the exception of samples from OV and LAML, which were some of the 

earliest sequenced by TCGA. Preparations for these samples utilized whole genome 

amplified (WGA) DNA, an important factor in that the WGA process can induce artefactual 

mutations. Of the 412 OV and 141 LAML samples present in our data 347 (84%) and 141 

(100%), respectively, had variants derived from WGA DNA. In order to maintain sample 

sizes and uniformity in mutation calling, we did not filter mutations containing only ‘wga’ 

filter tags from these two cancer types. We recognize multiple limitations of this mutation 

call set, including the lack of structural variants and copy number alterations, as well as 

variability in sequencing depth and tumor purity. The above limitations may lead to 

variability in mutation detection; however, the MC3 dataset reflects the state-of-the-art in 

consensus mutation detection.

We also excluded highly mutated samples. These hypermutators were defined as samples 

with a mutation count exceeding Tukey’s outlier condition, i.e. greater than 1.5 times the 

interquartile range above the third quartile in their respective cancer types (3Q + 1.5*IQR). 

Designation as a hypermutator also required the number of mutations in a sample to exceed 
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1000, a heuristic that limited the number of discarded samples in low mutation rate cancer 

types (Figure S1). LUAD, SKCM, and UCEC had hypermutator thresholds greater than 

1000 mutations (1047, 2122, and 2545 respectively, Figure 1B). We also excluded samples 

that were flagged by the analysis-working group based on pathology, but allowed “RNA 

degradation” samples to remain, as this factor is not particularly relevant for most driver 

prediction tools based on mutations (Table S6). The final driver-discovery dataset consisted 

of 9,079 samples having a total of 791,637 missense mutations, 323,884 silent mutations, 

96,196 3’UTR mutations, 57,900 nonsense mutations, 42,251 intronic mutations, 42,251 

Frame shift deletions, 34,266 5’ UTR, 21,804 splice site mutations, 19,856 RNA mutations, 

11,305 frame shift insertions, 7,622 3’ flanking mutations, 6,419 5’ flanking mutations, 

6,144 in-frame deletions, 1,362 translation start site mutations, 964 nonstop mutations, and 

632 in-frame insertions.

DRIVER DISCOVERY APPROACH—Using multiple tools can overcome numerous 

technical issues that confound individual statistical analyses to find driver genes, such as 

heterogeneous mutation rate across the genome(Lawrence et al., 2013), inflated significance 

for long genes(Watson et al., 2013), and false positive calls in cancers with high mutation 

rates(Tokheim et al., 2016b). We used 26 computational tools, spanning 10 different 

institutions, to identify mutation-based driver genes and driver mutations (Figure S1A). We 

divided the analysis into two phases: (I) driver gene-discovery and (II) gene and in-silico 

mutation validation (Figure 1C and Methods). In the first phase, we applied 8 different tools 

comprising algorithms based on mutation frequency (MuSiC2(Dees et al., 2012) and 

MutSig2CV(Lawrence et al., 2014)), features (20/20+(Tokheim et al., 2016b), 

CompositeDriver(in preparation) and OncodriveFML(Mularoni et al., 2016)), clustering 

(OncodriveCLUST(Tamborero et al., 2013a)), and externally defined regions (e-

Driver(Porta-Pardo and Godzik, 2014) and ActiveDriver(Reimand and Bader, 2013)). The 

second phase used an additional 16 tools to further characterize the consensus genes from 

phase one. The collection was comprised of 8 mutation-level algorithms (SIFT(Ng and 

Henikoff, 2002), PolyPhen2(Adzhubei et al., 2013), MutationAssessor(Reva et al., 2011), 

transFIC(Gonzalez-Perez et al., 2012), fathmm(Shihab et al., 2013), CHASM(Wong et al., 

2011), CanDrA(Carter et al., 2013) and VEST(Carter et al., 2013)), 4 structure-based 

(HotSpot3D(Niu et al., 2016), HotMAPS(Tokheim et al., 2016a), 3DHotSpots.org(Gao et 

al., 2017) and e-Driver3D(Porta-Pardo et al., 2015)), 2 network and –omic integration tools 

(OncoIMPACT(Bertrand et al., 2015), DriverNet(Bashashati et al., 2012)), and 2 algorithms 

to identify clinically-actionable events (PHIAL(Van Allen et al., 2014) and DEPO (in 

review)). Each tool reported gene or mutation level scores and/or p-values along with a brief 

description of recommended cutoff thresholds or filters. Finally, the CTAT algorithm was 

applied separately to population based and cancer based tools. This accounts for the 

remaining 2 tools (this manuscript) for a total of 26 tools.

Tools integrating –omics data analyzed a smaller subset of TCGA, since we had to remove 

75 samples that had problems regarding RNA-degradation. This issue did not affect the 

algorithms based only on somatic mutation data, so these 75 samples were included in their 

analyses (Table S6).
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STANDARDIZED RESULT REPORTING—Despite the variety in available data within 

the TCGA cohort, each of the 26 tools supplied tissue and PanCancer level predictions and 

results. We defined a standardized file format to facilitate multi-tool comparison, so each 

tool supplied information on genes, transcripts, missense mutations, scores, p-values, q-

values and additional information needed for tool specific requirements.

CREATION OF A HIGH CONFIDENCE GENE SET—We identified a preliminary total 

of 2,101 potential drivers by taking the union of genes predicted by the eight driver-gene 

discovery tools. As illustrated in Figure S2A, the increased number of false positive genes is 

likely due to any individual tool's capability to maintain sound statistical properties that 

handle a complex set of factors such as tumor heterogeneity, increased mutation rates, and 

variable sample sizes. We refined this list by calculating, for each gene predicted in each 

cancer type, a consensus score that compensated for outlier results and correlation among 

tools (Figure S2, GDC link to data). The consensus score was defined as a weighted sum of 

the number of tools that predicted the gene to be a driver in each cancer type (see Gene 

Discovery Weighting Strategy). We required a minimum of two tools to agree, where both 

could not be outliers (score≥1.5). Although it is difficult to distinguish the overall 

performance improvement on a small number of held out CGC genes (Figure S3A), the 

weighting strategy did have higher specificity (p=4.3e-8, McNemar test), which is preferable 

given concerns of false positives. Regardless, the consensus score performance on 

identifying CGC genes (Figure S3A) support previous reports that merging the results from 

different algorithms improve cancer driver discovery(Tamborero et al., 2013b).

To maximize the coverage of our analysis and ensure the accuracy of our final list, we 

reviewed previous findings in 31 individual cancer types and PanCancer-12 from TCGA. For 

cancer types not yet having a TCGA publication, we consulted with the relevant analysis 

working groups (LIHC, TGCT, UVM, SARC, PAAD, and THYM). We included in our final 

consensus list all those genes that were previously described as drivers by experts in the 

cancer-specific analysis of TCGA datasets and were also identified by at least one of the 

eight algorithms, even if they did not meet our consensus score threshold (≥1.5)(Figure 2A). 

This resulted in an additional 54 gene-cancer pairs, such as ATR, CHEK2, IDH2, and 

ERCC2 in the PanCancer dataset and FOXA1 in BLCA, HRAS in SKCM, and MET in 

LUAD (Figure S2B–F). The majority of this effort resulted in linking cancer genes identified 

by our strategy to additional cancer types based on previous literature (32/54).

The process of identifying genes in previous TCGA publications consisted in the following 

steps:

1. We manually reviewed all the official marker papers for each cancer type of The 

Cancer Genome Atlas. When no official paper was yet available, we contacted 

the lead analyst of the cancer type to access the official list of cancer driver 

genes.

2. We listed all the genes that were identified in the main text of one of the main 

figures of the corresponding paper as significantly more mutated than expected 

by chance.
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3. Once we had the genes from each cancer type, we checked whether these genes 

had also been identified in our analyses by, at least, one algorithm. Note that both 

the mutation calls and the samples from the original TCGA paper and our 

analysis of each cancer type differ to some extent, so it is possible that genes 

which were previously identified by MutSigCV or MuSiC are not found by these 

algorithms in our analysis.

4. If a gene had been identified in the dedicated cancer type, deemed important 

enough to be highlighted in the main text/figure of the paper, and was also 

identified by at least one of our 8 gene-level discovery tools, we rescued it for 

our final list (Table S1).

To limit false positives in the expanded list, we applied linear discriminant analysis (Figure 

S2C) (see Likely False Positive Gene Filter). We identified and removed 45 genes from the 

consensus we detected as likely false positives. These included CACNA1E in PanCancer, 

COL11A1 in LUAD, DST in GBM, and TTN in SKCM. The consensus list from the above 

systematic approach consisted of 258 unique genes (Table S1). The average number of non-

silent mutations per sample in our consensus gene list varied substantially by cancer type 

ranging from <1 in 12 cancer types (ACC, CHOL, KICH, KIRP, LAML, MESO, PCPG, 

PRAD, SARC, TGCT, THCA, and THYM) to 7.3 in UCEC. A median of 85% of tumors 

harbored non-silent mutations in consensus genes across cancer types (Figure S3F).

Given the limitations of a systematic approach, we additionally manually rescued 41 genes 

(Table S1). In the rescue attempt, we started with a list of genes identified from previous 

TCGA marker papers but not found from our systematic approach. We rescued genes with 

supportive evidence from the following sources: hypermutator phenotype related genes 

(since we excluded hypermutated samples in our systematic discovery; 6 genes), established 

cancer genes from LAML because of low quality variant calling originating from liquid 

tumor contamination of the normal samples (6 genes), genes supported by omic network 

tools (DriverNet and OncoIMPACT; 25 genes), and a gene supported by all three approaches 

from the driver mutation discovery (1 gene). Addition of genes to the final list was subjected 

to expert manual curation (3 genes).

The final consensus gene list consisted of 299 unique genes across 33 cancer types and the 

PanCancer dataset (Figure 2A and Table S1). The list captures most previously described 

driver genes for the majority of cancer types. We overlapped the cancer driver genes 

obtained from the consensus approach without manual curation with those from 5 

independent studies in 4 cancer types (BRCA, PRAD, PAAD, and LIHC) of which one is 

whole-genome sequencing. The consensus approach always had a greater inter-study 

overlap, with an average increase of 26% over only using a single tool, either MuSiC2 or 

MutSig2CV (Barbieri et al., 2012; Biankin et al., 2012; Nik-Zainal et al., 2016; Schulze et 

al., 2015; Stephens et al., 2012) (Table S3). Among the 299 genes we identified 59 novel 

genes that were not previously identified in 6 previous PanCancer publications (Frampton et 

al., 2013; Kandoth et al., 2013; Lawrence et al., 2014; Pritchard et al., 2014; Tamborero et 

al., 2013b; Vogelstein et al., 2013) or the cancer gene census list (http://cancer.sanger.ac.uk/

census/)(Futreal et al., 2004) (Table S1).
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GENE DISCOVERY WEIGHTING STRATEGY—Tools predicting cancer genes were 

weighted according to their performance in each cancer type, receiving half the weight if a 

result was deemed an outlier, thereby obligating additional tool agreement (Figure S2A). 

Specifically, we examined quality metrics across tools and within the same tool, which 

allowed us to identify outlier results. We marked outliers based on the quasi-majority of 

three criteria: low concordance with known cancer genes, high divergence of p-value 

distribution from theoretical expectation, and abnormally high number of significant genes. 

The first criterion evaluated the fraction overlap of significant genes with a previously 

manually curated set of driver genes from (Vogelstein et al., 2013) compared with the 

median across all tools. The second criterion examined whether the divergence of observed 

p-values from those theoretically expected by the Mean Log Fold Change (MLFC)(Tokheim 

et al., 2016b) was greater than the median of all tools, which may indicate a tool’s statistical 

assumptions may not be well satisfied. The third criterion examined whether a tool’s 

prediction for particular cancer types appeared as an outlier in terms of the number of 

significant genes compared against all of the results for that tool (Tukey’s outlier criterion: 

number significant > 3Q + 1.5*IQR). We calculated a gene consensus score by summing the 

tools that declared the gene as being significant, with a weight of 1 for non-outlier results 

and 0.5 for outlier results.

We also provided a score that is more stringent, which could be used by others to create a 

somewhat smaller set of confident driver genes (Table S1). Here, due to similarities in 

algorithmic decisions, we adjusted these consensus gene scores to compensate for 

correlation between tools of the same class (i.e. frequency, feature, and domain based tools). 

The contribution of a tool whose inference is uncorrelated with other tools is recorded by 

simple addition of its score to the running total. However, some tools show correlation at 

sufficient levels that their contributions should properly be considered in aggregate. For 

example, MuSiC2 and MutSig2CV are highly correlated, as are CompositeDriver and 

OncodriveFML (Figure S2G). For such tool pairs, we actually add the union of their scores, 

S1 U S2, to the running total in the form of

S1 ∪ S2 = S1 + S2 − S1 ∩ S2 = S1 + S2 − |ϱ|
2 (S1 + S2) = 1 − |ϱ|

2 (S1 + S2) (Eq.1)

where ρ is the Pearson’s coefficient between these two tools. We applied this procedure for 

pairs of tools whose variances exceeded 10%, i.e. for correlations greater than 0.32. Small 

changes of this threshold did not have any meaningful effect.

DRIVER MUTATION DISCOVERY—To maximize the coverage of our analysis we used 

12 tools that look for three distinct hallmarks of “driverness”. We utilized four tools that 

distinguish pathogenic mutations from benign polymorphisms on a population level 

(SIFT(Ng and Henikoff, 2002), PolyPhen2(Adzhubei et al., 2013), VEST (version 3 scores)

(Carter et al., 2013) and MutationAssessor(Reva et al., 2011)), four tools specifically 

designed to distinguish between driver and passenger somatic mutations (CHASM(Wong et 

al., 2011), CanDrA(Carter et al., 2013), fathmm(Shihab et al., 2013) and transFIC(Gonzalez-

Perez et al., 2012)) and four tools that leverage information from protein structures 
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(HotSpot3D(Niu et al., 2016), HotMAPS(Tokheim et al., 2016a), 3DHotSpot.org(Gao et al., 

2017) and e-Driver3D(Porta-Pardo et al., 2015)). In order to combine the predictions from 

the sequence-based approaches we used principal component analysis to develop a 

Combined Tool Adjusted Total (CTAT) scores for both, population-based and cancer-

specific scores (Methods). Principal component analysis has been previously shown 

successful in a similar task of prioritizing germline mutations(Ionita-Laza et al., 2016). We 

also combined the results from three-dimensional tools by adding the number of tools that 

predicted a specific position as belonging to a cancer-mutation cluster. Finally, to limit the 

number of false positives, we focused our analysis on the genes of our consensus driver list.

To define the CTAT score thresholds, we used the maximum balanced accuracy when 

predicting OncoKB mutations “oncogenic” or “likely oncogenic” (Figure S5C and S5D). 

This yielded a threshold of 1.2 for CTAT-population and 2.4 for CTAT-cancer. For the 

structural algorithms, we report a mutation as likely driver if at least 2 algorithms identify it 

within a cluster. Finally, we evaluated the performance of each CTAT score using mutations 

from OncoKB labeled as “likely oncogenic” or “oncogenic” as true-positives.

EXPERIMENTAL VALIDATION DATA—For experimental validation to assess tool 

performance, we utilized experimental data provided by Gordon Mills at MD Anderson 

Cancer Center (Ng et al., 2018). 1049 mutations were tested in 2 growth-factor dependent 

cell models, Ba/F3 and MCF10A. Both models depend on specific growth factors for 

survival, with which they cease proliferating. It is hypothesized that a mutation is a driver if 

it confers survival advantage to cells even in the absence of these growth factors. Mutations 

were introduced in the cells and the dependent growth factors were withdrawn; 

subsequently, cell viability was measured. Every experiment had 2 negative controls, 3 

positive controls, and a corresponding wild type (WT) of the mutation tested. In general, we 

considered a mutation to be ‘validated’ if the cell viabilities of the mutations were higher 

than those of the wild type.

QUANTIFICATION AND STATISTICAL ANALYSIS

STATISTICAL POWER ANALYSIS OF DRIVER GENE IDENTIFICATION—We 

performed the statistical power analysis of driver gene identification at various prevalences 

(effect size=0.1, 0.05, 0.02, and 0.01, fraction of samples above background) with 90% 

power, based on a previously established approach of elevated mutation rate(Lawrence et al., 

2014). We used a binomial model implementation (https://github.com/KarchinLab/

cancerSeqStudy), previously described(Tokheim et al., 2016b). Default parameters were 

used. We placed each cancer type or PanCancer analysis according to the median mutation 

rate (per mega base) and number of samples (n shown in Figure 1C). Mutation rate per mega 

base was calculated through using sequencing coverage of samples obtained from the 

MuSiC2 analysis.

ANATOMICAL CLUSTERING OF CANCER DRIVER GENES—We performed 

hierarchical clustering of the gene consensus scores for the 87 genes that were found in more 

than one cancer type (Figure S3E), thereby clustering both genes and cancer types (n=32 

cancer types, COAD and READ merged by maximum consensus gene score). The 
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correlation distance metric and average linkage were used to avoid clustering purely based 

on the total number of consensus genes for a cancer type. Clusters of genes were defined 

based on cutting the dendrogram at a depth chosen by manual inspection. Each gene cluster 

was tested for enrichment in three groups of cancer types using a permutation test: Pan-

squamous (BLCA, CESC, LUSC, HNSC, and ESCA), Pan-gynecological (BRCA, UCEC, 

UCS, CESC, and OV), and Pan-gastrointestinal (STAD, COADREAD, ESCA, and PAAD). 

This involved, for each cluster and group of cancer types, an initial calculation of the total 

gene consensus score from the observed data. Labels for the cancer types were then 

permuted 10,000 times and the total gene consensus score was subsequently recalculated 

based on the permuted cancer type labels. Lastly, P values were calculated as the fraction of 

permuted iterations that met or exceeded the observed total gene consensus score. P values 

were then multiple test corrected across all genes using the Benjamini-Hochberg FDR 

method.

LIKELY FALSE POSITIVE GENE FILTER—We attempted to harness the collective 

ability of the analysis tools in order to remove remaining genes that were likely false 

positives using Fisher’s linear discriminant analysis (LDA). This is a PanCancer filter in the 

sense that we selected features by manually examining 4 attributes for each of the tools. 

Specifically, for each gene, we compiled average P-value over all cancers and the Pearson 

correlation coefficient, regression slope, and y-intercept of a least-squares fit between the 

cancer background mutation rates and tool P-values. We then looked for the largest 

difference of means in units of standard deviations for these 4 attributes between a set of true 

positive list in the form of the 127 genes from Kandoth et al. 2013 versus an internally-

curated list of 488 false positives (Table S7). We ultimately chose 4 features: the correlation 

coefficient from MuSiC2, the average P-values from OncodriveFML and 20/20+, and the y-

intercept from 20/20+. To harness these features collectively, we then solved the LDA linear 

algebra problem using decomposition, where the coefficient matrix is comprised of the 

within-groups variances, the vector of unknowns contains the feature weights, and the right 

hand side is the vector of the difference of means of the features. We then chose a 

conservative cut-point such the true positives were unlikely to be caught in the filter, 

reflecting 90% sensitivity for keeping associations found in Cancer Gene Census genes. 

Using the 4 LDA weights and the cut-point, we then ran the candidate gene list through the 

filter, removing all genes that failed the cut-point. However, we omitted from this filtering 

any gene already established as being a cancer gene and any “out-of-context” gene, meaning 

ones that showed obvious specificities to a single cancer.

CTAT SCORE—We developed the Combined Tool Adjusted Total (CTAT) score to 

distinguish missense mutations that are cancer drivers from passenger mutations. The CTAT 

score combines multiple individual tools that prioritize missense mutations. To normalize 

each score, we calculated the z-score by subtracting the mean score and then dividing by the 

standard deviation. We then performed principal component analysis (PCA) using 

ScikitLearn v0.18.0 and used the score along the first principal component as our CTAT 

score, representing the scalar projection onto the first eigenvector. Only missense mutations 

that had no missing values for each of the combined tools were used in generating the 

principal component analysis. We performed this procedure on two distinct categories of 

Bailey et al. Page 18

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tools, “population-based” tools that distinguish damaging/pathogenic germline missense 

variants from common polymorphisms (SIFT, PolyPhen2, VEST, and MutationAssessor), 

and “cancer-focused” tools designed to distinguish somatic missense mutations that are 

drivers from passengers (CHASM, CanDrA, fathmm, and transFIC). To score the remaining 

missense mutations that did have a missing score, we imputed missing scores of the 

individual tool with the mean for the method. Imputation was only performed for the cancer-

focused tools as the population-based tools had too many missing values.

NORMALIZED ENTROPY SCORE—We calculated a score to characterize consensus 

genes on their diversity of amino acid positions that contain either missense, frameshift, or 

truncating mutations. Because genes may be of different length and have different 

background mutation rates, we used a normalized entropy score (E)(Tokheim et al., 2016b):

E =
−∑i = 1

n p(i)log2(p(i))
log2(n) (Eq. 2)

where, for each gene, n is the total number of mutated positions and p(i) represents the 

fraction of mutations for the i-th mutated position. The normalized entropy score takes 

values between 0 and 1, with values closer to one indicating an even spread of mutations 

across all mutated positions.

HYPERMUTATORS AND IMMUNE INFILTRATES—Hypermutator samples were 

defined above as those tumors with mutation counts greater than 1.5 times the interquartile 

range above the third quartile in their respective cancer types (3Q + 1.5*IQR). Additionally, 

mutations in a sample needed to exceed 1000, a heuristic that limited the number of 

discarded samples in low mutation rate cancer types (Figure S1). Three cancer types, 

LUAD, SKCM, and UCEC, had hypermutator thresholds greater than 1000 mutations (1047, 

2122, and 2545 respectively, Figure 1B).

18 global mutational signatures were originally calculated for each of the hypermutator 

samples according to Alexandrov et al., 2013 with a minimum cosine similarity ranging 

from 0.57 to 0.99. These signatures were then aggregated into the 9 representative signatures 

presented: POLE was comprised of "POLE” and "MSI - COSMIC14 (POLE+MSI)"; MSI 

combined "MSI - COSMIC15", "MSI - COSMIC20 (POLD+MSI)", "MSI - COSMIC21", 

"MSI - COSMIC26", and "MSI - COSMIC6"; COSMIC signature 5 combined "COSMIC5", 

and "ERCC2 - COSMIC5", unknown is comprised of "Unknown" (many of which were 

attributable to noise from WGA and 3 hypermutated samples were not performed in this 

analysis); UV, smoking, APOBEC, COSMIC1, and COSMIC5 signatures did not require 

aggregation; and other was comprised of "COSMIC17", "COSMIC22 - aristolochic acid 

signature" and "COSMIC3 – BRCA” (Figure 5A). A primary signature for each sample was 

calculated by identifying as the max score from each signature.

MSIsensor(Niu et al., 2013) was applied to all 9,423 samples in our dataset. We used the 

authors’ recommended cut-off of greater than or equal to 4 in order to indicate MSI-High 

status. Scores below 4 cannot reliably distinguish been MSI-Low and MSS. More 
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information on this tool is found in DATA AND SOFTWARE. 357 scores were generated 

from BAM files other than those used for variant calling by the MC3 Working group. Of the 

357 samples, 29 had MSIscores greater than or equal to 4. 16 of these 29 samples (55%) had 

at least one frameshift/nonsense, missense mutatiation in gene involved in MSI or MMR 

phenotype (POLE, MLH1, MLH3, MGMT, MSH6, MSH3, MSH2, PMS1, or PMS2) or had 

high MLH1 methylation. Results from 180 gel-assays were provided by The Broad Institute 

to assess MSIsensor scores. Using a multiple regression model, quantitative MSI scores 

correlated with qualitative results from the gel-assay (MSI-H, MSI-l, and MSS, p-value < 

2×10−16, r2=0.504); thus, justifying the use of MSIsensor.

PD-L1, PD-L2, PD-1, CD8A, and CD8B RPPA expression data were collected from 

FIREHOSE (January 28, 2016). By cancer type, samples were stratified by MSIsensor score 

status (Figure 5C), hypermutatator and mutation signatures status (Figure 5D), and 

hypermutator status alone (Figures S7A–S7C). Significance was calculated using two-sided 

t-test statistics.

DRUGGABILITY AND CLINICAL ASSOCIATION—PHIAL is a heuristic clinical 

interpretation algorithm and database of tumor alterations relevant to genomics-driven 

therapy (TARGET) and was created in 2014 to identify putatively actionable or biologically 

relevant alterations in patient tumor sequence data. Although it was developed to study 

patients individually, PHIAL was applied to all 8775 samples that had both SNV/indel and 

thresholded copy number data available across TCGA MC3 and all 33 individual TCGA 

studies. PHIAL (1.2.0) using TARGET 1.4.2 and Cosmic v79 was applied to all 8775 

samples that had both SNV/indel and thresholded copy number data available across TCGA 

MC3 and all 33 individual TCGA studies. TARGET contains 50 alteration-therapeutic 

assertions based on FDA-approved therapies, clinical trials, or published clinical evidence of 

genetic alteration-therapeutic action relationships which was leveraged by PHIAL to bin 

variants as putatively actionable, if both the gene and alteration type match an assertion, or 

biologically relevant, if only the gene matches.

DEPO version 1.0 (Sun et al., in review, http://depo-dinglab.ddns.net) is a manually curated 

database of single nucleotide polymorphisms or SNPs (missense, frameshift, and nonsense 

mutations), in-frame insertions and deletions (indels), copy number variations (CNVs), and 

expression changes that are paired with drug responses. For present purposes, we focused 

strictly on SNPs and indels. For each variant-drug pair, there is an associated tumor type, an 

effect (sensitive or resistant), and a level of evidence describing the quality of data 

supporting the pair at various stages of approval: FDA-approved, clinical trials, case reports, 

and preclinical. We queried our samples for presence of druggable alterations from DEPO 

regardless of cancer type. The cancer type that had the highest level of evidence for a drug-

variant pair was considered the “on-label” cancer type and all other cancer types were 

deemed to be “off-label” (Figure S7D). Cancer types containing an off-label variant were 

still considered to be ‘druggable’ via repurposing.
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DATA AND SOFTWARE AVAILABILITY

Algorithms used to create the consensus list

20/20+: 20/20+ is a Random Forest machine learning algorithm for predicting oncogenes 

and tumor suppressor genes from somatic mutations. 20/20+ uses features capturing 

mutational clustering, evolutionary conservation, predicted functional impact of variants, 

mutation consequence types, gene interaction network connectivity, and other relevant 

covariates. 20/20+ version 1.1.0 was run using default parameters, as described 

previously(Tokheim et al., 2016b), except where the number of simulations was increased to 

100,000. We applied gene hold-out cross-validation to perform predictions without over-

fitting. Additionally, for cancer type specific predictions, we held out all mutations from the 

corresponding cancer type in our training set. P-value QQ-plots suggest well-calibrated 

predictions that are not inflated for false positives and results show substantial overlap with 

the cancer gene census(Futreal et al., 2004) and curated driver genes(Vogelstein et al., 2013). 

Genes were deemed significant if either the oncogene, tumor suppressor gene, or driver 

score had a q-value of less than or equal to 0.05. 20/20+ was also used to categorize the 

consensus genes as either a oncogene, tumor suppressor gene, or unknown. A “likely” 

oncogene or tumor suppressor gene was determined using q-value threshold of 0.05, while 

“possible” status was assigned to the remaining genes with a p-value less than or equal to 

0.05.

MutSig2CV: MutSig2CV(Lawrence et al., 2014) analyzes somatic point mutations 

discovered in DNA sequencing, identifying genes mutated more often than expected by 

chance given inferred background mutation processes. Genes were deemed significant at a 

q-value threshold of 0.1. MutSig2CV consists of three independent statistical tests, described 

briefly below:

Abundance (CV): The most important step for inferring genes' mutational significance is to 

properly classify whether the gene is highly mutated relative to some background mutation 

rate (BMR), which varies on a macroscopic level across patients and genes and on a 

microscopic level across sequence contexts. MutSig accounts for all three of these aspects, 

renormalizing BMR on a per-gene, -patient, and -context level.

Clustering (CL): Genes often harbor mutational hotspots, specific sites that are frequently 

mutated. While abundance calculations bin mutations on the gene level, clustering bins 

mutations on the local site level, which allows MutSig to differentiate between genes with 

uniformly distributed mutations and genes with localized hotspots, assigning higher 

significance to the latter.

Conservation (FN): MutSig uses evolutionary conservation as a proxy for determining the 

functional significance of a mutated site. It assumes that genetic sites highly conserved 

across vertebrates have greater functional significance than weakly conserved sites. MutSig 

assigns a higher significance to genes that experience frequent mutations in highly 

conserved sites.
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MuSiC2: MuSiC2(Dees et al., 2012) version 0.2 is a frequency based tool used to identify 

significantly mutated genes. Significance is determined by comparing a calculated 

background mutation frequency to a convolution for specific transition, transversion, and 

CpG variants. Default parameters were used for initial SMG identification. A recent update 

to MuSiC2 provides a long gene filter, which seeks to remove false positives by virtue of 

finding genes whose elevated mutation tallies are due primarily to their larger size rather 

than their mutational significance. Briefly, it systematically tightens the p-value threshold for 

longer genes (>5000nt) based on a table test of uncoupling gene status (significant versus 

not significant) from gene size (long gene versus typical-size gene).

OncodriveCLUST: OncodriveCLUST(Tamborero et al., 2013a) identifies genes with non-

silent mutations that cluster together in protein sequence more than expected based on a 

background distribution of synonymous mutations. OncodriveCLUST was run through a 

local installation of IntOGen pipeline (available at https://bitbucket.org/intogen/intogen-

pipeline). Different minimum mutation thresholds were set manually, according to the 

mutation burden of the different cancer types: 3 (in ACC, CHOL, DLBC, ESCA, GBM, 

KICH, KIRC, KIRP, LGG, MESO, PAAD, PCPG, PRAD, READ, SARC and THYM), 5 (in 

BRCA, CESC, COAD, LAML, LIHC, OV, TGCT, THCA, UCS, UVM and the 

PANCANCER run), 7 (in HNSC, SKCM and STAD), 10 (in BLCA) and 12 (in LUAD, 

LUSC and UCEC). Next, we applied a custom expression filter in each cancer type by 

filtering out genes whose median expression level was lower than 6 log2 RSEM in that 

particular cancer type. Genes were found significant at a q-value threshold of 0.05.

OncodriveFML: OncodriveFML(Mularoni et al., 2016) identifies genes that have greater 

accumulation of mutations that have higher predicted function impact (functional impact 

bias). The predicted impacts of mutations were scored using CADD(Kircher et al., 2014). 

The mean CADD score for mutations was compared to permuted mutations within the same 

gene to calculate an empirical p-value. The results have been calculated considering all the 

observed mutations in CDS regions. CDS regions were extracted from Gencode release 19 

(https://www.gencodegenes.org/releases/19.html). The annotations include all CDS where 

both the "gene_type" and the "transcript_type" were tagged as "protein_coding". The 

analysis was performed using OncodriveFML version 1.0.2-alpha with the coding indels 

option specified. The configuration file contained the default parameters with the following 

exceptions (https://bitbucket.org/bbglab/oncodrivefml/downloads/PanCanAtlas.conf). Genes 

were deemed significant at a q-value of 0.25.

ActiveDriver: ActiveDriver detects genes that are enriched in somatic mutations located in 

post-translationally modified sites, such as phosphorylation, acetylation, or ubiquitination 

sites. It identifies driver genes using a logistic regression that takes into account, among 

other factors, the position of the PTM sites and the distribution of the mutations(Reimand 

and Bader, 2013). ActiveDriver (v0.010, default parameter) was run using the database 

ActiveDriver_HG38. Due to high mean log fold change (MLFC) values, genes were deemed 

significant at a q-value of 0.0001.
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e-Driver: This algorithm identifies protein regions that are enriched in somatic missense 

mutations using a binomial test and assuming mutations are distributed randomly across the 

protein. The protein regions can be linear(Porta-Pardo and Godzik, 2014) or three-

dimensional(Porta-Pardo et al., 2015). The current analysis uses PFAM domains(Finn et al., 

2016) and disordered regions predicted by Foldindex(Prilusky et al., 2005) for the linear 

analysis. We used the regions described in: https://github.com/eduardporta/e-Driver/

bioinformatics_paper/features_human_genome.txt

CompositeDriver: We have developed CompositeDriver v0.1 (https://github.com/

khuranalab/CompositeDriver), a novel computational method considering both mutation 

recurrence and functional impact of mutations to identify signals of positive selection. For 

all mutations within a gene’s protein coding region, a composite score was calculated 

through summation of mutation recurrence multiplied by the functional impact 

score(Jagadeesh et al., 2016). For each gene, a p-value was computed by testing whether the 

observed composite score is significantly higher than the null distribution. To build the null 

distribution from the background, the same numbers of mutated positions were repeatedly 

drawn (default is 105 times) from other protein coding regions of similar replication timing 

and similar mutation context(Alexandrov et al., 2013). The Benjamini-Hochberg method for 

multiple hypothesis correction and q value cut-off of 0.05 was used.

Population-based sequence algorithms

VEST: VEST (Variant Effect Scoring Tool) is a machine learning method that predicts the 

functional significance of missense mutations observed through genome sequencing, 

allowing mutations to be prioritized in subsequent functional studies based on the 

probability that they impair protein activity(Carter et al., 2013; Douville et al., 2016). VEST 

version 3.0 scores were retrieved from the CRAVAT web server (v4.3)(Douville et al., 2013).

MutationAssessor: MutationAssessor(Reva et al., 2011) uses residue conservation across 

species to identify the impact of non-synonymous mutations. Scores were obtained using the 

precompiled database ljb26_all from ANNOVAR v20150322 (Wang et al., 2010).

PolyPhen2: Polymorphism Phenotyping v2 (PolyPhen2)(Adzhubei et al., 2013) is a 

machine learning approach that computes the functional impact of missense mutations. The 

method uses sequence-based and structure-based features to train a naïve Bayes classifier. 

Scores were obtained using the precompiled database ljb26_all from ANNOVAR(Wang et 

al., 2010).

SIFT: Sorting Intolerant from Tolerant (SIFT) SIFT(Ng and Henikoff, 2002) predicts the 

functional impact of missense mutations using sequence homology. Scores were obtained 

using the precompiled database ljb26_all from ANNOVAR v20150322 (Wang et al., 2010).

Cancer-focused algorithms

CHASM: CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations) is 

a machine learning method that predicts the functional significance of somatic missense 

mutations observed in the genomes of cancer cells, allowing mutations to be prioritized in 
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subsequent functional studies, based on the probability that they give the cells a selective 

survival advantage(Carter et al., 2009). CHASM scores (precompute version 3.0) were 

retrieved from the CRAVAT web server (v4.3)(Douville et al., 2013).

CanDrA: CanDrA(Mao et al., 2013) is a machine learning program that predicts cancer-

type specific driver missense mutations based on 96 structural, evolutionary and gene 

features computed by over 10 other functional prediction algorithms such as CHASM, SIFT, 

and MutationAssessor. CanDrA used COSMIC, TCGA, and CCLE data for training and is 

heavily optimized to perform cancer-type specific driver mutation analysis(Chen et al., 

2016). If a mutation appeared more than once, the maximum CanDrA score was taken. In 

this work, the CanDra “plus” version was run under default parameters using the “general” 

cancer type database.

fathmm: Functional Analysis Through Hidden Markov Models (fathmm)(Shihab et al., 

2013) uses Hidden Markov modeling to represent the protein domain shared across human 

proteins and to estimate the functional impact of mutations. Using cancer-associated 

polymorphisms from CanProVar and putative neutral polymorphisms from UniProt, fathmm 

prioritizes mutations that are associated with cancer versus those that simply impact the 

function of a protein. Scores were obtained using the precompiled database FATHMM 

cancer v2.3 (http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz).

transFIC: Transformed Functional Impact score for Cancer (transFIC)(Gonzalez-Perez et 

al., 2012) assesses the functional impact of tumor non-synonymous SNVs by accounting for 

baseline tolerance of functional variants in relation to genes. This is performed by grouping 

genes by ontologies and assessing the tolerance of gene sets using functional scores 

provided by SIFT, PolyPhen2, and MutationAssessor. By transforming scores based specific 

ontologies in cancer datasets, modified transFIC scores outperformed original scores 

generated by other cancer specific tools. transFIC (v1.0, default parameters) was run using 

the gosmf database and applied to MutationAssessor predictions.

Structure-based algorithms

HotMAPS—Hotspot Missense mutation Areas in Protein Structures (HotMAPS)(Tokheim 

et al., 2016a) detects somatic mutation hotspot regions in 3D protein structures residing 

within a single protein chain or spanning protein chains (https://github.com/KarchinLab/

HotMAPS, v1.1.3). Protein structures were obtained from the Protein Data Bank (PDB) and 

homology models from the ModPipe human 2013 data set (ftp://salilab.org/databases/

modbase/projects/genomes/H_sapiens/2013/), built with Modeller 9.11(Pieper et al., 2011). 

Missense mutations were mapped to each protein structure or homology model using the 

MySQL database of Mutation position imaging toolbox (MuPIT)(Niknafs et al., 2013). The 

preferred biological assembly from MuPIT was used when multiple biological assemblies 

were available for a protein structure. HotMAPS calculates a p-value for missense mutated 

residues containing a higher than expected density of missense mutations. Multiple 

hypothesis testing correction was performed using the Benjamini-Hochberg approach, and 

the significance threshold was set at a q-value of 0.01.
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HotSpot3D—HotSpot3D(Niu et al., 2016) is a suite of algorithms (https://github.com/ding-

lab/hotspot3d) that identifies spatial mutation clusters on 3D protein structures. For this 

manuscript, we used version 1.4.1. A pairwise distance measure is calculated for nearest-

atoms/average-amino-acid on protein structure. Networks are then built by properly linking 

pairwise distances to corresponding mutations. Initialized by the distance matrix of the 

edges, clusters are constructed using the Floyd–Warshall shortest-paths algorithm to obtain 

the geodesics. We weighted this algorithm to bias centroid sections toward frequently 

mutated missense mutations. Finally, a closeness-centrality measure, or the sum of 

centralities over each mutation in a cluster, was used to describe features in the genes we 

identified here. For this study we used the following cutoffs: For intra-molecular clusters: 1) 

no linear amino-acid chain distance cutoff was enforced, 2) pairwise distances were 

calculated using the average amino-acid structure difference, 3) only mutation pairs with 

protein specific p-values less than 0.05, and 4) the maximum network radius was 10 

Angstroms. For inter-molecular clusters: 1) no linear amino-acid chain distance cutoff was 

enforced, 2) pairwise distances were calculated using the average amino-acid structure 

difference, 3) only mutation pairs with protein specific p-values less than 0.05, and 4) the 

maximum network radius was 20 Angstroms.

3DHotSpots.org—The algorithm behind 3DHotspots.org identifies statistically significant 

clusters of missense cancer mutations in 3D structures(Gao et al., 2017). Missense mutations 

were mapped to 3D protein structures using G2S web services (http://g2s.genomenexus.org) 

(March 2017). Only alignments with a sequence identity of 90% or above were included. 

The contact map of each structure chain was then calculated. Two residues with any pair of 

atoms within 5 angstroms (Å) were considered in contact. A 3D cluster is defined by a 

central residue and at least one contact neighbor residue. A 3D cluster is identified as 

significantly mutated if its residues were more frequently mutated than expected by chance, 

as determined by a permutation-based test. Details of the methodology and the tool are 

available at https://github.com/knowledgesystems/mutationhotspots. Version 1.0.1 with 

default parameters was used in this analysis.

e-Driver3D—This algorithm identifies protein regions that are enriched in somatic 

missense mutations using a binomial test and assuming mutations are distributed randomly 

across the protein. The three-dimensional analysis is based on a library of protein interaction 

interfaces extracted from the Protein Data Bank30. The interaction interfaces are defined for 

each pair of protein chains in each PDB coordinates file as all the residues of a chain with a 

carbon atom within 5 angstroms of a carbon atom of the other chain. We used the interfaces 

described in https://github.com/eduardporta/e-Driver/interfaces_human_genome.txt

Additional algorithms

DriverNET—DriverNet(Bashashati et al., 2012) is a package to predict functional 

important driver genes in cancer by integrating genome data (non-synonymous SNVs, 

indels, and copy number alteration) and transcriptome data (gene expression data). The 

different data types are integrated using an influence graph(Wu et al., 2010). We ran 

DriverNet (v1.6.0, numberOfRandomTests=500, weight=FALSE, purturbGraph=FALSE, 

purturbData=TRUE) and genes with q-value of 0.05 were deemed significant.
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OncoIMPACT—OncoIMPACT(Bertrand et al., 2015) is a model-driven approach to 

integrate omics profiles (genomics and transcriptomics) and provides patient-specific cancer 

driver gene predictions. It uses a gene interaction network to associate mutations (non-

synonymous SNVs, indels and copy number alterations) with transcriptomic changes(Wu et 

al., 2010). We measured the transcriptomic change of each patient as the log2 fold change of 

the patient gene expression value with the cancer type median gene expression value. 

OncoIMPACT (v0.9.4) was ran using default parameters. The top 50 predicted genes were 

used for the consensus gene list building.

MSIsensor—Written in C++, MSIsensor (version 0.2) is an algorithm that distinguishes 

microsatellite instable (MSI) tumors from microsatellite stable (MSS) samples based on 

tumor/normal sequence data(Niu et al., 2013). Homopolymer regions of 5 or more 

nucleotides in length are aggregated separately in tumor/normal pairs and compared using a 

χ2 statistic. MSI-high was calculated as an MSI score ≥ 4. Parameters for running 

MSIsensor “msi” command are as follows: −l (minimal homopolymer size) = 1 and −q 

(minimal microsatellite size) = 1. These settings are not minimal number of repeats, but 

rather the minimal number of nucleotides to consider within the repeat.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Genome Data Analysis Centers (GDACs)

The Broad Institute

Juok Cho, Timothy DeFreitas, Scott Frazer, Nils Gehlenborg, Gad Getz, David I. Heiman, 

Jaegil Kim, Michael S. Lawrence, Pei Lin, Sam Meier, Michael S. Noble, Gordon Saksena, 

Doug Voet, Hailei Zhang

Institute for Systems Biology

Brady Bernard, Nyasha Chambwe, Varsha Dhankani, Theo Knijnenburg, Roger Kramer, 
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MD Anderson Cancer Center
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Shing Ng, Arvind Rao, Michael Ryan, Jing Wang, John N. Weinstein, Jiexin Zhang
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Johns Hopkins
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University of North Carolina at Chapel Hill
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Baylor College of Medicine
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Andrei Malykh
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Jill S. Barnholtz-Sloan, Wendi Barrett, Karen Devine, Jordonna Fulop, Quinn T. Ostrom, 
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Case Western Reserve School of Medicine

Andrew E. Sloan
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Cedars-Sinai Medical Center
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John Eckman, Jodi Harr, Jerome Myers, Kelinda Tucker, Leigh Anne Zach
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Dana-Farber Cancer Institute

Feixiong Cheng, Sabina Signoretti

Dignity Health Mercy Gilbert Medical Center

Jennifer Eschbacher

Duke University Medical Center

Andrew Berchuck, Darell Bigner, Eric Lipp, Jeffrey Marks, Shannon McCall, Roger 

McLendon, Angeles Secord, Alexis Sharp

Emory University

Madhusmita Behera, Daniel J. Brat, Amy Chen, Keith Delman, Seth Force, Fadlo Khuri, 

Fadlo Khuri, Kelly Magliocca, Shishir Maithel, Jeffrey J. Olson, Taofeek Owonikoko, Alan 

Pickens, Suresh Ramalingam, Dong M. Shin, Gabriel Sica, Gabriel Sica, Erwin G. Van Meir, 
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Greenville Health System Institute for Translational Oncology Research
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Gustave Roussy institute

Eric Baudin

Harvard University

Glenn Bubley, Raphael Bueno, Assunta De Rienzo, William G. Richards
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Human Tissue Resource Network

Yufang Tang
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Dave Hoon
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Keunsoo Ahn, Koo Jeong Kang

Ludwich Maximilians University Munich

Felix Beuschlein

Maine Medical Center

Anne Breggia

Massachusetts General Hospital

Michael Birrer

Mayo Clinic

Debra Bell, Mitesh Borad, Alan H. Bryce, Erik Castle, Vishal Chandan, John Cheville, John 

A. Copland, Michael Farnell, Thomas Flotte, Nasra Giama, Thai Ho, Michael Kendrick, 

Jean-Pierre Kocher, Karla Kopp, Catherine Moser, David Nagorney, Daniel O'Brien, Brian 

Patrick O'Neill, Tushar Patel, Gloria Petersen, Gloria Petersen, Florencia Que, Michael 

Rivera, Lewis Roberts, Robert Smallridge, Robert Smallridge, Thomas Smyrk, Thomas 

Smyrk, Melissa Stanton, R. Houston Thompson, Michael Torbenson, Ju Dong Yang, Lizhi 

Zhang, Lizhi Zhang
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Hikmat Al-Ahmadie, Timothy A. Chan, Ronald Ghossein, Anuradha Gopalan, Douglas A. 

Levine, Victor Reuter, Samuel Singer, Bhuvanesh Singh

Ministry of Health of Vietnam

Nguyen Viet Tien

Molecular Response

Thomas Broudy, Cyrus Mirsaidi, Praveen Nair
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Paul Drwiega, Judy Miller, Jennifer Smith, Howard Zaren
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Joong-Won Park
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Hannah Yang
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Henri Timmers

Regina Elena National Cancer Institute
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St. Petersburg Academic University RAS

Michael Dubina, Fedor Moiseenko

Stanford University
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Tufts Medical Center

Ronald Lechan, James Powers, Arthur Tischler
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University of Wisconsin School of Medicine and Public Health

Carl Simon Shelley

University of Kansas Cancer Center

Eryn M. Godwin, Sara Kendall, Cassaundra Shipman

University of Michigan

Carol Bradford, Thomas Carey, Andrea Haddad, Jeffey Moyer, Lisa Peterson, Mark Prince, 

Laura Rozek, Gregory Wolf

UQ Thoracic Research Centre

Rayleen Bowman, Kwun M. Fong, Ian Yang

Valley Health System

Robert Korst

Bailey et al. Page 39

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vanderbilt University Medical Center

W. Kimryn Rathmell

Walter Reed National Medical Center

J. Leigh Fantacone-Campbell, Jeffrey A. Hooke, Albert J. Kovatich, Craig D. Shriver

Washington University

John DiPersio, Bettina Drake, Ramaswamy Govindan, Sharon Heath, Timothy Ley, Brian 

Van Tine, Peter Westervelt

Weill Cornell Medical College

Mark A. Rubin

Yonsei University College of Medicine

Jung Il Lee

Institution Not Provided

Natália D. Aredes, Armaz Mariamidze

Analysis Working Group Analysts/Participants

Barcelona Supercomputing Centre (BSC)

Eduard Porta-Pardo

Baylor College of Medicine

David A. Wheeler

The Broad Institute

Eliezer Van Allen, Rameen Beroukhim, Gad Getz, Julian M. Hess, Jaegil Kim, Michael S. 

Lawrence, Brendan Reardon

University of California, Santa Cruz

Joshua M. Stuart

Dana-Farber Cancer Institute

Brendan Reardon

Genome Institute of Singapore

Denis Bertrand, Jia Yu Koh, Niranjan Nagarajan, Chayaporn Suphavilai

Harvard Medical School

Isidro Cortés-Ciriano, Peter J. Park

Bailey et al. Page 40

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Johns Hopkins University

Rachel Karchin, Collin Tokheim

Université Libre de Bruxelles (ULB)

Gianluca Bontempi, Antonio Colaprico, Catharina Olsen

Memorial Sloan-Kettering Cancer Center

JianJiong Gao

MD Anderson Cancer Center

Ken Chen, Kang Jin Jeong, Alexander J. Lazar, Han Liang, Gordon B. Mills, Kwok-Shing 

Ng, Zixing Wang, Fang Wang

University of Miami Health System

Antonio Colaprico

Institute of Molecular Bioimaging and Physiology

Gloria Bertoli, Isabella Castiglioni, Claudia Cava

Institute for Research in Biomedicine (IRB Barcelona)

Abel Gonzalez-Perez, Nuria Lopez-Bigas, Loris Mularoni, Carlota Rubio-Perez, David 

Tamborero

Sanford Burnham Prebys Medical Discovery Institute

Adam Godzik, Eduard Porta-Pardo

Washington University in St Louis

Matthew H. Bailey, Song Cao, Li Ding, Qingsong Gao, Wen-Wei Liang, Sohini Sengupta, 

Venkata D. Yellapantula, Amila Weerasinghe, Michael C. Wendl, Daniel Cui Zhou

Weill Cornell Medicine

Ekta Khurana, Eric Minwei Liu

Institution Addresses

Australian Prostate Cancer Research Center, Epworth Hospital, VIC, Australia

Australian Prostate Cancer Research Center, Epworth Hospital, VIC, Australia

Barretos Cancer Hospital, Av: Antenor Duarte Villela, 1331, Barretos, São Paulo, Brazil

Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 

85013

Bailey et al. Page 41

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 

85013,

Baylor College of Medicine One Baylor Plaza, Houston, TX 77030

BC Cancer Agency, 675 W 10th Ave, Vancouver, BC V5Z 1L3, Canada

Beth Israel Deaconess Medical Center Harvard University Medical School Boston Mass

BioreclamationIVT, 99 Talbot Blvd Chestertown, MD 21620

Boston Medical Center, Boston MA 02118

Botkin Hospital, 2-y Botkinskiy pr-d, 5, Moskva, Russia, 125284

Brain Tumor and Neuro-oncology Center, Department of Neurosurgery, University 

Hospitals Case Medical Center, Case Western Reserve School of Medicine, 11100 Euclid 

Ave, Cleveland, Ohio, 44106

Brain Tumor Center at the University of Cincinnati Gardner Neuroscience Institute, and 

Department of Neurosurgery, University of Cincinnati College of Medicine, and Mayfield 

Clinic, 260 Stetson Street, Suite 2200, Cincinnati, Ohio, 45219

Brain Tumor Center at the University of Cincinnati Neuroscience Institute, and Department 

of Neurosurgery, University of Cincinnati College of Medicine, and Mayfield Clinic, 234 

Goodman Street, Cincinnati, Ohio, 45219

Brigham and Women's Hospital, 75 Francis St, Boston MA 02115

Capital Biosciences, Inc., 900 Clopper Rd, Suite 120, Gaithersburg, MD 20878

Case Comprehensive Cancer Center, 11100 Euclid Ave - Wearn 152, Cleveland, OH 

44106-5065

Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290 West MOT, Los Angeles, 

CA

Center for Liver Cancer, National Cancer Center Korea, 323 Ilsan-ro, Ilsan dong-gu, 

Goyang, Gyeonggi 10408, South Korea

Central Arkansas Veterans Healthcare System, Little Rock, AR 72205

CHU of Quebec, Laval University Research Center of Chus 2705, boul. Laurier Bureau 

TR72

QUÉBEC, Quebec G1V 4G2

Centura Health 9100 E Mineral Cir, Centennial, CO 80112

Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA 15963

Bailey et al. Page 42

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Charles University, Czech Republic

CHU of Quebec, Hôtel-Dieu de Quebec-University Laval, 11 cote du palais, Quebec City, 

G1R 2J6

CHUM, Montreal, Qc, Canada.

Clinic of Urology and Pediatric Urology, Saarland University, Homburg, Germany.

Clinical Breast Care Project, Murtha Cancer Center, Uniformed Services University / Walter 

Reed National Military Medical Center, Bethesda, MD 20889

Comprehensive Cancer Center Tissue Procurement Shared Resource, Cooperative Human 

Tissue Network Midwestern Division, Dept. of Pathology, Human Tissue Resource 

Network, The Ohio State University, 410 West 10th Ave, Doan Hall, Room E413A, 

Columbus, OH 43210

Cureline, Inc., 290 Utah Ave, Ste 300, South san Francisco, CA 94080, USA

Dana-Farber Cancer Institute, 450 Brookline Ave, Boston MA, 02215

Dardinger Neuro-Oncology Center, Department of Neurosurgery, James Comprehensive 

Cancer Center and The Ohio State University Medical Center, 320 W 10th Ave, Columbus, 

Ohio, 43210

Department of Cardiovascular and Thoracic Surgery. Suite 774 Professional Office Building. 

1735 W. Harrison St., Chicago, IL 60612

Department of Epidemiology and Public Health, University of Maryland School of 

Medicine, Baltimore MD 21201

Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 

Gustave L. Levy Place, New York, NY 10029

Department of Hematology and Medical Oncology, Mayo Clinic Arizona, 5779 E. Mayo 

Blvd, Phoenix AZ 85054

Department of Medicine, University of Wisconsin School of Medicine and Public Health, 

1685 Highland Avenue, Madison, WI 53705

Department of Medicine, Washington University in St. Louis, 660 S. Euclid Ave., CB 8066, 

St. Louis, MO 63110

Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

Department of Neurological Surgery

Department of Neurosurgery, Emory University School of Medicine, 1365 Clifton Road, 

NE, Atlanta, GA 30322

Bailey et al. Page 43

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, 

Houston, Texas 77030

Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine 

at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029

Department of Orthopedic Surgery, University of Kansas Medical Center 3901 Rainbow 

Boulevard, Kansas City, KS 66160

Department of Pathology and Cell Biology, Columbia University, New York, NY10032

Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, 

Houston, TX 77030

Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 

Kansas City, KS 66206

Department of Pathology, Department of Cell and Molecular Medicine. 570 Jelke South 

center, 1750 W. Harrison St., Chicago, IL 60612

Department of Pathology, Duke University School of Medicine, Durham, NC 27710

Department of Pathology, Spectrum Health, 35 Michigan NE, Grand Rapids, MI 49503

Department of Pathology, The Ohio State University School of Medicine, N308 Doan Hall, 

410 W 10th Ave, Columbus, OH-43210-1267

Department of Pathology, The Ohio State University Wexner Medical Center (Doan Hall 

N337B, 410 West 10th Ave., Columbus, OH 43210)

Department of Pathology. 570 Jelke South center, 1750 W. Harrison St., Chicago, IL 60612

Department of Surgery and Anatomy, Ribeirão Preto Medical School - FMRP, University of 

São Paulo, Brazil, 14049-900

Department of Surgery and Cancer, Imperial College London, Du Cane Road London W12 

0NN, UK

Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 

MA, USA

Department of Surgery, Columbia University, New York, NY 10032

Department of Surgery, University of Michigan, Ann Arbor MI 48109

Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-

Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany

Department of Urology, Mayo Clinic Arizona, 5779 E. Mayo Blvd, Phoenix AZ 85054

Bailey et al. Page 44

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Departments of Neurosurgery and Hematology and Medical Oncology, School of Medicine 

and Winship Cancer Institute, 1365C Clifton Rd. N.E., Emory University, Atlanta, GA 

30322

Departments of Pathology & Translational Molecular Pathology, The University of Texas 

MD Anderson Cancer Center, 1515 Holcombe Blvd--Unit 85, Houston, Texas, USA

Dept. of Pathology & Laboratory Medicine, University of Cincinnati, UC Health University 

Hospital, 234 Goodman Street, Cincinnati, OH 45219-0533

Dept. of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Lerner 

Research Inst, Cleveland Clinic Foundation, Cleveland, OH 44195

Dept. of Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 

22, 81675 Munich, Germany

Dignity Health Mercy Gilbert Medical Center 3555 S Val Vista Dr, Gilbert, AZ 85297

Division Molecular Urology, Department of Urology and Pediatric Urology, University 

Hospital Erlangen,

Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany

Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical 

Center Dr. Bethesda 20892 USA

Division of Neurosurgical Research, Dpt. Neurosurgery, University of Heidelberg, INF 400, 

69120 Heidelberg, Germany

Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, 75 

Francis Street, Boston, MA 02115

Dpt. Neuropathology, University of Heidelberg, INF 224, 69120 Heidelberg, Germany

Dpt. Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany Duke 

University

Duke University Medical Center 177 MSRB Box 3156 Durham, NC 27710

Duke University Medical Center, Gynecologic Oncology, Box 3079, Durham, NC USA

Emory University, 1365 Clifton Road, NE Atlanta GA, 30322

Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands

Erasmus Medical Center

Erasmus University Medical Center Rotterdam, Cancer Institute, Wytemaweg 80, 3015CN, 

Rotterdam, the Netherlands

Bailey et al. Page 45

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Foundation of the Carlo Besta Neurological Institute, IRCCS via Celoria 11, 20133

Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98019

Greater Poland Cancer Center, Garbary 15, 61-866 Poznań Poland

Greenville Health System Institute for Translational Oncology Research 900 West Faris 

Road Greenville SC 29605

Harvard University Cambridge, MA 02138

Havener Eye Institute, The Ohio State University Wexner Medical Center 915 Olentangy 

River Rd, Columbus, OH 43212

Henry Ford Hospital 2799 West Grand Blvd Detroit MI USA 48202

Hepatobiliary Surgery Unit, A. Gemelli Hospital, Catholic University of the Sacred Heart, 

Largo Agostino Gemelli 8, 00168 Rome, Italy

Hermelin Brain Tumor Center, Henry Ford Health System, 2799 W Grand Blvd, Detroit, 

MI, 48202

Hospices Civils de Lyon, CARDIOBIOTEC, Lyon F-69677, France

Hospital Clinic, Villarroel 180, Barcelona, Spain, 08036

Hue Central Hospital, Hue, Vietnam

Human Tissue Resource Network, Dept. of Pathology, College of Medicine, 1615 Polaris 

Innovation Ctr, 2001 Polaris, Columbus 43240

Huntsman Cancer Institute, Univ. of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 

Indivumed GmbH, 20251 Hamburg, Germany

René Descartes University, Hospital Européen Georges Pompidou, 20 rue Leblanc, 75015, 

Paris, France

Curie Institute, 26 rue Ulm, 75005 Paris, France

Gustave Roussy Institute of Oncology, 39 Rue Camille Desmoulins 94805, Villejuif, France

Institute of Human Virology Nigeria, Abuja, Nigeria

Institute of Molecular Bioimaging and Physiology, Via F.Cervi 93, 20090 Segrate-Mi Italy

Institute of Pathology, Technical University of Munich, Trogerstr. 18, 83675 Munich, 

Germany

Institute of Pathology, University Hospital Erlangen, Firedrich-Alexander-University 

Erlangen-Nuremberg, 91054 Erlangen, Germany

Bailey et al. Page 46

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Institute of Urgent Medicine, Republic of Moldova

Regina Elena National Cancer Institute Irccs - Ifo, Via Elio Chianesi 53, 00144, Rome, Italy

John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404

Keimyung University, Daegu, South Korea

Knight Comprehensive Cancer Institute, Oregon Health & Science University

Ludwich Maximilians University Munich, Ziemssenstrasse 1, D-80336, Munich, Germany

Maine Medical Center, 22 Bramhall St., Portland, ME 04102

Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 

Martinistr. 52, D-20246 Hamburg, Germany

Massachusetts General Hospital 55 Fruit Street Boston Ma 02114

Mayo Clinic 5777 E Mayo Blvd, Phoenix, Arizona 85054

Mayo Clinic 4500 San Pablo Road Jacksonville, FL 32224

Mayo Clinic, 200 First St. SW, Rochester, MN 55905

Mayo Clinic, Rochester, MN 55905

McGill University Health Center. 1001 Decarie Blvd, Montreal, QC, Canada H4A 3J1

MD Anderson Cancer Center 1515 Holcombe Blvd. Unit 0085 Houston, TX 77030

MD Anderson Cancer Center, Department of Pathology, Unit 085; 1515

MD Anderson Cancer Center Life Science Plaza Building 2130 W. Holcombe Blvd, Unit 

2951 Houston, TX 77030 Office: LSP9.4029

Melanoma Institute Australia, North Sydney, NSW, Australia 2060

Memorial Sloan Kettering Cancer Center Department of Pathology, 1275 York Avenue, New 

York, NY 10065

Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065

Memorial Sloan Kettering Cancer Center, Center for Molecular Oncology, 1275 York 

Avenue, New York, NY 10065

Ministry of Health of Vietnam, Hanoi, Vietnam

Molecular Pathology Shared Resource of Herbert Irving Comprehensive Cancer Center of 

Columbia University, New York, NY10032

Molecular Response 11011 Torreyana Road San Diego, CA 92121

Bailey et al. Page 47

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Murtha Cancer Center, Uniformed Services University / Walter Reed National Military 

Medical Center, Bethesda, MD 20889

Nancy N. and J.C. Lewis Cancer & Research Pavilion at St. Joseph's/Candler, 225 Candler 

Drive, Savannah, GA 31405

National Cancer Hospital of Vietnam

National Cancer Institute, 31 Center Dr, Bethesda, MD 20892

National Cancer Institute, Bethesda, MD 20892

Norfolk & Norwich University Hospital, Norwich, UK. NR4 7UY

NYU Langone Medical Center, Cardiothoracic Surgery, 530 first Avenue, 9V, New York, 

NY Oncology Institute, Republic of Moldova

Ontario Tumor Bank - Hamilton site, St. Joseph's Healthcare Hamilton, Hamilton, Ontario 

L8N 3Z5, Canada

Ontario Tumor Bank - Kingston site, Kingston General Hospital, Kingston, Ontario K7L 

5H6, Canada

Ontario Tumor Bank – Ottawa site, The Ottawa Hospital, Ottawa, Ontario K1H 8L6, 

Canada.

Ontario Tumor Bank, London Health Sciences Centre, London, Ontario N6A 5A5, Canada

Ontario Tumor Bank, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, 

Canada

Orbital Oncology & Ophthalmic Plastic Surgery Department of Plastic Surgery M.D. 

Anderson Cancer Center 1515 Holcombe Blvd, Unit 1488 Houston, Texas 77030

Papworth Hospital NHS Foundation Trust, UK

Pathology, St. Joseph's/Candler, 5353 Reynolds St., Savannah, GA 31405

Professor, Division of Neuropathology, Department of Pathology, University Hospitals Case 

Medical Center

Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

Providence Health and Services

QIMR Berghofer Medical Research Institute, Herston, QLD, Australia

Radboud Medical University Center, Geert Grooteplein-Zuid 10, Nijmegen, the Netherlands

Regina Elena National Cancer Institute, 00144 Rome, Italy

Bailey et al. Page 48

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Reinier de Graaf Hospital, Reinier de Graafweg 5, 2625AD, Delft, the Netherlands

Research Institute of the McGill University Health Centre, McGill University, Montréal, 

Québec, Canada

Research Center Of Chus Sherbrooke, Québec aile 9, porte 6, 3001 12e Avenue Nord, 

Sherbrooke, QC J1H 5N4, Canada

Rockefeller University 1230 York Ave New York, NY

Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center ND4-52A, Cleveland Clinic 

Foundation, 9500 Euclid Ave, Cleveland, OH 44195

Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, 9500 Euclid Avenue - 

CA51, Cleveland, OH 44195

Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of 

Neurosurgery, Neurological and Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid 

Avenue, Cleveland, Ohio, 44195

Roswell Park Cancer Institute. Elm & Carlton Streets, Buffalo NY 14263

Sage Bionetworks, Seattle, WA 98109

Saint-Petersburg City Clinical Oncology Hospital, 56 Veteranov prospect, Saint-Petersburg, 

198255, Russia

Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

School of Medicine, National Center for Asbestos Related Research, University of Western 

Australia, Nedlands, WA, Australia 6009

Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3050, 

Victoria, Australia

St. Petersburg Academic University RAS, 8/3 Khlopin Str., St. Petersburg, 194021, Russia 

Stanford University, Palo Alto, CA, USA

Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK USA

Tayside Tissue Bank, University of Dundee, Scotland UK DD1 9SY

The International Genomics Consortium, 445 N. 5th Street, Phoenix, Arizona 85004

The Ohio State University, Columbus, OH 43210

The Ohio State University Comprehensive Cancer Center, 320 W 10th Avenue, Columbus, 

OH 43210

The Ohio State University Wexner Medical Center (2012 Kenny Rd, Columbus, OH 43221)

Bailey et al. Page 49

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Oregon Clinic 1111 NE 99th Ave, Portland, OR 97220

The Prince Charles Hospital, UQ Thoracic Research Centre, Australia 4032

The Research Institute at Nationwide Children's Hospital 700 Children's Drive Columbus 

Ohio 43205

Tufts Medical center, 800 Washington St. Boston MA 02111

UABMC 401 Beacon Pkwy W Birmingham AL 35209

UC Cancer Institute, 200 Albert Sabin Way, Suite 1012, Cincinnati, OH 45267-0502

UCSF-Helen Diller Family Comprehensive Cancer Center, 550 16th St., Mission Hall WS 

6532 Box 3211, San Francisco, CA 94143

Université Libre de Bruxelles, Département d'Informatique, Boulevard du Triomphe - 

CP212, 1050

Bruxelles, Belgium University Hospital of Giessen and Marburg, Badingerstrasse 3, 35044, 

Marburg, Germany

University Hospital in Wurzburg, Germany, Oberdürrbacher Strasse 6, 97080, Würzburg, 

Germany

University Health Network, 200 Elizabeth Street, Toronto ON M5G 2C4 Canada

University Hospital Essen, University Duisburg-Essen, German Cancer Consortium, 

Hufelandstr. 55; 45239 Essen, Germany

University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, 

Germany

University of Abuja Teaching Hospital, Gwagalada, FCT, Nigeria

University of Arizona

Tucson Arizona University of Calgary, Departments of Surgery and Oncology, 1331 - 29th 

St NW, Calgary, AB, T2N 4N2

University of California San Francisco, 2340 Sutter St Rm S 229, San Francisco CA 94143

University of California, Irvine 333 City Boulevard West Suite 1400 Orange CA 92868

University of Chicago Medicine 5841 S. Maryland Ave. Room G-216, MC 5094|Chicago, IL 

60637

University of Cincinnati Cancer Institute, Brain Tumor Clinical Trials, 200 Albert Sabin 

Way Suite 1012, Cincinnati, OH 45267

Bailey et al. Page 50

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



University of Cincinnati Cancer Institute, Holmes Bldg., 200 Albert Sabin Way, Ste 1002, 

Cincinnati, OH 45267-0502

University of Colorado Cancer Center, Aurora, CO, 80111, USA

University of Dundee, Scotland UK DD1 9SY

University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy

University of Hawaii Cancer Center

University of Iowa Hospital & Clinics, 200 Hawkins Drive, Clinical Trials-Data 

Management, 11510 PFP, Iowa City, IA 52242

University of Iowa Hospital & Clinics, 200 Hawkins Drive, Hematology/Oncology, C32 

GH, Iowa City, IA 52242

University of Iowa Hospital & Clinics, 200 Hawkins Drive, ICTS-Informatics, 272 MRF, 

Iowa City, IA 52242

University of Iowa Hospital & Clinics, 200 Hawkins Drive, Medicine Administration, 380 

MRC, Iowa City, IA 52242

University of Iowa Hospital & Clinics, 200 Hawkins Drive, Molecular Pathology, B606 GH, 

Iowa City, IA 52242

University of Iowa Hospital & Clinics, 200 Hawkins Drive, Pathology, SW247 GH, Iowa 

City, IA 52242

University of Kansas Cancer Center, 3901 Rainbow Blvd, Kansas City, KS. 66160

University of Kansas Medical Center Kansas City KS 66160

University of Miami Health System, Sylvester Comprehensive Cancer Center (SCCC), 

Department of Human Genetics, Miami, Florida, 33136, USA

University of Michigan 500 S State St, Ann Arbor, MI 48109

University of Montreal 2900 Edouard Mont petit Blvd, Montreal, QC H3T 1J4, Canada

University of New Mexico Albuquerque, New Mexico 87131

University of Pennsylvania Philadelphia, PA 19104

University of Pittsburgh, Department of Cardiothoracic Surgery,200 Lothrop St, Suite 

C-800, Pittsburgh, Pennsylvania 15213

University of Pittsburgh, Department of Pathology, Pittsburgh, Pennsylvania 15213

University of Sheffield Western Bank, Sheffield S10 2TN, UK

Bailey et al. Page 51

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



University of Washington Seattle, WA 98105

UPR Comprehensive Cancer Center Biobank; University of Puerto Rico Comprehensive 

Cancer Center, Celso Barbosa St. Medical Center Area, San Juan, PR 00936

Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 

10, Room 1-5940, Bethesda, MD 20892-1107

Valley Health System, 1 Valley Health Plaza, Paramus, NJ 07652

Vanderbilt University Medical Center 1211 Medical Center Dr, Nashville, TN 37232

Washington University School of Medicine, 600 S. Taylor Ave, St. Louis, MO 63110

Weill Cornell Medical College, New York, NY 10065

Amy Blum, Samantha J. Caesar-Johnson, John A. Demchok, Ina Felau, Melpomeni Kasapi, 

Martin L. Ferguson, Carolyn M. Hutter, Heidi J. Sofia, Roy Tarnuzzer, Peggy Wang, Zhining 

Wang, Liming Yang, Jean C. Zenklusen, Jiashan (Julia) Zhang, Sudha Chudamani, Jia Liu, 

Laxmi Lolla, Rashi Naresh, Todd Pihl, Qiang Sun, Yunhu Wan, Ye Wu, Juok Cho, Timothy 

DeFreitas, Scott Frazer, Nils Gehlenborg, Gad Getz, David I. Heiman, Jaegil Kim, Michael 

S. Lawrence, Pei Lin, Sam Meier, Michael S. Noble, Gordon Saksena, Doug Voet, Hailei 

Zhang, Brady Bernard, Nyasha Chambwe, Varsha Dhankani, Theo Knijnenburg, Roger 

Kramer, Kalle Leinonen, Yuexin Liu, Michael Miller, Sheila Reynolds, Ilya Shmulevich, 

Vesteinn Thorsson, Wei Zhang, Rehan Akbani, Bradley M. Broom, Apurva M. Hegde, 

Zhenlin Ju, Rupa S. Kanchi, Anil Korkut, Jun Li, Han Liang, Shiyun Ling, Wenbin Liu, 

Yiling Lu, Gordon B. Mills, Kwok-Shing Ng, Arvind Rao, Michael Ryan, Jing Wang, John 

N. Weinstein, Jiexin Zhang, Adam Abeshouse, Joshua Armenia, Debyani Chakravarty, 

Walid K. Chatila, Ino de Bruijn, Jianjiong Gao, Benjamin E. Gross, Zachary J. Heins, Ritika 

Kundra, Konnor La, Marc Ladanyi, Augustin Luna, Moriah G. Nissan, Angelica Ochoa, 

Sarah M. Phillips, Ed Reznik, Francisco Sanchez-Vega, Chris Sander, Nikolaus Schultz, 

Robert Sheridan, S. Onur Sumer, Yichao Sun, Barry S. Taylor, Jioajiao Wang, Hongxin 

Zhang, Pavana Anur, Myron Peto, Paul Spellman, Christopher Benz, Joshua M. Stuart, 

Christopher K. Wong, Christina Yau, D. Neil Hayes, Joel S. Parker, Matthew D. Wilkerson, 

Adrian Ally, Miruna Balasundaram, Reanne Bowlby, Denise Brooks, Rebecca Carlsen, Eric 

Chuah, Noreen Dhalla, Robert Holt, Steven J.M. Jones, Katayoon Kasaian, Darlene Lee, 

Yussanne Ma, Marco A. Marra, Michael Mayo, Richard A. Moore, Andrew J. Mungall, 

Karen Mungall, A. Gordon Robertson, Sara Sadeghi, Jacqueline E. Schein, Payal 

Sipahimalani, Angela Tam, Nina Thiessen, Kane Tse, Tina Wong, Ashton C. Berger, 

Rameen Beroukhim, Andrew D. Cherniack, Carrie Cibulskis, Stacey B. Gabriel, Galen F. 

Gao, Gavin Ha, Matthew Meyerson, Steven E. Schumacher, Juliann Shih, Melanie H. 

Kucherlapati, Raju S. Kucherlapati, Stephen Baylin, Leslie Cope, Ludmila Danilova, Moiz 

S. Bootwalla, Phillip H. Lai, Dennis T. Maglinte, David J. Van Den Berg, Daniel J. 

Weisenberger, J. Todd Auman, Saianand Balu, Tom Bodenheimer, Cheng Fan, Katherine A. 

Hoadley, Alan P. Hoyle, Stuart R. Jefferys, Corbin D. Jones, Shaowu Meng, Piotr A. 

Mieczkowski, Lisle E. Mose, Amy H. Perou, Charles M. Perou, Jeffrey Roach, Yan Shi, 

Janae V. Simons, Tara Skelly, Matthew G. Soloway, Donghui Tan, Umadevi Veluvolu, 

Bailey et al. Page 52

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Huihui Fan, Toshinori Hinoue, Peter W. Laird, Hui Shen, Wanding Zhou, Michelle Bellair, 

Kyle Chang, Kyle Covington, Chad J. Creighton, Huyen Dinh, HarshaVardhan 

Doddapaneni, Lawrence A. Donehower, Jennifer Drummond, Richard A. Gibbs, Robert 

Glenn, Walker Hale, Yi Han, Jianhong Hu, Viktoriya Korchina, Sandra Lee, Lora Lewis, 

Wei Li, Xiuping Liu, Margaret Morgan, Donna Morton, Donna Muzny, Jireh Santibanez, 

Margi Sheth, Eve Shinbrot, Linghua Wang, Min Wang, David A. Wheeler, Liu Xi, Fengmei 

Zhao, Julian Hess, Elizabeth L. Appelbaum, Matthew Bailey, Matthew G. Cordes, Li Ding, 

Catrina C. Fronick, Lucinda A. Fulton, Robert S. Fulton, Cyriac Kandoth, Elaine R. Mardis, 

Michael D. McLellan, Christopher A. Miller, Heather K. Schmidt, Richard K. Wilson, 

Daniel Crain, Erin Curley, Johanna Gardner, Kevin Lau, David Mallery, Scott Morris, 

Joseph Paulauskis, Robert Penny, Candace Shelton, Troy Shelton, Mark Sherman, Eric 

Thompson, Peggy Yena, Jay Bowen, Julie M. Gastier-Foster, Mark Gerken, Kristen M. 

Leraas, Tara M. Lichtenberg, Nilsa C. Ramirez, Lisa Wise, Erik Zmuda, Niall Corcoran, 

Tony Costello, Christopher Hovens, Andre L. Carvalho, Ana C. de Carvalho, José H. 

Fregnani, Adhemar Longatto-Filho, Rui M. Reis, Cristovam Scapulatempo-Neto, Henrique 

C.S. Silveira, Daniel O. Vidal, Andrew Burnette, Jennifer Eschbacher, Beth Hermes, Ardene 

Noss, Rosy Singh, Matthew L. Anderson, Patricia D. Castro, Michael Ittmann, David 

Huntsman, Bernard Kohl, Xuan Le, Richard Thorp, Chris Andry, Elizabeth R. Duffy, 

Vladimir Lyadov, Oxana Paklina, Galiya Setdikova, Alexey Shabunin, Mikhail Tavobilov, 

Christopher McPherson, Ronald Warnick, Ross Berkowitz, Daniel Cramer, Colleen 

Feltmate, Neil Horowitz, Adam Kibel, Michael Muto, Chandrajit P. Raut, Andrei Malykh, 

Jill S. Barnholtz-Sloan, Wendi Barrett, Karen Devine, Jordonna Fulop, Quinn T. Ostrom, 

Kristen Shimmel, Yingli Wolinsky, Andrew E. Sloan, Agostino De Rose, Felice Giuliante, 

Marc Goodman, Beth Y. Karlan, Curt H. Hagedorn, John Eckman, Jodi Harr, Jerome Myers, 

Kelinda Tucker, Leigh Anne Zach, Brenda Deyarmin, Hai Hu, Leonid Kvecher, Caroline 

Larson, Richard J. Mural, Stella Somiari, Ales Vicha, Tomas Zelinka, Joseph Bennett, Mary 

Iacocca, Brenda Rabeno, Patricia Swanson, Mathieu Latour, Louis Lacombe, Bernard Têtu, 

Alain Bergeron, Mary McGraw, Susan M. Staugaitis, John Chabot, Hanina Hibshoosh, 

Antonia Sepulveda, Tao Su, Timothy Wang, Olga Potapova, Olga Voronina, Laurence 

Desjardins, Odette Mariani, Sergio Roman-Roman, Xavier Sastre, Marc-Henri Stern, 

Feixiong Cheng, Sabina Signoretti, Andrew Berchuck, Darell Bigner, Eric Lipp, Jeffrey 

Marks, Shannon McCall, Roger McLendon, Angeles Secord, Alexis Sharp, Madhusmita 

Behera, Daniel J. Brat, Amy Chen, Keith Delman, Seth Force, Fadlo Khuri, Kelly 

Magliocca, Shishir Maithel, Jeffrey J. Olson, Taofeek Owonikoko, Alan Pickens, Suresh 

Ramalingam, Dong M. Shin, Gabriel Sica, Erwin G. Van Meir, Hongzheng Zhang, Wil 

Eijckenboom, Ad Gillis, Esther Korpershoek, Leendert Looijenga, Wolter Oosterhuis, Hans 

Stoop, Kim E. van Kessel, Ellen C. Zwarthoff, Chiara Calatozzolo, Lucia Cuppini, Stefania 

Cuzzubbo, Francesco DiMeco, Gaetano Finocchiaro, Luca Mattei, Alessandro Perin, Bianca 

Pollo, Chu Chen, John Houck, Pawadee Lohavanichbutr, Arndt Hartmann, Christine Stoehr, 

Robert Stoehr, Helge Taubert, Sven Wach, Bernd Wullich, Witold Kycler, Dawid Murawa, 

Maciej Wiznerowicz, Ki Chung, W. Jeffrey Edenfield, Julie Martin, Eric Baudin, Glenn 

Bubley, Raphael Bueno, Assunta De Rienzo, William G. Richards, Steven Kalkanis, Tom 

Mikkelsen, Houtan Noushmehr, Lisa Scarpace, Nicolas Girard, Marta Aymerich, Elias 

Campo, Eva Giné, Armando López Guillermo, Nguyen Van Bang, Phan Thi Hanh, Bui Duc 

Phu, Yufang Tang, Howard Colman, Kimberley Evason, Peter R. Dottino, John A. 

Bailey et al. Page 53

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Martignetti, Hani Gabra, Hartmut Juhl, Teniola Akeredolu, Serghei Stepa, Dave Hoon, 

Keunsoo Ahn, Koo Jeong Kang, Felix Beuschlein, Anne Breggia, Michael Birrer, Debra 

Bell, Mitesh Borad, Alan H. Bryce, Erik Castle, Vishal Chandan, John Cheville, John A. 

Copland, Michael Farnell, Thomas Flotte, Nasra Giama, Thai Ho, Michael Kendrick, Jean-

Pierre Kocher, Karla Kopp, Catherine Moser, David Nagorney, Daniel O’Brien, Brian 

Patrick O’Neill, Tushar Patel, Gloria Petersen, Florencia Que, Michael Rivera, Lewis 

Roberts, Robert Smallridge, Thomas Smyrk, Melissa Stanton, R. Houston Thompson, 

Michael Torbenson, Ju Dong Yang, Lizhi Zhang, Fadi Brimo, Jaffer A. Ajani, Ana Maria 

Angulo Gonzalez, Carmen Behrens, Jolanta Bondaruk, Russell Broaddus, Bogdan Czerniak, 

Bita Esmaeli, Junya Fujimoto, Jeffrey Gershenwald, Charles Guo, Alexander J. Lazar, 

Christopher Logothetis, Funda Meric-Bernstam, Cesar Moran, Lois Ramondetta, David 

Rice, Anil Sood, Pheroze Tamboli, Timothy Thompson, Patricia Troncoso, Anne Tsao, 

Ignacio Wistuba, Candace Carter, Lauren Haydu, Peter Hersey, Valerie Jakrot, Hojabr 

Kakavand, Richard Kefford, Kenneth Lee, Georgina Long, Graham Mann, Michael Quinn, 

Robyn Saw, Richard Scolyer, Kerwin Shannon, Andrew Spillane, Jonathan Stretch, Maria 

Synott, John Thompson, James Wilmott, Hikmat Al-Ahmadie, Timothy A. Chan, Ronald 

Ghossein, Anuradha Gopalan, Douglas A. Levine, Victor Reuter, Samuel Singer, Bhuvanesh 

Singh, Nguyen Viet Tien, Thomas Broudy, Cyrus Mirsaidi, Praveen Nair, Paul Drwiega, 

Judy Miller, Jennifer Smith, Howard Zaren, Joong-Won Park, Nguyen Phi Hung, Electron 

Kebebew, W. Marston Linehan, Adam R. Metwalli, Karel Pacak, Peter A. Pinto, Mark 

Schiffman, Laura S. Schmidt, Cathy D. Vocke, Nicolas Wentzensen, Robert Worrell, Hannah 

Yang, Marc Moncrieff, Chandra Goparaju, Jonathan Melamed, Harvey Pass, Natalia 

Botnariuc, Irina Caraman, Mircea Cernat, Inga Chemencedji, Adrian Clipca, Serghei Doruc, 

Ghenadie Gorincioi, Sergiu Mura, Maria Pirtac, Irina Stancul, Diana Tcaciuc, Monique 

Albert, Iakovina Alexopoulou, Angel Arnaout, John Bartlett, Jay Engel, Sebastien Gilbert, 

Jeremy Parfitt, Harman Sekhon, George Thomas, Doris M. Rassl, Robert C. Rintoul, Carlo 

Bifulco, Raina Tamakawa, Walter Urba, Nicholas Hayward, Henri Timmers, Anna 

Antenucci, Francesco Facciolo, Gianluca Grazi, Mirella Marino, Roberta Merola, Ronald de 

Krijger, Anne-Paule Gimenez-Roqueplo, Alain Piché, Simone Chevalier, Ginette 

McKercher, Kivanc Birsoy, Gene Barnett, Cathy Brewer, Carol Farver, Theresa Naska, 

Nathan A. Pennell, Daniel Raymond, Cathy Schilero, Kathy Smolenski, Felicia Williams, 

Carl Morrison, Jeffrey A. Borgia, Michael J. Liptay, Mark Pool, Christopher W. Seder, 

Kerstin Junker, Larsson Omberg, Mikhail Dinkin, George Manikhas, Domenico Alvaro, 

Maria Consiglia Bragazzi, Vincenzo Cardinale, Guido Carpino, Eugenio Gaudio, David 

Chesla, Sandra Cottingham, Michael Dubina, Fedor Moiseenko, Renumathy Dhanasekaran, 

Karl-Friedrich Becker, Klaus-Peter Janssen, Julia Slotta-Huspenina, Mohamed H. Abdel-

Rahman, Dina Aziz, Sue Bell, Colleen M. Cebulla, Amy Davis, Rebecca Duell, J. Bradley 

Elder, Joe Hilty, Bahavna Kumar, James Lang, Norman L. Lehman, Randy Mandt, Phuong 

Nguyen, Robert Pilarski, Karan Rai, Lynn Schoenfield, Kelly Senecal, Paul Wakely, Paul 

Hansen, Ronald Lechan, James Powers, Arthur Tischler, William E. Grizzle, Katherine C. 

Sexton, Alison Kastl, Joel Henderson, Sima Porten, Jens Waldmann, Martin Fassnacht, 

Sylvia L. Asa, Dirk Schadendorf, Marta Couce, Markus Graefen, Hartwig Huland, Guido 

Sauter, Thorsten Schlomm, Ronald Simon, Pierre Tennstedt, Oluwole Olabode, Mark 

Nelson, Oliver Bathe, Peter R. Carroll, June M. Chan, Philip Disaia, Pat Glenn, Robin K. 

Kelley, Charles N. Landen, Joanna Phillips, Michael Prados, Jeff Simko, Jeffry Simko, 

Bailey et al. Page 54

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Karen Smith-McCune, Scott VandenBerg, Kevin Roggin, Ashley Fehrenbach, Ady Kendler, 

Suzanne Sifri, Ruth Steele, Antonio Jimeno, Francis Carey, Ian Forgie, Massimo Mannelli, 

Michael Carney, Brenda Hernandez, Benito Campos, Christel Herold-Mende, Christin 

Jungk, Andreas Unterberg, Andreas von Deimling, Aaron Bossler, Joseph Galbraith, Laura 

Jacobus, Michael Knudson, Tina Knutson, Deqin Ma, Mohammed Milhem, Rita Sigmund, 

Andrew K. Godwin, Rashna Madan, Howard G. Rosenthal, Clement Adebamowo, Sally N. 

Adebamowo, Alex Boussioutas, David Beer, Thomas Giordano, Anne-Marie Mes-Masson, 

Fred Saad, Therese Bocklage, Lisa Landrum, Robert Mannel, Kathleen Moore, Katherine 

Moxley, Russel Postier, Joan Walker, Rosemary Zuna, Michael Feldman, Federico 

Valdivieso, Rajiv Dhir, James Luketich, Edna M. Mora Pinero, Mario Quintero-Aguilo, 

Carlos Gilberto Carlotti, Jr., Jose Sebastião Dos Santos, Rafael Kemp, Ajith Sankarankuty, 

Daniela Tirapelli, James Catto, Kathy Agnew, Elizabeth Swisher, Jenette Creaney, Bruce 

Robinson, Carl Simon Shelley, Eryn M. Godwin, Sara Kendall, Cassaundra Shipman, Carol 

Bradford, Thomas Carey, Andrea Haddad, Jeffey Moyer, Lisa Peterson, Mark Prince, Laura 

Rozek, Gregory Wolf, Rayleen Bowman, Kwun M. Fong, Ian Yang, Robert Korst, W. 

Kimryn Rathmell, J. Leigh Fantacone-Campbell, Jeffrey A. Hooke, Albert J. Kovatich, Craig 

D. Shriver, John DiPersio, Bettina Drake, Ramaswamy Govindan, Sharon Heath, Timothy 

Ley, Brian Van Tine, Peter Westervelt, Mark A. Rubin, Jung Il Lee, Natália D. Aredes, 

Armaz Mariamidze, Anant Agrawal, Jaeil Ahn, Jordan Aissiou, Dimitris Anastassiou, Jesper 

B. Andersen, Jurandyr M. Andrade, Marco Antoniotti, Jon C. Aster, Donald Ayer, Matthew 

H. Bailey, Rohan Bareja, Adam J. Bass, Azfar Basunia, Oliver F. Bathe, Rebecca Batiste, 

Oliver Bear Don't Walk, Davide Bedognetti, Gloria Bertoli, Denis Bertrand, Bhavneet 

Bhinder, Gianluca Bontempi, Dante Bortone, Donald P. Bottaro, Paul Boutros, Kevin 

Brennan, Chaya Brodie, Scott Brown, Susan Bullman, Silvia Buonamici, Tomasz 

Burzykowski, Lauren Averett Byers, Fernando Camargo, Joshua D. Campbell, Francisco J. 

Candido dos Reis, Shaolong Cao, Maria Cardenas, Helio H.A. Carrara, Isabella Castiglioni, 

Anavaleria Castro, Claudia Cava, Michele Ceccarelli, Shengjie Chai, Kridsadakorn 

Chaichoompu, Matthew T. Chang, Han Chen, Haoran Chen, Hu Chen, Jian Chen, Jianhong 

Chen, Ken Chen, Ting-Wen Chen, Zhong Chen, Zhongyuan Chen, Hui Cheng, Hua-Sheng 

Chiu, Cai Chunhui, Giovanni Ciriello, Cristian Coarfa, Antonio Colaprico, Lee Cooper, 

Daniel Cui Zhou, Aedin C. Culhane, Christina Curtis, Patrycja Czerwińska, Aditya 

Deshpande, Lixia Diao, Michael Dill, Di Du, Charles G. Eberhart, James A. Eddy, Robert N. 

Eisenman, Mohammed Elanbari, Olivier Elemento, Kyle Ellrott, Manel Esteller, Farshad 

Farshidfar, Bin Feng, Camila Ferreira de Souza, Esla R. Flores, Steven Foltz, Mitchell T. 

Frederick, Qingsong Gao, Carl M. Gay, Zhongqi Ge, Andrew J. Gentles, Olivier Gevaert, 

David L. Gibbs, Adam Godzik, Abel Gonzalez-Perez, Marc T. Goodman, Dmitry A. 

Gordenin, Carla Grandori, Alex Graudenzi, Casey Greene, Justin Guinney, Margaret L. 

Gulley, Preethi H. Gunaratne, A. Ari Hakimi, Peter Hammerman, Leng Han, Holger Heyn, 

Le Hou, Donglei Hu, Kuan-lin Huang, Joerg Huelsken, Scott Huntsman, Peter Hurlin, 

Matthias Hüser, Antonio Iavarone, Marcin Imielinski, Mirazul Islam, Jacek Jassem, Peilin 

Jia, Cigall Kadoch, Andre Kahles, Benny Kaipparettu, Bozena Kaminska, Havish Kantheti, 

Rachel Karchin, Mostafa Karimi, Ekta Khurana, Pora Kim, Leszek J. Klimczak, Jia Yu Koh, 

Alexander Krasnitz, Nicole Kuderer, Tahsin Kurc, David J. Kwiatkowski, Teresa Laguna, 

Martin Lang, Anna Lasorella, Thuc D. Le, Adrian V. Lee, Ju-Seog Lee, Steve Lefever, 

Kjong Lehmann, Jake Leighton, Chunyan Li, Lei Li, Shulin Li, David Liu, Eric Minwei Liu, 

Bailey et al. Page 55

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jianfang Liu, Rongjie Liu, Yang Liu, William J.R. Longabaugh, Nuria Lopez-Bigas, Li Ma, 

Wencai Ma, Karen MacKenzie, Andrzej Mackiewicz, Dejan Maglic, Raunaq Malhotra, 

Tathiane M. Malta, Calena Marchand, R. Jay Mashl, Sylwia Mazurek, Pieter Mestdagh, 

Chase Miller, Marco Mina, Lopa Mishra, Younes Mokrab, Raymond Monnat, Jr., Nate 

Moore, Nathanael Moore, Loris Mularoni, Niranjan Nagarajan, Aaron M. Newman, Vu 

Nguyen, Michael L. Nickerson, Akinyemi I. Ojesina, Catharina Olsen, Sandra Orsulic, Tai-

Hsien Ou Yang, James Palacino, Yinghong Pan, Elena Papaleo, Sagar Patil, Chandra Sekhar 

Pedamallu, Shouyong Peng, Xinxin Peng, Arjun Pennathur, Curtis R. Pickering, Christopher 

L. Plaisier, Laila Poisson, Eduard Porta-Pardo, Marcos Prunello, John L. Pulice, Charles 

Rabkin, Janet S. Rader, Kimal Rajapakshe, Aruna Ramachandran, Shuyun Rao, Xiayu Rao, 

Benjamin J. Raphael, Gunnar Rätsch, Brendan Reardon, Christopher J. Ricketts, Jason 

Roszik, Carlota Rubio-Perez, Ryan Russell, Anil Rustgi, Russell Ryan, Mohamad Saad, 

Thais Sabedot, Joel Saltz, Dimitris Samaras, Franz X. Schaub, Barbara G. Schneider, Adam 

Scott, Michael Seiler, Sara Selitsky, Sohini Sengupta, Jose A. Seoane, Jonathan S. Serody, 

Reid Shaw, Yang Shen, Tiago Silva, Pankaj Singh, I.K. Ashok Sivakumar, Christof Smith, 

Artem Sokolov, Junyan Song, Pavel Sumazin, Yutong Sun, Chayaporn Suphavilai, Najeeb 

Syed, David Tamborero, Alison M. Taylor, Teng Teng, Daniel G. Tiezzi, Collin Tokheim, 

Nora Toussaint, Mihir Trivedi, Kenneth T. Tsai, Aaron D. Tward, Eliezer Van Allen, John S. 

Van Arnam, Kristel Van Steen, Carter Van Waes, Christopher P. Vellano, Benjamin Vincent, 

Nam S. Vo, Vonn Walter, Chen Wang, Fang Wang, Jiayin Wang, Sophia Wang, Wenyi Wang, 

Yue Wang, Yumeng Wang, Zehua Wang, Zeya Wang, Zixing Wang, Gregory Way, Amila 

Weerasinghe, Michael Wells, Michael C. Wendl, Cecilia Williams, Joseph Willis, Denise 

Wolf, Karen Wong, Yonghong Xiao, Lu Xinghua, Bo Yang, Da Yang, Liuqing Yang, Kai Ye, 

Hiroyuki Yoshida, Lihua Yu, Sobia Zaidi, Huiwen Zhang, Min Zhang, Xiaoyang Zhang, 

Tianhao Zhao, Wei Zhao, Zhongming Zhao, Tian Zheng, Jane Zhou, Zhicheng Zhou, 

Hongtu

References

Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, 
Leong S. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule 
mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with 
advanced cancers. Journal of clinical oncology. 2008; 26:2139–2146. [PubMed: 18390968] 

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using 
PolyPhen - 2. Current protocols in human genetics. 2013:7.20. 21–27.20. 41.

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, 
Borg A, Børresen-Dale A-L. Signatures of mutational processes in human cancer. Nature. 2013; 
500:415–421. [PubMed: 23945592] 

Ascierto PA, Schadendorf D, Berking C, Agarwala SS, van Herpen CM, Queirolo P, Blank CU, 
Hauschild A, Beck JT, St-Pierre A. MEK162 for patients with advanced melanoma harbouring 
NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. The lancet 
oncology. 2013; 14:249–256. [PubMed: 23414587] 

Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat J-P, White TA, Stojanov P, 
Van Allen E, Stransky N. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 
mutations in prostate cancer. Nature genetics. 2012; 44:685–689. [PubMed: 22610119] 

Bashashati A, Haffari G, Ding J, Ha G, Lui K, Rosner J, Huntsman DG, Caldas C, Aparicio SA, Shah 
SP. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in 
cancer. Genome biology. 2012; 13:R124. [PubMed: 23383675] 

Bailey et al. Page 56

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bertrand D, Chng KR, Sherbaf FG, Kiesel A, Chia BK, Sia YY, Huang SK, Hoon DS, Liu ET, Hillmer 
A. Patient-specific driver gene prediction and risk assessment through integrated network analysis 
of cancer omics profiles. Nucleic acids research. 2015; 43:e44–e44. [PubMed: 25572314] 

Biankin AV, Waddell N, Kassahn KS, Gingras M-C, Muthuswamy LB, Johns AL, Miller DK, Wilson 
PJ, Patch A-M, Wu J. Pancreatic cancer genomes reveal aberrations in axon guidance pathway 
genes. Nature. 2012; 491:399–405. [PubMed: 23103869] 

Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, 
Odunsi K. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J 
Med. 2012; 2012:2455–2465.

Brenan L, Andreev A, Cohen O, Pantel S, Kamburov A, Cacchiarelli D, Persky NS, Zhu C, Bagul M, 
Goetz EM. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense 
mutants. Cell reports. 2016; 17:1171–1183. [PubMed: 27760319] 

Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B, Karchin R. 
Cancer-specific high-throughput annotation of somatic mutations: computational prediction of 
driver missense mutations. Cancer research. 2009; 69:6660–6667. [PubMed: 19654296] 

Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with 
the variant effect scoring tool. BMC genomics. 2013; 14:1. [PubMed: 23323973] 

Carter H, Marty R, Hofree M, Gross AM, Jensen J, Fisch KM, Wu X, DeBoever C, Van Nostrand EL, 
Song Y. Interaction landscape of inherited polymorphisms with somatic events in cancer. Cancer 
Discovery. 2017; 7:410–423. [PubMed: 28188128] 

Carvajal RD, Sosman JA, Quevedo JF, Milhem MM, Joshua AM, Kudchadkar RR, Linette GP, 
Gajewski TF, Lutzky J, Lawson DH. Effect of selumetinib vs chemotherapy on progression-free 
survival in uveal melanoma: a randomized clinical trial. Jama. 2014; 311:2397–2405. [PubMed: 
24938562] 

Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, 
Nissan MH. OncoKB: a precision oncology knowledge base. JCO Precision Oncology. 2017; 1:1–
16.

Chen T, Wang Z, Zhou W, Chong Z, Meric-Bernstam F, Mills GB, Chen K. Hotspot mutations 
delineating diverse mutational signatures and biological utilities across cancer types. BMC 
genomics. 2016; 17:394. [PubMed: 27356755] 

Consortium G. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in 
humans. Science. 2015; 348:648–660. [PubMed: 25954001] 

Conway JR, Lex A, Gehlenborg N. UpSetR: An R Package For The Visualization Of Intersecting Sets 
And Their Properties. bioRxiv. 2017:120600.

Cortes-Ciriano I, Lee S, Park W-Y, Kim T-M, Park PJ. A molecular portrait of microsatellite instability 
across multiple cancers. Nature Communications. 2017; 8

Creixell P, Reimand J, Haider S, Wu G, Shibata T, Vazquez M, Mustonen V, Gonzalez-Perez A, 
Pearson J, Sander C. Pathway and network analysis of cancer genomes. Nature methods. 2015; 
12:615. [PubMed: 26125594] 

De Carvalho DD, Sharma S, You JS, Su S-F, Taberlay PC, Kelly TK, Yang X, Liang G, Jones PA. 
DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer cell. 
2012; 21:655–667. [PubMed: 22624715] 

Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, Mooney TB, Callaway MB, 
Dooling D, Mardis ER. MuSiC: identifying mutational significance in cancer genomes. Genome 
research. 2012; 22:1589–1598. [PubMed: 22759861] 

Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, 
McLellan MD. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome 
sequencing. Nature. 2012; 481:506–510. [PubMed: 22237025] 

Ding L, Wendl MC, McMichael JF, Raphael BJ. Expanding the computational toolbox for mining 
cancer genomes. Nature Reviews Genetics. 2014; 15:556–570.

Douville C, Carter H, Kim R, Niknafs N, Diekhans M, Stenson PD, Cooper DN, Ryan M, Karchin R. 
CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics. 2013; 29:647–648. [PubMed: 
23325621] 

Bailey et al. Page 57

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Douville C, Masica DL, Stenson PD, Cooper DN, Gygax DM, Kim R, Ryan M, Karchin R. Assessing 
the Pathogenicity of Insertion and Deletion Variants with the Variant Effect Scoring Tool (VEST-
Indel). Human mutation. 2016; 37:28–35. [PubMed: 26442818] 

Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, Rutkowski P, Del 
Vecchio M, Gutzmer R, Mandala M. Binimetinib versus dacarbazine in patients with advanced 
NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. The 
Lancet Oncology. 2017; 18:435–445. [PubMed: 28284557] 

Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, McLellan M, Sofia HJ, 
Hutter C, Getz G, et al. Automating Somatic Mutation calling for Ten Thousand Tumor Exomes. 
in review. 

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, 
Sangrador-Vegas A. The Pfam protein families database: towards a more sustainable future. 
Nucleic acids research. 2016; 44:D279–D285. [PubMed: 26673716] 

Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, 
Sanford EM, An P. Development and validation of a clinical cancer genomic profiling test based 
on massively parallel DNA sequencing. Nature biotechnology. 2013; 31:1023–1031.

Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census 
of human cancer genes. Nature Reviews Cancer. 2004; 4:177–183. [PubMed: 14993899] 

Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome medicine. 
2015; 7:80. [PubMed: 26221189] 

Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, Zhang H, Solit DB, Taylor BS, 
Schultz N. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as 
functional targets. Genome medicine. 2017; 9:4. [PubMed: 28115009] 

Gonzalez-Perez A, Deu-Pons J, Lopez-Bigas N. Improving the prediction of the functional impact of 
cancer mutations by baseline tolerance transformation. Genome medicine. 2012; 4:89. [PubMed: 
23181723] 

Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, 
Stevens C. Patterns of somatic mutation in human cancer genomes. Nature. 2007; 446:153. 
[PubMed: 17344846] 

Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M, Gallinger S. Tumor 
microsatellite instability and clinical outcome in young patients with colorectal cancer. New 
England Journal of Medicine. 2000; 342:69–77. [PubMed: 10631274] 

Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MD, Niu B, McLellan 
MD, Uzunangelov V. Multiplatform analysis of 12 cancer types reveals molecular classification 
within and across tissues of origin. Cell. 2014; 158:929–944. [PubMed: 25109877] 

Iams WT, Sosman JA, Chandra S. Novel targeted therapies for metastatic melanoma. The Cancer 
Journal. 2017; 23:54–58. [PubMed: 28114255] 

Ionita-Laza I, McCallum K, Xu B, BUXBAUM J. A spectral approach integrating functional genomic 
annotations for coding and noncoding variants. Nature genetics. 2016; 48:214. [PubMed: 
26727659] 

Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, Cooper DN, Bernstein JA, Bejerano 
G. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high 
sensitivity. Nature genetics. 2016; 48:1581–1586. [PubMed: 27776117] 

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, 
Wyczalkowski MA. Mutational landscape and significance across 12 major cancer types. Nature. 
2013; 502:333–339. [PubMed: 24132290] 

Kim T-M, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial 
cancer genomes. Cell. 2013; 155:858–868. [PubMed: 24209623] 

Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general framework for 
estimating the relative pathogenicity of human genetic variants. Nature genetics. 2014; 46:310–
315. [PubMed: 24487276] 

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an 
information aesthetic for comparative genomics. Genome research. 2009; 19:1639–1645. 
[PubMed: 19541911] 

Bailey et al. Page 58

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel 
SB, Lander ES, Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. 
Nature. 2014; 505:495–501. [PubMed: 24390350] 

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, 
Mermel CH, Roberts SA. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. 2013; 499:214–218. [PubMed: 23770567] 

Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, 
Laheru D. PD-1 blockade in tumors with mismatch-repair deficiency. New England Journal of 
Medicine. 2015; 372:2509–2520. [PubMed: 26028255] 

Lek M, Karczewski K, Minikel E, Samocha K, Banks E, Fennell T, O'Donnell-Luria A, Ware J, Hill A, 
Cummings B. Analysis of protein-coding genetic variation in 60,706 humans. BioRxiv. 
2016:030338.

Mao Y, Chen H, Liang H, Meric-Bernstam F, Mills GB, Chen K. CanDrA: cancer-specific driver 
missense mutation annotation with optimized features. PloS one. 2013; 8:e77945. [PubMed: 
24205039] 

McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable 
driver events and the timing of mutational processes in cancer evolution. Science translational 
medicine. 2015; 7:283ra254–283ra254.

Mularoni L, Sabarinathan R, Deu-Pons J, Gonzalez-Perez A, López-Bigas N. OncodriveFML: a 
general framework to identify coding and non-coding regions with cancer driver mutations. 
Genome biology. 2016; 17:128. [PubMed: 27311963] 

Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. 
Genome research. 2002; 12:436–446. [PubMed: 11875032] 

Ng PK-S, Li J, Jeong KJ, Shao S, Chen H, Tsang YH, Sengupta S, Wang Z, Bhavana VH, Tran R, et 
al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer cell. 2018 In press. 

Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, 
Martin S, Wedge DC. Landscape of somatic mutations in 560 breast cancer whole-genome 
sequences. Nature. 2016; 534:47–54. [PubMed: 27135926] 

Niknafs N, Kim D, Kim R, Diekhans M, Ryan M, Stenson PD, Cooper DN, Karchin R. MuPIT 
interactive: webserver for mapping variant positions to annotated, interactive 3D structures. 
Human genetics. 2013; 132:1235–1243. [PubMed: 23793516] 

Niu B, Scott AD, Sengupta S, Bailey MH, Batra P, Ning J, Wyczalkowski MA, Liang W-W, Zhang Q, 
McLellan MD. Protein-structure-guided discovery of functional mutations across 19 cancer types. 
Nature genetics. 2016

Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, Wendl MC, Ding L. MSIsensor: microsatellite 
instability detection using paired tumor-normal sequence data. Bioinformatics. 2013; 30:1015–
1016. [PubMed: 24371154] 

Pathways, I.C.G.C.M., and Group, C.S.o.t.B.A.W. Computational approaches to identify functional 
genetic variants in cancer genomes. Nature methods. 2013; 10:723–729. [PubMed: 23900255] 

Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, Yang Z, Meng 
EC, Pettersen EF, Huang CC. ModBase, a database of annotated comparative protein structure 
models, and associated resources. Nucleic acids research. 2011; 39:D465–D474. [PubMed: 
21097780] 

Porta-Pardo E, Garcia-Alonso L, Hrabe T, Dopazo J, Godzik A. A pan-cancer catalogue of cancer 
driver protein interaction interfaces. PLoS Comput Biol. 2015; 11:e1004518. [PubMed: 26485003] 

Porta-Pardo E, Godzik A. e-Driver: a novel method to identify protein regions driving cancer. 
Bioinformatics. 2014:btu499.

Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman 
JL. FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically 
unfolded. Bioinformatics. 2005; 21:3435–3438. [PubMed: 15955783] 

Pritchard CC, Salipante SJ, Koehler K, Smith C, Scroggins S, Wood B, Wu D, Lee MK, Dintzis S, 
Adey A. Validation and implementation of targeted capture and sequencing for the detection of 
actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. 
The Journal of Molecular Diagnostics. 2014; 16:56–67. [PubMed: 24189654] 

Bailey et al. Page 59

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Raimondi F, Singh G, Betts MJ, Apic G, Vukotic R, Andreone P, Stein L, Russell RB. Insights into 
cancer severity from biomolecular interaction mechanisms. Scientific reports. 2016; 6

Reimand J, Bader GD. Systematic analysis of somatic mutations in phosphorylation signaling predicts 
novel cancer drivers. Molecular systems biology. 2013; 9:637. [PubMed: 23340843] 

Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to 
cancer genomics. Nucleic acids research. 2011; 39:e118–e118. [PubMed: 21727090] 

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho 
TS. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. 
Science. 2015; 348:124–128. [PubMed: 25765070] 

Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: footprints and mechanisms. 
Nature Reviews Cancer. 2014; 14:786–800. [PubMed: 25568919] 

Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, Couchy G, Meiller C, 
Shinde J, Soysouvanh F. Exome sequencing of hepatocellular carcinomas identifies new 
mutational signatures and potential therapeutic targets. Nature genetics. 2015; 47:505–511. 
[PubMed: 25822088] 

Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR. 
Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions 
using hidden Markov models. Human mutation. 2013; 34:57–65. [PubMed: 23033316] 

Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, 
Varela I, Bignell GR. The landscape of cancer genes and mutational processes in breast cancer. 
Nature. 2012; 486:400–404. [PubMed: 22722201] 

Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: exploiting the positional 
clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013a; 29:2238–2244. 
[PubMed: 23884480] 

Tamborero D, Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Kandoth C, Reimand J, Lawrence MS, 
Getz G, Bader GD, Ding L. Comprehensive identification of mutational cancer driver genes across 
12 tumor types. Scientific reports. 2013b; 3

Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-HO, Porta-Pardo E, Gao G, Eddy JA, 
Plaisier CL, et al. The immune landscape of cancer. in review. 

Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, Masica DL, Karchin R. Exome-
scale discovery of hotspot mutation regions in human cancer using 3D protein structure. Cancer 
research. 2016a; 76:3719–3731. [PubMed: 27197156] 

Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B, Karchin R. Evaluating the evaluation of 
cancer driver genes. Proceedings of the National Academy of Sciences. 2016b:201616440.

Torkamani A, Schork NJ. Prediction of cancer driver mutations in protein kinases. Cancer research. 
2008; 68:1675–1682. [PubMed: 18339846] 

Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, Jane-Valbuena J, Friedrich 
DC, Kryukov G, Carter SL. Whole-exome sequencing and clinical interpretation of formalin-fixed, 
paraffin-embedded tumor samples to guide precision cancer medicine. Nature medicine. 2014; 
20:682–688.

Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nature medicine. 2004; 
10:789.

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome 
landscapes. science. 2013; 339:1546–1558. [PubMed: 23539594] 

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic acids research. 2010; 38:e164–e164. [PubMed: 20601685] 

Watson IR, Takahashi K, Futreal PA, Chin L. Emerging patterns of somatic mutations in cancer. 
Nature reviews Genetics. 2013; 14:703–718.

Wong WC, Kim D, Carter H, Diekhans M, Ryan MC, Karchin R. CHASM and SNVBox: toolkit for 
detecting biologically important single nucleotide mutations in cancer. Bioinformatics. 2011; 
27:2147–2148. [PubMed: 21685053] 

Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer 
data analysis. Genome biology. 2010; 11:R53. [PubMed: 20482850] 

Bailey et al. Page 60

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak R. The landscape and 
therapeutic relevance of cancer-associated transcript fusions. Oncogene. 2014

Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang C-Z, 
Wala J, Mermel CH. Pan-cancer patterns of somatic copy number alteration. Nature genetics. 
2013; 45:1134–1140. [PubMed: 24071852] 

Bailey et al. Page 61

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• PanSoftware applied to PanCancer data identified 299 cancer driver genes

• Driver genes and mutations are shared across anatomical origins and cell 

types

• In-silico discovery of ~3,400 driver mutations coupled with experimental 

validation

• 57% of tumors harbor potentially actionable oncogenic events
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Significance

The Cancer Genome Atlas’ PanCancer Atlas Drivers/Essentiality group collectively 

analyzed mutation-level data from 9,423 tumor exomes across 33 cancer types. This 

represents one of the largest cancer genomic datasets to date. We carefully integrated 

results from 26 different software packages to describe both gene- and mutation-level 

findings (299 cancer driver genes and 3,442 driver mutations) and provide experimental 

evidence validating their functional relevance to tumorigenesis. We identified groups of 

cancer driver genes shared across pan-squamous, pan-gynecological, and pan-

gastrointestinal tumors. Compared to the previous TCGA PanCancer study, we identified 

59 novel driver genes across different cancers. Finally, based on our analysis, 57% of the 

tumor samples carry at least one potentially clinically actionable event.
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Figure 1. Cancer driver gene discovery strategy, power, and mutations
(A) We identified 6 main steps to identify and discover driver genes in cancer: data curation, 

tool development, outlier adjustment, manual curation, downstream tool analysis, and 

functional validation. (B) Somatic mutations per sample are plotted for each sample and 

cancer type. Mutations are separated into SNVs (blue) and indels (green). The selected 

hypermutator cut-off for each cancer is shown in red. (C) Transition and transversion 

proportions are shown for 6 nucleotide changes. The stacked proportion bar chart is sorted 

by increasing transition/transversion fraction. (D) Statistical power for detection of cancer 

driver genes at defined fractions of tumor samples above the background mutation rate 
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(effect size with 90% power) is depicted. Circles indicate each of 33 cancer types placed 

according to the study sample size and median background mutation rate. See also Figures 

S1 and S2, and Table S6.
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Figure 2. Cancer driver gene discovery workflow
(A) Circos(Krzywinski et al., 2009) plot displays 299 cancer genes. Each sector indicates a 

unique cancer type (text in blue) with predicted drivers unique to that cancer type listed 

(gene name in black). Only tissues having at least one unique driver gene are shown. The top 

right sector shows all genes found significant in multiple cancer types. Next, a categorical 

score of gold, silver, or bronze is assigned to each gene based on the highest consensus 

score. If a gene was not scored and required rescue, then the field is empty. The next ring 

illustrates the mutation frequency of a gene. For the top right wedge the PanCancer 

frequency is used, while cancer-type-specific frequencies are used in the remaining sectors. 
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Where frequencies exceed the y-axis limit of 10%, the innermost label indicates the 

frequency. The final ring uses a 5-point scale from orange to teal for representing each gene 

from likely tumor suppressor to likely oncogene, respectively, according to the 20/20+ 

algorithm. Finally, in the top right slice, we show hierarchical clustering of the gene 

consensus scores for genes that were found in more than one cancer type (note: CRC refers 

to the COADREAD cancer type). Additionally, significant gene clusters (permutation test) 

identified Pan-Gastrointestinal (red), Pan-Squamous (purple), and Pan-Gynecological tissues 

(green). The middle ring illustrates all genes that were found only using PanCancer results, 

or were otherwise rescued. (B) Heatmap showing clustering of different cancer types by 

pathway / biological process affected by associated consensus driver genes. Cell of origin for 

pan-gynecological, pan-gastrointestinal, and pan-squamous are colored as above. See also 

Figures S2, S3 and S4, and Tables S1, S2, and S7.

Bailey et al. Page 67

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Driver mutation discovery approaches, overview, overlap, and contrasts
(A) Venn diagram indicates total number of mutations overlapping among three consensus 

approaches: CTAT-population, CTAT-cancer, and structural clustering. Adjacent bar chart 

indicates the top 20 genes sorted by 3-set intersecting mutation counts. (B) Driver gene 

discovery identified gene-tissue pairs (canonical genes) in tumor suppressors and oncogenes. 

However, some gene-tissue pairs were not identified in driver discovery (non-canonical). 

Mutation frequency from canonical and non-canonical cancer genes are displayed and 

divided among 4 mutation classes: truncation/frameshift mutations (grey); missense 

mutations uniquely identified by only one approach (yellow, see Panel A); missense 

mutations identified by multiple approaches (red, see Panel A); and missense passenger 

mutations not identified by any approach (off white). (C) Mutation percentage out of all 

missense and truncating/frameshift mutations within a gene is shown on the y-axis (log 

scale). Point size is log scaled and represents amino acid position frequency. The top 23 

genes ordered by increasing mutational diversity (normalized entropy) and only the 9 most 

frequently mutated amino acid positions for each gene are shown. See also Figure S5 and 

Table S4.
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Figure 4. Driver mutation discovery and validation
(A) Steps taken to assess consensus among mutation-level predictions using sequence-based 

and structural clustering tools and comparing them to an orthogonal set of functionally 

validated mutations. From left to right: grey box represents missense mutations that were 

processed by 12 tools from 3 categories (population-based, cancer-focused, and structural 

clustering tools) and combined into three consensus approaches (CTAT-population, CTAT-

cancer, and structural clustering). Total number and percentage of functionally validated/

tested mutations is also shown. (B) Number of mutations (y-axis) found by structural tools 

for each gene (x-axis) are shaded according to support by structural tools (green). Those 
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mutations without support are distinguished by two categories, with (grey) and without 

(white) available protein structure. Heatmaps (D, F, H) coupled with protein structure (C, E, 
G) are shown in panels for proteins PIK3CA/PIK3R1 (PDB ID: 4OVU), BRAF (4MBJ), and 

KEAP1/NFE2L2 (3ZGC), respectively, and display whether a particular mutation was 

detected by sequence-based (CTAT-population or CTAT-cancer) or structure-based 

approaches (at least two structural tools). Purple/teal colors distinguish proteins (PIK3CA/

PIK3R1 and KEAP1/NFE2L2 pairs) for mutations found by structure-based approaches, 

while pink boxes indicate mutations found only by sequence-based approach. Additionally, 

for each mutation, frequency (blue gradient), OncoKB status (red gradient), testing status 

(tan), and validation status (grey) are provided. All mutations found by structure-based 

approaches in each of the 3 genes are shown with a few additional mutations that are only 

found by sequence-based approaches. Key mutations are highlighted from heatmaps and 

labeled with white, grey, and tan labels referring to novel, validated, and tested (not 

validated) mutations, respectively. See also Table S4.

Bailey et al. Page 70

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Hypermutators exhibit multiple signatures, microsatellite instability, and immune 
infiltration expression
(A) UpSetR(Conway et al., 2017) plot highlights the intersection of multiple signatures and 

phenotypes with hypermutated samples. (B) MSI scores segregated by cancer types. MSI-

score threshold is displayed with a vertical line. The percentage of samples with high MSI is 

displayed to the right of each cancer type. (C, D) RNA-Seq abundance of different immune 

biomarkers across signatures and MSI phenotypes defined by MSIsensor. Stars indicate 

significance levels using a two-sided t-test to calculate p-values (* < 0.05, ** < 0.01, *** < 

0.001). See also Figure S6 and Table S5.
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Figure 6. Putative actionability across TCGA studies
(A) Percentage of samples (y-axis) with at least 1 putatively actionable SNV/indel/CNV 

(orange), SNV/indel (blue), and CNV only (green) for each cancer type (x-axis) from the 

TARGET database. Sample size is also given for each cancer type in x-axis labels. Only 

8,775 samples are represented due to limitations of copy number data. (B) Percentage of 

samples (y-axis) with a druggable mutation (missense, indel, frameshift, and nonsense) from 

DEPO in each cancer type (x-axis) at various stages of approval: FDA approved (red), 

Clinical Trials (blue), Case Reports (green), and Preclinical (orange). 9079 samples are 

represented. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Critical Commercial Assays

Deposited Data

Public MC3 MAF Ellrott et al. https://gdc.cancer.gov

Clinical Data Liu et al. https://gdc.cancer.gov

Target Drug Database - Phial Van Allen et al., 2014 https://github.com/vanallenlab/2017-tcga-mc3_phial

DEPO Sun et al. http://depo-dinglab.ddns.net

OncoKB Chakravarty et al., 2017 http://oncokb.org

Mutation Validation Ng et al. 2018 N/A

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Oligonucleotides

Recombinant DNA

Software and Algorithms

20/20+ Tokheim et al., 2016b https://github.com/KarchinLab/2020plus

MutSig2CV Lawrence et al., 2014 http://archive.broadinstitute.org/cancer/cga/mutsig_run

MuSiC2 Dees et al., 2012 https://github.com/ding-lab/MuSiC2

OncodriveCLUST Tamborero et al., 2013a http://bg.upf.edu/group/projects/oncodrive-clust.php

OncodriveFML Mularoni et al., 2016 http://bg.upf.edu/oncodrivefml/home

ActiveDriver Reimand and Bader, 2013 http://individual.utoronto.ca/reimand/ActiveDriver/

CompositeDriver Liu et al. https://github.com/khuranalab/CompositeDriver

HotMAPS Tokheim et al., 2016a https://github.com/KarchinLab/HotMAPS

CHASM Carter et al., 2009 http://www.cravat.us/CRAVAT/

VEST Carter et al., 2013 http://www.cravat.us/CRAVAT/

e-Driver Porta-Pardo and Godzik, 2014 https://github.com/eduardporta/e-Driver

CanDrA Mao et al., 2013 http://bioinformatics.mdanderson.org/main/CanDrA

HotSpot3D Niu et al., 2016 (https://github.com/ding-lab/hotspot3d)

3DHotSpots.org Gao et al., 2017 http://3dhotspots.org

e-Driver3D Porta-Pardo et al., 2015 http://github.com/eduardporta/e-Driver

DriverNET Bashashati et al., 2012 http://compbio.bccrc.ca/software/drivernet/

OncoIMPACT Bertrand et al., 2015 https://github.com/CSB5/OncoIMPACT

MutationAssessor Reva et al., 2011 http://mutationassessor.org/r3/

SIFT Ng and Henikoff, 2002 http://sift.jcvi.org

PolyPhen2 Adzhubei et al., 2013 http://genetics.bwh.harvard.edu/pph2/

fathmm Shihab et al., 2013 http://fathmm.biocompute.org.uk
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REAGENT or RESOURCE SOURCE IDENTIFIER

transFIC Gonzalez-Perez et al., 2012 http://bg.upf.edu/transfic/home

CTAT-score This Paper https://gdc.cancer.gov

MSIsensor Niu et al., 2013 https://github.com/ding-lab/msisensor

Other
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