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Abstract 
 

With two experiments, we begin an inquiry into the 
perceived explanatory value of mathematical entities in 
everyday explanations. This work is motivated by a 
philosophical debate about the role mathematical entities 
play in explanation. Simply put, are the mathematical 
entities themselves explanatory, or is mathematical talk 
elliptical or shorthand for talk about the physical entities we 
are concerned with?  Across the two experiments, we found 
clear evidence that situational factors affected how the 
mathematical entities were considered. However, when 
those situational factors are accounted for, participants 
tended to see more explanatory value for mathematical 
entities that point to other objects involved in the explanation 
as opposed to mathematical entities that assume the 
explanatory role themselves. 
 
Keywords: explanation; mathematical explanation; 
indispensability argument; nominalism; platonism 

 
As scientists, we often appeal to mathematical entities 
within the explanatory frameworks we adopt. These 
entities can take a variety of forms, from simple numerals 
(e.g., ‘7’ and ‘thirty’) and functions (e.g., ‘f(x)’) to complex 
computational models. Most cognitive scientists, but by no 
means all, recognize the usefulness of this mathematical 
information, and there has been extensive commentary on 
its role and how it should be interpreted. In recent years, 
philosophers have taken up this question with an increased 
focus on historical and contemporary case studies in the 
natural sciences (e.g. Lange, 2016; Pincock, 2011). 
However, outside of these formal, scientific frameworks, 
there is arguably a less well developed sense of what role 
mathematical entities play in explanations.   

In this paper, we consider how a live philosophical 
debate about the explanatory role of mathematical entities 
relates to everyday explanations. Do mathematical entities 
contribute to the explanatory work themselves or are they 
“merely” drawing out the structure necessary for the 
explanation, identifying the relevant conceptual entities 
that are actually doing the explanatory work? 

Within philosophy of mathematics, platonists affirm the 
existence of mind-independent and abstract mathematical 
objects, while nominalists deny that there are any such 

entities (see Cowling, 2017, for a general discussion of the 
platonist-nominalist debate). An influential line of 
argument in defense of platonism is the “Indispensability 
Argument”, which posits that an ontological commitment 
to mathematical entities of the sort held by platonists is 
warranted because mathematical entities like numbers and 
functions play an indispensable explanatory role (Colyvan, 
1998). Put differently, platonists make a claim about what 
exists—namely, that along with concrete entities like 
electrons and tables, there are also imperceptible, non-
spatiotemporal mathematical entities. In contrast, 
nominalists deny that mathematical entities exist while 
acknowledging that we must nevertheless explain their 
usefulness in explanations. We examine whether this 
distinction that has motivated philosophical debate plays a 
role in everyday explanation. 

In most scientific frameworks, mathematical entities are 
used to provide formal descriptions of processes and 
components theorized within conceptual frameworks. For 
instance, in the categorization literature numerous 
mathematical models have been proposed to account for 
how individuals organize items into coherent classes. 
These models vary from rather simple computations of 
feature overlap among the items to complex systems of 
probabilistic computation. They employ mathematical 
entities in a variety of ways, but there is no assumption that 
the explanatory value of the models rests on a commitment 
to the existence of those mathematical entities. Instead, the 
mathematical entities reference the things, e.g. the features, 
that are doing the explanatory work.  We describe this 
approach as a nominalist friendly (NF) position. On 
nominalism and the various accounts that have been 
developed to account for mathematical explanation, see 
Burgess and Rosen (1997). 

One can also accept an ontological commitment to the 
mathematical entities and allow them to assume 
explanatory relevance. In this case, the mathematical 
entities themselves ground the explanation as opposed to 
simply representing the physical-causal entities and their 
relations. For instance, consider the explanation for why 
certain species of cicadas emerge from their nymph state in 
either 13 or 17 year cycles. The explanation for these life 
cycles can be understood in terms of avoiding predation 
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(the cicadas would evolve to have a life cycle that 
minimizes overlap with the life cycle of predators), but that 
explanation ultimately rests on the fact that 13 and 17 are 
prime numbers. The mathematical reality of prime 
numbers is that they cannot be factored. The explanation 
for the life cycle of these species of cicada thus relies on a 
commitment to the mathematical entities as having 
particular qualities and would therefore be no less real or 
existent than familiar objects like chairs and racecars 
(Baker, 2005). We describe this stance as a platonist 
friendly (PF) position. 

We use this philosophical debate to background an initial 
inquiry into how lay people use and evaluate mathematical 
entities in everyday explanations. We want to be clear that 
we do not think that people ponder the ontological 
commitments they are making as they produce or evaluate 
these kinds of explanations. However, there may be an 
effect tied to whether the explanations induce genuine 
ontological commitments to mathematical entities. Indeed, 
platonists who endorse the indispensability argument 
standardly assert that, without PF-friendly claims, certain 
proposed explanations will seem non-explanatory and that, 
generally, PF explanations are superior to NF explanations 
(Colyvan, 2018). As we consider below, whether the 
mathematical entities are represented with regard to their 
number theoretic value or are merely non-referring 
placeholders for information about the items they reference 
will, according to platonists, impact explanatory processes. 

Psychologists have examined why people engage in 
explanation, what implications explaining has for other 
cognitive activities, and what cognitive structures underlie 
explanation. There is evidence that people value 
explanations that are simple and provide coverage in terms 
of how widely the explanation can be applied (Lombrozo, 
2012). There is also evidence that explanatory processes 
rely on structured internal representations (Chin-Parker & 
Bradner, 2017; Johnson, Johnston, Koven, & Keil, 2018). 
These two aspects of explanation suggest that the 
ontological commitment could indeed play a role in how 
people regard explanations. For instance, if an explanatory 
relationship is represented in terms of the number 
theoretical values (e.g. 5 < 6), it might be considered 
simple and widely applicable. If the mathematical entities 
facilitate the kind of structured representations implicated 
in explanatory processes, there could be a preference for 
PF explanations. 

However, insights from the psychological study of 
mathematical reasoning complicate this simplistic 
rendering of the situation. This literature is vast, so we 
focus here on two issues. First, there is variability in the 
ability of people to use and understand mathematical 
information (Rittle-Johnson, 2017). This variability in 
mathematical reasoning would likely impact whether an 
individual is able to easily use the mathematical 

information to instantiate the requisite representations that 
the explanatory processes operate over. Second, how the 
information is presented also impacts mathematical 
reasoning (Koedinger, Alibali, & Nathan, 2008). In a 
simple problem, people tend to be more successful when 
the relevant information is grounded, when it has a clear 
relationship to concrete referents. When the information is 
presented in a more abstract manner, e.g. algebraic 
notation, people are less able to solve the problem. At the 
same time, the more abstract mathematical entities can 
facilitate more complex mathematical reasoning. Given 
these patterns, we expect the type of explanation may 
interact with the content of the explanation. 

We use the logical form of the sentence to determine the 
ontological commitment of a mathematical statement. For 
example, ‘Thirteen is prime’ is PF because it entails that 
there is something that is prime, which is logically 
equivalent to the claim that thirteen—a mathematical 
entity—exists. A NF stance would, consequently, be one in 
which mathematical terms only appear in non-subject 
positions—e.g., ‘There are thirteen dogs’. Here, 'thirteen' 
merely modifies the subject, dogs, and the sentence directly 
entails that there are dogs, but does not, without auxiliary 
logical assumptions, entail that there is a number thirteen. 
We note, however, that this assumption is a familiar point 
of controversy among philosophers and linguists and it is 
far from clear that lay persons are sensitive to the complex 
relationship between syntactic position and ontological 
commitment even if such a view is defensible upon 
sustained philosophical analysis (see Hofweber, 2016, for 
a recent discussion). In taking on this account of 
ontological commitment for the present study, we are, in 
part, investigating whether certain factors that philosophers 
of mathematics to take to be of paramount importance are 
represented in everyday explanatory practices.  

To begin our inquiry (Experiments 1a and 1b), we asked 
participants to generate, and subsequently evaluate, 
explanations for a series of scenarios. The scenarios varied 
in terms of their content so that we could assess the 
generalizability of the participants’ ontological 
commitments across situations. By asking the participants 
to both generate and evaluate explanations, we were also 
able to assess whether those commitments vary across 
different explanatory processes. Thus, the first experiments 
allowed us to examine whether there is a consistent 
preference for one type of explanation over the other, or 
whether the explanation and, in turn, commitment to 
mathematical entities varies between individuals, 
situations, and how the information is used. Because of the 
exploratory nature of this inquiry, we focus on describing 
the patterns of participant responses relevant to these topics 
as opposed to testing a priori hypotheses. 

Experiment 2 presents a more controlled examination of 
the issue. We used modified versions of the cicada life-
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cycle scenario (Baker, 2005) and asked participants to rate 
the explanatory value and complexity of various 
explanations the cicada life cycle. As prior, the 
explanations varied in terms of whether the mathematical 
entities made a NF or PF commitment. Also, we varied 
whether the mathematical terms were developed using a 
more or less specific example. This manipulation was 
intended to affect the ease with which participants could 
represent the information provided in the explanation.  

When the explanation was developed using a more 
specific example, we expected that the participants should 
find the explanation to be less complex and they should 
give higher explanatory ratings for PF explanations. This 
prediction rests on the idea that the grounded mathematical 
terms could be more easily incorporated into an internal 
representation and the PF explanation would provide better 
coverage because it reflects the existence of those entities. 
However, when the explanation was developed with a less 
specific example, we expected that the participants would 
rate it as more complex and they should give higher 
explanatory ratings for the NF explanations. If the 
participant has more difficulty representing the situation 
due to the development of the mathematical terms, an 
explanation that does not rely on the existence of those 
mathematical terms should be seen as more explanatory.  

In sum, we predict a main effect of the information in the 
explanation (specific vs. non-specific) on the complexity 
ratings, and an interaction between the development and 
the ontological commitment (PF vs. NF) for the 
explanatory ratings. These predictions rest on the 
assumption that the explanatory value will reflect both the 
generalizability and simplicity of the explanation. In order 
to get a better understanding of the individual differences 
in play, we also asked participants to report their comfort 
with mathematics and belief about the existence of 
mathematical entities. 

 
Experiments 1a and 1b 

Methods 
Participants Undergraduate students participated as 
partial fulfillment of a requirement for an introductory 
psychology course. Thirty participants completed Exp. 1a. 
Forty participants completed Exp. 1b. Two participants in 
Exp. 1b failed to complete the explanation generation task, 
but they did provide ratings of the explanations. 
Materials and Procedure The two studies used the same 
materials, but the method of data collection differed. In 
Exp. 1a, participants completed the study in small groups. 
Materials were projected onto a screen, and participants 
wrote out their responses in prepared packets. In Exp. 1b, 
participants completed the study on-line by completing a 
questionnaire created using the Qualtrics platform. See the 

Appendix for the full set of materials used in Exp. 1a and 
Exp. 1b. 

Four scenarios were developed for this experiment. Each 
scenario presented a set of initial conditions that included 
mathematical entities (e.g. “The editor of the Daily News 
has 127 remaining newspapers to deliver and only three 
paperboys to deliver them.”) and then a specific why-
question related to those conditions (e.g. “Why can’t the 
editor distribute the papers equally to each of the 
paperboys?”). The scenarios were designed such that it was 
possible to answer the question by positing the existence of 
the mathematical entities (a PF explanation), but a suitable 
explanation could be made without such a commitment (a 
NF explanation). In Exp. 1a, the order of the scenarios was 
balanced, and in Exp. 1b, the order of the scenarios was 
randomized. In both cases, participants were presented 
with the scenario and why-question and asked to generate 
a response. 

After responding to all of the scenarios, the participants 
were told that other students had also generated 
explanations and those explanations needed to be 
evaluated. The participants were presented with the same 
four scenarios – the order of the situations was again 
balanced (Exp. 1a) or randomized (Exp. 1b). Each scenario 
was accompanied by two short explanations. One of the 
explanations reflected PF commitment (e.g. “Because 127 
is not divisible by three”) and the other reflected NF 
commitment (e.g. “Because if he gives each paperboy 42 
papers, there will be one paper remaining”). In Exp. 1a, 
participants were asked to select which of the two 
explanations they considered to be the better explanation. 
In Exp. 1b, the participants were asked to rate how 
explanatory each explanation was. Along with each 
explanation was a slider that could be adjusted from 0 (“not 
explanatory”) to 10 (“ideally explanatory”). 
 
Results 
Explanation Generation The explanations generated by 
the participants were coded as to whether they rested on a 
PF claim, a NF claim, or whether the claim was ambiguous. 
The explanations were independently coded by two of the 
study authors, and disagreements were resolved through 
discussion including the third author. The inter-rater 
agreement was 87% for the responses from Exp. 1a and 
84% for responses from Exp. 1b. Disagreements were 
easily resolved. 

The distribution of the explanatory claims was similar 
across the two studies. In Exp. 1a, 62% of the explanations 
were NF, 31% PF, and 8% ambiguous.  In Exp. 1b, 65% 
were NF, 31% PF, and 4% ambiguous. The results 
indicated that people tend to rely more on NF claims, but 
that they also will invoke PF claims when deemed 
appropriate. None of the participants in either study 
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generated PF explanations for all four scenarios, 8% 
generated three PF explanations, 22% generated two PF 
explanations, 49% generated a single PF explanation, and 
16% generated no PF explanations. The scenario being 
explained had an effect on the type of explanation 
generated. In the “paperboy” scenario, participants readily 
generated PF explanations (85% of the explanations), 
while in the other three scenarios, they tended to rely on 
NF explanations (over 75% of the explanations for each 
scenario). 
Explanation Selection, Exp. 1a The variability between 
participants and among scenarios is also evident in Exp. 1a 
when the participants were asked to select one explanation, 
NF or PF, as more explanatory. No participant consistently 
selected the PF explanation for every scenario while only 
six participants consistently selected the NF. 
 

 Table 1: Explanation Selection in Exp. 1a 
 

Scenario PF Selection NF Selection 
Championship 13/30 17/30 
Fishing 5/30 25/30 
Paperboy 22/30 8/30 
Wheat 9/30 21/30 

 
In order to assess explanatory preference, the selection 

data for each situation were compared to an assumed equal 
distribution of explanation types using a one-sample 
binomial test. In both the “fishing” and “wheat” scenarios, 
the participants showed a consistent preference for the NF 
explanations (both ps < .05). In the “paperboy” scenario, 
the participants showed a clear preference for the PF 
explanation (p < .05).  Only the “championship” scenario 
had a distribution that indicated that the participants had no 
preference for the type of explanation. 

We did not find evidence that participants made a 
consistent ontological commitment across the generation 
and selection tasks. When the participant generated a PF 
(or NF) explanation for a particular scenario, they 
subsequently selected the same type of explanation for that 
scenario only 52% of the time. 
Explanation Rating, Exp. 1b The participant ratings for 
the PF and NF explanations for each scenario were 
analyzed using a 2 (type of explanation) X 4 (scenario) 
repeated measures ANOVA. There was no overall effect of 
the type of explanation, F(1, 37) = 0.37, p = .55, hp

2 = .01, 
a significant effect of the scenario, F(3, 111) = 6.70, p < 
.001, hp

2 = .15, and a significant interaction between the 
type of explanation and the scenario, F(3, 111) = 8.54, p < 
.001, hp

2 = .18. As can be seen in Figure 1, the explanations 
for the “championship” scenario were significantly lower 
than the ratings for the other three scenarios (all ps < .01). 

Figure 1: Mean Rating for PF and NF Explanations by 
Scenario from Exp. 1b 

Note. Error bars represent 95% confidence intervals. 
 
The other scenarios did not differ significantly from one 
another. Paired sample t-tests revealed that the ratings for 
the PF and NF explanations in the “championship” and 
“wheat” scenarios were not different; t(39) = -1.25, p = .22, 
and t(39) = -0.64, p = .53, respectively. However, the type 
of explanation did affect the ratings in the “paperboy” 
scenario, t(39) = 3.14, p < .01, and “fishing” scenario, t(39) 
= -3.03, p < .01, although in opposite directions. 

In Exp. 1b, the participants showed a more consistent 
pattern of commitment to a particular type of explanation 
than in Exp. 1a. Overall, the participants gave a higher 
rating to the explanation that matched the type of 
explanation they had generated 66% of the time. However, 
this was primarily driven by participants that generated NF 
explanations and subsequently rated the NF explanations 
as better. The participants that initially generated PF 
explanations rated the PF explanations as better only 50% 
of the time. 

Experiment 2 
Methods 
Participants Participants (n = 173) were obtained using 
the Mechanical Turk platform. They had to have above a 
98% positive approval rating and successfully completed 
at least 100 tasks within the system. Eight participants were 
removed for not following directions. The questions 
included in this study were embedded within an unrelated 
memory study. Participants were paid for their 
participation. 
Design Explanations varied in terms of commitment of the 
mathematical entities (either NF or PF) and how the 
mathematical terms were developed in the explanation 
(whether they contained a specific or non-specific 
example). Combining these factors created four conditions, 
and participants were randomly assigned to one condition. 
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Materials and Procedure Participants completed the 
study online using the Qualtrics platform. Each participant 
read a short passage about cicadas that provided some basic 
information about their appearance and diet. Importantly, 
they were informed about the cicada life-cycle being either 
thirteen or seventeen years. The description ended with the 
statement, “A question that has interested scientists is why 
cicadas have this particular life-cycle.” Four different 
explanations were created to address that question. 

All of the explanations consisted of six sentences, the 
first and last sentences were identical across all of the 
explanations. The second sentence reintroduced the idea 
that the life cycle of the cicadas was either thirteen or 
seventeen years. In PF explanations that point was 
connected to the notion that these numbers are prime: 

Interestingly, 13 and 17 are prime numbers – this 
means that no smaller value (such as 2 or 3) can be 
divided into these numbers. 

In the NF explanations, the number of years was connected 
to the notion that those numbers could not be evenly 
segmented: 

Interestingly, cicadas' life-cycles are 13 or 17 years 
long – this means that these periods cannot be 
segmented evenly into durations of two years, 
durations of three years, and so on. 

In all explanations, the next (third) sentence noted that the 
length of the life cycle minimized overlap with potential 
predators. In the PF explanations, this point was explicitly 
tied to the fact that the length of the life-cycle was a prime 
number. In the NF explanations, the point was tied to the 
length of the life-cycle generally. The fourth and fifth 
sentences developed the idea raised in the third sentence 
with either a specific or non-specific example. For 
instance, in the specific PF explanation, the example 
described how a predator with a three year life cycle would 
overlap with cicadas with a thirteen year life cycle only 
once every 39 years, but it would overlap every life cycle 
with a cicada that had a twelve year life cycle. In the non-
specific PF explanation, the development of the 
explanation relied on algebraic notation:  

If a predator of the cicada had a life-cycle of x years 
(where x is equal to 2, 3, or 4), it would threaten 
cicadas with a 13 year life-cycle only once every 13*x 
years because that number would be the first number 
that can be divided by both x and 13. 

In the NF explanations, the specific and non-specific 
examples differed similarly except the examples referred 
to how the life-cycle could be segmented as opposed to the 
characteristics of prime numbers. 

Immediately following the explanation, two rating scales 
were presented. The first scale asked participants, “How 
well does the above account explain the cicada life-
cycle?”. The participants could move a slider along a scale 
from 1 (“Not at all explanatory”) to 9 (“Very 

explanatory”). The second scale asked, “How complex 
would you consider the explanation provided above?”. The 
scale went from 1 (“Extremely simple”) to 9 (“Extremely 
complex”). 

Following the critical questions, the participant was 
asked, “Would you consider yourself to be a scientist?” and 
“Are numbers real?” (Yes/No options for both measures). 
There was also a measure where the participant was asked 
to report their comfort with math from 1 (“Not 
comfortable”) to 9 (“Very comfortable”). 

   
Results 
The participants in the study predominately reported that 
they did not consider themselves scientists, (7.5% 
responded “yes” and 92.5% responded “no”) and that they 
considered numbers to be real (95.4% responded “yes” and 
4.6% responded “no”). Overall, they reported that they 
were “reasonably comfortable” with math (m = 5.62, s = 
2.23), but there was some variability in those responses. 
Importantly, the reported comfort with math did not 
meaningfully vary by condition, F(3, 169) = 1.71, p = .16, 
h2 = .03. 

The explanatory ratings were analyzed using a 2 
(specificity) X 2 (commitment) ANOVA (see Figure 2). 
There was no effect of specificity on the explanatory rating, 
F(1, 169) = 0.12, p = .73, hp

2 = .001. The mean for the 
specific explanations (m = 6.41, s = 2.03) was similar to the 
mean for the non-specific explanations (m = 6.32, s = 2.05). 
There was a significant effect of the mathematical 
commitment on the ratings, F(1, 169) = 3.85, p = .05, hp

2 = 
.02. The mean for the NF explanations (m = 6.67, s = 1.86) 
was significantly higher than the mean for the PF 
explanations (m = 6.06, s = 2.17). There was no interaction 
between the specificity and mathematical commitment of 
the explanations, F(1, 169) = 1.19, p = .28, hp

2 = .01. 
The complexity ratings were similarly analyzed (see 

Figure 3). There was no effect of specificity on the 
complexity rating, F(1, 169) = 1.88, p = .17, hp

2 = .01. The 

Figure 2: Mean Explanatory Ratings from Exp. 2 
Note. Error bars represent 95% confidence intervals. 
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Figure 3: Mean Complexity Ratings from Exp. 2 
Note. Error bars represent 95% confidence intervals. 

 
mean for the specific explanations (m = 6.36, s = 1.90) was 
similar to the mean for the non-specific explanations (m = 
6.74, s = 1.82). There was a significant effect of the 
mathematical commitment on the ratings, F(1, 169) = 4.49, 
p = .04, hp

2 = .03. The mean for the NF explanations (m = 
6.26, s = 1.88) was significantly lower than the mean for 
the PF explanations (m = 6.85, s = 1.81). There was no 
interaction between the specificity and the mathematical 
commitment, F(1, 169) = 0.21, p = .65, hp

2 = .001.  
The participant ratings of how explanatory and complex 

the explanations were had a weak, negative relationship, r 
= -0.12, p = .10. There was no relationship between the 
participants’ reported comfort with math and their 
explanatory (r = -0.02, p = .80) or complexity (r = -0.01, p 
= .88) ratings. There were too few people that reported 
themselves to be scientists (or to not believe numbers to be 
real) to assess how those factors might have impacted their 
ratings of the explanations. 

Discussion 
Experiments 1a and 1b showed that there is variability in 

the mathematical commitments people are willing to make 
when generating or evaluating explanations for relatively 
simple situations. It was clear that the variability was not 
simply an individual difference issue – i.e. there was no 
evidence that some people always use and value PF entities 
and other people do not. This result suggests, contrary to 
some philosophical discourse, that there are not 
distinctively nominalist or platonist reasoners.  

The variation in Exp. 1a and 1b appeared to be largely 
driven by differences among the scenarios. Across both 
samples and all measures, participants readily committed 
to PF explanations for the “paperboy” scenario. It involves 
the simplest mathematical relations as the explanatory 
value rests on a single mathematical operation. The 
“fishing” scenario tended to be the one where explanations 
ontologically committed to mathematical entities were 
least valued, and that scenario involves multiple operations 

across several potential numerical values. The other two 
scenarios tended to show less consistent patterns of 
response. This suggests to us that the complexity of the 
structure of putative explanations might drive much of the 
variation seen in the participants’ preferences for the 
different types of mathematical explanations. Further 
study, and more careful control, of the various factors that 
differentiate these kinds of everyday explanations should 
provide more clarity as to why people shift in the 
ontological commitments.  

In Experiment 2, we did not find the predicted effect of 
the specificity on the rated complexity of the explanations. 
We also did not find the predicted interaction between the 
specificity and the type of mathematical commitment on 
the explanatory value. However, among the non-specific 
explanations, the explanatory ratings differed between the 
PF and NF conditions (p = .03). Even though our 
manipulation of specificity did not have the expected effect 
on the complexity ratings, the participants responded to the 
PF and NF explanations differently when the information 
was non-specific. 

The main results of Experiment 2 were that participants 
considered the PF explanations to be less explanatory and 
more complex than the NF explanations. It is possible that 
the mathematical relations underlying prime numbers are 
more difficult for people to grasp than we had anticipated. 
If that is the case, the results across the two experiments 
align; with more difficult mathematical relations, people 
perceive the explanations are being less explanatory. This 
assessment fits with recent work by Johnson, Johnston, 
Koven, and Keil (2017) and aligns with findings that there 
is a negative relationship between complexity and 
explanatoriness in non-mathematical explanations 
(Lombrozo, 2012). However, that relationship may not 
always hold (Johnson, Valenti, & Keil, 2017). 
Alternatively, it is possible that the participants were 
receptive to the more verbal depictions of the mathematical 
relations found in the NF explanations (see Koedinger & 
Nathan, 2004). This would suggest that it could relate more 
generally to how easily participants are able to represent 
the relations that underlie the explanation. 

The present results suggest that lay people often find NF 
explanations satisfactory and, in certain instances, 
preferable to PF explanations. So, if platonists seek to 
defend the existence of mathematical entities because of 
their explanatory value or because of the manifest 
superiority of platonist over nominalist explanations, the 
present study provides preliminary evidence that such 
claims cannot be substantiated by our everyday 
explanatory practices, which are often quite friendly to 
would-be nominalists. We fully recognize we are not able 
to resolve the philosophical debate that backgrounds this 
study, but it does provide an interesting glimpse into how 
people use mathematical information in explanations. 
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Appendix: Exp. 1a and 1b Materials 
 
Championship Scenario 
Central High School hosts the league basketball 
championship game every three years and they host the 
league volleyball championship every four years. 
Eighteen years ago, they won both championships on 
their home court. Why can't they duplicate that feat this 
year?  
(PF) Because the 18 is a multiple of three, but not four. 
(NF) Because it will be another six years until they host 

both championship games again. 
 
Fishing Scenario 
Lana has $30 and wants to buy a fishing rod, fishing reel, 
and fishing line. There are two rods priced at $21 and 
$22. There are three reels priced at $7, $8, and $9. Fishing 
line is $2. Lana wants to spend exactly $30. Why should 
Lana buy the $21 rod? 
(PF) Because the sum of 22, 7, and 2 is greater than 30. 
(NF) Because any way of combining the $22 rod purchase 
with the purchase of a fishing reel and fishing line 
requires spending more than $30. 
 
Paperboy Scenario 
The editor of the Daily News has 127 remaining 
newspapers to deliver and only three paperboys to deliver 
them. Why can’t the editor distribute the papers equally to 
each of the paperboys? 
(PF) Because 127 is not divisible by three. 
(NF) Because, if he gives each paperboy 42 papers, there 

will be one paper remaining. 
 
Wheat Scenario 
Fred needs 86 lbs of wheat for winter and he can’t afford 
to waste any money on unused wheat. Wheat comes in 
bags of 8 lbs. He has 54 lbs of wheat already. Why can 
Fred avoid buying any unnecessary bags of wheat? 
(PF) Because Fred must buy 32 lbs of wheat, and thirty-

two divided by eight is four. 
(NF) Because Fred must buy 32 lbs of wheat, and if Fred 

buys four 8 lb bags, he will have 32 lbs. 
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