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Abstract—
Measurements of absolute runtime are useful as a summary

of performance when studying visualization and analysis meth-
ods on computational platforms of increasing concurrency and
complexity. We can obtain even more insights by measuring and
examining more detailed measures from hardware performance
counters, such as the number of instructions executed by an
algorithm implemented in a particular way, the amount of data
moved to/from memory, memory hierarchy utilization levels
via cache hit/miss ratios, and so forth. This work focuses on
performance analysis on modern multi-core platforms of three
different visualization and analysis kernels that are implemented
in different ways: one is “traditional”, using combinations of C++
and VTK, and the other uses a data-parallel approach using
VTK-m. Our performance study consists of measurement and
reporting of several different hardware performance counters
on two different multi-core CPU platforms. The results reveal
interesting performance differences between these two different
approaches for implementing these kernels, results that would
not be apparent using runtime as the only metric.

I. INTRODUCTION

Runtime, the measurement of elapsed time for a given
method, is a commonly used metric in performance stud-
ies. While useful as a summary of performance, runtime
by itself may not be enough information to reveal why a
method performs the way it does. At the other end of the
spectrum, theoretical complexity analysis provides a useful
understanding of the relationship between problem size N
and runtime, e.g., O(N2) vs. O(NlogN). In between these
two, theoretical analysis and measurement of absolute runtime,
is an area where we can gain more insight about the actual
performance of a method. Performance analysis in this regime
often consists of collecting additional performance measures,
such as hardware performance counters, which reveal much
more information about algorithmic performance than either
runtime or complexity analysis alone.

Because computational platforms are rapidly evolving and
increasing in complexity, a significant amount of research is
underway to find pathways towards performance portability
so that investments made in implementations perform well on
a variety of different types of hardware now, and hopefully

into the future. This paper studies the measured performance
differences that can result when using alternative implementa-
tions of key visualization and analysis kernels. Most previous
works in visualization performance analysis have focused on
measuring and reporting only runtime. While runtime alone is
a useful metric, deeper insights as to the nature of performance
differences can result when considering additional metrics,
such as hardware performance counters.

Our study focuses on three computational kernels common
in visualization and analysis: isocontouring, particle advection,
and stencil-based convolution. The stencil-based convolution
is implemented using C++/OpenMP with VTK-m as the data-
parallel alternative; the isocontouring and particle advection
are written in C++ and invoke VTK methods as the traditional
approach, and invoke VTK-m methods as the data-parallel
alternative. This study is motivated by the desire to compare
off-the-shelf implementations of staple algorithms, with an eye
towards deepening understanding of performance differences.

This study is timely because there is significant interest in
having methods perform well on evolving platforms where
there is increasing node-level concurrency, which is the con-
sequence of the end of Dennard scaling [1]. Some of the
approaches for platform-portable parallelism include OpenMP-
based loop parallelism [2], as well as VTK-m [3], where
algorithms are constructed using sequences of data-parallel
primitives. The visualization community has a keen interest
in VTK-m, and most of the performance studies this far have
used only runtime (and derivatives) as the performance metric.
What our study adds is deeper insight and understanding of
why these algorithms perform the way they do.

The contributions of this work include:
• A first-of-its kind analysis using hardware performance

counters comparing traditional (VTK and C++) and
emerging (VTK-m, data parallel primitives) implementa-
tions of staple methods: nearly all previous works focus
exclusively on using runtime as the performance measure.

• Deeper insights into the types of performance impacts
that can result from reformulating algorithm design using
data-parallel primitives.



• The performance study methodology is straightforward
and readily applicable to a much broader set of ap-
plications, and is particularly relevant given research
interest in evolving methods to increasingly complex and
heterogeneous hardware.

• Two new and different VTK-m implementations of a
stencil-based computation, with a comparative perfor-
mance analysis of both approaches that provides some
insight into performance characteristics of different types
of VTK-m worklets.

II. BACKGROUND AND PREVIOUS WORK

A. The Evolving Computational Landscape of Visualization
and Analysis

In response to the end of Dennard scaling, system and pro-
cessor architectures have evolved to use deepening memory hi-
erarchies combined with increasing node-level parallelism [1].
Over the past decade or so, numerous programming models
and environments — such as OpenMP [4], OpenCL [5], and
Kokkos [6], to name a few — have emerged where the
objective is to provide for platform portability as well as
efficient shared-memory parallelism.

For distributed-memory parallelism, codes like VisIt [7] and
ParaView [8] use the Message Passing Interface (MPI) [9]
as the programming model to achieve platform portability.
These tools each leverage VTK’s core algorithms [10], and
manage their execution in slightly different ways that are
implementation specific.

In the visualization community, the VTK-m library [3]
follows a similar technology trajectory, where user code
can be executed with one of several different device- or
platform-level backends, such as TBB [11], OpenMP [4],
or CUDA [12]. VTK-m is positioned to be a follow-on to
the VTK library [10], which has served as a stalwart in the
visualization community for more than two decades but is
limited to predominantly serial use due to a combination of
factors, including close entanglement of data structures and
execution models and use of static variables that maintain state
and are hence not thread-safe.

Given the community interest in VTK-m, our work here
seeks to provide more insight into the performance differences
that result when implementing algorithms using traditional,
either straight C++ or C++/VTK, with emerging approaches
like VTK-m that offer platform portability using data parallel
primitives (DPPs) as the algorithmic building block.

B. Comparing Traditional and VTK-m Implementations

Several recent works have focused on developing VTK-m
implementations of key algorithms and comparing them to
custom, traditional implementations. Larsen, et al. 2015 [13]
study the performance of a raytracing renderer implemented
using data-parallel primitives with two reference implemen-
tations. Their reported metric is frame/second, which is a
derivative of runtime. Pugmire, et al. 2018 [14] present a VTK-
m implementation of particle advection. They compare the
performance of their implementation, which uses a parallelize

over seeds approach, against two others: a hand-coded imple-
mentation, and the VisIt [7] application. All their studies rely
on measurements of runtime.

In the area of graph algorithms, Lessley, et al., 2017 [15]
describe a VTK-m implementation of a method for maximal
clique enumeration and compare its performance with refer-
ence implementations on CPU and GPU platforms. Lessley, et
al., 2018 [16] present a VTK-m implementation of a method
for probabilistic graphical modeling optimization, a form of
unsupervised learning, and compare its performance to a
reference implementation on a CPU. In both these works, the
basis for comparison is elapsed runtime.

Recent work by Perciano, et al., 2020 [17] delves more
deeply into use of LIKWID and performance counters to
gain deeper insight into performance differences between
three different shared-memory parallel implementations of an
unsupervised learning method using graphical model optimiza-
tion: C++/pthreads, C++/OpenMP, and VTK-m. That study’s
finding is that the VTK-m algorithmic reformulation executes
far fewer instructions than the traditional counterpart, owing
to the significant algorithmic refactorization that occurs going
from traditional coding style to one that uses data parallel
primitives. Our work is similar in that we are diving deep
into the collection and analysis of performance counters, and
using them to shed insight into the performance differences
between traditional and VTK-m implementations. However,
we are focusing on comparing staple visualization kernels
rather than graphical model optimization.

One primary difference between these previous works, ex-
cept for Perciano, et al., 2020 [17], and our work here is the
deeper introspection provided by using detailed hardware per-
formance counters. These additional metrics offer the ability to
better understand why a given code performs better or worse
in a particular set of circumstances, and also helps to provide
a more sound basis for performance analysis.

III. DESIGN AND IMPLEMENTATION

The focus of this section is on presenting concepts related
to design and implementation using “traditional” and data-
parallel approaches. In the case of isocontouring (§III-A) and
particle advection (§III-B), we briefly describe the imple-
mentations used in our study. The core VTK and VTK-m
implementations existed already as part of previous work done
by others. In the case of stencil-based convolution (§III-C), we
describe our traditional and VTK-m implementation in some
detail, as this is new work that did not exist prior to this study.

A comment about parallelism: while VTK-m is parallel
capable by its very design, VTK is not. Two of the three meth-
ods we present (isocontouring, particle advection) use VTK
implementations for the “traditional” approach: we created
applications that load data and invoke the appropriate VTK (or
VTK-m) method. The VTK implementation of these methods
themselves are not parallel, nor are they readily parallel
capable: due to the existence of thread-unsafe constructs, such
as static variables inside VTK that hold state, they cannot be
invoked in parallel by multiple concurrent execution threads.



A. Isocontouring

Isocontouring in 2D and 3D is a staple visualization method
because it is useful for showing geometric structure associated
with specific data values. The seminal method for computing
isosurfaces is from Lorenson and Cline, 1987 [18].

This algorithm operates on scalar fields by considering
the cell formed by eight neighboring points that form a
hexahedron. For each such cell, the algorithm performs a
classification step on each vertex of the cell, where the
classification is the union of booleans indicating if the scalar
value at each node is above or below the contouring value.
Then, the algorithm uses this classification as an index into a
lookup table containing a specification of a triangulation of the
surface passing through a cell with that given configuration:
some configurations have one triangle, others may have two
or more triangles. Then, the algorithm computes isosurface
triangle vertex values using an interpolant, typically trilinear
interpolation. The triangles from all such computations at each
cell comprise the resulting isosurface.

It is well beyond the scope of this paper to enumerate
the improvements and enhancements over more than 30 years
since this algorithm first appeared in 1987. In brief, some of
the key improvements consist of resolving some of the topo-
logical ambiguities that arose in the original formulation [19],
and use of spatial data structures to accelerate finding cells
that contain the isosurface (c.f., Newman and Yi, 2006 [20]).

For the purpose of our study, we are interested in
using and benchmarking two reference implementations:
the vtkContourFilter method from VTK, and the
vtkm::filter::Contour method in VTK-m, which is
a reimplementation of the vtkContourFilter [21]. Both
the VTK and VTK-m methods perform the same fundamental
algorithmic processing steps — cell classification and triangle
generation — but use different mechanisms for doing so.

The VTK-m implementation uses a combi-
nations of worklets, which are instantiations
of data parallel primitives. For example, it uses
a WorkletVisitPointsWithCells for the
ClassifyCell operation. This type of worklet will
“apply a function (the operator in the worklet) on all elements
of a particular type (such as points or cells) and creates a
new field for those elements” [22], with the added feature
that nearby, incident cells are also accessible. It also uses
other types of worklets, such as ScatterPermutation
and ScatterCounting, which are used to create multiple
outputs (each of which satisfies some condition) from an input,
as well as others. Both VTK and VTK-m implementations
are sophisticated works of complex design and engineering.

For this study, we created two applications, each of
which loads data and writes output. One version invokes
VTK’s vtkContourFilter, and the other invokes VTK-
m’s vtkm::filter::Contour method. One primary dif-
ference between the VTK and VTK-m implementations con-
cerns parallelism. The VTK-m implementation, through its
execution environment, is capable of running worklets in

shared-memory parallel fashion using a number of different
device backends (e.g., OpenMP, TBB, CUDA, etc.). The VTK-
m device execution environment will decompose a worklet’s
workload into chunks that execute in parallel. This type of
decomposition and parallel operation does not exist in much of
VTK, including the vtkContourFilter, which is limited
to serial use only.

B. Particle Advection

Particle advection is a technique for calculating the tra-
jectory a particle follows through a flow field. An integral
curve — commonly referred to as a pathline — encodes the
trajectory of a single massless particle, which in turn gives
insight into the flow behavior in the area surrounding the
particle’s path.

Advection constructs integral curves, which are continuous
functions tangential to the vector field. The curves are solu-
tions to an ordinary differential equation, and, for an integral
curve I and vector field V , can be represented as:

d

dt
I(t) = v(I(t), t) (1)

where I(t0) = x0, and for a seed point at location x0 at time
t0 [23].

As with the isocontouring study, our focus is to compare
performance of two existing reference implementations, one
from VTK and the other from VTK-m. From VTK, we are
using the vtkStreamTracer method, and from VTK-m,
we are using the vtkm::filter::Streamline method.
Both methods take as input a vector field and then perform
integral curve calculation to compute streamlines from a set of
input seed points with a user-specified integrator (e.g., Runge-
Kutta4). Our application that uses the VTK implementation
of the vtkStreamTracer method is serial in nature and
cannot be trivially parallelized due to explicit limitations in
the VTK implementation.

From VTK-m, the vtkm::filter::Streamline im-
plementation uses a parallelize-over-seeds approach, which is
described in Pugmire, et al., 2018 [14]. Their implementation
uses a Field Map worklet, where the worklet is invoked
at each input datum, which in this case, consists of a list of
seed points. VTK-m’s internal execution model will parallelize
this operation by invoking the worklet in parallel, where each
invocation will process some number of input seed locations.

C. Stencil-based Convolution

In a stencil based computation, each point of a multidimen-
sional grid is updated with contributions from its neighbors.
This form of computation lies at the heart of many different
types of scientific computations, such as solving partial dif-
ferential equations on a regular, structured grid (c.f., [24]).
We include this computationl pattern because it is common in
many types of computing applications, such as numerical sim-
ulation, image analysis/computer vision, convolutional neural
networks, and more.

In our study, we focus on a particular type of stencil-
based computation, namely image convolution. This form



1 float smoothPixel(Si, Sj, S, R, weights)
2 {
3 // compute the weight sum of pixels nearby
4 // this code doesn’t handle edge conditions
5 // and assumes sum of weights[i,j] = 1.0
6 float sum = 0.0;
7 for (int j=0; j<R; j++)
8 for (int i=0; i<R; i++)
9 sum += weights[i,j]*S[Si+i,Sj+j]

10 return sum;
11 }

Listing 1. Stencil computation in 2D: performs sum of product of nearby
pixels with weights.

of computation is a structured memory access code, where
memory is accessed in a regular and predictable fashion.
In particular, our computation performs Guassian smoothing,
which is a spatial image processing filter. In this computation,
each destination pixel d(i) is a sum of nearby pixels averaged
using a weighting scheme that gives more weight to pixels
closer to i, and less pixels further away (Eq. 2).

d(i) =
∑

g(i, ī) (2)

where the Gaussian weights are given by

g(i, ī) = e
− 1

2

(
δ(i,̄i)
σd

)2

(3)

In Eq. 3, δ(i, ī) is the distance between pixels i and ī. σ is
a parameter that defines whether the weights are more tightly
focused around the source pixel (somewhat less smoothing),
or if the weights are more diffuse, and give more weight to
pixels further away (somewhat more smoothing).

In practice, this type of computation is bounded such that
a stencil of size RN , in N dimensions, contains filter weights
computed such that the integral of Eq. 3 over the set of RN

weights sums to 1. Then, computing the smoothed pixel value
consists of performing a sum of products of the source pixel
weights with the filter weights. An example for 2D image
convolution appears in Listing 1, and this computation trivially
generalizes to N dimensions.

An application that uses the smoothPixel method will
iterate over the pixels/voxels in a source image/volume, and
invoke this method at each pixel/voxel. This type of application
is straightforward to parallelize in that the sense that the
computation at each d(i) is independent of the computation
at all other locations; these computations may be performed
independently and in parallel.

Listing 2 shows one such parallelization using OpenMP. In
that listing, each of the OpenMP threads is assigned a row
(scanline) of pixels to work on. OpenMP does assignments
using one of several different strategies, such as round-robin,
etc. depending on the setting of a runtime environment variable
(c.f. [4]). This type of parallelization is relatively coarse-
grained in the sense that each thread is assigned a significant
amount of work.

One potential VTK-m implementation of this stencil op-
eration is to use the same computational kernel shown in
Listing 1, but then let VTK-m manage how this computation

1 #pragma omp parallel for
2 for (j=0;j<imageHeight;j++)
3 for (i=0;i<imageWidth;i++)
4 destImage[i,j] = smoothPixel(i, j, S, R,

weights)

Listing 2. OpenMP parallel computation: each thread gets a scanline to
process.

is invoked. The basic concepts are as follows. First, we
define a Field Map worklet that has input and output parame-
ters that are “arrays”; these are essentially std::vector
objects. Then, after populating the input array with the
source image, we invoke the dispatcher that invokes the
ImageConvolutionWorklet, as shown in Listing 3.
Then, VTK-m will invoke that worklet once per array item
using one of several different potential device backends,
depending upon user build configuration options and runtime
choices (see the VTK-m User’s Manual for more details [22]).
In the case of our application, this worklet is invoked once
per input pixel. The result is a much finer-grained approach
to parallelism than the scanline-based parallelism shown in
Listing 2. We refer to this design as the VTK-m-FM method,
where FM refers to the use of the Field Map Worklet, and
which here uses an explicit indexing computation to access
specific locations in the input and output image data arrays.

1 template <typename InputArrayType, typename
OutputArrayType>

2 VTKM_EXEC void operator()(const InputArrayType &
inputImg, OutputArrayType & outputImg,

3 vtkm::Id indx) const
4 {
5 /// assume private R: stencil size
6 /// explicit indexing: compute (i,j) indices

from 1D indx
7 int jVal = indx / nCols - R/2; // which row
8 int iVal = indx % nCols - R/2; // which column
9

10 float sum = 0.0;
11 for(int j=0; j<R; j++)
12 for(int 0; i<R; i++)
13 sum += weights[i,j]*inputImg[iVal+i,jVal

+j];
14 outputImg.Set(indx, sum);
15 }
16 ...
17 /// then invoke it in main():
18 vtkm::worklet::DispatcherMapField<vtkm::worklet::

ImageConvolutionWorklet> dispatcher(myWorklet);
19 dispatcher.Invoke(inputImageArray, outputImageArray)

;

Listing 3. VTKm-FM algorithm: In VTK-m, execution environment iterates
over the field and invokes the smoothPixel worklet in parallel.

There are other potential implementations of this stencil
that we could pursue in VTK-m, implementations that could
potentially take greater advantage of VTK-m’s data parallel
primitives (DPPs). These DPPs include operations like Re-
duce, Sort, CopyIf, ScanExclusiveByKey, and so forth. Some
interesting future work would entail exploring recasting the
stencil computation in terms of using VTK-m’s DPP Device
Algorithms, as has been done with other types of computa-



tions, such as probabilistic graphical modeling optimization
[16].

We did explore a second VTK-m implementation, namely
one that uses a Point Neighborhood Worklet, which
we refer to as the VTK-m-PN algorithm. Like the VTK-m-
FM algorithm, VTK-m invokes the worklet once per input
grid location. One significant difference is that the VTK-
m-PN algorithm may access field values of nearby points
within a neighborhood of a given size, as opposed to having
access to the entire mesh. In other words, the VTK-m-FM
method needs to do its own indexing: it is handed a 1D
input index, and then needs to use this input to produce
an index into a multidimensional array. In contrast, methods
that use the Point Neighborhood Worklet will use an
inputData.Get() method to access data, rather than using
an index computation. Our VTK-m-PN algorithm is shown in
Listing 4.

1 template < typename InputFieldPortalType >
2 VTKM_EXEC typename InputFieldPortalType ::

ValueType operator ()(
3 const vtkm :: exec :: FieldNeighborhood <

InputFieldPortalType >& inputField ,
4 const vtkm :: exec :: BoundaryState & boundary )

const
5 {
6 auto minIndices = boundary.

MinNeighborIndices (this -> stencilRadius );
7 auto maxIndices = boundary.

MaxNeighborIndices (this -> stencilRadius );

9 float sum=0.0;
10 for(vtkm::IdComponent j=minIndices [1]; j<=

maxIndices[1]; ++j)
11 for (vtkm::IdComponent i=minIndices[0]; i

<=maxIndices[]0]; ++i)
12 sum += inputField.Get(i, j) * this->

filterWeights[f(i,j)];

14 return static_cast <T> (sum);
15 }
16 ...
17 /// then in main():
18 // set the image dimension sizes
19 vtkm::cont::CellSetStructured<2> myGrid2D
20 myGrid2D.SetPointDimensions(vtkm::Id2(nCols, nRows);

22 // create the dispatcher and invoke it
23 vtkm::worklet::DispatcherPointNeightborhood<vtkm::

worklet::ImageConvolutionWorklet> dispatcher(
myWorklet);

24 dispatcher.Invoke(myGrid2, inputImageArray,
outputImageArray);

Listing 4. VTK-m-PN algorithm: similar to the VTK-m-FM algorithm, but
without the global indexing computation as VTKm provides a view only to
the local mesh/image neighborhood

IV. RESULTS

A. Research Questions

One of the primary areas of study is to better understand
the key performance characteristics of a “traditional” imple-
mentation with an implementation that uses VTK-ms data-
parallel primitives (DPPs). While we do report runtime, we

collect and study hardware performance counter data to gain
deeper insight into the potential factors contributing to runtime
differences.

Given that the VTK implementations of isocontouring and
particle advection are serial, we focus our tests on comparing
serial VTK and VTK-m implementations. While these VTK-m
implementations do execute in parallel, we are not performing
any scaling comparisons here between the VTK and VTK-
m implementations of isocontouring and particle advection.
In contrast, the stencil computation runs in parallel in all
configurations, and so we include a scaling study for that
method.

Given these limitations, our primary objective is to gather
hardware performance counters and analyze the results to bet-
ter understand the reasons for runtime performance differences
between VTK and VTK-m implementations.

B. Methodology

1) Computational Platforms: Intel Xeon Phi and Intel
Haswell. Cori.nersc.gov is a Cray XC40 system com-
prised of 2,388 nodes containing two 2.3 Ghz 16-core Intel
Haswell processors and 128 GB DDR4 2133 MHz memory,
and 9,688 nodes containing a single 68-core 1.4 GHz Intel
Xeon Phi 7250 (Knights Landing) processor and 96 GB DDR4
2400 GHz memory. For our experiments, we use the KNL
processor, where each core has a 32 KiB L1 cache, and each
pair of cores share a 1 MiB L2 cache (L2 is the last level
cache on this platform). On this platform we are using Intel’s
C/C++ compiler, icc (ICC) 19.0.3.199 20190206. Compiler
flags for both VTK and VTK-m include the following opti-
mization options to enable vectorization: -O3 -march=knl
-mtune=knl -DNDEBUG -funroll-loops.

IvyBridge. Allen.lbl.gov is an Intel(R) Xeon(R) CPU
E5-2609 v2 containing 2 2.5 GHz 4-core Intel Xeon IvyBridge
EN/EP/EX processors and 32 GB of memory. Each core has
a 32 KiB L1 cache, a 256 KiB L2 cache, and all cores
share a 10 MiB L3 cache (L3 is the last level cache on
this platform). On this platform, we are using Intel’s C/C++
compiler, icc (ICC) 19.1.0.166 20191121. Compiler flags for
both VTK and VTK-m include the following optimization
options to enable vectorization: -O3 -march=ivybridge
-mtune=ivybridge -funroll-loops.

2) Software Environment: VTK and VTK-m. We are using
VTK version 8.2.0, and VTK-m version 1.5.0. For all tests,
we use VTK-m’s OpenMP backend, which generates OpenMP
shared-memory parallel code that runs on multi-core CPU
platforms. While VTK-m is capable of emitting CUDA-based
code, and while modern versions of OpenMP are also capable
of emitting CUDA-based device code, we did not include
GPU as one of the platforms in this study; this will make
for interesting future work.

3) Data Sets and Algorithmic Parameters: For the stencil-
based smoothing and isocontouring studies, we are using a
scientific dataset that was obtained by the Lawrence Berkeley
National Laboratory Advanced Light Source X-ray beamline
8.3.2 [25]. This dataset contains cross-sections of a geological



sample and conveys information regarding the x-ray atten-
uation and density of the scanned material as a gray scale
value. The original data consists of a stack of 500 images at
resolution 1290× 1305.

For the stencil-based smoothing study, we are using an
augmented version of the dataset where we use one 2D slice,
and then replicate it twice in X and Y to produce an image
of resolution 5160× 5220. The size of the convolution kernel
is 19× 19 pixels, and σ = 0.33.

For the isocontouring study, we use a 4003 subset of a
processed version of the original 1290 × 1305 × 500 vol-
ume. The processing consists of multiple stages in an image
analysis pipeline, where we use a custom, high-quality image
segmentation algorithm based on an unsupervised learning
method [16], and then run the segmented image through a
3D version of the stencil-based smoothing code presented in
this study. We performed contouring with an isocontour level
of 15, which results in the surface that appears in Fig. 1.
Note that since we are focusing on results from serial runs
only, parallel performance variations that might result from
various conditions such as data-dependent factors or domain
decomposition effects are not of concern in these studies.

For the particle advection study, we are using a vector field
data set produced by the NIMROD code, which is performing
numerical modeling of a magnetically confined plasma in a
tokamak device [26]. The magnetic field lines, through which
we are doing particle advection, travel around and around the
toroidal-shaped domain in a helical fashion. As a result, most
particles will not exit the domain, and the amount of work
for each seed point will be about the same over the lifetime
of the integration. For both VTK and VTK-m runs, we use
500 seed points placed equidistantly along a diagonal running
through the domain, and compute particle positions for 1000
steps using the Runge-Kutte4 integrator. Note that since we
are showing only serial VTK-m results, parallel performance
variations as a function of seed point placement are not of
concern in these studies.

Hardware Performance Counters. For this study, we are
leveraging the LIKWID software infrastructure v4.3.4 [27],
[28]. LIKWID is a set of lightweight, command-line tools
that are useful for obtaining measurements of hardware per-
formance counters on Linux platforms in user space. While
LIKWID is capable of collecting performance counters for an
unmodified application, we make use of LIKWID’s Marker
API to collect performance data only in the section of code
containing the computational algorithm; we do not include
other operations, like data I/O, in the performance counter
data. Table I describes the performance counters we gather
for analysis in all the experiments.

4) Testing Procedure: For each of the different kernels,
we execute both VTK and traditional on both the Ivy Bridge
and KNL platforms using different datasets (§IV-B3). We are
collecting and analyzing the performance counters shown in
Table I. Of that set, we report a subset in the individual subsec-
tions below: total number of instructions executed, number of
scalar and vector floating point instructions executed, cycles-

TABLE I
HARDWARE PERFORMANCE COUNTERS AND OTHER MEASURES WE USE IN

OUR EXPERIMENTS.

Performance counter,
measure

(Source) Description

INSTR_RETIRED_ANY (LIKWID) Shows how many instructions
were completely executed, and does not in-
clude speculative instruction loads [29].

FLOPS,
FLOPS_DP,
FLOPS_SP

(LIKWID) Count of the number of single-
and double-precision floating point opera-
tions that were executed. On the KNL plat-
form, there is no way to differentiate be-
tween single- and double-precision opera-
tions.

Cycles Per Instruction
(CPI)

(LIKWID) A derived metric computed as the
quotient of CPU CLK UNHALTED CORE
/ INSTR RETIRED ANY to give an es-
timate of the number of clock cycles per
instruction (c.f. [30]).

Vectorization ratio (LIKWID) The ratio of “packed” FLOPS
to the sum of all FLOPS. On the KNL
platform, these counters may also include
integer arithemtic instructions [28].

L3CACHE (LIKWID) Measures the locality of your
data accesses with regard to the L3 cache.
It reports the L3 request rate, L3 miss rate,
and L3 miss ratio [28]. (Ivy Bridge only)

Fig. 1. Isocontouring of a 4003 subset of smoothed, segmented Sandstone
data results in 3,038,366 tris rendered using VisIt.

per-instruction, vectorization ratio, and L3 cache miss ratio
(on the Ivy Bridge) platform.



TABLE II
ISOCONTOUR PLATFORM AND HARDWARE PERFORMANCE COUNTERS

FOR THE SANDSTONE 4003 DATASET, IVY BRIDGE AND KNL
PLATFORMS. VALUES CLOSE TO, BUT NOT EQUAL TO ZERO ARE SHOWN
AS ≈ 0.00. SINCE THERE IS NO L3 CACHE ON THE KNL, THERE ARE NO

L3 MISS DATA TO REPORT FOR THAT PLATFORM.

Counter/Measure Code version Platform

Runtime (secs)

Ivy Bridge KNL
VTK 3.97 5.92
VTK-m 5.48 16.74

INSTR RETIRED ANY 109
VTK 21.96 11.10
VTK-m 22.01 21.10

FLOPS scalar 109 VTK 0.08 0.50
VTK-m 0.36 0.54

FLOPS non-scalar 109 VTK ≈ 0.00 0.51
VTK-m 0.01 0.91

Vectorization % VTK ≈ 0.00 50.50
VTK-m 3.35 62.77

CPI VTK 0.44 0.76
VTK-m 0.55 1.11

L3 Miss Ratio % VTK 23.37 N/A
VTK-m 79.03 N/A

C. Isocontouring Study

Visual results from this study are shown in Fig. 1, and the
performance counter and other data appear in Table II. One
observation we draw from the performance data is that for
this problem configuration, on the Ivy Bridge platform, the
serial VTK version runs in about 72% of the time of the
serial VTK-m version. On the KNL, this difference is more
pronounced, with the VTK version running in about 35%
of the time of the VTK-m implementation. This significant
difference in runtime is something of a surprise given that
both versions are executing the same type of Marching Cubes
algorithm, and neither makes use of any special data structures
to accelerate the search for cells that containing the isolevel:
each implementation must examine each and ever cell in the
entire domain, test its nodes for above/below the isolevel, and
then generate triangles accordingly.

To better understand why there is such a performance
discrepancy, we turn to the hardware performance counter data
shown in Table II. On the Ivy Bridge, the number of overall
number of instructions executed (INSTR RETIRED ANY) is
about the same. However, the mix of instructions is different
between the two implementations, with the VTK code execut-
ing about 22% the number of FLOPS as the VTK-m version.

For additional clues, we look to the L3 Miss Ratio. The
VTK-m L3 Miss Ratio is more than 3× that of the VTK code.
This combination, of increased L3 cache misses, which will
introduce stalls into the VTK-m code, which may or may not
be the source of higher CPI. We know that the VTK-m code
consists of sequences of data parallel primitives, where the
output of one stage goes on to be the input of the next stage.

We can see the effects of this additional memory handling
overhead quite clearly in terms of lower cache utilization,
which contribute to the slower runtime and higher CPI. The
runtimes shown here reflect the product of CPI and number
of instructions executed [30]. And the source of higher CPI
for the VTK-m code is most likely the execution of memory
access instructions that are more time consuming.

On the KNL, we see the VTK-m version is executing
about 2× the number of instructions, and has a CPI value
that is almost 1.5× larger than the VTK version. In terms
of FLOPS being executed, the number of scalar FLOPS is
about the same, but the VTK-m code executes almost 2× the
number of vector FLOPS. Due to limitations of the KNL,
we’re unable to discern between single-, double-precision and
integer vector operations [28]. We see the effects of the VTK-
m increased memory operations directly through the elevated
CPI and runtime.

One observation we draw is that use of VTK-m and recast-
ing the algorithm to use DPPs comes at a cost, namely less
effective cache utilization and a serial runtime that exceeds
that of the reference VTK implementation serial runtime. This
observation is not universally true: for example, Perciano et al.,
2020 [31] show that recasting a graphical model optimization
problem into VTK-m using DPPs results in an implementation
that executes far fewer instructions than its C++ counterpart.
Further studies would include adding finer-grained instrumen-
tation with the LIWKID Marker API into VTK-m internals to
isolate and study these buffer effects, including factors such
as the impact of blocking and chunking the VTK-m performs
in its back-ends for each device.

Another observation is that the Intel compiler is able to
achieve high levels of code vectorization on the KNL for
both VTK and VTK-m implementations, but does not do as
well on the Ivy Bridge platform. More investigation is needed
to determine why the compiler is having trouble on the Ivy
Bridge with these codes. Regardless, the vectorization level
does not seem to offer any significant insights into the relative
performance differences.

D. Particle Advection Study

Visual results from this study are shown in Fig. 2, and the
performance counter and other data appear in Table III. From
this data, we see that the VTK-m implementation runs faster
on both platforms; on the Ivy Bridge, it runs in about 89%
of the VTK method, and on the KNL, the difference is more
pronounced, where it runs in about 26% of the VTK method.

On the Ivy Bridge, we see the VTK-m implementation ex-
ecutes far fewer total instructions (INSTR RETIRED ANY),
only about 23% as many as the VTK method. Proportionally
speaking, the VTK code is executing a much greater percent-
age of non-floating point instructions as evidenced by com-
paring the ratio of FLOPS/INSTR RETIRED ANY between
the two. These extra non-floating point instructions are most
likely due to extensive bounds and indexing calculations: as
a particle is advected, the next step of the algorithm is to
determine in which mesh cell the particle is contained.



Fig. 2. Streamline results from the particle tracing method run using the
NIMROD dataset rendered using VisIt.

We know something about the VTK-m implementation: it
is a recasting of the particle advection into a series of data
parallel primitives, where output from one stage is input to
the next stage. And as we saw with the isocontouring study,
this type of design pattern can be result in less efficient use
of the memory hierarchy. We see evidence of this effect when
looking at the L3 Miss Ratio in Table III, as well as at the
significantly higher CPI, which reflects the impact of costly
non-cache memory accesses.

On the KNL platform, the runtime difference between the
two is even more pronounced. Again, we see the VTK imple-
mentation executes more overall (about 2.5×) and numerical
instructions (between about 3.1× and 3.3×). We believe the
increased CPI on the KNL for the VTK implementation to be
a result of less efficient cache utilization: particle advection
memory accesses are unstructured, so there is little opportunity
for speculative memory fetches. The VTK-m code reorders
memory accesses to fit its DPP execution pattern, and in this
case, appears to have better cache utilization as shown by a
lower CPI. For the VTK-m implementation, the combination
of fewer instructions and lower CPI combine to produce a
dramatically lower runtime.

E. Stencil-based Smoothing Study

The test matrix in this portion of the study consists of
three different implementations of the stencil-based smoothing
(traditional C++/OpenMP, VTK-m-FM/OpenMP, and VTK-
m-PN/OpenMP) run at varying concurrency on two differ-
ent platforms: Ivy Bridge: P ∈ (1, 2, 4, 8); KNL: P ∈
(1, 2, 4, 8, 16, 32, 64). For each test run, we use LIKWID to
obtain the hardware performance counters and report them in
Table IV.

Since we are doing a strong-scaling configuration in these
tests, we expect the runtime to drop with increasing concur-
rency. We see such behavior in Fig. 3, where absolute runtime

TABLE III
PARTICLE ADVECTION PLATFORM AND HARDWARE PERFORMANCE
COUNTERS FOR THE NIMROD, IVY BRIDGE AND KNL PLATFORMS.

VALUES CLOSE TO, BUT NOT EQUAL TO ZERO ARE SHOWN AS ≈ 0.00,
WHILE VALUES EQUAL TO ZERO ARE SHOWN AS = 0.00. SINCE THERE IS

NO L3 CACHE ON THE KNL, THERE ARE NO L3 MISS DATA TO REPORT
FOR THAT PLATFORM.

Counter/Measure Code version Platform

Runtime (secs)

Ivy Bridge KNL
VTK 7.68 7.72
VTK-m 6.81 2.03

INSTR RETIRED ANY 109
VTK 25.56 5.92
VTK-m 5.91 2.34

FLOPS scalar 109 VTK 0.27 0.85
VTK-m 0.11 0.26

FLOPS non-scalar 109 VTK 0.01 0.68
VTK-m = 0.00 0.22

Vectorization % VTK 2.73 44.52
VTK-m = 0.00 45.75

CPI VTK 0.74 1.94
VTK-m 2.78 1.28

L3 Miss Ratio % VTK 33.53 N/A
VTK-m 57.09 N/A

increases at varying concurrency, as well as speedup compared
to serial. In this case, all algorithms exhibit near-perfect scaling
characteristics. This result is expected since this algorithm
is “embarrassingly parallel”: the computation of each output
pixel is completely independent of the computation at all other
output pixels, and these computations may be performed in
parallel.

While it is the case all methods exhibit near-perfect scaling,
we see that the VTK-m-PN/OpenMP method has runtime far
greater than the other two methods. For evidence of why this
is the case, we turn to hardware performance counter data,
which we present in Table IV. The performance data in this
table is from a serial run of each method. What is not shown
in the table is data from varying concurrency runs. It turns out
that these values do not change in any significant way with
increasing concurrency on this problem with these codes.

The first, and most significant, observation is that VTK-m-
PN executes about 5 times as many instructions as the other
implementation, which would account for its 5-fold increase
in runtime compared to the other methods. This result is most
likely due to the effort on the part of VTK-m to prepare point
neighborhood collections of data from the original input data.
In contrast, the other two methods do their own indexing into
the original data array, an approach that appears to result in
far fewer instructions being executed.

The second observation is that the VTK-m-PN method
executes far fewer “packed”, or vector, floating point instruc-
tions than the other two methods. This result is most likely
due to the fact that the VTK-m-PN worklet is accessing
data through a method, e.g., getData(i, j, k), rather
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Fig. 3. (Top) Original image data of a geological sample, obtained by micro
computed tomography at the Advanced Light Source. (Middle-top) Results
of Guassian smoothing using the C++/OpenMP implementation with 5x5
stencil. (Bottom 2 images) Absolute runtime and speedup of three stencil
implementations on the KNL platform at varying concurrency with a 19x19
stencil on a high-resolution (5K × 5K) input image.

than via an index that is a function of a loop variable, e.g.,
data[i+offset].

A third observation is that the C++/OpenMP implementa-
tion appears to have a very slight performance edge compared
to the VTK-m-FM approach in terms of runtime, number of
instructions executed, and L3 cache utilization. This result
is due to the differences in the way these two methods
are parallelized. In the case of C++/OpenMP, each OpenMP
“thread” processes an entire row of pixels; OpenMP paral-
lelism happens at the outer loop level, resulting in a somewhat
coarse level of parallelism. In the case of the VTK-m-FM

method, VTK-m parallelizes the call to the worklet, which
is invoked once per output pixel. Therefore, VTK-m-FM is
operating at a finer-grained level of parallelism, compared to
the C++/OpenMP. The resulting performance data suggest that
the C++/OpenMP approach, with its coarser-grained approach
to parallelism, runs a bit faster most likely due to its better
use of temporal cache locality, as evidenced by the L3 cache
data on the IvyBridge platform.

TABLE IV
STENCIL CONVOLUTION PLATFORM AND HARDWARE PERFORMANCE
COUNTERS FOR THE SANDSTONE5K DATASET, 19× 19 STENCIL SIZE,

IVY BRIDGE AND KNL PLATFORMS.

Counter/Measure Code version Platform

Runtime (secs)

Ivy Bridge KNL
C++ 7.59 21.65
VTK-m-FM 8.33 22.09
VTK-m-PN 37.35 120.49

INSTR RETIRED ANY 109
C++ 57.60 41.51
VTK-m-FM 59.60 42.59
VTK-m-PN 249.37 215.59

FLOPS scalar 109 C++ 5.76 4.47
VTK-m-FM 5.77 4.47
VTK-m-PN 30.24 20.81

FLOPS non-scalar 109 C++ 8.68 14.93
VTK-m-FM 8.67 14.99
VTK-m-PN = 0.00 1.16

Vectorization % C++ 60.11 76.97
VTK-m-FM 60.05 77.04
VTK-m-PN = 0.00 5.27

CPI C++ 0.32 0.76
VTK-m-FM 0.34 0.77
VTK-m-PN 0.37 0.83

L3 Miss Ratio % C++ 15.85 N/A
VTK-m-FM 37.14 N/A
VTK-m-PN 47.84 N/A

F. Discussion of Results

One observation from these studies is that the hardware
performance counters are useful for understanding more about
why two different methods have different runtimes. In some
cases, they are executing different absolute numbers of instruc-
tions. In other cases, the type of instruction being executed
can take more time: instructions that load/store memory can
take significantly longer than simple arithmetic instructions.
In other cases, demographics of compiler-generated scalar or
vector arithmetic instructions can impact overall runtime.

The three cases we present all exhibit different aspects of
why a method might have better or worse runtime than another.
In some cases, the way an algorithm is implemented, such
as VTK vs. VTK-m, can have a dramatic impact on overall
number of instructions, a fact that is corroborated by other
recent studies (c.f., [17]). In other cases, the buffer manage-
ment needed to implement a complex, multi-stage processing
pipeline may trigger more memory movement instructions,



which may be more expensive and result in higher CPI values,
and we see evidence of this in two of the examples.

V. CONCLUSIONS AND FUTURE WORK

This study demonstrates the value of using a methodology
to collect and analyze hardware performance counter data to
better understand the reasons behind performance differences
in multiple implementations of three kernels common in
visualization and analysis processing: isocontouring, particle
advection, and stencil-based convolution. While runtime alone
is useful, having performance counter data enables analysis
at a deeper level. Although this approach of using hardware
counters to do performance analysis is not new, it is relatively
new to the visualization community, where previous perfor-
mance studies have focused primarily on using runtime and
runtime derivatives as the performance measure.

While the stencil-based computation work includes a mod-
est strong scaling study, our results focus primarily on compar-
ing serial implementations of methods implemented in VTK
and VTK-m. While VTK-m is intrinsically (shared memory)
parallel, the VTK-based implementations are inherently serial
due to limitations inside VTK itself. Future work may include
finding workarounds to VTK limitation so that it is possible to
do more widespread performance comparison studies across a
larger set of key VTK and VTK-m algorithms.

While our work focuses on a multi-core CPU platform,
VTK-m is capable of emitting code that can run on a GPU.
According to the OpenMP standard [32], OpenMP is capable
of emitting GPU device code (called “device offload”), how-
ever there are significant constraints on exactly what may be
successfully offloaded to the GPU. While it is likely possible
to do a direct custom C++/OpenMP comparison with VTK-
m implementation, doing so with an C++/OpenMP application
that is engineered to invoke VTK methods may not be feasible,
due to OpenMP device offload limitations.

Additional future work will include doing finer grained
studies that isolate and quantify the cost of buffer and memory
management needed for VTK-m and DPP-based patterns. One
dimension of that future work would include studies that ex-
amine the performance impact of changing the blocking factor
used by the VTK-m back-end as it divides up data for worklets
to execute in parallel. Similarly, while this study asks some
preliminary questions for each of these three methods and their
multiple implementations, a significant amount of in-depth
analysis work remains to fully characterize performance, such
as analyzing memory system utilization and its relationship to
data management strategies inside the code.

The methodology we present in our studies is useful for
other applications, particularly those where you might not have
the source code. LIKWID can be used in a fashion that does
not require any coding instrumentation at all. In that case, the
counters are collected over the entire application run, including
I/O and other operations that may not or may not be of interest.
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