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Abstract

We present a task-based model of human gaze allocation in a
driving environment. When engaged in natural tasks, gaze is
predominantly directed towards task relevant objects. In par-
ticular in a multi-task scenario such as driving, human drivers
must access multiple perceptual cues that can be used for ef-
fective control. Our model uses visual task modules that re-
quire multiple independent sources of information for control,
analogous to human foveation on different task-relevant ob-
jects. Building on the framework described by Sprague and
Ballard (2003), we use a modular structure to feed informa-
tion to a set of PID controllers that drive a simulated car and
introduce a barrier model for gaze selection. The softmax bar-
rier model uses performance thresholds to represent task im-
portance across modules and allows noise to be added to any
module to represent task uncertainty. Results from the model
compare favorably with human gaze data gathered from sub-
jects driving in a virtual environment.
Keywords: Visual attention; eye movements.

Introduction
Humans routinely interact with complex, noisy, dynamic en-
vironments to accomplish tasks in the world. For example,
while driving a car, a person navigates to a desired desti-
nation (e.g., grocery store) while paying attention to differ-
ent types of objects in the environment (pedestrians, vehicles,
etc.) and obeying traffic laws (speed limit, stop signs, etc.).
Humans are able to balance competing task demands while si-
multaneously gathering information from the world through
a foveated visual system, which must be actively moved to
different targets to obtain high-resolution imagery.

During the deployment of attention, in particular overt
eye movements towards an object, humans are sensitive to
bottom-up salience (color, motion, etc.) as well as top-down
task priority and the rewards associated with a task (Knudsen,
2007; Wolfe, Butcher, Lee, & Hyle, 2003). In particular
when engaged in “natural” tasks, eye movements are largely
directed towards task relevant objects (Hayhoe & Ballard,
2005; Land & Hayhoe, 2001). Typically in natural environ-
ments, there are multiple task relevant objects spread over
space and time that require active visual strategies to prop-
erly gather information. While human vision research has
often focused on models of visual saliency, i.e., a stimulus
based controller of attention (Bruce & Tsotsos, 2009; Itti &
Koch, 2001; Zhang, Tong, Marks, Shan, & Cottrell, 2008),

such models are inappropriate to address task-based behavior
because they do not incorporate information about the state of
the agent whose vision is being modeled. An alternative ap-
proach is to consider vision as part of a control process where
information from the senses is used to guide motor behavior
(Butko & Movellan, 2010; Nunez-Varela, Ravindran, & Wy-
att, 2012; Senders, 1980; Sprague & Ballard, 2003; Sullivan,
Johnson, Ballard, & Hayhoe, 2011). Both stimulus and task-
based approaches have led to a variety of formulations con-
cerning how eye movements should be selected, e.g., using
energy models, information theoretic measures, or measures
of reward and uncertainty. In the present work, we focus on
how selection of eye movement targets may be controlled in
part by task related uncertainty and reward.

We present a model of visual processing and control that
simultaneously takes into account the reward and uncertainty
in multiple tasks associated with a dynamic, noisy driving
environment. The model successfully accounts for variations
in gaze deployment seen in humans driving in a virtual re-
ality driving environment. Additionally, we discuss future
research allowed by inversion of the soft barrier model. In-
version allows human data to be mapped into parameters in
the model space so that it can be understood and compared
quantitatively within the model framework.

Model
The model proposed in this paper follows the modular archi-
tecture of Sprague and Ballard (2003) by factoring complex
behaviors like driving into a set of simple control modules
that each focus on a well-defined task—for example, a mod-
ule to follow the road and another to avoid oncoming cars. In-
tuitively, a module is an abstract black-box controller that can
be used alone to guide an agent through a single task. More
interestingly, modules can be used together dynamically to
engage in multiple ongoing behaviors. While the human vi-
sual system is highly parallel, processing and attentional fo-
cus are largely biased towards the fovea, meaning humans
typically get information in a serial fashion by foveating dif-
ferent objects over time. In our model, multiple task modules
run concurrently; however, to incorporate the foveation con-
straint, only one module at a time actively gains new percep-
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tual information.
At a high level, modules are responsible for gathering and

updating information about specific aspects of the state of the
world, and for using that information to generate control sig-
nals for the agent. A central component of the model is that
it requires a usable control policy even in the absence of up-
dating its state information. Human short term memory de-
cays with time, so to simulate this we allow the state infor-
mation upon which the actions are computed to be corrupted
by noise. We incorporate these into our model using simple
scalar values for each module. Formally, we define a module
as a tuple M = (S ,A ,π,s∗,ρ,ε), where:

• S = {s1, . . . ,sn} is a set of the n state variables that are
relevant to the module,

• A = {a1, . . . ,ak} is a set of the k action variables that are
relevant to the module,

• π : Rn → Rk is a control policy that maps state values onto
actions,

• s∗ ∈ Rn is a vector of target state values,

• ρ is a scalar uncertainty threshold value for the module,
and

• ε is a scalar noise value for the module.

The first three elements of M are common to typical
Markov decision process (MDP) scenarios. The state space,
spanned by elements of S , represents all possible combina-
tions of world state that are relevant for the task. The action
space, spanned by elements of A , describes all possible ac-
tions that the agent can take. The control policy maps states
to actions; an optimal policy maps states to the best action
for each state. The fourth element of the tuple, s∗, is a vector
of target values for each state variable. These target values
are used in place of the more traditional formulation of scalar
reward; this is discussed in further detail below. Finally, each
module incorporates explicit values for both task priority 1/ρ
and task uncertainty ε, which are also explained below.

A learning agent is equipped with N individual modules
M(1), . . . , M(N) that each specialize in one task and can be
used in conjunction to control behavior in the world. To sim-
plify the control problem, in our model all modules share a
common set of action variables. In the driving environment
described in this paper, there are two action variables: one
represents changes in the vehicle’s speed and another repre-
sents changes in the vehicle’s heading.

State estimates
Each module depends on a set of world-state variables that are
relevant to the module’s specific task. When driving, relevant
state variables for a car-following task, for example, could
include the agent-centric distance and angle to the leader car,
the speed and heading relative to the leader car, etc. Relevant
state variables for a target-speed task might be as simple as
monitoring the absolute speed of the agent.
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Figure 1: Evolution of state variable and uncertainty infor-
mation for two single-variable modules. On the left, the solid
blue lines represent the observed values of the state variable
A over time, while the shaded blue regions represent the re-
gion in which the true value of the state variable is likely
to occur. On the right, the observed values and uncertainty
regions are shown in green for a different state variable, B.
Vertical dashes in each plot indicate times where the state es-
timates are updated with a new observation of the true value;
these updates also reduce the magnitudes of the uncertainties
in each estimate towards zero. The ε parameter in this sce-
nario is greater for the module tracking variable A than for
the module tracking variable B.

In MDP scenarios, agents are assumed to have constant ac-
cess to accurate state variable information. Humans, on the
other hand, have a foveated visual system that often requires
active serial collection of updated state information. We as-
sume that this serial process requires that when one visual
task is accessing new information all other tasks must rely on
noisy memory estimates.

To incorporate this state uncertainty into the model, each
module M(i) maintains an explicit estimate of the current
value of each of its state variables, ŝ(i)(t). (We will hence-
forth omit the module superscript except to resolve ambigu-
ities.) This estimate could be designed to incorporate many
sorts of prior information about the evolution of the world,
but the model in its current state simply treats state estimates
as samples drawn IID from a spherical normal distribution

ŝ(t)∼ N
(
µ(t),σ2(t)I

)
where µ(t) = [µ1(t) . . . µn(t)]

T is a vector of the most recently
observed state values, and σ(t) is the standard deviation for
the state variable estimates in the module. Figure 1 shows
the state updates over time for a simple, hypothetical system
containing two modules, each tracking one state variable.
Uncertainty propagation Uncertainty propagates over
time within each module by maintaining a small set of J “un-
certainty particles” E = {β1(t), . . . ,βJ(t)}. Each particle rep-
resents one potential path of deviation that the true state value
might have taken from the last-observed state value. At every
time step in the simulation, all uncertainty particles are dis-
placed randomly by a step drawn from N (0,ε), thus defining
a random walk for each particle. The root-mean-square value
of the uncertainty particles is then used to define the standard
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deviation

σ(t) =

√√√√1
J

J

∑
j=1

β2
j(t)

of state estimates for this module. Periodically, a module will
be updated with accurate state information from the world
(described below); when this happens, the magnitude of each
uncertainty particle for the module is reduced according to
β j(t+1) = (1−α)β j(t). After an informal parameter search,
we set α= 0.7 for all modules; with α= 1, the model tends to
produce many short updates because uncertainty is instantly
reduced to 0, but with α < 1 the uncertainty increase due to
noise competes with the uncertainty reduction from the up-
dated state information. Figure 2 shows the uncertainties over
time for the hypothetical two-module system shown in Figure
1.

The state estimation approach described here can be seen
as a sort of particle filter (e.g., Arulampalam et al., 2002),
using an uninformed proposal distribution and equal weights
for all particles. Interestingly, the behavior of the simulation
was largely unaffected by the choice of J; for our simulation,
we used J = 10.

Control policy
Each module relies on a policy to determine which action to
take when the world is in a particular state. There are multiple
ways an MDP may be solved for a control policy, e.g. in rein-
forcement learning a Q–table can be learned, which explicitly
represents the expected future reward for each possible state
and action combination; the policy is then given by a simple
maximum over available actions for each state.

For a task like driving, however, continuous variables are
the most natural representation of state (distance to another
car, current speed, etc.) and action (change in speed, change
in steering) variables. Although MDP algorithms can con-
verge on policies for tasks in continuous spaces, for many
real-world tasks the resulting policies can be more easily
modeled using a simple parametric function. In addition,
many algorithms for solving MDPs require significant train-
ing time to arrive at these regularly-shaped policies. The
model described here instead uses a continuous proportional-
integral-derivative (PID) control strategy.

PID controllers A PID controller C(e) is a feedback con-
trol functional that maps state errors e(t) onto control signals
u(t). Formally,

C(e) = KP e(t)+KI

∫ t

0
e(v)dv+KD ė(t)

where KP, KI , and KD are parameters that affect the conver-
gence speed and stability of the PID controller output when
encountering a step change in error. In our model, these
parameters are tuned manually for each module in isolation
(O’Dwyer, 2006) to produce qualitatively appropriate driving
behavior.

Each module in the model uses one PID controller for each
state variable. Given estimates ŝ(t) of the current values of
each variable and a vector of target state values s∗, the control
policy becomes

π(ŝ(t)) =U [C1(ŝ1(t)− s∗1) . . .Cn(ŝn(t)− s∗n) ]
T

where U is a k×n mixing matrix that combines control policy
recommendations from each PID controller into a final con-
trol output for each action variable. Note that, in this model,
the control policy π does not have access to the true state val-
ues s(t), but rather to the module’s estimates of those state
values ŝ(t).

The composition of U is determined by the needs of the
modeling task. For the driving task, for example, each mod-
ule generally has one state variable corresponding to a de-
sired distance, and another corresponding to a desired head-
ing. For this case, U is set to the 2×2 identity matrix, since
the PID controller that is monitoring a distance variable pro-
vides a natural control signal for vehicle speed, and the PID
controller that monitors an angle variable provides a control
signal for the vehicle heading. The exception to this is the
module focusing on maintaining a target speed; this module
only monitors current speed in the world, so it always pro-
vides a zero-output control value for the change-of-heading
action variable.

Priority
Modules can be prioritized by increasing their importance rel-
ative to one another, to allow modular agents to perform one
task (for example, following a leader car) in preference to an-
other (like achieving a target speed). In a traditional MDP
scenario, this is modeled by controlling the ratio of reward
values between two subsets of world states. In the present
model, module priority is manipulated through the ρ parame-
ter: as ρ increases, the module’s relative priority decreases.

This relative priority value is incorporated into the model
as a soft bound on the diffusion of uncertainty for each mod-
ule. The specifics of this integration of uncertainty and prior-
ity are described in more detail next, as part of the perceptual
arbitration process.

Simulation
In simulation, an agent is placed in a two–dimensional virtual
driving world. The world contains a single road with multiple
lanes. Several non-agent cars are placed on the lanes at ran-
dom locations, and one of the non-agent cars is designated as
the leader car.

The basic simulation loop updates the state of the world at
a fixed frequency fs (set to 60Hz to match experimental con-
ditions from (Sullivan, Johnson, Rothkopf, Ballard, & Hay-
hoe, 2012)) according to an elementary physics simulation.
At each time step, each car in the world moves ahead propor-
tionally to its speed, in a direction given by its heading. For
the non-agent cars, the simulator constrains these speed and
heading values so that the cars always follow the lanes in the
world.
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Figure 2: Example random walks for uncertainty particles in
the two modules shown in Figure 1. The individual particles
are shown as small dots in each plot; their RMS uncertainty
value σ(t) is shown with a solid blue (left) and green (right)
line. Vertical dotted lines indicate time steps when each mod-
ule received an update; these updates reduce the magnitudes
of the uncertainty particles towards 0. The uncertainty thresh-
old ρ for each module is indicated by the shaded gray region
in the center of the plot; in this example, the module tracking
state variable B (right) has higher priority (lower uncertainty
threshold ρ) than the module tracking variable A. However,
because the module on the left has a higher noise parameter
ε, it receives more updates than the module on the right in the
same duration of time.

After moving all vehicles in the world, the simulation ad-
ditionally requests a control update from the learning agent,
which changes the heading and speed of the agent before the
next frame begins. Every time the simulator requests a con-
trol update for the learning agent, the modules are also up-
dated by displacing their uncertainty particles according to
each module’s noise parameter ε.

Perceptual Arbitration
If the simulation only performed the steps above, the agent’s
performance would become increasingly erratic over time,
because the uncertainty particles would drift further away
from zero. The resulting erroneous state value estimates
would produce poor PID controller outputs, and the result-
ing actions chosen by the agent would further compound the
uncertainty in the state estimates. In a human driver, this be-
havior would be analogous to taking one look at the world
when getting into the car, and then driving with a blindfold
thereafter.

Clearly this is not what humans tend to do when driving.
Instead, people continually and regularly reposition their gaze
toward objects in the environment as the driving task pro-
gresses. The final step in our model is to incorpate a sched-
uler to arbitrate between task modules, such that updated sen-
sory information is delivered to the PID controllers dependent
on task uncertainty and priority. Like Sprague and Ballard
(2003), we hypothesize that this repositioning serves to re-
duce uncertainty about the state of relevant variables in the
world—distance to a leader car, current speed, etc. To cap-
ture this behavior, the simulator periodically selects a module
for receiving updated state information through a perceptual
arbitration mechanism. This selection process happens at a
constant frequency fp (set to 3Hz for the results reported here

to approximate the frequency of human gaze behavior).
The perceptual arbitration process incorporates priority

and uncertainty in the following way. We first define, for
each module M(i), a weighted uncertainty at time t that in-
corporates both the RMS uncertainty and the scalar priority
of the module:

ζ(i)(t) = σ(i)(t)−ρ(i).

We also define a global variable ϕ(t) to represent the index of
the module that gets updated at time t. Then the soft barrier
model defines the probability that module M(i) is selected for
update at time t as a Boltzmann distribution over each of the
priority-weighted module uncertainties:

p(ϕ(t) = i|ζ(1)(t), . . . ,ζ(N)(t)) =
exp

(
ζ(i)(t)

)
∑N

j=1 exp
(
ζ( j)(t)

)
Intuitively, if the uncertainty in M(i) is currently above the
threshold for that module—that is, if σ(i)(t) > ρ(i)—then
M(i) is much more likely to be selected for update than an-
other module, especially if none of the other modules have
uncertainties exceeding their thresholds. However, the soft-
max selection process allows for nondeterminism: even if
ζ(i)(t) > ζ( j)(t) for j ̸= i, there is some nonzero probability
that i will not be selected for update at time t. Finally, be-
cause module updates are always selected at frequency fp by
sampling from the above distribution at the appropriate time,
a module might be selected for update even if none of the
agent’s task modules have exceeded their uncertainty bound-
ary (i.e., if ζ(i) < 0 for all i).

Although inspired by diffusion models of decision mak-
ing, this model contrasts somewhat with traditional models.
Many diffusion models with “hard” bounds were developed
for forced-choice, two-alternative tasks (e.g., Carpenter &
Williams, 1995); our model, in comparison, is designed to in-
corporate a wider variety of tasks. The “soft” barrier, driven
at a fixed frequency, can incorporate more than two choices
into the model simultaneously, while accounting for biologi-
cally realistic delays in planning and executing saccades.

As described above, and illustrated in Figures 1 and 2,
when a module is selected for update, it is provided with the
true state of each world state variable in S (i), and each of
its uncertainty particles β j is reduced towards zero for every
simulation frame until another module is selected for update.

Simulation results
We implemented the model described above1 and ran several
simulations to assess its qualitative behavior. Our simulated
driving environment was identical in layout to the virtual en-
vironment used by Sullivan et al. (2012), so that we could
directly compare our results to human performance. Our im-
plementation consisted of three modules: a “speed” module

1http://github.com/lmjohns3/driving-simulator
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M(s) that attempted to drive at a particular target speed; a “fol-
low” module M( f ) that attempted to follow a lead car, and a
“lane” module M(l) that attempted to steer so as to follow the
nearest lane on the road. All cars in the simulation drove in a
simulated 2–dimensional world, described above. Each time
gaze was allocated to a new module, we recorded the mod-
ule that received the gaze, as well as several behavioral mea-
surements (e.g., distance to leader car, current speed, etc.) to
verify that the agent was driving appropriately.

Categorizing looks

The gaze selection process in our model is Markovian,
meaning that each selected module is independent of the
previously-selected modules; more formally, p(ϕ(t)|ϕ(t −
n), ·) = p(ϕ(t)|·) for all n > 0. Thus, it is possible that multi-
ple consecutive module updates are directed at the same mod-
ule, or ϕ(t) = ϕ(t − n). Similar refixation behavior exists in
human gaze during complex tasks; presumably observers use
the visual information across multiple fixations for a continu-
ous control signal for a single task. To make analysis simpler
and more consistent between simulation and human results,
we grouped multiple consecutive updates for a given module
into a single “look.” For instance, in the example shown in
Figures 1 and 2, updates are provided first to module A, then
B, then A twice, then B twice. In this example, each module
receives two “looks,” with the second look for each module
being twice as long as the first.

Comparison with human results
Sullivan et al. (2012) instructed subjects driving in a virtual
environment to follow a leader car and maintain a certain
speed, but the priority of which of the two tasks was most
important was varied so that one was high and the other was
low. Additionally, subjects drove in some conditions where
noise was added to the speed of the car, with the intent of
disrupting the maintenance of a constant speed. These ma-
nipulations resulted in four conditions where either following
a leader or maintaining a constant speed was most important,
and velocity noise was either present or absent. They found
that task priority increased fixation behavior on task-related
objects. Additionally, an interaction between priority and un-
certainty was found, whereby uncertainty alone did not guar-
antee increased fixation behavior. Instead, only if a task re-
lated object had sufficiently high priority did the addition of
uncertainty further increase fixation behavior. Look duration
histograms for this experiment are replicated in the top row
of Figure 3.

We ran a set of simulations with our model attempting
to replicate this behavior using parameters set to mimic the
orginal human driver conditions. We used a simple grid
search to locate these parameters. Because all of the param-
eters taken together can present a scaling ambiguity (e.g., if
all ε(i) and ρ(i) are multiplied by 2, then the same qualita-
tive behavior will result) we fixed ρ( f ) = 1 and explored only
settings for the other parameters.

Once we identified the parameter settings corresponding to
the experimental conditions, we evaluated our model by run-
ning it in each of these conditions 10 times, with each sim-
ulation run for approximately 4000 steps. The sequence of
module updates for each simulation run was stored and la-
beled as looks as described above, then normalized to form a
probability distribution. These results were compared the dis-
tributions of look durations from the human data. The model
was able to capture several important aspects of the human
data, including a sensitivity to both noise and priority, but
also a gating effect whereby noise in low-priority tasks had a
smaller effect than noise in high-priority tasks. Our results,
shown under the human data in Figure 3, are qualitatively
similar to the human performance in a virtual driving envi-
ronment.

In addition to our scheduling model, a baseline fixation
scheduler was run in the simulation. This scheduler incor-
porated only the priority of each task in selecting modules
for update, but uncertainty was not incorporated. The results
from this baseline scheduler are shown in the bottom row of
Figure 3. The probability distributions from our scheduler
and the baseline compared against the human data via the
Kullback-Leibler (KL) divergence. Over all the conditions,
our model had an average KL divergence of 2.20, versus 4.43
for the baseline scheduler (lower numbers are better).

Discussion
This paper described a modular, “soft” barrier approach for
modeling eye movements in human drivers. The model in-
cludes explicit measurements of an agent’s estimates of ex-
ternal world state, and uses a random walk to model the un-
certainty in these estimates over time. Uncertainty, modu-
lated by the priority of a task, is then used to arbitrate gaze
allocations among competing modules. Our priority-plus-
uncertainty model provides a better fit of a set of human
driving data than a priority-only baseline fixation scheduling
model. We are currently working on comparing this model
to predictions from a standard salience model (Itti & Koch,
2001), a central bias model (Tatler & Vincent, 2009) and the
original scheduling model that inspired our work (Sprague &
Ballard, 2003). In addition, the softmax approach to selecting
modules for update permits a clean inversion of the model;
that is, given human eye fixation behavior, the model can be
inverted to provide the most likely set of parameter settings
to explain those data. We plan to develop this inversion more
fully so as to replace the grid search described in this paper.
Once the inversion process is in place, we can use this model
to recover the task priorities and uncertainty levels that human
drivers appear to be experiencing in these conditions.
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Figure 3: Distribution of look durations for human subjects (a-d; from Sullivan et al., 2012), model predictions (e-h), and
baseline predictions (i-l). In all plots, look duration (in seconds) is shown along the abscissa, with the proportion of looks
indicated on the ordinate. Looks to the speedometer are plotted with green squares; looks to the leader car are plotted with
blue circles. (a, b) In conditions where driving at a target speed was emphasized, human looks at the speedometer were
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human looks at the speedometer were brief. Noise added to the car’s speed (b, d) affected human looks in the speed task more
than looks in the following task. Similar results hold for our model (e-h), but not for a baseline model that incorporates task
priority but ignores the effects of uncertainty (i-l).
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