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Abstract

Decline in executive functioning (EF) is a hallmark of cognitive aging. We have previously 

reported that faster vagal recovery from cognitive challenge is associated with better EF. This 

study examined the association between vagal recovery from cognitive challenge and age-related 

differences in EF among 817 participants in the Midlife in the U.S. study (aged 35–86). Cardiac 

vagal control was measured as high-frequency heart rate variability. Vagal recovery moderated the 

association between age and EF (β = .811, p = .004). Secondary analyses revealed that older 

participants (aged 65–86) with faster vagal recovery had superior EF compared to their peers who 

had slower vagal recovery. In contrast, among younger (aged 35–54) and middle-aged (aged 55–

64) participants, vagal recovery was not associated with EF. We conclude that faster vagal 

recovery from cognitive challenge is associated with reduced deficits in EF among older, but not 

younger individuals.
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Decline in executive functioning (EF) is a hallmark of cognitive aging (Jurado & Rosselli, 

2007; Lachman, Agrigoroaei, Murphy, & Tun, 2010; Royall et al., 2002; Tun & Lachman, 

2006, 2010). EF is a higher order cognitive ability that is essential for planning, executing, 

and monitoring complex goal-directed behaviors in novel situations. The formal definition 

and components of EF are still disputed (Jurado & Rosselli, 2007; Packwood, Hodgetts, & 

Tremblay, 2011; Royall et al., 2002), and the concept has been criticized for its lack of 

clarity and excess of terms (e.g., Jurado & Rosselli, 2007; Miyake et al., 2000). Four 

cognitive structures, partially controlled by the prefrontal cortex (PFC), are essential for 

executive function: attention, working memory, preparatory task set, and response 

monitoring (Barkley, 1997). Studies also emphasized the importance of shifting mental sets, 

updating/monitoring information, and response inhibition (Miyake et al., 2000) among a 

wide spectrum of other cognitive abilities (see Jurado & Rosselli, 2007; Packwood et al., 

2011; Royall et al., 2002 for the review). Although these three cognitive abilities are distinct, 

they are also interrelated, so EF may be viewed as both unitary and nonunitary construct 

(Miyake, Emerson & Friedman, 2000). The exact nature of EF as a unitary (Duncan, Emslie, 

Williams, Johnson, & Freer, 1996; de Frias, Dixon, & Strauss, 2006) or non-unitary 

construct (Godefroy, Cabaret, Petit-Chenal, Pruvo, & Rousseaux, 1999) is, however, still 

disputed. In the analysis of over 60 studies of executive function, Packwood, Hodgetts, and 

Tremblay (2011) proposed a functional EF definition in such a way that EF could be viewed 

as a system responsible for executing a task, determining rules, and guiding behavior; this 

definition is similar to the g factor definition of intelligence.

According to the inhibitory deficit theory of cognitive aging, a deficit in the inhibitory 

control system may be the main underlying reason for age-related deficits in EF (Hasher, 

Lustig, & Zacks, 2007; Hasher & Zacks, 1988). Set shifting is negatively influenced by 

advancing age (Wecker et al., 2005), although the evidence has been contradictory 

(Salthouse et al., 2000). Although age-related deficits in EF are extensively documented, 

evidence suggests that age-related decline in EF is not universal. Importantly, studies find 

greater individual differences in EF among older adults than among their younger 

counterparts (Ardila, 2007; Jurado & Rosselli, 2007). Therefore, the effort to identify 

contributors to the heterogeneity in EF among older individuals is an important research 

focus.

Cardiac vagal control (CVC), a measure of parasympathetic nervous system function, 

appears to be one factor contributing to the differences in EF in older cohorts. CVC has been 

viewed as an index of behavioral flexibility and ability to adapt to environmental challenges 

(Porges, 2007; Thayer & Lane, 2009; Thayer, Åhs, Fredrikson, Sollers Iii, & Wager, 2012). 

CVC is measured as heart rate variability (HRV; Task Force of the European Society of 

Cardiology and the North American Society of Pacing and Electrophysiology, 1996). High-

frequency (0.15–0.4 Hz) power of HRV is considered to be one of the most accurate 
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measures of CVC (Task Force of the European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology, 1996). Cross-sectional research has 

shown a positive association between CVC and EF (Hansen, Johnsen, & Thayer, 2003); 

while studies that used aerobic exercise training interventions demonstrated an increase in 

CVC and improved EF in sedentary older individuals (Albinet, Boucard, Bouquet, & 

Audiffren, 2010). The rationale for linking CVC and EF is provided by the neurovisceral 

integration model that holds that both CVC and EF are governed by the same network of 

brain regions controlled by PFC (Thayer & Lane, 2009). Indeed, emerging evidence has 

linked activation of prefrontal cortical structures to CVC (Gianaros, Van Der Veen, & 

Jennings, 2004; Shapiro et al., 2000). A number of methodological issues, however, limit the 

interpretation of these previous findings, including small sample size, restriction in age 

range within the study cohort (Albinet et al., 2010; Hansen et al., 2003), inclusion of only 

male participants (Hansen et al., 2003) and absence of dynamic CVC assessments, such as 

the size and duration of vagal response to stress (Albinet et al., 2010). According to 

polyvagal theory (Porges, 2007), dynamic changes in CVC in response to psychological 

stress reflect can be used as an index of attentional control and effort (Tattersall & Hockey, 

1995; Croizet, Despres, & Gauzins, 2004). There is preliminary evidence that cardiovascular 

recovery from psychological stress may be a stronger predictor of cardiovascular morbidity 

than reactivity (Heponiemi et al., 2007; Stewart, Janicki, & Kamarck, 2006). Moreover, 

dynamic assessments of CVC may improve the ecological validity of the findings. Since 

HRV is viewed as an index of adaptability to the constantly changing environment, HRV 

dynamics may better reflect behavioral flexibility and adjustment than resting HRV. The aim 

of this study was therefore to investigate CVC as one contributor to the observed 

heterogeneity in EF among older individuals, using a more representative sample and 

including dynamic CVC assessments, such as vagal recovery from psychological stress.

Using a sample of 817 (aged 34–86 years) participants from the second wave of the Midlife 

in the U.S. study (MIDUS II), we have recently reported a significant positive association 

between vagal recovery from cognitive challenge and EF (evaluated as task switching) that 

was not seen in either global EF factor or in any of the four other cognitive tests comprising 

this factor (i.e., speed of processing, working memory, verbal ability and speed, fluid 

intelligence; Kimhy et al., 2013). The present investigation extends and expands upon this 

finding by focusing on age differences and examining whether vagal recovery moderates 

age-related deficits in EF (evaluated as task switching). Because Kimhy et al. (2013) did not 

find any association between CVC dynamics and EF evaluated as a global factor, we do not 

address age-related differences in the links between CVC dynamics and EF factor (or any of 

its other four components), but focus exclusively on task switching instead. Specifically, we 

hypothesized that while older individuals would overall perform worse on the task-switching 

test compared to their younger counterparts, those older individuals who demonstrated faster 

vagal recovery from cognitive challenge would perform better on the task-switching test 

compared to their peers who demonstrated slower vagal recovery from cognitive challenge. 

We expected to observe this effect before and after controlling for respiratory rate.
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Methods

Participants

The data for the current study are from the second wave of MIDUS II, a 9-year follow-up of 

the MIDUS I cohort. Our sample is based on those MIDUS respondents for whom we had 

assessments of EF and who also participated in the psychophysiology protocol. Of note, our 

report uses the same sample as utilized in Kimhy et al. (2013; N = 817).

Procedures and Measures

Assessments of executive function and psychophysiology protocol—EF was 

evaluated using the Stop and Go Switch Task (SGST; Tun & Lachman, 2006, 2010). Briefly, 

the SGST is an executive-function test that taps key abilities of attention switching and 

inhibitory control. The test includes two single-task blocks and a mixed-task block that 

requires switching between two sets of response rules. A minimum of 75% accuracy on each 

of the SGST conditions was required for inclusion in analyses, in order to ensure that the 

participants were performing the task correctly. Following Kimhy et al. (2013) and the 

approach used in the previously published MIDUS reports (Agrigoroaei & Lachman, 2011), 

we used the average reaction time to the switch and nonswitch trials of the mixed-task block 

as our measure of EF.

The psychophysiology protocol was administered in the morning after a light breakfast with 

no caffeinated beverages. ECG electrodes were placed on the left and right shoulders, and in 

the left lower quadrant. Respiration bands were put on chest and abdomen. The participant 

was seated, and a keypad for responding to the stress tasks was secured in a comfortable 

position relative to the dominant hand. The stressors used included a Mental Arithmetic task 

(Turner et al., 1986) and the Stroop color-word conflict task. Both tasks were computer-

administered (see Figure 1). Task order was counterbalanced. Responses were entered on a 

keypad, and participants were instructed to remain silent throughout the procedure. At the 

start of the experimental period, including recovery, the participants provided verbal stress 

ratings on a scale of 1–10 (just one number was given to the experimenter) and then they 

were reminded to remain silent. At the end of the each stress task and immediately prior to 

the start of the recovery period, the participants were instructed to “please sit quietly and try 

to relax.” The recovery period consisted of sitting in the same position with no distractions 

present. The experimenter was present in the room during the entire protocol.

Assessments of EF were performed 1–61 months (average 24.18 ± 14.09 months) prior to 

the psychophysiology protocol. Table 2 describes age-related differences in this time lag. 

These differences were significant, F(2, 814) = 3.36, p = .04. Therefore, we controlled for 

the time lag in all analyses.

CVC was evaluated using high-frequency (HF) HRV (Berntson et al., 1997). Following 

previously reported procedures (Crowley et al., 2011; Kimhy et al., 2013; Shcheslavskaya et 

al., 2010), analog ECG signals were digitized at 500 Hz by a National Instruments A/D 

board and passed to a microcomputer for collection. The ECG waveform was submitted to 

an R-wave detection routine implemented by proprietary event detection software, resulting 

in an RR interval series. Errors in marking R-waves were corrected interactively (Dykes et 
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al., 1986). Spectral power in the high-frequency (0.15–0.50 Hz [HF]) band was computed. 

Spectra were calculated on 60-s epochs using an interval method for computing Fourier 

transforms similar to that described by DeBoer, Karamaker, and Strackee (1984). Prior to 

computing Fourier transforms, the mean of the RR interval series was subtracted from each 

value in the series and the series was then filtered using a Hanning window (Harris, 1978) 

and the power, that is, variance (in ms2), over the low frequency and HF bands was summed. 

Estimates of spectral power were adjusted to account for attenuation produced by this filter 

(Harris, 1978). Respiratory rate was also calculated based on 1-min epochs. Because HF 

data were skewed, natural log transformation was performed prior to the statistical analysis.

Assessment of vagal recovery—Following previously reported procedures (Crowley et 

al., 2011), we averaged ln HF data for both challenges, associated recovery periods, and 5 

min to 10 min of the baseline period (Kamarck, 1992). Vagal recovery was computed by 

subtracting aggregated ln HF during the two challenges from the aggregated ln HF during 

the two associated recovery periods. Thus, greater number represented larger post-stress 

increases in ln HF.

Statistical Analysis

Data were analyzed using SPSS PASW (Predictive Analytics Software, version 18) and SAS 

(Statistical Analysis Software, version 9.2). To facilitate interpretation of our results, we 

reversed the reaction time to the task-switching test, so greater value represented faster 

reaction time (i.e., superior EF). Using multiple linear regression, we tested a model that 

included main effects for age, vagal recovery, and the Age × Vagal recovery interaction (the 

latter term to capture the hypothesized moderating effect of age) as predictors of EF. To 

adjust for the effects of vagal reactivity and age-related differences in vagal reactivity (as 

greater age was significantly negatively associated with vagal response to cognitive 

challenges), we also entered vagal reactivity (computed by subtracting averaged ln HF 

during the challenges from the baseline ln HF), and the Age × Vagal reactivity interaction in 

the model.

All analyses were adjusted for the time (in months) between the EF assessments and the 

Psychophysiology Protocol, and for the demographic, lifestyle, and medical factors 

influencing CVC and EF. Following a classification scheme we used previously with 

MIDUS data (Crowley et al., 2011; Shcheslavskaya et al., 2010), we classified menopausal 

status as pre-, peri-and postmenopausal, with premenopausal status serving as a reference in 

the model. To control for 10 diseases and medications that can alter CVC and EF (detailed in 

Table 1), we created a dummy variable that categorized the participants as either (1) having 

at least one of these diseases or taking at least one of these medications or (2) disease and 

medication-free. We created three continuous exercise/physical activity variables (vigorous, 

moderate, and light; in hours per week) to adjust for the three respective types of exercise/

physical activity evaluated separately in MIDUS II. For smoking status, we created three 

dummy variables; two of them (current smoker and ex-smoker) were entered in the model, 

while the third (never smoked) served as a reference category. Table 1 provides description 

of these covariates.
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Analyses were conducted in four steps. We entered (1) age, vagal recovery, and Age × Vagal 
recovery as predictors of EF (adjusting for vagal reactivity, Age × Vagal reactivity, and the 

time lag between the Cognitive and the Biomarker Projects); and then further adjusted our 

model, first for the effects of (2) demographic covariates, then sequentially (3) biological 

covariates (diseases and medications affecting CVC are described in Table 1), and (4) health 

behaviors.

As HRV is known to be influenced by respiration (Grossman, Wilhelm, & Spoerle, 2004), 

we followed the standard approach used in the literature (Crowley et al., 2011; Cyranowski, 

Hofkens, Swartz, Salomon, & Gianaros, 2011; Sloan et al., 2001) and conducted the 

analyses before and after adjusting for respiratory rate. To adjust for respiration, we 

conducted within-subject regression analyses with respiratory rate as a predictor of ln HF on 

a minute-by-minute basis (Crowley et al., 2011; Kimhy et al., 2013; Sloan et al., 2001). We 

used the resulting unstandardized residual scores as an estimate of the variance in ln HF that 

cannot be explained by the effect of respiratory rate, and replicated all analyses using this 

estimate.

Results

Sample and Measures

The demographic, biological, and lifestyle characteristics of the sample are described in 

Table 1. As illustrated by Figure 2, CVC declined from baseline to the task and then 

increased during the recovery period; these changes were observed before and after 

adjusting for respiratory rate (4.93 ± 1.21, 4.59 ± 11.12, 4.99 ± 1.14 Hz; and 5.77 ± 1.79, 

4.39 ± 1.46, 6.00 ± 1.74 Hz, respectively). Figure 2 also shows CVC changes for the each 

age-group.

We observed substantial age-related deficits in EF as evidenced by the significant negative 

correlation between age and average reaction time to the switch and nonswitch trials of the 

mixed-task block of the SGST test (r = −.274, p = .000). Table 3 describes age-related 

differences in EF. Age also correlated negatively with vagal reactivity and vagal recovery 

before (r = −.098, p = .006; r = −.086, p = .014, respectively) and after (r = −.142, p = .000; r 
= −.121, p = .001, respectively) adjusting for respiratory rate. Table 4 describes the 

correlations between CVC and baseline, task, and recovery periods before and after 

adjusting for respiratory rate, respectively.

The Moderating Effect of Vagal Recovery on the Association Between Age and EF

Regression analyses controlling for the time lag between the EF assessments and 

administration of the psychophysiology protocol, vagal reactivity, and age-related 

differences in vagal reactivity demonstrated that age, vagal recovery, and the Age × Vagal 
recovery interaction were significantly associated with EF (see Table 5, Step 1). All effects 

remained significant in models controlling for demographic, biological, and health behavior 

covariates (Table 5, Steps 2–4). Therefore, vagal recovery moderated the association 

between age and EF.
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To understand the nature of this moderating effect, we next sought to examine the 

relationship of vagal recovery to EF among three age-groups: younger (35–54 years; n = 

354), middle-aged (55–64 years; n = 260), and older (65–86 years; n = 203) adults. We next 

reran the moderation models using age-group as a categorical variable to estimate the slopes 

and the intercepts for the younger, middle-aged, and older groups, with the three intercepts 

centered on the grand mean. In this model, the interaction term of Age-group × Vagal 
recovery was significantly associated with EF (p = .016). The three slopes resulting from 

this effort visually portrayed the differential strength with which vagal recovery was 

associated with EF for younger, middle-aged, and older individuals. As illustrated by Figure 

3, vagal recovery related significantly to EF among older participants (p = .002), but not 

among their younger and middle-aged counterparts (p = .740, p = .115, respectively). After 

adjusting for respiratory rate, the findings remained significant (Table 5). As before, the term 

of Age-group × Vagal recovery significantly predicted EF (p = .012). Specifically, Figure 3 

demonstrates that, greater post-challenge increases in CVC were associated with faster 

reaction time to the EF task among older participants (p = .0002), but not among their 

younger and middle-aged counterparts (p = .172, p = .240, respectively).

Discussion

The primary finding of the present report highlights the role of vagal recovery in moderating 

age-related EF deficits, particularly among older individuals. Although these associations 

have been documented previously, previous investigations were limited by samples that were 

small in size (Albinet et al., 2010; Hansen et al., 2003), consisted of only male participants 

(Hansen et al., 2003), restricted the age within the study cohort (Albinet et al., 2010; Hansen 

et al., 2003), and relied exclusively on the assessments of the resting CVC levels (Albinet et 

al., 2010). Our results extend these findings by demonstrating this association in a large, 

demographically heterogeneous sample and for using dynamic CVC assessments, such as 

recovery from psychological stress. Although greater age was associated with significantly 

longer reaction time to the task-switching test, those older adults who had faster vagal 

recovery from cognitive challenge had faster reaction time compared to their peers who had 

slower vagal recovery. Adjusting for respiratory rate did not change this finding. Task 

switching, a task that encompasses attention switching and inhibitory control, the key 

components of EF, may be the purest measure of EF available in the MIDUS data set (Tun & 

Lachman, 2010). Indeed, the correlation between the task-switching test and the Trail 

Makings A and B measures (r = .32, r = .43, respectively) and Digit Symbol Substitution (r 
= −.47) measures, the established standards for EF assessment, was stronger than the 

respective correlations between these measures and other tests in the MIDUS II cognitive 

battery that tap EF, such as speed of processing, working memory, verbal ability and speed, 

and fluid intelligence (Tun & Lachman, 2010).

As we observed the association between EF and vagal recovery only among older 

individuals, our results offer limited support to the neurovisceral integration theory. If CVC 

and EF are associated, because both are governed by the same network of brain regions 

controlled by PFC, it is not clear why the association between vagal recovery and task 

switching was restricted to just one age-group. Interestingly, previous studies found 

significant age-related differences in PFC activation during performance on executive 
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function tasks. For example, Smith et al. (2001) reported that older adults (aged 65–72) and 

younger adults (aged 18–29) who performed poorly on a task-switching test recruited left 

PFC during their performance, but younger adults who performed well did not show this 

prefrontal activation. If the younger MIDUS II participants had little or no left PFC 

activation during the psychophysiology protocol and EF assessments, while older 

participants had greater left PFC activation, this may have contributed to the fact that we 

only saw the association between vagal recovery and EF in older participants. However, PFC 

activation was not evaluated in the psychophysiology protocol. Thus, we do not have 

sufficient evidence to conclude whether our results are consistent with the neurovisceral 

integration theory. Of note, faster vagal recovery may be considered not a mechanism, but 

rather a marker of better EF among older individuals. Specifically, vagal recovery may 

reflect another moderator that influences EF among older individuals. In other words, age 

may serve as a proxy for another moderating variable, particularly given the unique size and 

representativeness of our sample. Age-related differences in the association between CVC 

and EF may also be explained by the greater variability in EF among older participants. 

Indeed, previous studies showed that older individuals have greater heterogeneity in 

cognitive functioning compared to their younger counterparts (Ardila, 2007).

Our results may be interpreted within the context of the previous evidence linking 

cardiovascular functioning in older adults to their performance on cognitive tasks. Thus, 

Pearman and Lachman (2009) found that faster heart rate recovery from a challenge that 

evaluated working memory was associated with better performance on that challenge among 

older adults (aged 60–85 years), but not among their younger counterparts (aged 18–23 

years). Keary et al. (2012) found that slower heart rate recovery was associated with poor 

performance on EF tests that assessed speed of processing among older adults (aged 53–83 

years). Our study adds to this evidence by reporting the link between vagal recovery and 

executive function among older individuals.

Our results have implications for future investigations. Future studies should address 

whether older MIDUS participants with faster vagal recovery and better EF had overall 

superior level of functioning within their age-group. Of note, a recent analysis of the impact 

of social, mental, and physical activities on the association between risk factors for 

cardiovascular disease and cognitive and neuroendocrine functioning reported that older 

MIDUS participants (aged 60–84 years) who engaged in physical activities (defined as 

frequency of engaging in leisurely sports, such as light tennis, slow or light swimming, low-

impact aerobics, golfing without a power cart, brisk walking, and mowing the lawn with a 

walking lawnmower during summer and winter time) more frequently had better episodic 

memory compared to their less physically active peers (Lin, Friedman, Quinn, Chen, & 

Mapstone, 2012). Thus, physical activity may have protective effect on certain aspects of 

cognitive functioning. Recent reports indicate such benefits also extend to clinical 

populations, even those with severe psychopathology (Kimhy et al., 2014, 2015).

The limitations of this study should be considered. An important conceptual limitation of 

our study is that the PFC control of HR is attenuated in older individuals (Thayer et al., 

2009), which questions the relevance of the neurovisceral integration model as a conceptual 

framework for our study. We do not, however, know about either age-related differences in 
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the PFC control of HF power of HRV, which reflects the vagal contribution to HR (Task 

Force of the European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology, 1996), or age-related differences in the PFC control of the CVC 

dynamics, such as recovery from psychological stress. Another limitation of our study is 

methodological in nature. Assessments of EF and CVC recovery were separated in time, and 

while we adjusted for this time lag in all our analyses, it still may have influenced our 

findings. There is a possibility of the potential confound of longer intervals for those 

participants who experienced greater EF decline. Indeed, EF might have declined at a 

different rate among older participants in the MIDUS study. Also, older participants who 

report better health had higher retention rates in the MIDUS study compared to their peers 

who reported better health (Radler & Ryff, 2010), thereby limiting the interpretation of our 

findings. We did not have data on the intensity of fitness training or aerobic fitness among 

MIDUS participants and relied on self-reported amount of time spent performing tasks that 

required different physical activity levels. The absence of information about the menstrual 

cycle, an important determinant of CVC (McKinley et al., 2009), further limits our results.

Conclusion

In summary, we found that faster vagal recovery from cognitive challenge is associated with 

attenuation of age-related deficits in EF, as reflected in reaction time to a task that tapped 

switching and inhibitory control. Therefore, vagal recovery may be one contributor to 

heterogeneity in EF in older individuals, a prominent feature of age-related EF decline.
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Figure 1. 
Psychophysiology protocol.

Crowley et al. Page 14

Res Aging. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Age-related differences in cardiac vagal control (CVC) during the psychophysiology 

protocol.
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Figure 3. 
(a) Age-related differences in the relationship of vagal recovery to task switching: Before 

adjusting for respiratory rate. (b) After adjusting for respiratory rate.
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Table 1

The Sample’s Demographic and Clinical Characteristics.

N (%) Mean (SD)

Age 817 (100%) 57.11 (11.15)

Sex Male 361 (44.2%) N/A

Female 456 (55.8%)

Education Some high school (no diploma/no GED) 26 (3.2%) N/A

Graduated from high school or received GED 165 (20.2%)

1–2 years of college, no degree yet 136 (16.6%)

3 or more years of college, no degree yet 33 (4%)

Graduated from 2-year college, vocational school 
associate degree

65 (8%)

Graduated from a 4- or 5- year college, or 
bachelor degree

194 (23.7%)

Some graduate school 37 (4.5%)

Master’s degree 123 (15.1%)

PhD, EdD, MD, LLB, JD, or other professional 
degree

35 (4.3%)

Body Mass Index (BMI) 817 (100%) 29.05 (5.92)

Diseases altering cardiac autonomic functioning High blood pressure 237 (29%) N/A

Heart disease 72 (8.8%)

Diabetes 76 (9.3%)

Circulation problems 44 (5.4%)

TIA or stroke 20 (2.4%)

Depression 145 (17.7%)

Cholesterol problems 320 (39.2%)

Asthma 87 (10.6%)

Emphysema/COPD 25 (3.1%)

Thyroid disease 95 (11.6%)

Have any of the diseases listed above Yes 580 (71%) N/A

No 237 (29%)

Medications altering cardiac autonomic control CVC 250 (30.6%) N/A

Cardiac sympathetic control 104 (12.7%)

Take any of the medications listed above Yes 538 (65.9%) N/A

No 279 (34.1%)

Have any of the diseases/take any of the medications 
listed previously

Yes 609 (74.5%) N/A

No 208 (25.5%)

Menopausal status Premenopausal 130 (15.9%) N/A

Perimenopausal 38 (4.7%) N/A

Postmenopausal 287 (35.1%) N/A

Smoking Never 461 (56.4%) N/A

Current smoker 87 (10.6%)

Ex-smoker 269 (32.9%)
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N (%) Mean (SD)

Exercise/physical activity (hours per week per person) Vigorous 817 (100%) .98 (3.01)

Moderate 817 (100%) 2.77 (5.56)

Light 817 (100%) 1.72 (4.48)

Note. COPD = chronic obstructive pulmonary disease; CVC = cardiac vagal control; GED = general equivalency diploma; TIA = transient ischemic 
attack.
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Table 2

Age-Related Differences in Time Lag Between the Cognitive Assessments and the Psychophysiology 

Protocol.

Age-Group (years old) Time Lag (months)

35–54 25.05 ± 14.81

55–64 24.70 ± 13.90

65–86 21.98 ± 12.83
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Table 3

Age-Related Differences in EF.

Age-Group (years old) Mean EF (reaction time, in seconds; not reversed)

35–54 0.99 ± .17

55–64 1.05 ± .20

65–86 1.11 ± .21

Note. EF = executive functioning.
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Table 4

Correlations between ln HF at Baseline, Task, and Recovery Values: Before Adjusting for Respiration and 

After Adjusting for Respiration.

ln HF at baseline (last 6 min) ln HF during the task

Before adjusting for respiration

 ln HF during the task r = 0.86, p < .0001

 ln HF during recovery r = 0.93, p < .0001 r = 0.86, p < .0001

After adjusting for respiration

 ln HF during the task r = 0.72, p < .0001

 ln HF during recovery r = 0.9, p < .0001 r = 0.9, p < .0001

Note. HF = high frequency.
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Table 5

The Impact of Age, Vagal Recovery, and their Interaction on EF: Before Adjusting for Respiratory Rate and 

After Adjusting for Respiratory Rate.

Predictor Unstd. β SD β p

Before adjusting for respiratory rate

Step 1 (time lag)

 Vagal recovery −.238 .084 −.655 .005

 Age −.006 .001 −.357 .000

 Vagal recovery × Age .005 .001 .761 .001

Step 2—Demographic covariates (time lag, sex, and education)

 Vagal recovery −.253 .083 −.696 .003

 Age −.006 .001 −.344 .000

 Vagal recovery × Age .005 .001 .798 .000

Step 3—Biological covariates (time lag, sex, education, BMI, and diseases/medications)

 Vagal recovery −.252 .084 −.693 .003

 Age −.005 .001 −.307 .000

 Vagal recovery × Age .005 .001 .795 .000

Step 4—Health behavior covariates (time lag, sex, education, BMI, diseases/medications, smoking, and exercise)

 Vagal recovery −.254 .084 −.699 .003

 Age −.005 .001 −.311 .000

 Vagal recovery × Age .005 .001 .799 .000

After adjusting for respiratory rate

Step 1—(time lag)

 Vagal recovery −.112 .056 −.571 .048

 Age −.008 .001 −.437 .000

 Vagal recovery × Age .003 .001 .736 .009

Step 2—Demographic covariates (time lag, sex, and education)

 Vagal recovery −.124 .056 −.635 .027

 Age −.007 .001 −.418 .000

 Vagal recovery × Age .003 .001 .795 .004

Step 3—Biological covariates (time lag, sex, education, BMI, and diseases/medications)

 Vagal recovery −.128 .056 −.654 .023

 Age −.007 .001 −.383 .000

 Vagal recovery × Age .003 .001 .809 .004

Step 4—Health behavior covariates (time lag, sex, education, BMI, diseases/medications, and smoking, exercise)

 Vagal recovery −.129 .056 −.658 .023

 Age −.007 .001 −.389 .000

 Vagal recovery × Age .003 .001 .811 .004

Note. Unstd. = unstandard.
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