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ABSTRACT 

The Effect of Grain Size on Deformation Twinning in Magnesium 

by 

Anna Elizabeth Buzolits 

 

There is great interest in magnesium and magnesium alloys for use as structural materials due to 

their high strength-to-weight ratio compared to aluminum and steel. However, the relationship 

between the macroscopic failure behavior of magnesium and the micro- and mesoscopic 

deformation mechanisms in magnesium are relatively poorly understood. Basal slip is ubiquitous 

in magnesium deformation, but the factors that determine the secondary deformation mechanisms, 

non-basal slip and twinning, are less well studied. For this reason, the aim of this study was to 

identify the relationship between twin occurrence and grain size. Towards this goal, a combination 

of electron backscatter diffraction (EBSD), scanning electron microscope digital image correlation 

(SEM-DIC) were used to capture full-field strain maps of a ~1mm x 1mm field of view on a pure 

magnesium dogbone sample under monotonic compression. It was found that the likelihood that a 

grain exhibits twinning increases as the size of the grain increases. K-means clustering, filtered 

cross-correlation, and an AlexNet convolutional neural network (CNN) were also used to attempt 

to automate the twin identification process. Though the results of this work exhibited the same 

trend (increased twin likelihood with increased grain size), the precision, sensitivity, and accuracy 

of these methods was analyzed and it was found that more work needs to be done before significant 

conclusions can be drawn from their results. 
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1. Introduction 

Over the past several decades, computational materials research has been greatly accelerated by 

advancements in available computing power. Computational and theoretical materials research, 

particularly predictive modeling, has in turn contributed to improved development processes for 

new materials. However, the potential of these methods is not being fully exploited, due to the 

limited ability theoretical research groups have to share and collaborate with each other and with 

experimentalists who can help inform their models.  

The Materials Genome Initiative (MGI) was established in 2011 with the goal of improving 

collaboration between theorists and experimentalists, towards accelerating new material 

development while simultaneously reducing the associated costs. Integrated Computational 

Materials Engineering (ICME), one major aspect of the MGI, was founded with the idea that 

acceleration and cost reduction can be more effectively addressed through theoretical and 

experimental collaborations. Theoretical models, which aim to predict material behavior, are 

informed by the results of experimental work, which can quantitatively validate the results of a 

model and also reveal qualitative information about the mechanical behavior and microstructural 

impact on deformation in an actual material. Therefore, an iterative loop is created wherein 

empirical data informs models, which in turn are validated by experiment. This entire process 

requires the ability for research groups in different departments or at different institutions to 

collaborate closely. 

The PRedictive Integrated Structural Materials Science (PRISMS) center is a collaborative effort 

between the University of Michigan and the University of California, Santa Barbara, which aims 

to improve the materials research community’s ability to collaborate and accelerate the materials 
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design process. The PRISMS center has three main aspects: PRISMS codes, the Materials 

Commons, and Integrated Collaborative Science. 

The PRISMS codes are a library of open-source models, available on GitHub, which have been/are 

being developed by members of the PRISMS center. These codes include CASM (statistical 

mechanics), DFT-FE (Real-space DFT calculations using Finite-elements), PRISMS-PF (Phase 

Field), PRISMS-Plasticity, and PRISMS Integration Tools. According to the center’s 

documentation “The PRISMS integrated computational codes for multiscale materials modeling 

allow for fast development of large-scale numerical frameworks for various mathematical models 

of material behavior (Continuum Plasticity, Crystal Plasticity, Phase Field, Statistical Mechanics, 

DFT, etc).” [36] The Materials Commons is an online repository and collaboration platform for 

researchers from different institutions to organize, publish, and share their models, experimental 

data, and methods. This site fosters the bridge between materials computation and 

experimentation, a key component in the acceleration of material design. It also allows researchers 

to track the process of their work and can be integrated with many other tool sets. Integrated 

Collaborative Science is the term used for the work done by PRISMS’ “use case” groups, which 

are examples of how PRISMS methods can be applied to the research and collaboration of different 

research groups. These use case groups “link experiments with the simulations, validate the 

models, and improve the codes.” [36]  

The main goal of this work was to identify the relationship between twin nucleation and grain size 

in pure magnesium, therefore improving the understanding of the link between deformation 

mechanisms and microstructure. Magnesium and magnesium alloys were chosen as the proof-of-

concept materials to validate the PRISMS protocols, due to their high potential for use as structural 

materials combined with the current gaps in knowledge towards predicting magnesium behavior, 
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even with several high-quality studies that have been conducted, due to the complexity of its 

mechanical response. The work described in this thesis was performed as a “use case” with the 

aim of helping to validate the models developed by computationalists at the University of 

Michigan.  

 

2. Literature Review 

Magnesium alloys are great candidates for lightweighting, due to their high strength-to-weight 

ratios, as compared to currently-used materials such as steel and aluminum. Passenger vehicles are 

major contributors to the increasing concentration of greenhouse gases in our atmosphere. To 

decrease the greenhouse gases produced by automotive vehicles, their fuel efficiency must be 

improved; one significant way to do this is by making them lighter. It has been estimated that 

lightweighting with magnesium could lead to a weight reduction of between 30 and 70% for a 

passenger car. [32] If this were applied to a quarter of the vehicles in the United States, this would 

result in an annual savings of over five billion gallons of fuel. [32] 

There is considerable excitement surrounding the potential of magnesium for lightweighting, but 

its use is hampered in a practical sense by the low formability of currently available magnesium 

alloys. It is known that formability can be significantly impacted by the addition of alloying 

elements (such as rare earth elements) and processing routes. However, a trial-by-error approach 

towards understanding the material and processing design spaces is not tractable. To make 

meaningful gains in improving magnesium’s properties, there must be a fundamental 

understanding of the complex, interconnected relationships between processing and the observed 

macroscopic behavior of these alloys. 
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2.1 Processing Effects 

Wrought magnesium has failed to gain widespread application, in part due to its low ductility. The 

relative brittleness of magnesium/alloys leads to poor room temperature formability, meaning that 

“hot” processing methods are required to produce usable magnesium goods. However, these 

methods, i.e. extrusion or rolling, cause the material to exhibit a strong basal texture. This occurs 

due to the grain rotation that accompanies the simple shear strain felt by the grain. When grains 

within polycrystals experience this rotation, they tend to orient themselves in accordance with the 

applied deformation and the symmetry of the deformation modes. [2] 

In magnesium (and other HCP metals with c/a ratios of less than 3), this means that the grains in 

the polycrystal are all similarly oriented such that the c-axis is perpendicular to the process 

direction. This comes from the fact that, in magnesium, favorably-oriented grains (those with c-

axes perpendicular to the compression axis) display <101̅2> tension twins, which rotate the 

crystals such that the c-axis is almost parallel to the axis of applied compression. Therefore, the 

texture created by extrusion and rolling (which compress the material while it moves through the 

respective apparatus), are such that the c-axis for most grains lies perpendicular to the 

extrusion/rolling-direction. The strength of this basal texture can vary from alloy to alloy, and it 

affects the deformation modes active in the alloy. [2] 

 

2.2 Deformation Mechanisms in Magnesium Alloys 

Magnesium alloys have a hexagonal close packed (HCP) crystal structure with four independent 

slip systems: basal slip 0001<112̅0>, prismatic slip {101̅0}<112̅0>, pyramidal <a> slip 

{101̅1}<112̅0>, and pyramidal <c+a> slip {112̅2}<112̅3>. They also exhibit 2 twinning modes: 

{101̅2}<101̅1> twinning or tension twinning accommodates c-axis tensile strain, and 
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{101̅1}<101̅2> twinning or compression twinning accommodates c-axis compressive strain. 

These two twinning modes are required for compliance with the von Mises criterion, which 

requires five independent deformation mechanisms in a polycrystalline material to accommodate 

arbitrary deformation.  

 

 

 

Basal slip, which is slip along the close-packed plane, is the most easily activated deformation 

mechanism in magnesium and its alloys. This preference for basal slip is increased by the strong 

basal texture which most magnesium/alloys exhibit. The critical resolved shear stresses (CRSS) of 

the other deformation mechanisms (non-basal slip and twinning) are affected by many variables, 

such as alloying elements, the direction of the applied strain, the ambient temperature, and 

microstructural factors including for example grain size and precipitate content. Given the 

complexity of these interrelated factors and their effects, there is much discussion in the 

community about what the actual CRSS values are. In general, it is accepted that, for 

Figure 1. Possible slip and twinning systems in a hexagonal 

close-packed crystal. (Image from [32]) 
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polycrystalline magnesium at room temperature under quasi-static loading, CRSSbasal < CRSStensile-

twinning < CRSSprismatic < CRSSpyramidal. 

The macroscopic stress-strain curves for magnesium alloys change significantly depending on the 

relative activity of non-basal slip and twinning. When non-basal slip is the dominant secondary 

deformation system (after basal slip), a concave-down curve is produced. However, when twinning 

is the dominant secondary system, the alloys exhibit a great deal of strain hardening due to the role 

of twin boundaries as barriers to slip. This leads to a concave-up portion of the stress/strain curve. 

[4] This trend enables identification of the dominant secondary deformation system in different 

testing and microstructural conditions and has led to the identification of several relationships 

between test parameters, microstructure, and deformation mechanisms in magnesium alloys. 
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Studies have shown that, at room and slightly elevated temperatures, twinning is activated before 

non-basal slip when a magnesium alloy sample is tested parallel to the extrusion direction in 

compression [2] or perpendicular to the extrusion direction in tension. [4] Both of these global 

strain states lead to c-axis tension, due to the aforementioned texture exhibited by magnesium 

alloys. The relatively low CRSS for tensile twins compared to non-basal slip modes means that, 

when crystals are oriented in this preferential way, tensile twins will activate to accommodate c-

axis strain before <c+a> slip modes. 

Magnesium and its alloys with higher average grain sizes exhibit a greater amount of twinning 

than those with lower average grain sizes. Additionally, the larger grains in the microstructure 

have also been shown to undergo larger twinned volumes than smaller grains. [6] [10] The reasons 

for the effects of grain size on twinning are not well understood, but there are theories on why 

these trends exists.  

The largest barrier for twins to occur is stress required to nucleate a twin. By comparison, twin 

growth requires much lower stresses. [34] Twins most commonly nucleate due to stress 

concentrations at grain boundaries. It follows, then, that increased grain boundary area (which 

increases with grain size) will affect the propensity for twin nucleation. According to a study by 

Wang et. Al in 2010 [49], the local stress state at a grain boundary, the characteristics of the grain 

boundary dislocations, and the grain boundary surface area all affect the number of nucleation 

events that occur at a grain boundary. Using a Poisson probability distribution, Eq. 1 shows the 

Figure 2. “True stress-strain curves obtained 

from commercial extruded AZ31 bar. Twin-

dominated plasticity is evident in the strain 

hardening exhibited by the “compression//ED” 

curve and the “tension _|_ ED” curve. The 

“tension//ED” curve exhibits slip-dominated 

plastic behavior.” (Figure 8 from [4]) 
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likelihood that the number of stable twin nuclei (N) formed in a grain boundary surface area a* is 

equal to κ: 

 

𝑃(𝑁 = 𝜅, 𝑎∗) =
(𝜆𝑎∗)𝜅

𝜅!
exp(−𝜆𝑎∗)           Equation 1. 

where λ is the process rate and has units of density per unit area of 𝑎∗. 

 

𝜆(𝜏) =
1

𝑎0
(
𝜏

𝜏0
)
𝛼

             Equation 2. 

 

where 𝑎0 is “a characteristic area (or length scale) in which only one twin is expected,” τ is the 

local stress, α is a material property associated with dispersion in the nucleation process, and τ0 is 

the threshold stress for activating a grain boundary dislocation. [49] From this, the probability that 

at least one stable twin embryo will be formed from 𝑎∗ can be found using Eq. 3: 

 

𝑃(𝑁 ≥ 1, 𝑎∗) = 1 − 𝑃(𝑁 = 0, 𝑎∗) = 1 − 𝑒𝑥𝑝 [−
𝑎∗

𝑎0
(
𝜏

𝜏0
)
𝛼

]        Equation 3. 

 

Furthermore, the average number of twin nuclei formed in 𝑎∗ can be found using Eq. 4: 

 

〈𝑁(𝑎∗)〉 =
𝑎∗

𝑎0
(
𝜏

𝜏0
)
𝛼

             Equation 4. 
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As shown by Eq. 4, the average number of stable twin nuclei produced by a grain boundary 

increases as the grain boundary surface area, 𝑎∗, increases. [49]  

Commonly, the stress to nucleate a twin is produced by dislocation pile-ups in neighboring grains. 

The stress caused by these pile-ups is proportional to the distance they have traveled from their 

source (somewhere within the grain) to the grain boundary between the two neighboring grains. 

In larger grains, the average distance from any source to any grain boundary is large compared to 

small grains, and therefore the stresses caused by the pile-ups can be large enough to nucleate 

twins. This indicates that samples with larger average grain sizes will exhibit more twins, because 

a grain’s neighbor is more likely to be large and exhibit large pile-up stresses. In contrast, non-

basal slip in Mg is often caused by stress concentrations due to the compatibility stresses, which 

keep grain boundaries from fracturing. These stresses have been shown to penetrate ~10μm into a 

grain, regardless of grain size. This means that in grains larger than ~20μm, there are areas in 

which non-basal slip will not occur due to compatibility stresses. [34]. However, the fraction of 

twinned grains in samples of different average grain sizes has been shown not to be dependent on 

that average grain size. [10] 

These interactions are not fully characterized or understood, in part due to the difficulties inherent 

in the experimental characterization of magnesium and its alloys. Magnesium is highly susceptible 

to oxidation and corrosion, which precludes many experimental approaches, and much of the 

information on their microstructure-property interactions comes from tests that produce low 

volumes of data. To make statistically sound conclusions on these interconnected relationships, 

there is a critical need for high-resolution, large field-of-view data describing the interactions 

between microstructure and deformation across length scales. 
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2.3 Scanning Electron Microscopy Digital Image Correlation (SEM-DIC) 

Digital Image Correlation (DIC) is a non-contact, length-scale-independent experimental method 

which tracks changes in a (speckle) pattern on a sample’s surface in a sequence of images to 

produce full-field deformation maps. DIC is a length scale independent calculation, where the 

quality of the pattern and the minimization of image distortion are important to the quality of the 

resulting calculation. DIC can be applied to scanning electron microscopy (SEM) images to 

produce full-field, nanometer spatial resolution strain maps of an area of interest (AOI). At the 

most basic level, this is done by a three step process: 1. Apply a speckle pattern to the surface of 

the sample, 2. Image the AOI before (for reference) and after deformation, using a SEM, and 3. 

Use computer software to analyze the images and calculate the surface displacements and strains 

by comparing the “reference image” to the “deformed image.” DIC has been used extensively as 

a tool to study the mechanics of materials since the 1980s. It almost exclusively utilized optical 

methods until the SEM-DIC method was pioneered in the mid-2000s. [23] [44-46] SEM-DIC can 

be used to evaluate dislocation slip [19], void formation [41], fracture and fatigue behavior [12] 

[21] [48], grain boundary sliding, and cracking during creep [11]. 
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Before the SEM-DIC process began, the AOI was identified using an SEM and marked using 

electron beam platinum deposition, and Electron Backscatter Diffraction (EBSD) was performed. 

Following EBSD, a speckle pattern was applied to the surface of the sample.  

 

2.3.1 Patterning 

In order to achieve the ideal speckle pattern, several guidelines should be followed [30]: 

1. The speckle pattern must cover the entire AOI. 

2. The speckles must be uniform in size but randomly distributed over the AOI. 

Figure 3. Schematic showing the steps involved in 

SEM-DIC including (i) AOI selection and EBSD, (ii) 

patterning, (iii) imaging at several strain levels, and 

(iv) image correlation and comparison with EBSD 

data. (Image courtesy of Z. Chen). 
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3. The speckles are strongly bonded to the surface of the sample but be much more easily 

deformable than the sample OR be strongly bonded to the surface and move with the 

deformation of the sample. [8] 

4.  Images should be taken, and speckles sized, such that each speckle is made of no less than 

3x3 pixels and no more than 7x7 pixels. The lower limit is to prevent aliasing, 

strains/displacements which are falsely reported due to smoothing effects from low 

resolution. [38] The upper limit is to ensure the presence of enough DIC data points. [40] 

5. The pattern must exhibit a broad bimodal grayscale histogram, indicating a good mix of 

bright and dark areas in the AOI, to reduce error. [46] The edges of the speckles making 

up the pattern should not be sharp, but rather fade in with the background, as to prevent 

aliasing. [39] 

6. The pattern (speckle shape, density, etc…) should not be affected by the testing 

environment (changing temperatures, pressures, etc…) 

7. The speckle pattern should represent about 50% of the AOI. Pattern densities much higher 

or lower than 50% result in incorrect strain feature identification. [40] 

There are many potential material and application options for DIC patterns, including paints, dyes, 

inks, powders, and lithographs. The method applied herein uses gold nanoparticles and was 

adapted by A.D. Kammers and S. Daly [24] in 2013. This method has been shown to be highly 

effective for SEM-DIC on a variety of metal, ceramic, and polymer materials. The pattern is 

created by first functionalizing the sample’s surface by submerging it in a solution of water and 

(3-Aminopropyl)triethoxysilane (APTMS). Once the silane is attached to the sample surface, the 

sample is submerged in gold nanoparticles, which have been synthesized by the Frens method. 

The specific details of how the sample in this test was patterned can be found in Section 3.  
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2.3.2 Imaging 

A fundamental problem within the mechanics/materials community is the capture and processing 

of data sets large enough to be statistically significant representations of the microstructural 

variations in large material surfaces or volumes. Therefore, with the goal of capturing high-

resolution, microscale displacement fields over relatively large (mm-scale) fields of view, a multi-

tile imaging approach was adopted for this test, wherein full-field displacements, strains and 

microstructure are captured for each image tile. This was done using external scan control, a 

method for automating image capture in an SEM introduced by Lenthe et al. [29] 

The size and resolution of the captured images was chosen such that each speckle was imaged by 

between 3x3 pixels and 7x7 pixels (per rule 4 in section 2.3.1). For the purpose of stitching images 

together during data analysis, an at least 20% overlap between adjacent images (both horizontally 

and vertically) is used. In this test, the AOI was 1mm x 1mm, and each image tile was 82μm x 

82μm with a resolution of 4096 x 4096 pixels. The corner images were centered on the corners of 

the AOI, so in total the images covered 1.082mm x 1.082mm. 22 rows of 22 images were taken to 

cover this entire area.  
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The positions of the image tiles were determined using a bilinear interpolation. With a grid of R x 

C images an image’s position is determined as a function of its row, r[0,R], and the column, c[0,C]: 

P(r, c) = (x, y). The positions of the images at each corner of the grid, P(0, 0), P(0, C), P(R, 0), and 

P(R, C), are determined by the user before each set of images is captured using the previously 

applied markers. For the images in the 0th and Rth rows and in an arbitrary “cth” column, the 

following linear interpolation was applied: 

 

𝑃(0, 𝑐) =
𝐶−𝑐

𝐶
𝑃(0,0) +

𝑐

𝐶
𝑃(0, 𝐶)               Equation 5 

 

𝑃(𝑅, 𝑐) =
𝐶−𝑐

𝐶
𝑃(𝑅, 0) +

𝑐

𝐶
𝑃(𝑅, 𝐶)             Equation 6 

 

For the image in the cth column and arbitrary “rth” row: 

 

𝑃(𝑟, 𝑐) =
𝑅−𝑟

𝑅
𝑃(0, 𝑐) +

𝑟

𝑅
𝑃(𝑅, 𝑐)             Equation 7 

 

Substituting in the expressions for P(0,c) and P(R,c) into the expression for P(r,c) results in: 

 

 

      Equation 8 

Figure 4. Diagram representing how each tile image was 

taken, with 20% overlap on each side, to make up the full 

area of interest. 
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This relationship was used to determine the position of an image in an arbitrary row and column. 

 

To capture each image, the electron beam is directed to each pixel and held for the assigned dwell 

time. The pixel is sampled multiple times and the sampled detector data is stored in an array for 

each pixel and image stacks are created from the elements in the same position for each pixel’s 

array. For example, the Nth image in the stack is made up of the data from the Nth element in each 

array. For this experiment, the beam was sent in a raster pattern (rather than snake; see Figure 5) 

with the addition of a wait time equal to 16% of the time taken to scan the entire line. This was 

because the required dwell time to obtain reference images with minimal distortion is far shorter 

than the dwell required for snake scanning. 
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Spatial and temporal drift distortions occur inside the SEM which can greatly reduce the accuracy 

of the strain data calculated by SEM-DIC, and corrections have been developed in order to mitigate 

these distortions. [44] [45] However, the external scan control developed by Lenthe et al [29] and 

utilized in this work reduced these distortions to the extent that drift and spatial distortion 

corrections were no longer required. 

Figures 6 and 7 [16] show examples of spatial distortions which have been observed at different 

length scales and in at least two different microscopes: a FEI Teneo SEM and a Tescan Mira 3 

SEM. The external scan control method utilized in this work has been shown to greatly reduce 

spatial distortions of this type. 

Figure 6 shows cross-hatched (Figure 6(b)) and vertical/diagonal (Figure 6(c)) spatial distortion 

noise patterns produced when the stock scan controller was used to image a sample subjected to a 

Figure 5. “Illustration of the imaging algorithm with the custom external scan controller. (a) The 

electron beam was driven by the scan signal to sequentially reach each of the target pixel positions. 

At each pixel position, the detector signal was sampled multiple times (with the data indicated by 

the colored squares) and stored in an array. The N-th sample in the array of each pixel was used to 

construct the N-th image stack. (b) Illustration of the electron beam path in the raster scan mode 

and snake scan mode.” (Figure 4 from [16]) 
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rigid body translation. Figure 6(d) shows that this distortion is all but mitigated when external scan 

control is applied. 

 

A different form of spatial distortion, wherein the relative position of the same features were not 

the same in different images is shown in Figure 7. [16] In this study, the sample was subjected to 

a rigid body translation close to the width of the FOV. The resulting images show that features 

were imaged differently depending on their location in the image and that the distortion is worse 

Figure 6. Spatial distortion patterns vary depending on several variables 

including the microscope used to capture the images, and these distortions 

can be mitigated by using external scan control. (a) An illustration of the 

rigid body displacement undergone by the sample. (b) Cross-hatched 

noise patterns appear in the DIC strain map when a sample was translated 

2μm and imaged using the stock controller in a Tescan Mira 3 SEM. (c) 

The vertical and diagonal distortion patterns were a result of imaging a 

sample having undergone a translation of 20μm in a FEI Teneo SEM with 

stock scan control. (d) External scan control, applied to image a 20μm 

translation in a FEI Teneo SEM, resulted in minimal spatial distortion. 

Note: (c) and (d) were produced from the same area of the same sample 

in the same microscope. The same pixel resolution was used and the 

image parameters were adjusted so that the image time was approximately 

45 seconds for each image. The imaged area in (d) is represented by a 

white box on (c). (Figure 2 from [16]) 
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close to the left side of the image. This left-side distortion prevents the high-quality overlay 

necessary for stitching neighboring images and thus the entire AOI. Therefore, the size and number 

of recorded image tiles was chosen such that there was an approximately 20% overlap between 

tiles. This allows for capturing overlapping images and deleting the distorted data to ensure the 

spatially distorted data does not get included in the final displacement and strain maps. The 

external scan control imaging method used for this experiment has been shown to greatly decrease 

this spatial distortion (see Figure 7. 3(c)), so the overlap area served a different purpose 

(identifying image location for stitching, see section 3.4.2). 

 

 

 

 

 

 

Figure 7. Image stitching is greatly affected by the spatial distortions present in the overlay between two 

FOVs, and these distortions can be mitigated using external scan control. (a) Two images with a stitching 

overlap region in the center and four small areas labeled 1-4 to be magnified for observation in (b) and 

(c). (b) The magnified areas of the overlap region, captured with the internal/stock scan control, show 

that the image quality can vary greatly depending on location. (c) When imaged using external scan 

control, the same regions are imaged with more consistent quality and minimal spatial distortion. (Figure 

3 from [16]) 
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3. Material and Methodology 

3.1 Sample Preparation 

3.1.1 Polishing 

Dogbone-shaped samples of pure magnesium were cut using electrical discharge machining 

(EDM). The dimensions of the manufactured samples are shown Figure 8. Samples were prepared 

for testing using the techniques developed in [20]. Specimens were mechanically polished as 

follows: dogbone-shaped test specimens were mounted onto the head of a Buehler autopolisher 

using crystalbond, with the head and base speeds set to 60rpm and 120rpm respectively and the 

force set to 20N. The samples were metallographically ground with 600 (2 minutes), 800 (4 

minutes), 1200 (5 minutes), and P4000 (until sample surface was uniformly textured, as seen under 

an optical microscope, about 6 minutes) standard ANSI grit silicon carbide paper. Each individual 

paper was only used for 30 seconds. Next, the samples were polished with 3μm and 1μm water-

based diamond suspensions (MetaDi Ultra Paste) for 10 and 15 minutes, respectively. The 

polishing pad was first lubricated with MetaDi Fluid and then ~5 dots of the diamond paste were 

distributed around the pad. Following each diamond polishing step, each sample was rinsed with 

Simple Green soap, deionized (DI) water, and NaOH, then dried with compressed air for ~10 

seconds. Finally, a 2:1 ratio of water to a high pH colloidal alumina/colloidal silica mixture from 

Buehler (MasterPolish) was used to chemo-mechanically polish each sample for 15 minutes, after 

which each sample was rinsed with soap, water, and NaOH, then dried with compressed air for 

~10 seconds. This MasterPolish step was performed by first lubricating the polishing pad with 

MetaDi Fluid and using a 3ml disposable pipette to place ~10 dots of the MasterPolish/Water 

solution, distributed evenly over the pad. More MasterPolish/Water solution was added to the 

polishing pad, using a pipette, at a rate of about 1 drop every 2 seconds. To remove the sample 
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from the polishing head, a razor blade was slid under the sample to break the crystalbond. Acetone 

and a q-tip were used to remove excess adhesive from the back side of the sample. 

 

 

3.1.2 Etching, Platinum Deposition, & EBSD 

Following mechanical and chemical polishing, the samples, which were handled with plastic 

forceps, were etched in a solution of 50 ml methanol + 6 ml hydrochloric acid + 4 ml nitric acid 

for five seconds before being rinsed in DI water (10 seconds) and ethanol (10 seconds), then dried 

with compressed air until no liquid remained on the sample. Immediately following this etching 

process, the sample was mounted on a Scanning Electron Microscope (SEM) Pin Stub Specimen 

Mount and placed inside an FEI Teneo SEM. Markers were placed in the corners of the area of 

interest (AOI), an area near the center of the gauge section which was mostly free from debris or 

imperfections, using Pt deposition. This was done to make locating the AOI easier in the future. 

For the Pt deposition process, the microscope’s voltage was set to 2kV while the beam current was 

0.4nA. The stage was set to the eucentric point, about 14μm, by finding the working distance at 

which the beam does not change location regardless of to what angle the stage is tilted. Rectangles 

of dimensions 5x15μm were placed at three of the corners of the AOI while at the fourth corner a 

Figure 8. Magnesium dog bone samples 

were Electrical Discharge Machined to 

these specifications. (From Figure 1 from 

[16]) 
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15x5μm rectangle was deposited, as to make clear the orientation of the AOI. Each rectangle was 

deposited 10nm tall. 

An Electron Back-Scatter Diffraction (EBSD) map was taken of the AOI on the samples using 

TSL OIM software on the FEI Teneo SEM. The accelerating voltage was 20kV, the working 

distance was 14mm, the spot size was 6 and the EBSD step size was 1μm.   

 

 

 

 

3.1.3 SEM-DIC Patterning 

Next, a speckle pattern was applied to the surface of the test specimen for microscale deformation 

tracking by Scanning Electron Microscope Digital Image Correlation (SEM-DIC). Gold (Au) 

nanoparticles were fabricated using the Frens method and the pH of the nanoparticle solution was 

subsequently adjusted using NaOH in order to prevent corrosion of the sample, per [20]. Samples 

Figure 9. The EBSD map of the full AOI, 

collected using the TSL OIM software on a 

FEI Teneo SEM. 
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were submerged in a solution of 5% APTMS, 50% DI water, and 45% Ethanol for 15 minutes, 

then rinsed with DI water, ethanol, and dried with compressed air until no liquid remained on the 

sample. They were then submerged in vials of Au nanoparticles with the specimen face of interest 

facing down. Samples were left in the nanoparticle solution until the nanoparticles degraded 

(changed color, usually becoming a dark grey, and/or the particles and the water separated, creating 

a gradient in color), whichever came first. Once degradation of the nanoparticle solution occurred 

by one of these two mechanisms, the sample was removed from the solution. The pattern on the 

sample was inspected in the SEM and it was determined that the pattern was not dense enough for 

testing. Therefore, the sample was placed in a new vial of nanoparticle solution and the process 

was repeated. 
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3.2 Imaging with External Scan Control  

3.2.1 Microscope Setup 

Once the pattern was acceptably dense (Figure 10), the SEM was configured to use the External 

Scan Control to take the images required for SEM-DIC [29]. First, a Kyowa brand general purpose 

foil strain gauge (strain limit = 5%) was applied to the back side of the sample using Kyowa brand 

strain gauge glue. The sample was then secured into the custom Kammrath and Weiss loading 

stage, using knurled-surface spacers and clamps. The stage was fixed into the SEM and the control 

cables were connected to the internal side of the flange. The strain gauge wires were also soldered 

to cables attached to the flange. On the outside of the SEM, a K&W Deformation Devices System 

(DDS) Multi-Level Controller was plugged into the flange with its own cables. Next, the EBSD 

camera was disconnected from the SEM and a National Instruments (NI) USB-6251 

Digital/Analog Converter (DAC) system via a cable. The NI DAC was also connected to the 

Figure 10. The final speckle pattern was produced using the Frens method, altered 

by 1) neutralizing the nanoparticle solution by adding NaOH until the pH was 12 

and 2) repeating the step during which the sample was submerged in the 

nanoparticle solution. 
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Per the guidelines for SEM-DIC (see Section 2.3.1), the image size and resolution should be chosen 

so that each nanoparticle is between 5x5 pixels and 7x7 pixels. For this reason, in order to image 

the 1x1mm AOI, square images of size 82x82μm and resolution 4096x4096 pixels were taken in 

a grid of 22x22 images. Each set of 484 images took approximately 24 hours to scan. A total of 

1936 images were captured and analyzed for this test. 

 

3.2.2 Scan Control Codes: iFast 

The FEI Teneo SEM used for this work came equipped with iFast, a visual programming software 

that allows for automation of stage movement and imaging in the SEM. For the purposes of this 

experiment, an iFast script [29] [16] was used to control stage movement, and imaging parameters 

including focus, stigmatism, brightness, and contrast. The user inputs the coordinates of the 

Figure 11. A diagram showing the systems required for external scan control. (Figure 

5 from [16]) 
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corners, the number of rows and columns, the desired image resolution and shape, and the naming 

convention (which is changed after each strain step to distinguish between them). Before starting, 

the user must position the stage such that the beam is centered on top left corner tile and the image 

parameters (focus, stigmatism, brightness, contrast) are as desired so that the iFast script has a 

starting point for reference.  

When the program is run, the iFast code moves the stage to the initial coordinates, adjusts the 

image parameters, takes an image with the specified resolution, and then produces an audio tone 

to alert the external lab pc to start running the C++ code. The frequency of the audio tone is 

determined by the row and column number of the image being taken: 

 

Frequency=1000+100r+4c              Equation 9 

 

Where r = row number and c = column number. 

 

3.2.3 Scan Control Codes: C++ 

When the audio tone is received by the external lab PC, images are captured by the methods 

described in Figure 5 in Section 2.3.2. The beam moves in a raster pattern and captures high-

resolution images. 

 

3.3 Monotonic Compression Testing  

During the test described herein, the dogbone sample was loaded using a thermo-mechanical 

testing stage (Kammrath and Weiss) inside a FEI Teneo SEM, to three different strain levels, and 
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images were taken at each load: 0%, 0.8%, and 3%. The displacement rate was 0.1μm/s which, in 

this case, led to a quasi-static strain rate of 0.110,000=1x10-05/s.  

 

 

3.4 Data Processing 

3.5.1 Digital Image Correlation 

After the experiment, VIC-2D 6 by Correlated Solutions, Inc. (Irmo, SC) was used to perform the 

image correlation for this test. After some initial testing of processing parameters, a subset of 33μm 

and a step size of 3μm were chosen to minimize aliasing and maximize resolution of the DIC maps. 

A custom C++ script was used to run VIC-2D automatically for all 484 image tiles. After this 

Figure 12. The stress strain curve for the test described herein. This 

curve has been edited to not include data from holding/imaging 

periods, during which stress-relaxation caused major dips in the 

curve. The blue line indicates the stress vs. strain data obtained 

from the stage and DDS controller. The red dots indicate the strains 

at which images were taken to be analyzed for this study. The 

discontinuity around 15MPa was caused by the opening of the 

SEM chamber and the tightening of the stage. 
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process was completed, several tiles which showed obviously false data were re-correlated 

individually using 9 seed points each.  The deformation data of each tile were exported in matrices 

including the initial pixel positions, x and y, the displacement values, u and v, and the selected 

strain values (here, Lagrangian strains εxx εyy εxy).  

 

3.4.2 Stitching [16] 

After each image tile was analyzed with VIC-2D, a strain map of the entire AOI was created by 

stitching together the maps of each tile. There are several methods available for this work. A study 

by Carroll et al. in 2010 [13], which included stitching ex-situ images of tensile- and fatigue-crack 

growth experiments from an optical microscope, found that stitching the image tiles before 

performing DIC resulted in bands of artificial displacement/strain data that were non-negligible 

under 1% strain. Comparatively, performing DIC on each image tile and then stitching those DIC 

tiles together resulted in sharp strain discontinuities between tiles. The method used herein, 

developed by Chen et al. in 2018, utilizes the later strategy with additional steps to minimize these 

discontinuities. The first step in this process is to stitch together the reference SEM images. 

First, the reference SEM images of each tile were stitched. This was done using MATLAB codes 

developed by Zhe Chen, which started by applying cross-correlation for image registration to find 

the stage position for each image. This cross-correlation is a measure of the similarity between two 

signals as a function of one signal’s displacement relative to the other signal: 

 

(𝐹 ∘ 𝐺)(𝑥, 𝑦) = ∑ ∑ 𝐹(𝑚, 𝑛)𝐺(𝑚 + 𝑥, 𝑛 + 𝑦)𝑁−1
𝑛=0

𝑀−1
𝑚=0         Equation 10 
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𝑥 ∈ [−(𝑀 − 1), 𝑃 − 1], and 𝑦 ∈ [−(𝑁 − 1), 𝑄 − 1]       

        

 

Equation 6 represents the cross-correlation of an M-by-N matrix, F, and a P-by-Q matrix, G. These 

matrices represent the grayscale values of two SEM images. To estimate the noise in the cross-

correlation, a first-order Savitzky-Golay filter with a window size of five was applied to smooth 

the data. This process allowed for the accurate evaluation of the stage position when each image 

was captured. Additionally, using the normalized cross-correlation can improve peak definition 

[31]: 

𝛾(𝑥, 𝑦) =
∑ [𝑔(𝑚,𝑛)−�̅�𝑥,𝑦][𝑓(𝑚−𝑥,𝑛−𝑦)−�̅�𝑚,𝑛

{∑ [𝑔(𝑚,𝑛)−�̅�𝑚,𝑛]2𝑚,𝑛 ∑ [𝑓(𝑚−𝑥,𝑛−𝑦)−�̅�]2}𝑚,𝑛
0.5         Equation 11 

g: image 

f: template 

�̅�x,y: mean image under template 

 

This cross-correlation algorithm was applied to each pair of neighboring image tiles and the 

common grayscale elements were identified. Thus, the position of each image tile was determined. 

In areas of the AOI where multiple tiles overlap at once, blending algorithms were used to stitch 

the tiles. 

According to [16], there are several important considerations about the above-described stitching 

process: 
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1. Due to the computational cost of the cross-correlation (Eq. 10) it was optimized using the 

following cross-correlation theorem: 

 

𝐼 ∘ 𝐽 = 𝐹−1(�̅�(𝐼)̅𝐹(𝐽))           Equation 12 

 

The matrices I and J represent the grayscale values for two image, F is the forward Fourier 

transform, F-1 is the inverse Fourier transform, and the bar over F denotes the complex 

conjugate. Lewis [31] showed that Eq. 11 (normalized cross-correlation) can be converted 

into a cross-correlation that can be optimized by Eq. 12 and calculating terms involving 

the image sum and sum squared. 

 

2. Computation time can be significantly reduced, if the image tiles are taken on a regular 

grid, if the relative tile positions are estimated before performing cross-correlation. This 

can be done using a subset of images in the estimated overlap area and will reduce the area 

to be searched for the cross-correlation peak. In the event that a solution cannot be found, 

manually selecting an image subset with distinctive features can also reduce the 

computational cost of the cross-correlation. 

 

3. A perfect overlap of two neighboring images is impossible to produce, due to image 

distortion and noise. Figure 14 below shows an example of a region near the normalized 

cross-correlation peak for two images taken with the stock scan controller. The diagonal 

streak of high-value correlation points is caused by the spatial distortion discussed in 

Figure 6 in section 2.3.2. The peak represents the area with the most overlap of common 
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features. 

 

 

 

 

4. In this experiment, and the one it is modeled after [16], the relative positions of the images 

were determined at pixel-resolution. Sub-pixel resolution was deemed unnecessary for 

these experiments due to the DIC step size being on the order of several pixels. 

 

Once the correct positions of the SEM images were determined, those positions were used as a 

starting point for the DIC map tiles. The strain map tiles were stitched together to create a full-

field, sub-micron resolution strain map of the full 1mm x 1mm AOI. The decision to perform DIC 

Figure 13. A region near the normalized cross-

correlation peak for two images taken with the stock 

scan controller. The diagonal streak of high-value 

correlation points is caused by spatial distortions 

that cause common features to be captured 

differently between two images. This is discussed 

further in Figure 6 in section 2.3.2. (Figure 6 from 

[16]) 
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and then stitch the maps had several motivations including distortion minimization and  

computational costs. In this experiment, the fully stitched image of the entire AOI is roughly 

90,000 x 90,000 pixels (4096 x 4096 pixels for 22 x 22 image tiles). To create global matrices for 

each variable produced by VIC-2D 6 (x, y, u, v, εxx, εyy, and εxy), the local matrices for each image 

tile were stitched together. These global matrices describe the deformation data at evenly-spaced 

positions on the stitched reference image. The step size for these positions was equal to the DIC 

step size (here, 3): 

𝑋 = [

0 3
0 3

6 …
6 …

0 3
… …

6 …
… …

] and  𝑌 = [

0 0
3 3

0 …
3 …

6 6
… …

6 …
… …

] 

The local matrices were inserted into the global matrix using the position of the relevant reference 

image in the global stitched reference image. For example, if a reference image tile was stitched 

to the global reference image starting at pixel position (n,m) and a data point in the local matrix is 

at position (x,y) then the same data point would be at (n+x, m+y) in the global matrix. In the event 

that (n+x, m+y) does not fall on a multiple of the step size, a nearest neighbor interpolation was 

applied and m and n were rounded to the nearest multiples of the step size. For example, using the 

step size of 3, (m,n)=(2,1) was rounded to (m,n)=(3,3). This process produced global matrices for 

each variable (x, y, u, v, εxx, εxy, and εyy) and is more accurate with smaller step sizes.  

Stitching the strain fields in this way is fairly straightforward. The Lagrangian strain matrices were 

calculated using the displacement of itself and its four nearest neighbor data points, then smoothed 

using a Gaussian filter with filter size 5. Therefore, theoretically, the strain data should be the same 

in the overlap regions of different local matrices because strain is not affected by rigid translation. 

However, due to noise and distortion, this isn’t always the case in practice. For this reason, the 

data in the overlay area with greater distortion (which, as discussed previously, occurs on the left 
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edge of right image tile) was discarded and only the data from the low-distortion matrix (the right 

side of the left matrix being stitched) was used (see Figure 6 in section 2.3.2 (the one with the left 

edge distortion)). In the case where image distortion was relatively even between the image tiles, 

an average of the overlap data was used in the global matrix. 

Stitching displacement matrices was more complicated than stitching strain matrices, because by 

definition they are impacted by rigid body translation. So, before being able to insert the local 

displacement matrices in the global displacement matrices, certain calculations were necessary as 

follows: 

Say that a trackable feature is imaged at position (xi, yi) on the reference image tile and at (xf, yf) 

on the deformed image tile. The displacement values would be: 

 

(𝑢′, 𝑣′) = (𝑥𝑓 − 𝑥𝑖 , 𝑦𝑓 − 𝑦𝑖)            Equation 13 

 

The tile in which this trackable feature lies starts at position (xr, yr) in the reference stitched image 

and at (xd, yd) in the deformed stitched image. Therefore, the feature in question lies at (xr+xi, yr+yi) 

in the stitched reference image and at (xd+xf, yd+yf) in the stitched deformed image. Thus, for the 

global matrices, the displacement values are: 

 

(𝑢, 𝑣) = ((𝑥𝑑 + 𝑥𝑓) − (𝑥𝑟 + 𝑥𝑖), (𝑦𝑑 + 𝑦𝑓) − (𝑦𝑟 + 𝑦𝑖))                              Equation 14 

           = (𝑢′ + (𝑥𝑑 − 𝑥𝑟), 𝑣
′ + (𝑦𝑑 − 𝑦𝑟)) 

Therefore, 
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𝑢′ = 𝑢 − (𝑥𝑑 − 𝑥𝑟)             Equation 15 

 

𝑣′ = 𝑣 − (𝑦𝑑 − 𝑦𝑟)             Equation 16 

 

 

 

Figure 14. An illustration of the relationships 

between displacement in local matrices (reference 

and deformed) and the global displacement matrices 

(reference and deformed). The solid red lines 

represent a reference image tile and the stitched 

reference image. The blue dotted lines represent a 

deformed image tile and the stitched deformed 

image. The circles represent trackable features in the 

reference images (red) and the deformed images 

(blue). The position of the feature in the image tile 

are shown: (xi, yi) on the reference image tile and at 

(xf, yf) on the deformed image tile. The position of the 

image tile in the stitched image are also shown: (xr, 

yr) in the reference stitched image and at (xd, yd) in the 

deformed stitched image. Eq 10 shows the 

relationships between these position values and the 

displacement of the feature in the global stitched 

image. (Figure 7 from [16]) 
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As shown in Eqns 11 and 12, the displacement of each feature in a tile depends on the position of 

its image tile in the global image, (xr, yr) and (xd, yd). In overlap areas, features’ displacements are 

different because the positions of their respective image tiles are different. This leads to a 

discontinuity in the stitched area, as can be seen in Figure 15.(a), where data from the left image 

was used in the left have of the overlap area and data from the right image was used in the right 

half of the overlap area. To get rid of this discontinuity, Eq. 14 was used to correct the values in 

the local matrices such that the displacement fields in different local matrices become the same in 

the overlap region. (xd-xr) and (yd-yr) were added to u’ and v’, the local displacement matrices, 

when stitching, which corrected the discontinuity as shown in Figure 15(b). 

 

Figure 16 shows the full-field strain maps, comprised of 484 (22 rows x 22 columns) data tiles 

stitched together using the methods described above. The macroscopic strain was approximately 

3% and the step size between data points is 3 pixels. This corresponds to approximately 

82𝜇𝑚

4096𝑝𝑖𝑥𝑒𝑙𝑠
× 3𝑝𝑖𝑥𝑒𝑙𝑠 = 0.06𝜇𝑚. Both slip and twinning can clearly be identified in Figure 16. 

Figure 15. When stitching local displacement fields, the data must be corrected to avoid 

discontinuities caused by the relationship between displacement and position in the global matrix. 

(a) A discontinuity is evident in the overlap are, where data from image 1 was used in the left half 

of the area and data from image 2 is used in the right have of the area. (b) When the data is corrected 

using Eq. 14 the discontinuity is corrected. (Figure 8 from [16]) 
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(a) 

(b) 
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3.4.3 Aligning Strain and Microstructural Data [16] 

To relate the strain data with the microstructural information from EBSD, the full-field strain map 

was aligned with the grain orientation map. The EBSD is more inherently distorted, so the EBSD 

data was aligned to the DIC coordinate system rather than the other way around. To do this, a 

projective transformation was used.  

The projective transformation [16] used works by matching lines in the EBSD data to lines in the 

DIC data, but it does not necessarily retain parallelism.  For each the EBSD map and the DIC data 

map, N control points were chosen. Their positions defined as (xi, yi) on the EBSD map and (Xi, 

Yi) on the DIC map, where 𝑖 ∈ [1, 𝑁]. A 3-by-3 matrix, H, can be used to represent the projective 

transformation, where 

 

Figure 16. The (a) εxx, (b) εxy and (c) εyy, stitched strain maps for the 

full area of interest under global strain of approximately 3%, 

calculated using Vic-2D 6. 

(c) 
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𝐻 = [

ℎ1 ℎ4 ℎ7
ℎ2 ℎ5 ℎ8
ℎ3 ℎ6 ℎ9

]             Equation 17 

 

Here, h9=1, and the control points satisfy the following relationships: 

 

𝑋𝑖 =
𝑥𝑖ℎ1+𝑦𝑖ℎ2+ℎ3

𝑥𝑖ℎ7+𝑦𝑖ℎ8+ℎ9
             Equation 18 

 

𝑌𝑖 =
𝑥𝑖ℎ4+𝑦𝑖ℎ5+ℎ6

𝑥𝑖ℎ7+𝑦𝑖ℎ8+ℎ9
             Equation 19 

 

Expanding these relationships for all N control points: 

 

 

 

 

                                               Equation 20 

 

 

 

 

Or: 
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Q=PA               Equation 21 

 

This system of linear equations (Eq. 20) becomes overdetermined in the case where N > 4. 

Therefore, matrix A was solved by the generalized inverse to average the effect of more than four 

control point pairs: 

 

A=(PTP)-1PTQ              Equation 22 

 

Eq. 22 provided all the required elements to define the transformation of matrix H. 

 

After the data was run through the projective transformation, the grain boundaries were manually 

adjusted in areas where the transformation was not completely successful. As the EBSD data has 

increased distortion compared to the DIC data, the DIC data was used to make these adjustments. 

The grains around the edge of the AOI were omitted due to incomplete microstructural data (grain 

size could not be calculated from only part of a grain.) 

The combined EBSD and DIC map can be seen in Figure 17.  
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3.4.4 Twin Identification [15] 

Once the EBSD data and the DIC data were combined so that the strains in individual grains could 

be studied, the next step towards the goal of comparing twinning and grain size was to identify the 

twins present in each grain. Computer vision and machine learning techniques, developed by Chen 

and Daly in 2018 [15], were used to identify twins in three steps: K-means clustering of the strain 

data, comparing the experimentally recorded strains in those clusters to theoretical twinning strains 

combined with twin system Schmid Factors, and examining cluster shape and size evolution using 

Figure 17. The εxx, strain map (Figure 17.), overlaid by the grain boundaries found using 

the EBSD data (Figure 9). For some grains near the edges, that either did not have full 

EBSD or DIC data could not be examined as a part of this investigation.  
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a Convolution Neural Network (CNN). These processes are described below, but for more details 

the reader is directed to [15]. 

 

3.4.4 (a) Segmentation of Deformation Data: K-Means Clustering 

As developed in Chen and Daly [15] the following was used to segment strain so that twins can be 

identified and examined: First, k-means clustering was applied to the strain fields of each grain in 

the R3 space of {εxx, εxy, εyy}. The number of clusters in each grain, K∈[2,5] was found such that 

the averaged silhouette value 𝑆̅ (Eq. 23) was maximized. 

 

𝑆̅ = (∑ 𝑆(𝑖))/𝑁𝑖                          Equation 23 

 

The silhouette is a measure of how well a data point fits the cluster to which it is assigned, 

compared to other clusters. It can vary between -1 and 1, and it can be calculated using Eq. 24. 

 

𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}
             Equation 24 

 

where i represents the data point being examined, a(i) is the average distance between i and the 

other data in the same cluster, and b(i) is the average distance between i and the data in the next 

closest cluster. In each grain, silhouette values were calculated for 10,000 uniformly distributed 

data points, rather than the entire data set, as to cut down on computational costs. The resulting 

clusters for all 1292 grains can be seen in Figure 18. The sliver of missing data is an artifact of 
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stitching the strain data and correlates to an area where sigma (a measure of the quality of the DIC 

calculations produced by Vic-2D) was equal to zero. 

 

 

This twin segmentation method can be further improved, however. About 1-2% of twins are not 

segmented separately from their parent grains, and some areas of high strain that happen to have 

similar strains are a twin can be mistakenly segmented into a twin cluster. To improve upon the 

results from k-means clustering alone, the examination of theoretically expected twin strains, 

cluster size evolution, and cluster shape was undertaken. 

 

Figure 18. This map shows the results of the k-means clustering for the entire AOI. The 

white areas are areas where sigma=0, according to Vic-2D 6. 
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3.4.4 (b) Comparison of Theoretical and Experimental Strains, Combined with Twin System 

Schmid Factors 

As developed in Chen and Daly [15], the following was used: to find whether a given cluster 

corresponded to a twinned or parent area, the centroid of each cluster was compared with the 

theoretical surface strain values for the most likely twin systems. In VIC-2D, the Lagrangian strain 

fields were determined by: 

 

𝜀 =
1

2
(𝑭𝑇𝑭 − 𝑰)                        Equation 25 

 

where F is the deformation gradient: 

𝑭 = 𝑰 +
𝜕𝒖

𝜕𝑿
              Equation 26 

I is the identity tensor, u is the displacement, and X is the position of the material point before 

deformation. For 2D-DIC, the experimental data falls on the x1-x2 plane and the strain components 

are {εxx, εxy, εyy}. This leads to: u = (u1, u2) and X = (x1, x2). The deformation gradient for a given 

twin system α can be calculated using Eq. 27: 

 

𝑭 = 𝑰 + 𝛾𝛼(𝑩⨂𝑵) = 𝑰 + 𝛾𝛼 [

𝑏1𝑛1 𝑏1𝑛2 𝑏1𝑛3
𝑏2𝑛1 𝑏2𝑛2 𝑏2𝑛3
𝑏3𝑛1 𝑏3𝑛2 𝑏3𝑛3

]                    Equation 27 

 

where γα is the twin shear, B = (b1, b2, b3) is the twinning direction, and N = (n1, n2, n3) is the 

twinning plane normal. B and N are 3D crystallographic characteristics that were measured with 
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2D-DIC. Therefore, b3 and n3 could not be determined and the deformation gradient in this case 

was calculated as: 

 

𝑭 = 𝑰 + 𝛾𝛼 [
𝑏1𝑛1 𝑏1𝑛2
𝑏2𝑛1 𝑏2𝑛2

]            Equation 28 

 

To calculate the theoretically-predicted surface strains as measured in experiment, Eq. 28 was 

substituted into Eq. 25. Assuming that deformation twins were the sole contributor to shear strain 

in twinned areas, this theoretical strain was expected to match the experimentally-determined 

strain fields from 2D-DIC.  

For each grain, the centroid of each cluster was compared with the theoretically-predicted surface 

strains for all six extension twin variants in that grain. A dissimilarity metric (ψD) between the 

experimental and theoretical strains was determined using a Euclidean distance: 

 

𝜓𝐷(𝑛) = √∑(𝜀𝑖𝑗
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − 𝜀𝑖𝑗

𝑇𝑤𝑖𝑛(𝑛))2  , 𝑛 ∈ [1,6]                    Equation 29 

 

where n is one of the six available extension twin systems,𝜀𝑖𝑗
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is the experimentally obtained 

centroid of the strain in the cluster, and 𝜀𝑖𝑗
𝑇𝑤𝑖𝑛(𝑛)is the surface strain predicted for twin system n. 

Whichever of the six twin systems exhibited the minimum dissimilarity (𝜓𝑚𝑖𝑛
𝐷 ) with the cluster 

strains was assigned as the cluster’s potential twinning system. This was done with no knowledge 

of whether the cluster had twinned or not.  
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𝜓𝑚𝑖𝑛
𝐷 = min{𝜓𝐷(𝑛)} , 𝑛 ∈ [1,6]           Equation 30 

    

Note that there is a limitation with this approach of assigning potential twin systems to clusters; 

two twin systems could exhibit very similar twinning strains. This is further discussed in [15]. 

Clusters with low dissimilarity (𝜓𝑚𝑖𝑛
𝐷 ) and high Schmid factors (m) are more likely to be twinned, 

because these characteristics indicate that the exhibited strain is very close to the theoretically-

predicted surface strain for a twin system and that the orientation of the grain within which the 

cluster resides is well-oriented for that twin system to be subjected to high resolved shear strain. 

For this reason, Chen and Daly [15] found that, when examining the relationship between 

dissimilarity and Schmid factor, the likely twinned clusters tended to congregate in a region of 

high m and low 𝜓𝑚𝑖𝑛
𝐷  (top left corner in Figure 19.) The twin identification (and therefore color 

difference) are a result of twin identification work discussed later.  
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The linear boundary between the twinned and non-twinned regions can be approximated as 

follows: 

 

𝐵 = 𝑚 − 𝑐𝜓𝑚𝑖𝑛
𝐷               Equation 31 

 

where c is the slope of the boundary, and B is the intersection of the boundary with the Schmid 

factor axis. In the work done by Chen and Daly [15] it was found that c = 7 and B = 0.15.  

 

Next, a classifier (φ) was defined as: 

𝜙 =
1

1+𝑐
(𝑚 − 𝑐min{𝜓𝑚𝑖𝑛

𝐷 , 1}) +
1+2𝑐

2(1+𝑐)
           Equation 32 

     =
1

1+𝑐
𝑚−

𝑐

1+𝑐
min{𝜓𝑚𝑖𝑛

𝐷 , 1} +
1+2𝑐

2(1+𝑐)
 

Figure 19. Scatter plots of dissimilarity (𝜓𝑚𝑖𝑛
𝐷 )) vs. Schmid factor 

(m) for (a) εG = -0.004 and (b) εG = -0.023. The region in the top left 

corner, containing most of the likely-twinned clusters (orange), 

represents areas of high Schmid factor and low dissimilarity, and 

also shows the fact that lower m values can be offset by a lower 

𝜓𝑚𝑖𝑛
𝐷 )  while a higher 𝜓𝑚𝑖𝑛

𝐷 ) could be offset by a higher m to form 

twins. The twin identification (and therefore color difference) are a 

result of twin identification work discussed later. (Figure 6 from 

[15]) 
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𝜙 allows for examination of the potential delineation of B. This classifier maintains the linear 

relationship between 𝜓𝑚𝑖𝑛
𝐷  and m with the following boundaries: 

 

{
𝜙(𝑛 = 0.5, 𝜓𝑚𝑖𝑛

𝐷 = 0) = 1

𝜙(𝑛 = 0.5, 𝜓𝑚𝑖𝑛
𝐷 = 1) = 0

            Equation 33 

  

 

This makes the lower bound zero in Eq. 33 and caps the dissimilarity at 1. In Figure 19 it can be 

seen that all clusters have 𝜓𝑚𝑖𝑛
𝐷 < 1, so the following relationship is satisfied: 

 

𝜙 = −
1

1+𝑐
𝐵 +

1+2𝑐

2(1+𝑐)
             Equation 34 

 

This shows that 𝜙 is a linear mapping of B into the interval [0,1] and φ represents the likelihood 

that a cluster has twinned. Given an estimate for c (in [15] c was approximated as 7), 𝜙 can be 

calculated for each cluster, and clusters with 𝜙 > 𝜙th (where 𝜙th is a set threshold likelihood 

value) can be classified as twinned. 𝜙th, however, will vary between materials, samples, and 

tests, and at this stage is just a starting point for grouping like clusters into “twinned” or “not 

twinned.” The threshold value used for data analysis in this study was 𝜙th=0.95. Figure 20 shows 

the results of the above-described process for the strain data in this study.  
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3.4.4 (c) Cluster Size Evolution and Cluster Shape Identification 

As developed in Chen and Daly [15], the following was additionally used to separate likely-

twinned clusters from likely-not-twinned clusters by examining their shapes and investigating how 

their sizes change as strain increases. These characteristics are useful in identifying twins because 

1) under monotonic loading, twins will only grow, they will not shrink in size; and 2) when twins 

nucleate, they have a distinct thin, lenticular shape. These measures cannot, however, prove 

whether a cluster is a twin or not, because areas of slip may also grow and/or take on long thin 

shapes; rather, investigating the size and shape of clusters was to inform the previous methods 

used for twin identification. 

Figure 20. The yellow highlighted clusters in this map of the full AOI indicate clusters 

predicted to be probable twins by the methods described in this section: these clusters 

display strains consistent with theoretically-predicted strains for twins in the same grains. 

In this case, these identified twins correspond to clusters where φ>0.95. 
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Cluster size, in pixels, was applied first in an effort to identify twinned clusters. In the k-means 

calculations discussed in Section 3.4.4 (a), cluster IDs were assigned at random. This means that 

the first step in investigating size change was to link the cluster IDs between strain steps, to ensure 

the correct cluster was being examined at each strain step. To do this, the total overlap in pixel 

count between the clusters at the two strain steps was maximized. This was repeated for every 

group of clusters in every grain in the AOI, and a significant increase in size was evident for 

twinned regions while a decrease in size was evident for non-twinned regions. Figure 21 shows an 

example of a single grain, with its strain clustered, and the corresponding cluster sizes in pixels. 

 

 

Figure 21. As an example of how twin clusters grow with increased strain, the 

clusters in Grain #1185 is plotted. The twin cluster (blue in (a) and teal in (b)) grows 

from ~82,000 pixels to ~124,000 pixels between strains (a) εxx≅0.8% to 

(b)  εxx≅3%. 
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The cluster size growth ratio (r) was defined for loading step n as follows: 

 

𝑟(𝑛) =
𝑆(𝑁)−min{𝑆(𝑖)}

𝐺
, 𝑖 < 𝑛            Equation 35 

 

where S(i) is the cluster size at strain step i, N is the final load step being examined, and G is the 

number of pixels inside the cluster’s parent grain. r∈[-1,1] and represents the increase or 

decrease in cluster size depending on strain step. From r(n), another parameter Psize was defined 

as: 

 

𝑃𝑠𝑖𝑧𝑒(𝑛) =
𝑟(𝑛)+1

2
             Equation 36 

 

where P[0,1] and represents the probability that a cluster is twinned at step n, based on the 

evolution of its size. This probability was calculated for each cluster in each grain to help identify 

twinned regions.  

For the cluster shape characterization, strain clusters were converted to images and the MATLAB 

Neural Network Toolbox was used to apply transfer learning to the cluster images. Next, a pre-

trained AlexNet Convolution Neural Network (CNN) [27] was configured to learn and perform 

classification into two classes, ‘twin’ and ‘non-twin’. The last three layers of this CNN were 

Table 1. The corresponding cluster size data for the 

twinned cluster in grain 1185 in Figure X. 
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of 227x227 by using x- and y-dimension down-sampling with the same step size, so the aspect 

ratio of the grain remained the same. Data outside the border of the new smaller dimensions were 

padded with NaNs. Linear interpolation was used to convert each strain map into the red, green, 

and blue channels of an RGB image. Based on theoretical surface strain predictions and the 

experimentally-measured strain distribution across the entire AOI, strains were mapped to the 

RGB values as follows:  

εxx [− 0.14, 0.07] → R[0,225], εxy [− 0.07, 0.07] → G[0,225], εyy [− 0.07, 0.14] → B[0,225] 

Once the entire grain was converted into an RGB image, individual cluster-specific images were 

created wherein each image contained only pixels from one cluster. 4,811 images were generated 

for all strain steps using this method.  

150 images were used for training the CNN, 50 for ‘twin’ and 150 for ‘non-twin.’ Furthermore, 

these images were divided into (a) images for training and (b) images for validation. To train the 

CNN, the loss function of the classification layer was minimized. This minimized the difference 

between the predicted and validation classification labels during training. E, the cross-entropy loss 

function of a type commonly applied to neural networks, was applied to the CNN and is defined 

as: 

 

𝐸 = −∑ ∑ 𝑦𝑖𝑗ln(𝑝𝑖𝑗)
𝑘
𝑗=1

𝑛
𝑖=1             Equation 37 

 

where n is the number of observations, k is the number of classes, yij is a binary indicator for 

observation i belonging to class j, and pij is the predicted probability from the previous layer that 
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observation i belongs to class j. The training process was terminated when the loss on the 

validation data set was larger than the smallest loss for the previous five steps. 

Once trained, the CNN was used to classify all clusters in all grains in the AOI. Along with 

classifying each cluster, the CNN produced an activation value for the classification layer for 

each cluster. This activation value can be interpreted as the probability p(i) that the cluster in 

question corresponds to a twinned region. To determine whether a cluster was a twin, the 

maximum p(i) value for a cluster and its linked clusters from all previous strain steps was used: 

 

𝑃𝐶𝑁𝑁(𝑛) = max{𝑝(𝑖)} , 𝑖 ≤ 𝑛            Equation 38 

 

Figure 22 shows the resulting twin map produced by the trained CNN. 
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Psize and PCNN (Eqns 32 and 34) were then combined and a new classifier was defined to 

represent the probability that a given cluster was a probably twin, using both size evolution and 

shape identification criterion: 

 

𝜂 = 𝑃𝑠𝑖𝑧𝑒 × 𝑃𝐶𝑁𝑁             Equation 39 

 

Psize and PCNN are independent characteristics of a cluster; whether the cluster grew or shrank 

does not change whether the shape of the cluster resembled that of a twin, and vice versa. 𝜂 >𝜂th 

Figure 22. The resulting twin map produced by the trained CNN. 
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indicates that a cluster is likely twinned. In this case,  𝜂th=0.5075. This was used when 

combining all methods from 3.4.4 (a), (b), and (c) in section 3.4.4 (d). 

 

3.4.4 (d) Combining Twin Identification Methods 

The final step of these data analysis methods developed in [15] was to combine the theoretical 

strain analysis, the CNN analysis, and the size evolution analysis to identify twins in the AOI. 

Figure 23. shows the resulting clusters identified as likely twins using the combination of all of 

these methods. The way this was done was by using a logical OR relationship between the 𝜙 > 

𝜙th criterion for investigating the experimental strains as compared to the theoretically predicted 

strains, and the 𝜂 >𝜂th criterion, which combines size evolution and shape identification to 

analyze clusters’ probability of corresponding to a twin. 
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3.4.5 Capturing Ground-Truth Data 

The methods for analyzing the data described in section 3.4.4 are still in development and cannot 

yet identify twins in DIC data with 100% accuracy. For this reason, the identification of a ground-

truth data set was required. To capture this ground-truth data, the strain map for each grain in the 

AOI was plotted and categorized by hand. If the grain included a twin, the grain ID number was 

recorded, and the conclusions drawn in the following sections were made using this information. 

3.4.6 Precision, Sensitivity, and Accuracy 

Figure 23. This twin map was produced by combining the assessment of the experimental 

strains to the theoretical strains with the examination of the cluster size evolution and the 

cluster shapes. The yellow highlighted regions correspond to areas that have φ >0.95 OR 

>0.5075. 
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By comparing the predicted data (section 3.4.4 (d)) and the ground-truth data (section 3.4.5), the 

following automated identifications were determined. The high prevalence of false negatives is 

likely due to the high level of noise in the experimental data, as evidenced in Figure 21.  

 

 

The “true positive” (TP)  value corresponds to grains that were correctly predicted to have twins, 

the “false positive” (FP) value represents the grains that were wrongly predicted to include twins, 

the “true negative” (TN) value is the number of grains that were correctly predicted to include no 

twins, and the “false negative” (FN) value represents the grains that were incorrectly predicted to 

contain no twins. These results were used to calculate three metrics, previously defined in [15]: 

1) Precision or Positive Predictive Value (PPV), 2) Sensitivity or True Positive Rate (TPR), and 

3) Accuracy (ACC). Each of these values is a ratio between TP, TN, FP, and/or FN. 

The PPV is a ratio of the predicted twinned grains to the total positive predictions: 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              Equation 40 

Table 2. The results of comparing the 

grains predicted to include twins with 

the ground truth data of which grains 

actually do include twins. “True” 

indicates correct predictions, “false” 

indicates incorrect predictions, 

“positive” indicates grains with 

twins, and “negative” indicates grains 

without twins. 
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The TPR is the ratio between the correctly predicted twinned grains and the total actual positive 

observations: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         Equation 41 

 

The ACC is the ratio between the correct predictions and the total observations: 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
             Equation 42 

 

The results of these metrics are in Table 3. 

 

 

As shown in Table 3, the precision of ~33% is relatively low, as is the sensitivity of ~55%. The 

accuracy is higher, at ~85%, but still too low to draw significant conclusions. The methods 

described herein severely over-predicted twins, with almost twice as many FP values as TP values. 

To improve upon these statistics, several improvements to the process could be made. These 

Table 3. The precision (PPV), sensitivity 

(TPR), and accuracy (ACC) were 

calculated using Eq. 40, 41, and 42 



57 
 

include higher-quality test data, different clustering techniques, and a better neural network which 

has been trained over several tests on several samples to identify twinned clusters. 

 

IV. Results and Discussion 

The goal of this work was to identify a relationship between the occurrence of twins in a grain 

and the size of that grain (d). Figure 24 shows the results of this investigation, using the ground-

truth data categorized manually. The grain size values used are surface grain sizes and were 

calculated using the TSL OIM Analysis software. It can be seen that, with a few exceptions, the 

percentage of grains exhibiting twins is greater as the average grain size increases. Note, 

however, that the statistical significance of these results greatly reduces when the grain size 

increases past nominally 1500 μm2, as the number of grains is significantly decreased (Figure 

24(a)).  
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One notable outlier comes from grain sizes of 2428μm2 < d < 2752μm2 (the all-blue column in 

Figure 24. (b)). Note that this group and the final one (2752 μm2 < d < 3076 μm2) each only include 

one grain, therefore rendering those groups statistically insignificant. Testing multiple samples of 

multiple average grain sizes under the same conditions would increase the sample size for each 

grain size grouping and improve the accuracy of these results.  

Deformation mechanisms in magnesium (and other HCP materials) include basal (<a>) slip, non-

basal (<c> or <c+a>) slip, and twinning. These different mechanisms have drastically different 

critical resolved shear stresses (CRSS) due to the asymmetry of the HCP crystal structure. The 

primary deformation mechanism in magnesium, basal slip, has the lowest CRSS (because it occurs 

on the closest-packed plane) and nearly always occurs, while the secondary mechanisms, non-

basal slip and twinning, have higher CRSS values and only occur when conditions are adequate 

(though one or the other must occur in order to accommodate arbitrary deformation).  

As stated in Section 2.2, the reasons that twinning is likely to dominate as a secondary deformation 

system in larger grains are not yet fully understood. Wang et. al [49] asserted that the probability 

Figure 24. (a) The raw count of grains that twinned (orange) and that did not twin (blue). Most 

grains did not twin and fell into the smallest size category: 0<d<323.8. (b) The percentage of 

grains that exhibited twins (orange) increased with grain size. 
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Magnesium and its alloys are of great interest to the structural materials community due to their 

high strength-to-weight ratio as compared to other structural materials. However, their low 

ductility and the relative lack of knowledge surrounding their failure mechanisms has lead to a 

need for further study of these materials. In this study, EBSD and SEM-DIC were combined to 

analyze the relationship between the occurrence of twinning (a secondary deformation mechanism 

in magnesium) and grain size. It was found that as grain size increased, so did the likelihood that 

a grain would exhibit at least one twin (Figure 24).  

Several data analysis tools, developed by Chen and Daly [15] were incorporated to help automate 

twin identification for the tested sample. These methods clustered the strain data from DIC, 

compared the clustered strains to the predicted theoretical strains of all available twin systems, 

examined the shapes of the clusters using an AlexNet Convolutional Neural Network, and took 

into account the size evolution of each cluster.  

The largest hurdle faced during this study was the computational cost of analyzing the large 

quantity of data. With 22x22 image tiles, including a total of 184,307,676 DIC data points for each 

strain component at each strain step, several steps that decreased the accuracy of the analysis were 

necessary. K-means clustering, used to bin strains into like groups (section 3.4.4 (a)) was chosen 

for its relatively low computational cost and its ease of use. Other methods, such as adaptive 

clustering techniques, could improve the accuracy at the cost of time and required computer 

power.  Finally, due to the nature of work with CNN and machine learning, these methods will get 

better at identifying twins as it is trained with more images of “twinned” and “not twinned” images 

from different samples under different conditions. 
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