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Abstract
Accurate energy functions are critical to macromolecular modeling and design. We describe new
tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate
the application of these tools to improvement of the Rosetta energy function. The feature analysis
tool identifies discrepancies between structures deposited in the PDB and low energy structures
generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool
optimizes the weights on the different components of the energy function by maximizing the
recapitulation of a wide range of experimental observations. We use the tools to examine three
proposed modifications to the Rosetta energy function: improving the unfolded state energy model
(reference energies), using bicubic spline interpolation to generate knowledge based torisonal
potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov
and Dunbrack, 2011).
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1 Introduction
Scientific benchmarks are essential for the development and parameterization of molecular
modeling energy functions. Widely used molecular mechanics energy functions such as
Amber and OPLS were originally parameterized with experimental and quantum chemistry
data from small molecules and benchmarked against experimental observables such as
intermolecular energies in the gas phase, solution phase densities, and heats of vaporization
(Weiner et al. 1984, Jorgensen et al. 1996). More recently, thermodynamic measurements
and high resolution structures of macromolecules have provided a valuable testing ground
for energy function development. Commonly used scientific tests include discriminating the
ground state conformation of a macromolecule from higher energy conformations (Novotný
et al. 1984, Park & Levitt, 1996, Simons et al., 1999), predicting amino acid sidechain
conformations (Jacobson et al. 2002, Bower et al. 1997), and predicting free energy changes
associated with protein mutations (Guerois et al. 2002, Gilis and Rooman 1997, Potapov et
al. 2009).

Many studies have focused on optimizing an energy function for a particular problem in
macromolecular modeling, for instance the FoldX energy function was empirically
parameterized for predicting changes to the free energy of a protein when it is mutated
(Guerois et al. 2002). Often, these types of energy functions are only well suited to the task
they have been trained on. Kellog et al. showed that an energy function explicitly trained to
predict energies of mutation did not produce native-like sequences when redesigning
proteins (Kellogg et al. 2011). For many projects it is advantageous to have a single energy
function that can be used for diverse modeling tasks. For example, protocols in the
molecular modeling program Rosetta for ligand docking (Meiler and Baker, 2003), protein
design (Kuhlman et al., 2003), and loop modeling (Wang et al., 2007) share a common
energy function, which allowed Murphy et al. (2009) to combine them to shift an enzyme’s
specificity from other substrate to another.

Sharing a single energy function between modeling applications presents both opportunities
and challenges. Researchers applying the energy function to new tasks sometimes uncover
deficiencies in the energy function. The opportunities are that correcting the deficiencies for
the new tasks will result in improvements for the older tasks–after all, nature uses only one
energy function. Sometimes, however, modifications to the energy function that improve
performance at one task degrade its performance at others. The challenges are then to
discriminate beneficial from deleterious modifications and reconcile task-specific objectives.

To address these challenges, we have developed three tools based on benchmarking Rosetta
against macromolecular data. The first tool (Section 3), a suite we call “feature analysis”,
can be used to contrast ensembles of structural details from structures in the PDB and from
structures generated by Rosetta. The second tool (Section 4), a program we call “optE”,
relies on fast, small-scale benchmarks to train the weights in the energy function. These two
tools can help identify and fix flaws in the energy function, thus facilitating the process of
integrating a proposed modification. We follow the description of these tools (Section 5)
with a curated set of large-scale benchmarks meant to provide sufficient coverage of
Rosetta’s applications. Use of these benchmarks will give evidence that a proposed energy
function modification should be widely adopted.

To conclude in Section 6, we demonstrate our tools and benchmarks by evaluating three
incremental modifications to the Rosetta energy function. First, we use the sequence profile
recovery within OptE to refit the unfolded state model of Rosetta’s standard energy
function, Score12. The resulting Score12′ improves sequence recovery performance.
Second, we use feature analysis to identify and correct an artificial accumulation of
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predicted backbone torsion angles on the 10° grid lines caused by discontinuities in the
derivative of the energy function. Rosetta predicted 23% of all ϕ, ψ pairs lying within .05°
of a grid line. The resulting Score12Bicubic is not worse than Score12 on the prediction
benchmarks. Third, we compare the 2002 version of the Dunbrack backbone-dependent
sidechain rotamer library (Dunbrack, 2002), Dun02, with the 2010 version (Shapovalov and
Dunbrack, 2011), Dun10. The Dun10 library improves rotamer recovery, but gives mixed
results on the other prediction benchmarks.

Alongside this chapter, we have collected documentation for these two tools, and, for the
benchmarks the set of input files and instructions on how to run them. They may be
downloaded from URLHERE!!!!

2 Energy Function Model
The Rosetta energy function is a linear combination of terms that model interaction forces
between atoms, solvation effects, and torsion energies. More specifically, Score12, (Rohl et
al. 2004), the default fullatom energy function in Rosetta is composed of a Lennard-Jones
term, an implicit solvation term (Lazaridis & Karplus, 1999), an orientation-dependent
hydrogen bond term (Kortemme et al., 2003), sidechain and backbone torsion potentials
derived from the PDB, a short-ranged knowledge-based electrostatic term, and reference
energies for each of the 20 amino acids that model the unfolded state. Formally, given a
molecular conformation, C the total energy of the system is given by

(1)

where each energy term Tj has parameters Θj and weight wj. The feature analysis tool
described in Section 3, is meant to aid the refinement of the parameters Θ. The optE
program described in Section 4, is meant to fit the weights, w.

3 Feature Analysis
Our aim is to facilitate the analysis of distributions of measurable properties of molecular
conformations, which we call “feature analysis”. By formalizing the analysis process, we are
able to create a suite of tools and benchmarks that unify the collection, visualization, and
comparison of feature distributions. After motivating our work, we will describe the
components (Section 3.1) and illustrate how they can be integrated into a workflow (Section
3.2) by investigating the distribution of the lengths of hydrogen bonds with hydroxyl donors.

Feature distributions, broadly construed, have long held a prominent role in structural
biochemistry. The relationship between probability and energy given by the Boltzmann
equation has justified the derivation of knowledge-based potentials for modeling protein
energetics (Miyazawa & Jernigan, 1985, Sippl, 1990), and the implementation of
knowledge-based potentials usually involves the extraction of feature distributions from
protein structures. Feature distributions, for example, are central to the creation of rotamer
libraries (Ponder & Richards, 1986; Dunbrack and Karplus, 1993; Lovel et al., 2000). The
Boltzmann equation also motivates the need to compare the feature distributions from
structures generated by an energy function against those observed in nature: for an energy
function to generate geometries that are rarely observed is synonymous with that energy
function wrongly assigning low energies to high-energy geometries. Many structure
validation tools, such as MolProbity (Chen, et al. 2010), look for outlier features as
indications of errors in the structure.
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The Rosetta community, too, has a tradition of analyzing feature distributions: the extraction
of features from protein structures is central to the derivation of Rosetta’s low-resolution
(Simons et al., 1999) and high-resolution (Kortemme et al., 2003) knowledge-based
potentials and for the analysis of packing in protein cores (Sheffler & Baker, 2009) and
hydrophobic patches on protein surfaces (Jacak et al., 2012), to list only a few. However,
each foray into feature analysis has been performed with ad hoc scripts that have not been
preserved, preventing researchers from readily replicating the analyses of other groups. Our
primary goal was to create a unified framework for feature analysis.

Feature analysis also provides a means to tune the parameters of an energy function.
Recently, Song et al. (2011) observed peaks in the backbone ϕ, ψ distributions of Rosetta
generated structures, absent from the ϕ, ψ distributions in crystal structures, which they
attributed to double counting in knowledge-based potentials. In one case, a commonly
observed loop motif has a hydrogen bond between the asparagine sidechain of residue i and
the backbone of residue i+2, constraining the backbone ψ angle of residue i to 120°. The
proliferation of this motif caused an artifact in Rosetta’s knowledge-based Ramachandran
energy term, since E(ψ=120 | ASN) ~ −log(P(ψ=120 | ASN)), irrespective of hydrogen
bond formation. To correct this, they considered the Ramachandran term as a parametric
model and iteratively tuned the parameters until the asparagine ψ distribution from
predicted structures matched the distribution from crystal structures. Hamelryck et al. (2010)
have also observed that this iterative process is a useful way to improve an energy function.
Our second major goal for the feature analysis tool is to facilitate this process of parameter
tuning.

3.1 Feature Analysis Components
The feature analysis framework consists of two components. Feature reporters take a set of
structures, a batch, and populate a relational database with feature data.. Next, feature
analysis scripts select, estimate, visualize, and compare feature distributions from the
database.

3.1.1 Features Database—To facilitate the analysis of a large number of feature
distributions, we have created an relational database architecture for feature data. Typically
when analyzing feature distributions, we decompose a basic feature distribution (e.g., the
hydrogen–acceptor distance in hydrogen bonds) into many conditional feature distributions
(e.g., hydrogen-acceptor distances in carboxylate/guanidine hydrogen bonds). By putting
basic features into a relational database along with other supporting data, we can perform the
expensive task of extracting features from some input batch of structures only once, while
retaining the ability to examine arbitrary conditional feature distributions in the future.

The database schema that we have built is structured as a hierarchy with the highest level
tables holding very general data describing the structures the database was populated from,
and with the lowest level tables describing basic features. For example, the tables describing
hydrogen bond properties include foreign-key references to the more general residues and
structures tables (Figure 1).

Each feature database is meant to hold the features for a single batch of conformations. Once
a batch has been selected, the features of that batch can be extracted and inserted into the
database using the RosettaScripts interface (Fleishman et al., 2011). The RosettaScripts
interface allows components of Rosetta to be assembled from an XML file into linear
protocols where each stage of the protocol is represented by a “mover.” The protocol begins
when a structure is read in, and then proceeds as each mover is applied in turn to the
structure. Movers can be anything, and in our case, we use a mover, the ReportToDB mover,
to report data about each structure into a database. The ReportToDB mover creates the
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database session and initializes the database schema. When it is declared in the XML file, it
is given a list of feature reporters, (See Table 1) which are responsible for defining tables
and for inserting features for a given structure into those tables. This interface allows
researches to populate their databases with only the features they are interested in; it also
allows them to report features at any point or at multiple points in the middle of
RosettaScripts protocol. Feature extraction is robust, in that it supports multiple database
backends (SQLite, PostgreSQL and MySQL), database sharing and merging through
universally unique identifiers, and incremental feature extraction.

3.1.2 Distribution Analysis—The second part of the feature-analysis suite provides tools
to query feature databases, to transform features in order to correctly estimate feature
distributions, and to plot those distributions. The feature analysis scripts are released with
Rosetta and may be found in the rosetta/rosetta_tests/features directory.

The primary entry point when performing feature analyses is the
compare_sample_sources.R script. In running the script the user provides a JSON analysis
configuration file specifying a set of feature databases (extracted from separate structure
batches), the analysis scripts to run, and the output formats. This wrapper script prepares the
database connections and ensures that the necessary R packages have been installed on the
system before it hands control-of-flow to the specified feature-analysis scripts. Feature
analysis scripts usually consists of three parts: an SQL query to retrieve features from the
input databases, a kernel density estimation on the extracted features (or on transformed
features), and the creation of a plot using the ggplot2 grammar-of-graphics package in R.

Feature analysis scripts begin by querying the input sample sources using one or more SQL
statements, ending with a SELECT statement. It is within these SQL queries that data across
multiple tables can be joined to compile the data for arbitrarily complicated conditional
feature distributions. The result of a typical query is a table where each row represents a
feature instance, where some of the columns identify the feature (including which batch it
came from along with other covariates), and where the other columns measure the feature in
the feature space.

Once the features and their identifying data have been retrieved, density distributions can be
computed. To do this, the feature analysis scripting framework uses the split-apply-combine
strategy (Wickham, 2011): feature instances are grouped by their identifying columns, and
for each group, a kernel density estimation (KDE) is computed over the measured columns.
When computing density estimations over feature spaces, care must be taken that an
appropriate transformation is applied to normalize the space and to handle boundary
conditions. Since data normalization and boundary-reflection are common tasks in the
performing feature analyses, our framework provides normalization routines for common
transformations and boundary-reflection routines. It also provides strategies for selecting an
appropriate kernel bandwidth, which controls the smoothness of the estimated distribution.

Once a collection of feature distributions have been estimated, they can be visualized
through the grammar of graphics method (Wilkinson, 1999; Wickham, 2010). Here, a plot
conceptually maps the dimensions of the data to graphical dimensions on a page, using
elements such as location, color, size, and shape. This has two principal advantages: first,
plot specification becomes concise and expressive, allowing rapid inspection of different
visualizations. Second, it forces the separation of the data from the plotting. The latter is
essential for the future reusability of a feature-analysis script.

The scripting framework also provides support for other types of feature-analysis tasks. For
example, the results from prediction benchmarks such as RotamerRecovery can be encoded
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as feature instances and analyzed with other features as covariates using decision trees,
regression, etc. Feature instances can also be aligned and exported to a PyMOL session for
interactive inspection.

3.2 Feature Analysis Workflow
Feature analysis has three common stages: sample generation, feature extraction, and
distribution comparison. Feature analysis can be used to optimize the energy function
parameters by iteratively modifying the energy function and comparing the feature
distributions from structures generated with the new energy function against those from
crystal structures.

For a demonstration of this iterative process, we consider the hydrogen bond length (defined
as the hydrogen-acceptor distance) for hydroxyl donors (i.e. serine and threonine). In X-ray
crystal structures of proteins, the most favorable distance is 1.65 Å, while for non-hydroxyl
donor H-bonds the most favorable distance is 1.85 Å. Rosetta does not correctly recapitulate
this distance distribution, most likely due to the way in which the Rosetta hydrogen bond
term was originally derived. Previously, to avoid the problem of inferring the hydroxyl
hydrogen locations, the hydroxyl donor parameters were taken from the sidechain amide and
carboxylamide donor parameters (Kortemme et al., 2003).

To start, we compared structures generated from Rosetta’s existing energy function against
native structures to verify that Rosetta does not generate the correct distribution of hydroxyl
hydrogen bond distances. We used as our reference source a subset of the top8000 chains
dataset (Keedy et al., 2012) with a maximum sequence identity of 70%, which gave 6,563
chains. Hydrogen atom coordinates were optimized using Reduce (Word et al., 1999). We
further restricted our investigation to residues with B-factors of at most 30. In the remainder
of this chapter we call this the Native sample source. Then, for each candidate energy
function, we relaxed each protein chain with the FastRelax protocol in Rosetta (Khatib et al.,
2011).

The analysis script to look for a discrepancy for hydroxyl donor hydrogen bond lengths has
three parts. First, for each sample source, the acceptor-hydrogen distance for all hydrogen
bonds with non-aromatic ring hydroxyl donors (i.e., serine and theonine) with protein
backbone acceptors is extracted. Second, for the instances associated with each sample
source, a one-dimensional kernel density estimation is constructed normalizing for equal
volume per unit length. Also, for each non-reference sample source, the Boltzmann
distribution for the A-H distance term in the hydrogen bond energy term is computed. Third,
the density distributions are plotted.

With this distribution analysis script in place, we evaluated two incremental modifications to
the standard Score12 hydrogen bond term. The first, NewHB, among other modifications,
adjusts parameters for the A–H Distance term for these hydrogen bond interactions so that
the optimal location is consistent with the location of the peak in the Native sample source
(panel A in Figure 3). As expected, this shifts the distribution of predicted hydrogen bonds
towards shorter interactions. However, the predicted distribution does not move far enough
to recapitulate the observed distribution (panel B to panel C in Figure 3). In Score12, the
Lennard-Jones energy term between the donor and acceptor oxygen atoms has optimal
energy when they are 3 Å apart. However, the peak in the O-O distance distribution is at 2.6
Å. Thus hydrogen bonds with the most favorable distance according to the NewHB
parametrization experience a strong repulsion from the Lennard-Jones term. To reduce
correlation between the hydrogen bond and the Lennard-Jones energy terms, we decreased
the optimal distance for the Lennard-Jones term for these specific interactions to 2.6 Å. With
this second modification, Rosetta recapitulates the native distribution (panel D in Figure 3).
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4 Maximum Likelihood Parameter Estimation with OptE
Recall that the Rosetta energy function is a weighted linear combination of energy terms that
capture different aspects of molecular structure, as defined in Eq. (1). The weights, w,
balance the contribution of each term to give the overall energy. Because the weights often
need to be adjusted after modifying an energy term, we have developed a tool called “optE”
to facilitate fitting them against scientific benchmarks. The benchmarks are small, tractable
tests of the ability of Rosetta to recapitulate experimental observations given a particular
assignment of weights. Although the weight sets that optE generates have not proven to be
good replacements for the existing weights in Rosetta, we have found optE useful at two
tasks: at identifying problems in the Rosetta energy function and at fitting the twenty amino-
acid-reference-energy weights.

In the next section, we give a formula for generic likelihood-based loss functions and then
describe the scientific benchmarks that are available in optE.

4.1 Loss Function Models
The full-scale scientific benchmarks described in Section 5 are sufficiently computationally
demanding that they require several thousand CPU hours to run. Many of these benchmarks,
however, can be scaled down to forms that are efficiently evaluated and can be used to train
the energy function. Speed is an important factor for determining which benchmarks are
included in optE, because optE evaluates tens of thousands of weight combinations while
searching through weight space. A benchmark that takes more than a second is too
expensive to include.

As mentioned in the introduction, a scientific benchmark should measure Rosetta’s ability to
recapitulate experimental observations. To jointly optimize an energy function’s
performance at the scientific benchmarks, we require success at each benchmark to be
reported as a single number, which is called the loss. For scientific benchmarks based on
recapitulating experimental observations, a common method of defining the loss is, given
the weights, the negative log-probability of predicting the observed data. If the observed
data are assumed to be independently sampled, the loss is the sum of the negative log-
probability over all observations. Thinking of the loss as a function of the weights for a fixed
set of observations, it is called the negative log-likelihood of the weights. An ideal
prediction protocol will generate predictions according to the Boltzmann distribution for the
energy function10. Therefore, the probability of an observation o is

(2)

(3)

where the partition function, Z(w) includes o and all possible alternatives, A. Because of the
vast size of conformation space, computing Z is often intractable; this is a common problem
for energy-based loss functions (LeCun & Jie, 2005). To address this problem, we rely on
loss functions that do not consider all possible alternatives.

10This assumption needs to be checked, e.g. by comparing distribution of structural features against the Boltzmann distributions
defined by the energy function.
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4.1.1 Recovering Native Sequences—Within the Rosetta community, we have
observed that improvements to the energy function, independently conceived to fix a
particular aspect of Rosetta’s behavior, have produced improvements in sequence recovery
when redesigning naturally occurring proteins (Kuhlman & Baker, 2000, Morozov &
Kortemme, 2005). Therefore, we attempt to increase sequence recovery to improve the
energy function.

The standard sequence recovery benchmark (described in Section 5.2) looks at the fraction
of the amino acids recovered after performing complete protein redesign using Rosetta’s
Monte Carlo optimization technique. To turn this benchmark into a loss function like Eq. (2)
would require us to compute the exact solution to the NP-Complete sidechain optimization
problem (Pierce & Winfree, 2002) for the numerator, and, for an N residue protein, to repeat
that computation 20N times for each possible sequence for the denominator. This is not
feasible.

Instead, we approached the benchmark as a one-at-a-time optimization, maximizing the
probability of the native amino acid at a single position given some fixed context. This
introduces a split between the energy function whose weights are being modified to fit the
native amino acid into a particular environment and the energy function which is holding
that environment together. Upweighting one term may help distinguish the native amino
acid from the others, but it might also cause the rest of the environment to relax into some
alternate conformation in which the native amino acid is no longer optimal. To build
consistency between the two energy functions, we developed an iterative protocol (described
in greater detail in Section 4.2.1) that oscillates between loss-function optimization and full-
protein redesign. Briefly, the iterative protocol consists of a pair of nested loops. In the outer
loop, the loss function is optimized to produce a set of candidate weights. In the inner loop,
the candidate weights are mixed in various proportions with the weights from the previous
iteration through the outer loop, and for each set of mixed weights, complete protein
redesign is performed. The redesigned structures from the last iteration through the inner
loop are then used to define new loss functions for the next iteration through the outer loop.

We define the loss function for a single residue by the log-likelihood of the native amino
acid defined by a Boltzmann distribution of possible amino acids at that position. We call
this the PNatAA loss function.

(4)

(5)

where E(nat|w) is the energy of the best rotamer for the native amino acid and E(aa|w) is the
energy of the best rotamer for amino acid aa. Rotamers are sampled from Roland
Dunbrack’s backbone-dependent rotamer library from 2002 (Dunbrack, 2002), with extra
samples taken at ±σ for both χ1 and χ2. The best rotamer depends on assigned weights,
meaning that this function has discontinuous derivatives when two rotamers tie for the best.
The energies for the rotamers at a particular position are computed in the context of a fixed
surrounding; the contexts for the outer-loop iteration i are the designed structures from
iteration i−1, where the first round’s context comes from the initial crystal structures.
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4.1.2 Recovering Native Rotamers—As is the case for the full fledged sequence-
recovery benchmark, the rotamer-recovery benchmark (described in Section 5.1) would be
intractably expressed as a generic log-likelihood loss function as given in Eq. (2). Instead,
we again approach the recovery test as a one-at-a-time benchmark to maximize the
probability of the native rotamer at a particular position when considering all other rotamer
assignments.

For residue j, the probability of the native rotamer is given by

(6)

where E(nat|w) is the energy of the native rotamer and the set rots contains all other
rotamers built at residue j. We define a loss function, LPNatRot, for residue j as the negative
log of this probability.

4.1.3 Decoy Discrimination—Benchmarking the ability of Rosetta to correctly predict
protein structures from their sequences is an incredibly expensive task. In the high-
resolution refinement benchmark (described in Section 5.4), non-native structures, decoys,
are generated using the energy function being tested so that each decoy and each near-native
structure will lie at a local minimum, but this takes ~20K CPU hours. Within optE, we
instead test the ability of Rosetta to discriminate near-native structures from decoys looking
only at static structures; as optE changes the weights, the property that each structure lies at
a local minimum is lost.

Given a set N of relaxed, near-native structures for a protein, and a set D of relaxed decoy
structures, we approximate the probability of the native structure for that protein as:

(7)

(8)

and similarly define a decoy-discrimination loss function, LPNatStruct, as the negative log of
this probability. Here, nj is the “nativeness” of conformation j which is 1 if j is below 1.5 Å
Cα RMSD from the crystal structure, and 0 if it is above 2 Å RMSD. The nativeness
decreases linearly from 1 to 0 in the range between 1.5 and 2. Similarly, dj is the
“decoyness” of conformation j which is 0 if j is below 4 Å RMSD and 1 otherwise. σ is a
dynamic-range-normalization factor that prevents the widening of an energy gap between
the natives and the decoys by scaling all of the weights; it is defined as σ = σ(D,w)/σ0 where
σ(D,w) is the computed standard deviation for the decoy energies for a particular assignment
of weights and σ0 is the standard deviation of the decoy energies measured at the start of the
simulation.

In the partition function, the Rlnα− Σkdk term approximates the entropy of the decoys, an
aspect that is otherwise neglected in a partition function that does not include all possible
decoy conformations. This term attempts to add shadow decoys to the partition function, and
the number of extra decoys added scales exponentially with the length of the chain, R. We
chose 1.5 as the scale factor, α, which is relatively small given the number of degrees of
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freedom (DOFs) each residue adds. Counting torsions alone, there are between 3 (glycine)
and 7 (arginine) extra DOFs per residue. Our choice of a small α is meant to reflect the
rarity of low-energy conformations. To normalize between runs which contain differing
numbers of far-from-native decoys, we added the −Σkdk term; doubling the number of
decoys between two runs should not cause the partition function to double in value.

4.1.4 ΔΔG of mutation—The full benchmark for predicting ΔΔGs of mutation
(described in Section 5.3) is computationally expensive, and so, similar to the decoy-
discrimination loss function, we define a ΔΔG loss function which relies on static
structures. This loss function is given by:

(9)

where muts is a set of structures for the mutant sequence, wts is a set of structures for the
wild type sequence, and the experimentally observed ΔΔG is defined such that it is positive
if the mutation is destabilizing and negative if it is stabilizing. Note that this loss function is
convex if there is only one structure each in the muts and wts sets. This is very similar to the
linear least-squares fitting, except that it is limited to a slope of one and a y-intercept of zero.
The slope can be fit by introducing a scaling parameter to weight optimization, as described
in Section 4.2.2 below.

4.2 Loss Function Optimization
OptE uses a combination of a particle swarm minimizer (Chen et al., 2007) and gradient-
based minimization to optimize the loss function. Non-convexity of the loss function
prevents perfect optimization, and independent runs sometimes result in divergent weight
sets that have similar loss function values. In spite of this problem, optE tends to converge
on very similar weight sets at the end of training.

4.2.1 Iterative Protocol—As described above, training with the PNatAA loss function
effectively splits the energy function into two which we attempt to merge with an iterative
procedure where we oscillate between loss-function optimization in an outer loop and
complete protein redesign in an inner loop. Between rounds of the outer-loop, the weights
fluctuate significantly, and so in each iteration of the inner loop, we create a weight set that
is a linear combination of the weights resulting from round i’s loss-function optimization
and the weight set selected at the end of round i−1. The weight set used for design during
outer-loop iteration i, inner-loop iteration j is given by:

(10)

(11)

where wl(i) is the weight set generated by minimizing the loss function in round i, and w(i
−1) is the final weight set from round i−1. In the first round, w(1) is simply assigned wl(1).
This inner loop is exited if the sequence recovery rate improves over the previous round or if
six iterations through this loop are completed. The weight set w(i,j) for the last iteration
through the inner loop taken as the weight set w(i) for round i and is written to disk. The set
of designed structures from this iteration are taken to serve as the context for the PNatAA
loss function in the next round.
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4.2.2 Extra Capabilities—OptE provides extra capabilities useful for exploring weight
space. For instance, it is possible to weight the contributions of the various loss functions
differently. Typically, we upweight the decoy-discrimination loss function by 100 when
optimizing it along with the PNatAA and PNatRot loss functions. We typically train with
~100 native-set/decoy-set pairs to train on, compared to several thousand residues from
which we can define PNatAA and PNatRot loss functions. Upweighting the PNatStruct loss
function prevents it from being drowned out.

OptE also offers the ability to fit two or more terms with the same weight, or to obey an
arithmetic relationship as specified in an input text file. This feature was used to scale the
Score12 terms by a linear factor but otherwise keep them fixed to optimize the ΔΔG of the
mutation loss function (Kellogg et al., 2011). Finally, OptE allows the definition of restraints
for the weights themselves to help hold them to values the user finds reasonable. This is
often useful because loss functions are perfectly happy to assign negative weights to the
terms in the energy function.

4.3 Energy Function Deficiencies Uncovered by OptE
OptE is particularly good at two tasks: refitting reference energies (described in Section 4.5
below) and uncovering areas where the existing Rosetta energy function falls short.
Rosetta’s efficiency in searching through conformation space means it often finds decoys
with lower energies than the native. Such decoys surely point to flaws in Rosetta’s energy
function, however, it is not always easy to see why the natives are not at lower energy than
these decoys. OptE allows efficient hypothesis driven testing: hypothesize what kind of term
is absent from the Rosetta energy function, implement that term, and test that term in optE
using the PNatStruct loss function. If the value of the loss function improves after the new
term is added, that is strong evidence the term would improve the energy function. There are
caveats, of course, because the PNatStruct loss function relies on Rosetta-relaxed native
structures, some of the features present in the crystal structures might have already been
erased before optE gets started.

Using optE, we found two terms that improved the decoy-discrimination loss function over
Score-12. The first was a carbon-hydrogen bond potential added to Rosetta (but not included
as part of Score-12) by Rhiju Das to help model RNA (Das et al., 2010). This potential was
derived from a set of protein crystal structures and a set of decoy protein structures as the
log of the difference in the probability of an oxygen being observed at a particular distance
in a crystal structure and its probability of being observed at that distance in the decoy
structures. OptE identified this term as strongly improving decoy discrimination. We
followed this lead by splitting the potential into backbone/backbone, backbone/sidechain,
and sidechain/sidechain contributions. Here, optE preferred to set the weight on the
sidechain/sidechain and backbone/sidechain components to zero while keeping the weight
on the backbone/backbone interactions high. This left exactly one interaction: the Hα
hydrogen interacting with the carbonyl oxygen. This contact is observed principally in β-
sheets and has been reported previously as giving evidence for a carbon hydrogen bond
(Taylor & Kennard, 1982; Fabiola et al., 1997).

The original CH-bond potential proved to be a poor addition to the energy function: when
used to generate new structures or to relax natives, previously observed deep minima at low
RMSD (<1.5 Å) from the crystal structure were lost and were instead replaced by broad,
flat, near-native minima that reached out as far as 4 Å. To improve the potential, Song et al.
(2011) iteratively adjusted the parameters to minimize the difference between the observed
and predicted structures. This iterative process resulted in better Hα-O distance
distributions; unexpectedly, it also resulted in better distance distributions for other atom-
pairs in β-sheets.
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A second term identified by optE was a simple Coulombic electrostatic potential with a
distance-dependent dielectric (Yanover & Bradley, 2011). After an initial signal from optE
suggested the importance of this term, we again separated the term into backbone/backbone,
backbone/sidechain and sidechain/sidechain components. Again, the backbone/backbone
portion showed the strongest signal. From there, we separated each term into attractive and
repulsive components, and optE suggested that the repulsive backbone/backbone interaction
contributed the most toward improved decoy discrimination. OptE also identified which
low-energy decoys in the training set were problematic in the absence of the electrostatic
term. By hand, we determined that the loops in these decoys contained too-close contacts
between backbone carbonyl oxygens: they were only ~3.4 Å apart, which is closer than is
commonly observed in crystal structures.

4.4 Limitations
Though our original goal was to fit all the weights simultaneously, optE has not proven
exceptionally useful at that task. There are a number of factors that contribute to optE’s
failures here. For one, the loss function that we use is not convex, and therefore its
optimization cannot be guaranteed. This sometimes leads to a divergence of the weight sets
in independent trajectories, which makes interpreting the results somewhat tricky.

The biggest problem facing optE, however, is its inability to see all of the conformation
space. This is true for all of the loss functions we try to optimize, but the PNatStruct loss
function, in particular, can see only the decoys we give it, and typically we can afford to
give optE only a few hundred decoys per protein. Thus, as optE traverses weight space, the
returned weight set may be an artifact of the small sample of selected decoys. For example,
optE typically tries to assign a negative weight to the Ramachandran term (described briefly
in Section 6.2 below), suggesting that this term is over-optimized in our decoys compared to
native structures, and, therefore, the easiest way to discriminate natives from decoys is to
turn the weight negative. However, a negative weight on the Ramachandran term is clearly
not good for protein structure prediction. In general, the weights that optE does produce are
not good for protein modeling. However, using the protocol described in the next section,
optE is fantastic at refitting reference energies.

4.5 A Sequence Profile Recovery Protocol for Fitting Reference Energies
One of the more dissatisfying results of training reference energies with the PNatAA loss
function was that the profile of designed amino acids overly favored the most common
amino acids (leucine, in particular) and almost never included rare amino acids (tryptophan,
in particular). To address this shortcoming, we created an alternative protocol within optE
for fitting only the amino acid reference energies, keeping all other weights fixed. This
protocol does not use any of the loss functions described above; instead, it adjusts the
reference energies directly based on the results of complete protein redesign.

The protocol iteratively performs complete protein redesign on a set of input protein
structures and adjusts the reference energies upwards for amino acids it over designs and
downwards for those it under designs, where the target frequencies are taken from the input
set. After each round, optE computes both the sequence recovery rate and the Kullback-
Leibler (KL) divergence of the designed sequence profile against the observed sequence

profile, given by, , where paa is the naturally occurring frequency of amino acid
aa in the test set and qaa is the frequency of amino acid aa in the redesigned structures. The
final reference energies chosen are those that maximize the sum −0.1 KL-divergence +
seqrec-rate.. This protocol is used to refit reference energies after each of the three energy-
function changes described in Section 6.
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The training set we use, which we call the “HiQ54,” is a new collection of fifty four non-
redundant, monomeric proteins from the PDB through 2010 that have 60–200 residues
(avg=134) and no tightly-bound or large ligands. All were required to have both resolution
and MolProbity score (Chen et al., 2010) at or below 1.4, very few bond-length or angle
outliers, and deposited structure-factor data. They provide reference crystal structures with a
guaranteed extremely low level of incorrectly fit sidechain or backbone conformations. The
HiQ54 set is available at http://kinemage.biochem.duke.edu/.

5 Benchmarks
Scientific benchmarking allows energy function comparison. The tests most pertinent to the
Rosetta community often aim toward recapitulating observations from crystal structures. For
example, the rotamer recovery test challenges an energy function, given the native backbone
conformation, to predict the native sidechain conformations. In this section we describe a
curated set of previously-published benchmarks which together provide a comprehensive
view of an energy functions strengths and weaknesses. We continually test the benchmarks
on the RosettaTests server to allow us to immediately detect changes to Rosetta that
degrades its overall performance (Lyskov & Gray, 2012).

5.1 Rotamer Recovery
One of the most direct tests for an energy function is its ability to correctly identify the
observed rotamers in a crystal structure against all other possible rotamers while keeping the
backbone fixed. It is a stringent test because the majority of the torsional degrees of freedom
in proteins occur in the sidechains, and the combinatorial nature of the problem produces an
extremely large search space, making recovery non-trivial. Variants of the rotamer recovery
test have long been used to evaluate molecular structure energy functions (Petrella et al.,
1998; Liang & Grishin, 2002), including extensive use to evaluate the Rosetta energy
function (Kortemme et al., 2003, Dobson et al., 2006; Dantas et al., 2007; Jacak et al.,
2012), the ORBIT energy function (Sharabi et al., 2010), and the SCWRL energy function
(Shapovalov & Dunbrack, 2011).

Here, we test rotamer recovery in four tests combining two bifurcated approaches to the
task: discrete vs. continuous rotamer sampling and one-at-a-time vs. full-protein rotamer
optimization. The discrete, one-at-a-time rotamer optimization protocol is called rotamer
trials. It builds rotamers, calculates their energies in the native context, and compares the
lowest-energy rotamer against the observed crystal rotamer. The continuous, one-at-a-time
rotamer optimization protocol is called rtmin (Wang et al., 2005). It similarly builds
rotamers in the native context but minimizes each rotamer before comparing the lowest-
energy rotamer against the crystal rotamer. The discrete, full-protein optimization protocol is
called pack rotamers. This builds rotamers for all positions and then seeks to find the lowest-
energy assignment of rotamers to the structure using a Monte Carlo with simulated
annealing protocol (Kuhlman & Baker, 2000) where at a random position, a random rotamer
is substituted into the current environment, its energy is calculated, and the substitution is
accepted or rejected based on the Boltzmann criterion. The rotamers in the final assignment
are compared against the crystal rotamers. The continuous, full-protein rotamer optimization
task is called min pack. It is very similar to the pack rotamers optimization technique except
that each rotamer is minimized before the Boltzmann decision. A similar protocol has been
described before (Ding & Dokholyan, 2006)).

Recovery rates are measured on a set of 152 structures each having between 50 and 200
residues and a resolution less than 1.2 Å. Rotamers are considered recovered if all their χ
dihedrals are less than 20° from the crystal χ dihedrals, taking into account symmetry for
the terminal dihedrals in PHE, TYR, ASP, and GLU. For the discrete optimization tests,
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rotamers are built at the center of the rotamer wells, with extra samples included at ±σi from
χ̄i for χ1 and χ2. For the continuous optimization test, samples are only taken at χ̄i but can
move away from the starting conformation through minimization.

5.2 Sequence Recovery
In the sequence recovery benchmark, we performed complete-protein fixed-backbone
redesigns on a set of crystal structures, looking to recapitulate the native amino acid at each
position. For this chapter, we used the test set of 38 large proteins from (Ding & Dokholyan,
2006). Sequence recovery was performed with the discrete, full-protein rotamer-and-
sequence optimization protocol called PackRotamers, described above. Rotamer samples
were taken from the given library (either the 2002 or 2010 library), and extra samples were
chosen at ±σi for χ1, and χ2. The multi-cool annealer simulated annealing protocol (Leaver-
Fay et al., 2011a) was employed instead of Rosetta’s standard simulated annealing protocol.
We measured the sequence recovery rate and the KL-divergence of the designed amino-acid
profile from the native amino-acid profile: the sequence recovery rate should be high, and
the KL-divergence should be low.

5.3 ΔΔG Prediction
The ΔΔG benchmark consists of running the high-resolution protocol described in Kellogg
et al. (2011), on a curated set of 1210 point mutations for which crystal structures of the
wild-type protein are available. The protocol predicts a change in stability induced by the
mutation by comparing the Rosetta energy for the wild type and mutant sequences after
applying the same relaxation protocol to each. The Pearson correlation coefficient of the
measured vs. predicted ΔΔGs is used to assess Rosetta’s performance.

5.4 High-resolution protein refinement
Rosetta’s protocol to predict protein structures from their sequence alone runs in two phases:
a low-resolution phase (abinitio) relying on fragment insertion (Simons et al., 1997) to
search through a relatively smooth energy landscape (Simons et al., 1999), and a high-
resolution phase (relax) employing sidechain optimization and gradient-based minimization.
This abrelax protocol offers the greatest ability to broadly sample conformation space in an
attempt to find any non-native conformations that Rosetta prefers to near-native
conformations.

Unfortunately, the abrelax protocol requires significantly more sampling than could readily
be performed to benchmark a change to the energy function. The problem is that most low-
resolution structures produced by the first abinitio phase do not yield low-energy structures
in the second relax phase, so finding low-energy decoy conformations requires hundreds of
thousands of trajectories. To reduce the required amount of sampling, Tyka et al. (2010)
curated four sets of low-resolution decoys for 114 proteins by taking the low-resolution
structures that generated low-energy structures after being put through high-resolution
refinement. The benchmark is then to perform high-resolution refinement on these low-
resolution structures with the new energy function. Each of the low-resolution sets were
generated from different sets of fragments; some sets included fragments from homologues,
while others included fragments from the crystal structure of the protein itself. This gave a
spectrum of structures at varying distances from native structures.

These sets are used as input to the relax protocol. The decoy energies and their RMSDs from
the crystal structure are used to assess the ability of Rosetta to discriminate natives from
low-energy decoys. This is reported in two metrics by the benchmark: the number of
proteins for which the probability of the native structure given by the Boltzmann distribution
exceeds 80% (pNat > 0.8; pNat should not be confused with the PNatStruct loss function in
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optE), and the number of proteins for which the lowest-energy near-native conformation has
a lower energy than the lowest-energy decoy conformation. For the benchmarks reported
here, we relaxed 6,000 decoys randomly sampled with replacement from each of the four
sets, resulting in 24,000 decoys per protein. The statistical significance of the difference
between two runs can be assessed with a paired T-test, comparing pNat for each of the 114
targets.

The proteins included in this test set include many where the crystal structure of the native
includes artifacts (e.g. loop rearrangements to form crystal contacts), where the protein
coordinates metal ions or ligands, or where the protein forms an obligate multimer in
solution. For this reason, perfect performance at this benchmark is not expected, and
interpreting the results is somewhat complicated; an improvement in the benchmark is easier
to interpret than a degradation.

5.5 Loop Prediction
In the loop prediction benchmark, the aim is to test Rosetta’s accuracy at de novo protein
loop reconstruction. For this, we used the kinematic closure (KIC) protocol, which samples
mechanically accessible conformations of a given loop by analytically determining six
dihedral angles while sampling the remaining loop torsions probabilistically from
Ramachandran space (Mandell et al., 2009).

We used the benchmark set of 45 12-residue loops as described in Mandell et al., (2009).
For each loop, we generated 8,000 structures and calculated their Cα loop RMSD to the
native.

In some cases, KIC generates multiple clusters of low-energy conformations of which one
cluster is close to the native structure, while the other(s) can be several Ångstroms away.
Because the Rosetta energy function does not robustly distinguish between these multiple
clusters, we considered not just a single structure, but the five lowest-energy structures
produced. Of these five, we used the lowest-RMSD structure when calculating benchmark
performance. Overall loop reconstruction accuracy is taken as the median Cα loop RMSD
of all best structures across the entire 45-loop dataset. The first and third quartile, though of
lesser importance than the median, should be examined as well, as they offer a picture of the
rest of the distribution.

6 Three Proposed Changes to the Rosetta Energy Function
In this final section, we describe three changes to Rosetta’s energy function. After
describing each change and its rationale, we present the results of the benchmarks described
above.

6.1 Score12′
We used the sequence-profile-recovery protocol in optE to fit the reference energies for
Score12 to generate a new energy function we call Score12′. Refitting the Score12 reference
energies in Rosetta3 (Leaver-Fay et al., 2011b) was necessary because the components of
Score12 in Rosetta3 differed in several ways from those in Rosetta2. First, in Rosetta2, there
was a disagreement between the energy function used during sequence optimization and the
one used throughout the rest of Rosetta. In the sequence optimization module (“the packer”),
the knowledge-based Ramachandran potential was disabled, and the weight on the P(aa|ϕ,ψ)
was doubled from .32 to .64. In Rosetta3, there is no schism between the energy functions
used in the packer and elsewhere, meaning that when Score12 is used, the packer includes
the Ramachandran term and the P(aa|ϕ,ψ) term is not upweighted. Furthermore, the
Lennard-Jones and implicit solvation (Lazaridis & Karplus, 1999) terms in Rosetta3 extend
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out to 6 Å instead of to 5.5 Å, and these terms are smoothed with splines to reach a value of
0 with a derivative of 0 at 6 Å. Previously, a linear ramp to zero starting at 5.0 Å and ending
at 5.5 Å left discontinuities in the derivatives, resulting in unwanted peaks at 5.0 and 5.5 Å
in atom-pair radial distribution functions (Will Sheffler & David Baker, unpublished
observations). Also, the Lennard-Jones potential now starts counting the contribution of the
repulsive component at the bottom of the well, instead of at the x-intercept. This change
eliminates a derivative discontinuity at the x-intercept which forms if the attractive and
repulsive weights differ (as they do in Score12). Rosetta3’s energy function differed from
Rosetta2’s in an third way: in Rosetta2, the Cβ distance thresholds that were used to decide
whether residue pairs were in range of each other were too short, causing certain interactions
to be inappropriately omitted. This affected all terms in the energy function between certain
pairs of residues.

Table II gives the sequence recovery rates for Rosetta2 and Rosetta3 using Score12; it also
shows the sequence recovery rates obtained from training the reference energies with the
PNatAA loss function (Rosetta3-PNatAA) and with the sequence-profile recovery protocol
(Rosetta3-sc12′). Though the PNatAA objective function achieves satisfactory sequence-
recovery rates, it over-designs leucine and lysine and never designs tryptophan (Table III).
Score12′, on the other hand, does an excellent job recapitulating the sequence profile in the
testing set while also outperforming the Rosetta3-PNatAA energy function at sequence
recovery. The rotamer-recovery, high-resolution refinement, and loop-prediction
benchmarks were not run for this proposed change to the energy function as fixed-sequence
tasks are unaffected by changes to the reference energies.

6.2 Interpolating Knowledge-Based Potentials with Bicubic Splines
Three knowledge-based potentials in Rosetta are defined on the φ,ψ map: the
Ramachandran term which gives Erama(φ,ψ|aa) = −ln p(φ,ψ|aa), the p_aa_pp term
(sometimes called the design term) which gives an energy from the log of the probability of
observing a particular amino acid at a given φ,ψ, and the rotamer term (almost always called
the Dunbrack term, or fa_dun), which gives Edun(χ|φ,ψ,aa). Each of these terms has in
common the use of bins on the φ,ψ map to collect the data that define these potentials and
the use of bilinear interpolation between the bins to define a continuous function.

The p_aa_pp term in Score12 is given by

(12)

For any particular φ and φ, the energy is given as the negative log of the bilinearly
interpolated p(aa|φ,ψ) divided by p(aa). The Ramachandran term similarly defines the
energy for the off-grid-point φ and ψ values as the negative log of the bilinearly interpolated
p(φ,ψ|aa). Both the p_aa_pp and the Ramachandran term place their bin centers every ten
degrees starting from 5°.

The Dunbrack term in Score12 is given by

(13)

where the rotamer bin, rot, which gives the probability of the rotamer, p(rot|φ,ψ,aa), is
computed from the assigned χ dihedrals, and both χ̄i (φ,ψ|aa,rot;) and σi (φ,ψ|aa,rot) are the
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measured mean χ values and standard deviations for the rotamer. This effectively models
the probability for the sidechain conformation as the product of the rotamer probability and
several (height-unnormalized) Gaussians. The 2002 library gives the p(rot|φ,ψ,aa), χ̄i (φ,ψ|
aa,rot), and σi (φ,ψ|aa,rot) every ten degrees. Given a particular assignment of φ and ψ, the
values for p(rot|φ,ψ,aa), χ̄i (φ,ψ|aa,rot), and σi (φ,ψ|aa,rot) and are bilinearly interpolated
from the four surrounding bin centers. The Dunbrack term also divides the φ,ψ plane into
ten-degree bins, starting from 0°.

Bilinear interpolation leaves derivative discontinuities every 5° in the plane. These
discontinuities frustrate the minimizer causing pile-ups at the bin boundaries. Looking at the
distribution for non-helical residues, the grid boundaries are unmistakable (Figure 4B).

Our proposed fix for this problem is to use bicubic splines to interpolate between the grid
points. We fit bicubic splines with periodic boundary conditions for both the Ramachandran
and p_aa_pp terms on the energies, interpolating in energy space. For the Dunbrack energy,
we fit bicubic splines for the −ln(p(rot|φ,ψ,aa) portion, but, to avoid increasing our memory
footprint too much, continued to use bilinear interpolation for the χ-mean and χ-standard-
deviations. We refit the reference energies using the sequence-profile recovery protocol to
create a new energy function, that for this chapter, we refer to as Score12Bicubic, Figure 4C
shows that bicubic spline interpolation dramatically reduces the pileups. Accumulation on
the 10° grid boundaries starting at 5° produced by the Ramachandran and p_aa_pp terms is
completely gone. Modest accumulation on the 10° grid boundaries starting at 0° persists
because bicubic splines were not used to interpolate the χ-mean and χ-standard deviations.

6.3 Replacing the 2002 Rotamer Library with the Extended 2010 Rotamer Library
In 2010, Shapovalov and Dunbrack (Shapovalov & Dunbrack, 2011) defined a new rotamer
library that differs significantly from the 2002 library in the way the terminal χ are handled
for eight amino acids: ASP, ASN, GLU, GLN, HIS, PHE, TYR, and TRP. Because these
terminal χ dihedrals are about bonds between sp3-hybridized atoms and sp2-hybridized
atoms, there are no well-defined staggered conformations. Instead of modeling the
probability landscape for the terminal χ within a particular bin as a Guassian, the new
library instead provides a continuous probability distribution over all the bins. This last χ is
in effect non-rotameric, though the rest of the χ in the sidechain are still rotameric; these
eight amino acids can be called semirotameric. In the 2002 library, there were
discontinuities in both the energy function and in the derivatives when crossing over these
grid boundaries. Once a rotamer boundary is crossed, an entirely different set of χ̄ and σi are
used to evaluate the rotamer energy. Such crossing would in fact have been likely given high
standard deviations for the terminal χ of the eight amino acids listed above. For example, an
asparagine with φ,ψ = (−120,130) in rotamer (g−,3)11, χ̄2 is −34.1, and σ2 is 11.2°, so that
the mean is less than one standard deviation away from the lower grid boundary at −45°. In
contrast, χ̄1 for the same rotamer is 8.6 standard deviations from the closest grid boundary.
Rotamer-boundary crossings should be common for the terminal χ for these semirotameric
amino acids, but our model makes such crossings difficult. Furthermore, Rosetta’s treatment
of the terminal χ probability distributions as Gaussians means that Rosetta structures display
Gaussian distributions (the green lines in Figure 5) that do not resemble the native
distributions (the red lines in Figure 5).

With the 2010 library, the energy for a rotameric residue is computed in the same way as for
the 2002 library, and the energy for one of the semirotameric amino acids is computed as:

11The 3 in this rotamer designation simply refers to the indexing in the 2002 library, which for χ1 in g− is the bin [−45°,15°].
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(14)

where T denotes the terminal χ, and where χ̄i (φ,ψ|aa,rot), and σi (φ,ψ|aa,rot) from Eq. (13)
have been abbreviated as χ̄i and σi, though they retain their dependence on the rotamer and
amino acid and are a function of φ and ψ. The 2010 library provides data every 10 degrees
in φ,ψ plane, and provides data for pχT(rot|φ,ψ,aa) every 10° for φ and ψ, and every 5 or
every 10 degrees for χT depending on whether aa is symmetric about χT. We fit tricubic
splines to interpolate in −ln(p(rot|φ,ψ,aa)pχT(rot|φ,ψ,aa)) in φ,ψ, and χT . As in the 2002
library, χ̄i and σi are interpolated bilinearly from the four surrounding grid points.
Interpolating with tricubic splines avoids the density-accumulation-at-derivative-
discontinuities artifacts for χT that are apparent using trilinear interpolation. We refit the
reference energies using the sequence-profile recovery protocol to create a new energy
function that for this chapter we refer to as Score12Dun10. Score12Dun10 builds on top of
Score12Bicubic.

6.4 Benchmark Results
The results of the benchmarks show that Score12′ is a clear improvement over Score12,
substantially improving sequence recovery (Table VI), and that Score12Bicubic is a clear
improvement over Score-12′, behaving as well as Score12′ on most benchmarks (Tables
VI, VII, and IX) and giving a slight, but statistically insignificant improvement at the high-
resolution refinement benchmark (p = 0.07, Table VIII). Score12Dun10 shows mixed
results: at the rotamer recovery benchmark (Table IV), it shows a clear improvement over
Score12Bicubic, and the improvement can be most clearly seen in the rotamer recovery rates
for the semirotameric amino acids (Table V).

Score12Dun10 performed worse at the high-resolution refinement benchmark than
Score12Bicubic (Table VIII). The two principle metrics for this benchmark are slightly
worse: the number of proteins where the lowest-energy near-native structure has a lower
energy than the lowest-energy decoy (#(eNat < eDec); 104 vs. 105), and the number of
proteins where the probability of the native structure calculated by the Boltzmann
distribution is greater than 80% (#(pNat > 0.8); 67 vs. 60). To estimate the significance of
these results, we compared the distribution of (pNatsc12dun10 - pNatsc12bicubic) for each of the
114 targets against the null hypothesis that this distribution had a mean of 0, using a two-
tailed t-test. This gave a p-value for the difference of 0.01. Because this benchmark includes
proteins whose accurate prediction is unlikely given protocol limitations (disulfides are not
predicted), and crystal artifacts (loops which adopt conformations supported only by crystal
contacts), its results are more difficult to interpret. We therefore restricted our focus to 29
proteins in the set which are absent of these issues (Supplemental Table VI) and repeated the
comparison of (pNatsc12dun10 - pNatsc12bicubic). Here too, Score12Dun10 showed a
statistically significant degradation relative to Score12Bicubic, with a p-value of 0.04. The
mean difference of the pNat statistic for this subset (0.06) was similar to the mean difference
over the entire set (0.05).

Table VII shows the results of the ΔΔG benchmark. For each energy function tested, the
starting crystal structures were pre-minimized and then run through the protocol described in
row 16 of Table I in Kellogg et al. (2011). The differences between the four tested energy
functions are very slight. The performance of Score12′ is somewhat degraded relative to
Score12, though this should be weighed against the dramatic improvement Score12′ shows
at sequence recovery (Table II). The other two energy functions perform in the same range
as Score12′.
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At the loop modeling benchmark, the differences between the three methods were slight. To
estimate the significance of the differences, we took 100 bootstrap samples and measured
the three RMSD quartiles. The differences in median RMSDs between Score12 and
Score12Bicubic (p < .74), and Score12Bicubic and Score12Dun10 (p < .11) were not
statistically significant. However, the third quartile improved for both Score12Bicubic and
Score12Dun10; In two cases, (e.g., 1cyo and 1exm, Supplemental Figures 5 and 7), KIC
simulations using Score12Dun10 correctly identified near-native structures by their lowest
energy, where Score12 simulations did not.

It is not immediately clear why the 2010 rotamer library causes a degradation in Rosetta’s
ability to discriminate native structures from decoys. A possible reason for this might be
pointed to in the distribution of off-center χ angles. Structures refined with the new library
have χ-angles more tightly distributed around the reported χ̄i. The 2010 library, which was
generated using more stringent data filters than the 2002 library, reports smaller standard
deviations on average: for example, the mean σ1 for leucine for rotamers in all φ,ψ bins with
probability >5% is 10.8° (with a median of 13.9°) in the 2002 library, but is down to 7.9°
(with a median of 7.2°) in the 2010 library. (For all leucine rotamers, the 2002 library
reports a 13.1° mean, and a 9.9° median; the 2010 library reports a 9.2° mean, and a 9.9°
median). By decreasing the weight on the fa_dun term or by merely weakening the “off-

rotamer penalty” (the  component of Eq. (14)), that the distributions may broaden
and performance at the high-resolution refinement benchmark might improve.
Encouragingly, decreasing the fa_dun weight down to one-half of its Score12 weight does
not substantially worsen rotamer recovery for the 2010 library. There is still significant
work, however, before we are ready to conclude that the new library should be adopted for
general use in Rosetta.

7 Conclusion
Here we have shown three tools that can be used to evaluate and improve the Rosetta energy
function. Comparing features from crystal structures and Rosetta-generated structures can be
used to identify inaccuracies in the Rosetta energy function. New or re-parameterized energy
terms can be rapidly tested with optE to determine if the change improves structure
prediction and sequence design. When a new term is ready to be rigorously tested, we can
test for unintended changes to feature distributions by relying upon the existing set of
feature-analysis scripts, refit reference energies for protein design using the sequence-profile
recovery protocol in optE, and measure the impact of the new term on a wide array of
Rosetta protocols by running the benchmarks curated here.

Of the three changes we benchmarked in this paper, we confidently recommend that the first
two should be adopted: Score12′ should be used in place of Score12, and Score12Bicubic
should be used in place of Score12′.
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Figure 1. HBondFeatures Database Schema
Boxes represent tables in the database and arrows represent foreign-key dependencies. The
HBondFeatures class populates these tables with hydrogen bond data. For each hydrogen
bond site (an acceptor atom, or a polar hydrogen), atomic coordinates, experimental data and
solvent environment are reported. For each hydrogen bond that forms between two hydrogen
bond sites, the geometric properties (i.e., distances and angles) and the sum of the Lennard-
Jones energies for the atoms involved are also reported.
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Figure 2. Workflow for feature analysis
Example usage workflow for the feature analysis tool. Layer 1: Each sample source consists
of a batch of molecular conformations, e.g., experimentally determined or predicted
conformations. Layer 2: Features from each sample source are extracted into a relational
database. Layer 3: Conditional feature distributions are estimated from feature instances
queried from the database. Layer 4: The distributions are compared graphically. Layer 5:
The results of the comparisons are used as scientific benchmarks or to inform modifications
to the structure prediction protocol and energy function, where the cycle can begin again.
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Figure 3. Hydrogen bond A–H Distance Distributions for Hydroxyl Donors (SER/THR) to
Backbone Oyxgens
The thick curves are kernel density estimations from observed data normalized for equal
volume per unit distance. The black curve in the background of each panel represents the
Native sample source. (A) Boltzmann distribution for the A–H distance term in the Rosetta
H-bond model with the Score12 and NewHB parameterizations. (B) Relaxed Natives with
the Score12 energy function. The excessive peakiness is due to a discontinuity in the
Score12 parametrization of the H-bond model. (C) Relaxed Natives with the NewHB energy
function. (D) Relaxed Natives with the NewHB energy function and the Lennard-Jones
minima between the acceptor and hydroxyl heavy atoms adjusted from 3.0 Å to 2.6 Å, and
between the acceptor and the hydrogen atoms adjusted from 1.95 Å to 1.75 Å.
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Figure 4. Backbone Torsion Angles in the Beta-Region with B-Factors less than 30
A. The distribution for the top8000. B. In Score12. density accumulates on the 5° bins due to
derivative discontinuities caused by bilinear interpolation. C. Score12Bicubic has only a few
remaining artifacts on the 10° bin boundaries due to the continued use of bilinear
interpolation for parts of the Dunbrack energy. D. Score12Dun10 has very few remaining
artifacts.
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Figure 5. ASN/ASP χ2 distribution by χ1 bin
Comparison of χ2 distributions for the semirotameric amino acids ASN and ASP, broken
down by χ1 rotamer. Rosetta’s implementation of the 2002 library produces Gaussian-like
distributions for χ2 in relaxed natives (green), though the native distributions do not
resemble Gaussians (red). Using the 2010 library (blue), the distributions improve
considerably though they remain too peaky in places.
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Table I

Each FeatureReporter is responsible for extracting a particular structural feature from a structure and reporting
it to a relational database. The FeatureReporters that are currently implemented are in black while some
FeatureReporters that would be interesting to implement in the future are in gray.

FeatureReporter Classes

Meta

Protocol

Batch

JobData

PoseComments

Experimental Data

PdbData

PdbHeaderData

DDG

NMR

DensityMap

MultiSequenceAlignment

HomologyAlignment

Chemical

AtomType

ResidueType

One Body

Residue

ResidueConformation

ProteinResidueConformation

ProteinBackboneTorsionAngle

ResidueBurial

ResidueSecondaryStructure

GeometricSolvation

BetaTurn

RotamerBoltzmannWeight

ResidueStrideSecondaryStructure

HelixCapping

BondGeometry

ResidueLazaridisKarplusSolvation

ResidueGeneralizedBornSolvation

ResiduePoissonBoltzmannSolvation

Pka

ResidueCentroids

Two Body

Pair

AtomAtomPair

AtomInResidue-
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FeatureReporter Classes

AtomInResiduePair

ProteinBackbone-

AtomAtomPair

HBond

Orbital

SaltBridge

LoopAnchor

DFIREPair

ChargeCharge

Multi Structure

ProteinRMSD

ResidueRecovery

ResiduePairRecovery

ResidueClusterRecovery

Cluster

Multi Body

Structure

PoseConformation

RadiusOfGyration

SecondaryStructure

HydrophbicPatch

Cavity

GraphMotif

SequenceMotif

Rigidity

VoronoiPacking

InterfaceAnalysis

Energy Function

ScoreFunction

ScoreType

StructureScores

ResidueScores

HBondParameters

<EnergyTerm>Parameters
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Table IV

Percent of rotamers recovered by prediction algorithm for Score12 and for the two modifications proposed in
this chapter: the use of bicubic interpolation and the 2010 rotamer library. Column names: pr, pack rotamers;
mp, min pack; rt, rotamer trials; rtm, rt-min. A rotamer is considered recovered if no χ differs from the native
by more than 20°.

Rotamer Recovery Rates

pr mp rt rtm

Score12 66.19 69.07 71.49 73.12

Score12bicubic 66.24 67.51 71.52 73.15

Score12Dun10 67.82 70.50 72.60 74.23
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Table VII

Each change to the energy function has only the mildest of impacts on the measured correlation coefficient.
Though Score12 outperforms Score12′ by a small margin, Score12′ s poor performance at the sequence
recovery benchmark in comparison is much worse. Kellogg et al. (2011) demonstrated that training the
reference energies for ΔΔG prediction yielded modest improvements in correlation, but degrades sequence
recovery considerably (to ~31%). In contrast, training reference energies for sequence recovery yields decent
ΔΔG predictions.

Correlation coefficient R-values from the ΔΔG’s benchmark

Score12 Score12′ Score12Bicubic Score12Dun10

ΔΔG Prediction: R-Value 0.69 0.67 0.68 0.67
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Table VIII

pNat is given by exp(E(nat))/(E(nat) + Σ exp(E(d))) with E(nat) representing the best energy of any structure
under 2Å RMSD from the crystal structure, and d representing any structure greater than 2Å RMSD.
Score12Bicubic shows a small but statistically insignificant improvement over Score12 (p = 0.07). However,
Score12Dun10, which builds on top of Score12Bicubic, performs worse than Score12Bicubic (p=0.01).

High Resolution Refinement Benchmark Results

Energy Function #(pNat > 0.8) Σ pNat #(eNat < eDec)

Score12 67 74.62 104

Score12Bicubic 68 77.88 105

Score12Dun10 60 72.01 104
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Table IX

Performance at the loop modeling benchmark is measured by taking lowest-RMSD of the 5 lowest-energy
structures for each of the loops in the benchmark and computing the median. The first, second (median), and
third quartiles are reported (Å). The median values were not significantly different between the three energy
functions, but Score12Bicubic and Score12Dun10 improved the third quartile RMSD.

Loop-Modeling Benchmark Results

Energy Function First Quartile Median Third Quartile

Score12 0.468 0.637 1.839

Score12Bicubic 0.499 0.644 1.636

Score12Dun10 0.461 0.677 1.463

Methods Enzymol. Author manuscript; available in PMC 2013 July 26.




