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Preface 
 

This research monograph presents a systematic effort of generalizing fundamental physical laws 

related to subsurface fluid flow that are important for a number of contemporary applications, such 

as recovery of subsurface energy resources, geological disposal of high-level nuclear wastes, CO2 

geological sequestration, and groundwater contamination in the vadose zone. The history of 

discovering these laws is also briefly presented within the context of discussing their valid ranges. 

This relatively new effort should be of interest to engineers, researchers and students in the areas of 

reservoir engineering, hydrogeology, soil physics and rock mechanics. 

 

Darcy’s law is the fundamental law for subsurface fluid flow. For low-permeability porous media, 

however, Darcy’s law does not always hold because of the strong fluid-solid interaction. While this 

issue has been investigated by a number of researchers, Chap. 1 presents a new phenomenological 

relationship between water flux and hydraulic gradient, or a generalized Darcy’s law. The 

traditional form of Darcy’s law and two other generalizations for low-permeability media, proposed 

by other researchers, are shown to be special cases of our generalized Darcy’s law. The implications 

and applications of this “non-Darcian” flow behavior are also discussed. 

 

Edgar Buckingham independently discovered the relationship between water flux and hydraulic 

gradient for unsaturated (or multiphase) flow in porous media that has often been called Darcy’s 

law in the literature. In this book, I called this relationship the Darcy-Buckingham law because 

Buckingham’s contribution to the theory of subsurface multiphase flow has been historically 

underestimated; multiphase flow is more complex than the single-phase flow that Darcy’s law was 

developed for. The Darcy-Buckingham law, however, is valid under the condition of local 

equilibrium only. This condition does not hold in many cases although the Darcy-Buckingham law 

has been used there because of the lacking of alternatives. In Chap. 2, I introduced an optimality 

principle that unsaturated water flow patterns are self-organized in such a way that overall water 

flow resistance is minimal. Based on this principle, a generalized version of the Darcy-Buckingham 

law is derived in which unsaturated hydraulic conductivity is not only a function of water saturation 

(or capillary pressure) assumed in the Darcy-Buckingham Law, but also a function of water flux. 

The consistence between our theoretical results and observations is demonstrated. 

 

It is well known that subsurface fluid flow is coupled with mechanical deformation of subsurface 

media where fluid flow occurs; in many cases, this coupling can play a dominant role. Hooke’s law 

is the most fundamental law governing elastic deformation of solids. Natural rocks, however, have 

unique features compared with other solids one of which is small-scale deformation heterogeneities 

(such as micro-cracks). Acknowledgement of these unique features is important, because they 

justify that rock mechanics exists as a standing-alone discipline, rather than a side bar of general 

solid mechanics. This also explains why elastic mechanical deformation of a natural rock does not 

follow exactly the traditional Hooke’s law; the related mechanical properties, unlike those assumed 

in the Hooke’s law, are not constant under certain conditions. To better consider the impact of 

natural heterogeneity, Chap. 3 introduces the two-part Hooke model that was developed by dividing 

a natural rock into hard and soft parts. Remarkable consistence between the model and observations 

from different sources, for both rock matrix and fractures, has been achieved. The usefulness of the 

model in dealing with engineering problems is also demonstrated. Note that although a number of 



 5 

researchers touched on the same issue by establishing empirical relations between stress and rock 

mechanical properties, the two-part Hooke model takes a much bolder and more systematic 

approach and is also more effective for practical applications.    

 

The non-equilibrium thermodynamics (that is closely related to optimality principles) is the 

foundation for dealing with highly nonlinear problems. This branch of science, however, has not 

been well established yet. For example, contradictory optimality principles exist in the literature. As 

an applied scientist or engineer with a primary interest in applying basic scientific principles to my 

research areas, I initially tried to avoid, but eventually get into the study of the non-equilibrium 

thermodynamics because it is the true starting point to investigate subsurface multiphase flow and 

other related processes.  In Chap. 4, a new thermodynamics hypothesis is presented and tries to 

answer under what conditions the optimality principles should apply and which of the 

simultaneously occurring physical processes, if not all, is subject to the optimization. This 

hypothesis seems to be able to reconcile different optimality principles proposed in several areas.  

 

The generalization of the well-known fundamental physical laws is indeed an ambitious and a 

highly risky endeavor. It, however, was not really out of academic interest, but mainly motivated by 

the needs in practical applications. As a modeler being fully aware of and enjoying the increasing 

powerfulness of available computational capabilities, I am more and more convinced that the lack 

of appropriate physical laws at scales of practical interest is the weakest link in improving our 

modeling capability (especially the capability for prediction). For example, no matter how powerful 

computers are, we simply cannot use them to predict the observed non-Darcian flow with the 

traditional Darcy’s law. Much more work is needed to substantiate our physical foundations for 

accurately modeling subsurface processes.  

 

The generalization of the physical laws uses different approaches in this book, ranging from purely 

phenomenological one to theoretical derivations based on newly introduced principles. But all the 

generalized laws have the relatively simple mathematical form and a small number of parameters. 

This largely reflects my own research philosophy as an engineer: a good model or theory should be 

able to adequately capture the essence of physics and, at the same time, has a relatively simple form 

or structure. This happens to be consistent with the point view of Nobel Laureate Richard Feynman. 

In his celebrated book “Characters of Physical Laws”, Feynman concluded that the mathematical 

forms of well-known physical laws are always simple, although they describe very complex 

phenomena.   

 

I did initially have a reservation to publish this book dealing with physical laws at the heart of 

several research areas. I would feel much more comfortable with doing so after the related work 

becomes more mature. At the same time, I also feel the urgency to get the message out that we do 

need to revisit the fundamental laws that have generally been viewed untouchable doctrines by 

many people. Thus, I view this book as a messenger or a starting point for this revisiting. I also like 

to make it clear that the focus of this book is on the work mainly done by me and my collaborators. 

Although I try to briefly cover related work by others as well, the citation of their work, by no 

means, intends to be exhaustive.     

 

Hui-Hai Liu 

Aramco Services Company: Aramco Research Center—Houston, Texas 
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Chapter 1 

Generalization of Darcy’s Law: Non-Darcian Liquid Flow in Low-Permeability 

Media  
    

Darcy’s law is the fundamental law for modeling subsurface fluid flow processes. This chapter 

briefly reviews Darcy’s life and his law and presents a generalized Darcy’s law for low-

permeability media in which traditional Darcy’s law does not hold for describing liquid flow. 

Applications of the generalization to several practical problems are also discussed. The discussions 

in this chapter are mainly based on materials from Liu et al. (2012; 2014), Liu and Birkholzer 

(2013) and Liu (2014).   

 

1.1 Henry Darcy and His Law for Subsurface Fluid Flow 

 

The well-known Darcy’s Law was discovered by Henry Darcy (1803-1858). It states that water flux 

in saturated porous media is linearly proportional to hydraulic gradient. Darcy’s Law forms the 

quantitative basis of many science and engineering disciplines including hydrogeology, soil science, 

and reservoir engineering. Because of the unparalleled status of Darcy’s law in the related areas, 

there are a number of excellent publications in the literature regarding Darcy’s life and his law (e.g., 

Freeze 1994; Brown 2002; Simmons 2008). The materials presented in this section are based on 

these publications. 

 

  
Fig. 1.1 Henry Darcy (1803-1858) (https://en.wikipedia.org/wiki/Henry_Darcy) 

 

 

Henry Darcy (Fig. 1.1) was a distinguished engineer, scientist and citizen (Brown 2002). He was 

born on 10 June 1803 in Dijon, France, and entered L’Ecole Polytechnique, Paris, in 1821, where 

he started his science and engineering training. At that time Jean-Baptiste Joseph Fourier (1768-

1830), who discovered Fourier Law for heat transfer, held a Chair position at L’Ecole 

Polytechnique. Thus, Simmons (2008) speculated that “it is therefore possible that Fourier taught 

Darcy his heat law and that the earliest seeds of Darcy’s Law may have been planted at this point”.  

Darcy was admitted to L’Ecole des Ponts et Chaussėes (School of Bridges and Roads), Paris, in 

1823 when he was 20 years old. The school was closely associated with Le Corps Des Ponts et 

Chaussėes that had a mission to support the construction of infrastructure throughout France and 

was regarded an elite fraternity of engineers that had influential status in mid-nineteenth century in 

France (Freeze 1994; Simmons 2008). The school was created to train students to be engineers in 
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the Corps. Based on Darcy’s class ranking in both L’Ecole Polytechnique and L’Ecole des Ponts et 

Chaussėes, Brown (2002) noted that Darcy was a good, but not the best student in his classes.  

 

In 1826, Darcy, at the age of 23, graduated from the School of Bridges and Roads and started a 

remarkable scientific and engineering career in the Corps. He spent almost all of his working life in 

his home city, Dijon. During 1827 to 1834, he performed feasibility studies of and developed a plan 

for the Dijon public water supply project. The plan was approved in 1835 and the project began in 

1839 that was widely regarded one of the European best water supply systems at that time 

(Simmons 2008). Because of the success of the project, Darcy received a number of honors. He was 

awarded the Legion of Honor by King Louis Phillip in 1842. He also accepted a gold medal from 

the Municipal Council and a laurel wreath from the workmen when the project was completed in 

1844, but he waived all the fees. As Philip (1995) put it, “Darcy, with great vision and skill, 

designed and built a pure water supply system for Dijion, in place of previous squalor and filth. 

Dijion became a model for the rest of Europe. Darcy selfless waived fees due to him from the town, 

corresponding to about $1.5 million today. Medals were struck recognizing his skill and a 

monument celebrates his great work”. 

 

Darcy’s very success lay in his downfall (Philip 1995; Simmons 2008). During the last decade of 

his life (1848-1858), he suffered political persecution and his health deteriorated. Fortunately, he 

was able to focus on research activities very productively in this relatively short period of his life 

and make major scientific discoveries, including Darcy’s Law. The period was called Darcy 

scientific legacy by Simmons (2008). As an engineer, Darcy’s scientific contributions were clearly 

motivated by a deep desire to solve practical and relevant engineering problems that he had 

encountered. Darcy’s other contributions than Darcy’s law and the related historical backgrounds 

can be found in details in Simmons (2008).  

 

In 1856, Darcy published his most famous report on the construction of municipal water supply of 

Dijon, “Les Fontaines Publiques de la Ville de Dijon”, or “The public fountains of the city of Dijion” 

in English. The report was about 680 pages long and contained 28 plates of figures.  Part 2 of Note 

D of the report, with a subtitle of “Determination of the laws of water flow through sand”, contains 

the results of his sand column experiments conducted with the set-up shown in Fig. 1.2. The 

motivation for the experiments was to investigate water flow through a sand filter. At that time, the 

water filtration method was a common practice to improve water clarity and, as a result, engineers 

were starting to think about the water flow behavior through filters (Simmons 2008). In the 

experiments, Darcy and his assistant applied the water on the top of the sand column (under the 

saturated condition), took measurements of discharge (flow) rate at the bottom, and at the same 

time monitored the water hydraulic heads at two points near the top and bottom (Fig 1.2). Details of 

the experimental procedures and the observations are discussed in Freeze (1994), Brown (2002) and 

Simmons (2008). Using the obtained data, Darcy discovered an empirical relationship (Fig. 1.3), 

now called Darcy’s Law, that the water flow rate is proportional to the cross-sectional area of the 

sand column and hydraulic gradient. This statement of Darcy’s law is equivalent to the second 

sentence of this section.        
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Fig. 1.2 Darcy sand column apparatus (Darcy 1856) 

 

 
 
Fig. 1.3 Darcy’s sand-column experimental results (Darcy 1856). The solid lines are best linear fitting curves  
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Darcy passed away in 1858, two years after he published the fountain report. Although the Darcy’s 

law was buried in the depth of the report, Simmons (2008) suggests that “Darcy understood that his 

discovery was new and significant”. Supporting evidence includes the fact that Darcy dedicated 

almost half of the length of his preface to his report to a discussion on Darcy’s Law. He also 

mentioned in the preface: “I have not seen the documents that are included in Note D collected in 

any special book. In particular, to my knowledge at least, no one has experimentally demonstrated 

the law of water flow through sand”. 

One may wonder why it was an “engineer” (Henry Darcy), not more theoretically oriented 

“scientists”, who discovered such an important scientific (physical) law. It is a reasonable question 

to ask, because fluid mechanics and hydrodynamics theories had been well established at that time 

(Brown 2002). There might be many reasons for that. One speculation is that, when applying these 

theories, people often got stuck with details, such as the “messy” solid-water boundaries in a porous 

medium, and failed to see the key picture that pore spaces can be conceptually linked to the water 

flow in a capillary tube. Had they been able to, it would have been straightforward to deduce 

Darcy’s law from the existing fluid mechanics theories, such as Poiseuille equation that gives 

pressure drop in a fluid flowing through a cylindrical pipe. This issue will be discussed further in 

Sect. 1.2. Thus, Darcy’s success in discovering Darcy’s law is largely because he was able to see 

the simplicity out of complexity. There are many famous quotes regarding simplicity and 

complexity in the literature. The quote that the author of this book likes the most is the following 

one from Steve Jobs, the late co-founder and CEO of Apple Inc.. “That’s been one of my mantras 

— focus and simplicity. Simple can be harder than complex; you have to work hard to get your 

thinking clean to make it simple.” Although Jobs’s statements are actually about technology 

invention and business, they can be equally applied to scientific discoveries as well.  

While Darcy discovered Darcy’s law using an empirical approach, he had the conceptual linkage in 

his mind and just used the test data to confirm his prediction (Simmons 2008). Darcy noted clearly 

in footnote 4 of Note D in his report, “I had already foreseen this curious result in my research on 

water flow in conduit pipes of very small diameters, …”.   

An interesting observation is that Darcy formally discovered his law at the age of 53. We are often 

told, especially by theoretical physicists, that one likely makes his or her most important scientific 

contributions at very young ages. Darcy’s story suggests that it is not necessarily true at least for 

applied scientists or engineers who may have much longer career periods for significantly creative 

activities. This is really encouraging for many people in the engineering fields (including the author 

of this book) who are not very young now!   

 

1.2 Relationship between Water Flow Flux and Hydraulic Gradient in a Capillary Tube  

 

The similarity of water flow in porous media to that in a capillary tube, first realized by Darcy 

(1856), is an important concept for studying flow and transport processes in porous media. 

Following this line, Dupuit (1857), according to Narasimhan (2005), further conceptualized the 

pore space in a porous medium as a collection of capillary tubes. This concept is critical for relating 

hydraulic properties to the pore size distribution for a porous medium and for extending Darcy’s 

law to multiphase flow conditions (Chap. 2). A detailed derivation of a relationship between water 

flux and hydraulic gradient for a capillary tube with radius R (Fig. 1.4) is given here; readers 

familiar with the subject may skip this section. For simplicity, we consider a horizontal capillary 
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tube here, although this relationship could be easily extended to capillary tubes with other 

orientations.  

 

For laminar water flow in the capillary tube, the shearing stress is given by 

dr

du
                                                                                          (1.1) 

 

where   is shearing stress,  is water viscosity, u is water velocity along the longitudinal direction 

of the capillary tube, and r is the radial coordinate. For a water surface with radius r and length dx 

(Fig. 1.4), the total shearing force (F) acting on the cylindrical surface is equal to the shearing stress 

multiplied by the corresponding surface area, or 

 

 dxrF  2                                                                                     (1.2) 

 

 

 

 

 

 
 
Fig. 1.4 A water element in a horizontal capillary tube with radius R (Liu et al., 2012) (Reproduced by permission of 

Elsevier). The variable r is the radius of a water element within the capillary tube and ranges from zero to R 

 

Then, the net shearing force acting on a water element (shown in Fig. 1.4) with thickness dr within 

the capillary tube, dF, is given by differentiating Eq. 1.2 with respect to r, or )()(2  rddxdF  . 

For laminar flow, the inertial effect can be ignored because of the low water velocity. In this case, 

the water element should be subject to zero net force, with the shearing force being balanced by an 

opposing force (resulting from the pressure difference imposed on the water element) that is

)2)()(( rdrdP  . Therefore, we have 
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)2)()(()()(2 rdrdPrddxdF                                                     (1.3) 

 

Dividing Eq. 1.3 by dxdr  and using Eq. 1.1, we obtain 

dr

dr

du
rd

dr

rd

dx

dP
r

)(
)(






                                                                (1.4) 

Note that the water pressure here is assumed to be uniform along the r direction. This is a common 

and reasonable assumption used for studying fluid flow in a capillary tube with a radius much 

smaller than its length. The above equation can be solved for velocity gradient, 
dr

du
, for a constant 

pressure gradient, 
dx

dP
 .  Thus we have 

 

dr

du
rC

dx

dPr


2

2

                                                                       (1.5)   

 

where C is a constant that is equal to zero as a result of the following boundary condition (or the 

symmetry condition): 

 

0
0


rdr

du
                                                                                        (1.6) 

 

Then Eq. 1.5 can be further simplified as  

 



















2

r

dx

dP

dr

du
                                                                           (1.7) 

 

Based on the non-slip conditions on the solid surface of the capillary tube (u = 0 at r = R), we can 

obtain the solution to Eq.1.7 as  

 

  

r

R

rR
dx

dP
dr

r

dx

dP
ru 22

4

1

2
)(


                                                 (1.8) 

 

The above equation gives the velocity distribution along the radial direction within the capillary 

tube. The average water flux across the cross section of the tube is then determined by 

  

dx

gPdRg

dx

dPR

R

rdrru

q

R

x

)/(

88

1
)2)()((

22

2

0 












             (1.9) 

 

where  is water density and considered to be a constant and g is gravitational acceleration. The 

above equation is in fact equivalent to the well-known Poiseuille equation. It was derived for a 
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horizontal capillary tube. For an arbitrarily orientated straight capillary tube, the similar derivation 

procedure will give rise to the following relation: 

 

dx

dHRg
qx

2

8


                                                                                                  (1.10) 

 

where H is called hydraulic head and given by  

  

g

P
zH


                                                                                                             (1.11) 

 

where z is elevation of the cross-section’s center of capillary tube and positive in the upward 

direction. 

 

If one, like Henry Darcy, had foreseen the (conceptual) similarity between water flow in porous 

media and capillary tubes, he, based on the above results, could have immediately recognized two 

important points. The first is, of course, Darcy’s Law that water flux or flow rate is proportional to 

hydraulic gradient. The second is that the proportionality, called hydraulic conductivity, consists of 

two parts related to fluid properties and medium properties, respectively. To the best of our 

knowledge, the second point seems to be first made by M. King Hubbert (1903-1989) in his master 

piece regarding groundwater flow (Hubbert 1940).  Thus, Eq. 1.10 can be written as 

 

        

dx

dH
k

g
qx




                                                                                                          (1.12) 

 

where k is called permeability that is determined by geometry of pore space or flow paths, like the 

radius of capillary tube (R) in Eq. 1.10,  and thus an intrinsic property of a porous medium. 

 

Any conceptualization or model is an approximation of the reality. It must be confirmed by 

experimental results. Darcy’s sand column experiments were the necessary step for discovering 

Darcy’s law. Nevertheless, subsurface problems are generally very complex in terms of medium 

geometry and the involved physical processes. In this case, it would not be possible, or practically 

necessary, to consider all the details related to the problems of interest. The use of a simplified 

concept to capture the essence of physics in a real system and leaving the unconsidered complexity 

to parameters that need to be determined by test data seem to be an effective way to develop 

practically useful theories or models. In Eq. 1.12, the unconsidered complexity by using a capillary 

tube to conceptualize pore space of a porous medium is included in permeability k that generally 

needs to be experimentally determined. Readers will find the similar approaches used for 

developing theories or models in other chapters as well in this book.      

 

1.3 Generalized Darcy’s Law for Water Flow in Low-Permeability Media 

 

In his comments on Darcy’s law, Freeze (1994) indicated that “it is fortuitous that God made life so 

simple, for if these relations (linear laws including Darcy’s law) were nonlinear (if they had squared 
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terms or cross products, for example), most of methods used by scientists to analyze the flow of 

water, heat, and electricity would be much messier.” In the past two decades, significant progress 

has been made in understanding and applying nonlinearity sciences, including fractal geometry and 

chaotic systems. In fact, more and more scientists would agree on that God must be a nonlinearity 

expert who created so many beautiful things around us with nonlinearity, such as trees and flow-

path patterns in river basins; most natural phenomena are actually associated with nonlinear 

processes, rather than linear processes. All the generalized physical laws, presented in this book, 

contain some nonlinear terms.    

 

While significant attention has been historically given to flow processes in relatively high-

permeability formations such as aquifers and conventional oil and gas reservoirs, fluid flow in low-

permeability media (such as shale) becomes more and more important for a number of 

contemporary practical applications. For example, several countries have considered shale 

formations as potential host rocks for geological disposal of high-level radioactive nuclear wastes 

because shale has low permeability (on the order of 10 to 100 nano Darcy), low diffusion 

coefficient, high retention capacity for radionuclides, and capability to self-seal fractures (Tsang et 

al. 2012). Shale formations are also cap rocks for geological formations where supercritical CO2 is 

stored for the purpose of CO2 sequestration. Slow brine flow through the cap rock could be an 

important process that needs to be considered for managing pressure buildup owing to injection of 

CO2 into storage formations below the cap rocks (Zhou et al. 2008). Nowadays, unconventional 

energy resources, including shale oil and shale gas, become an important part of recoverable 

hydrocarbon energy resources in the oil and gas industry. The recovery of these resources requires 

improved understanding of and modeling approaches for fluid flow within shale formations under 

different conditions.  

      

The porous media used in Darcy’s tests that led to the discovery of Darcy’s law are sands, not shale 

or other low-permeability media. It has been well documented that Darcy’s law is not adequate for 

the latter media. To provide some background for generalizing Darcy’s law for the low-

permeability media, this section first reviews the currently available relationships between water 

flux and hydraulic gradient and then develops an improved relationship that can capture water flow 

behavior in both high- and low-permeability media.  

 

For one-dimensional flow systems, Darcy’s law can be rewritten as 

 

)sgn( xx Kiq i                                                                                   (1.13) 

 

where qx is water flux with the magnitude of q, K is hydraulic conductivity and ix  is hydraulic 

gradient with a magnitude of i. The sgn(ix) is the sign function of the hydraulic gradient and equals 

to 1, -1 and 0 for the positive, negative and zero gradients, respectively. The hydraulic conductivity 

is related to permeability, k, by 

 

 


gk
K                                                                                                (1.14) 

Non-Darcian flow is characterized by nonlinear relationship between water flux and hydraulic 

gradient (Liu et al. 2015). It is a result of strong solid-water interaction (e.g., Miller and Low 1963). 
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The term “solid-liquid interaction” refers to combined effects of a variety of forces between 

molecules in solid and aqueous phases, including van der Waals forces. This interaction likely 

occurs in a thin fluid boundary layer close to solid surface where fluid properties are very different 

from those without the interaction. The thickness of the boundary layer is negligible in high-

permeability media with relatively large pore sizes, but may be comparable to nanometer pore sizes 

in low-permeability media, such as shale formations. Thus, Darcy’s law, based on the viscous 

laminar flow mechanism only, holds for high-permeability media, and is not adequate for fully 

describing liquid flow in low-permeability media.  

 

The impact of solid-water interaction on water flow behavior has been demonstrated by a number 

of studies on nanoscale fluid flow based on molecular dynamics (MD) simulations (e.g., Chen et al. 

2008; Ma et al. 2010; Farrow et al. 2011) and by experimental observations for water flow in 

microtubes (Xu et al. 2007). These studies generally show that water properties and flow processes 

at that scale could be significantly different from those in less fine-grained materials. For example, 

the density of water near the solid surface of grain material is generally much higher than its bulk 

value. Also, the resistance to water flow at the nanoscale is dominated by friction between fluid 

and solid surfaces, and less so by internal friction between fluid layers, because of the small pore 

sizes (Chen et al. 2008). Several MD simulation results show that the flow rate of water through a 

nano-tube is a nonlinear function of shearing stress (equivalent to hydraulic gradient for steady-

state flow) (e.g., Chen et al. 2008; Ma et al. 2010; Farrow et al. 2011), which is consistent with 

non-Darcian behavior observed from laboratory measurements (e.g., Miller and Low 1963). Most 

recently, the MD simulation results of He et al. (2015) offer further insights, although their study is 

about gas transport in nanometer pores, rather than liquid. They simulated gas transport between 

two parallel carbon plates and within a carbon nanotube. The distance between the two plates (4.4 

nm) is the same as nanotube diameter. They found that average gas velocity for the carbon-plate 

case is linearly related to the forces imposed to the gas molecules along the flow direction, which is 

consistent with Darcy’s law at the macroscopic scale. That relationship becomes nonlinear for the 

nanotube case, an indication of non-Darcian flow behavior. This is because the latter is subject to a 

stronger field of intermolecular forces; the nanotube case corresponds to a larger ratio of solid 

surface area to the associated fluid volume.  

 

Xu et al. (2007) also experimentally investigated the relationship between flux of deionized water 

and hydraulic gradient in individual microtubes with diameters ranging from 2 to 30 µm. They 

demonstrated that water flow in microtubes with diameters larger than 16 µm is consistent with 

Darcy’s law, but not for smaller diameters. In the latter cases, the solid-water interaction is 

relatively strong and consequently the relationship between water flux and hydraulic gradient 

becomes nonlinear. 
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Fig. 1.5  Definition of threshold hydraulic gradient 

 

A number of researchers have proposed parametric formulations for describing the non-linear 

relationship between water flux and hydraulic gradient. Hansbo (1960; 2001) reported that water 

flux in a low-permeability clay soil could not be described by Darcy’s law, but is proportional to a 

power function of the hydraulic gradient when the gradient is less than a critical value, whereupon 

the relationship between water flux and gradient becomes linear for larger gradient values. 

Consequently, Hansbo’s (1960; 2001) proposed the following relationship: 
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The formulation of Hansbo (1960; 2001) includes three parameters K’ (m/s), N (m/m) and I (m/m). 

Note that K’ herein is not the hydraulic conductivity because Eq. 1.15-1 is not a linear function 

between water flux and hydraulic gradient i. Parameter I is called threshold gradient in this book 

and refers to the intersection between the i axis and the linear part of the relationship (Fig. 1.5).  

Hansbo (1960; 2001) explained the observed water-flow behavior by positing that a certain 

hydraulic gradient is required to overcome the maximum binding energy of mobile pore water. 

From their experiment results, Miller and Low (1963) also found the existence of a hydraulic 

gradient below which water is essentially immobile. 

 

Hansbo (1960; 2001) demonstrated that Eq. 1.15 can fit related experimental observations and 

developed, based on Eq.1.15, a theoretical approach to dealing with clay consolidation processes. 

As indicated by Swartzendruber (1961), however, Eq. 1.15 consists of two separated mathematical 

expressions and three related parameters and therefore is difficult to use in practice. To overcome 

this, Swartzendruber (1961), after analyzing several data sets for water flow in clay media, 

proposed a new version of the modified Darcy’s law based on a relation for dq/di: 

 

  )1( / IieK
di

dq                                                             (1.16) 
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For a large value of hydraulic gradient i, dq/di approaches a constant K that is hydraulic 

conductivity. Integrating Eq. 1.16 and using the condition that q=0 at i=0, Swartzendruber (1961) 

obtains 

 

)]1([ / IieIiKq                                                         (1.17-1) 

or 

)sgn()]1([ /

x

Ii

x eIiKq i
                                         (1.17-2) 

 

There are two parameters K and I in Eq. 1.17. Compared with the common form of Darcy’s law, it 

contains only one additional parameter (I). The equation of Swartzendruber (1961) had been 

evaluated with a number of data sets and satisfactory agreements were generally obtained 

(Swartzendruber 1961; Blecker 1970). However, Fig. 1.6 clearly demonstrates the deviation 

between results calculated from Eq. 1.17 and a data set collected by Cui et al. (2008) under the 

unsaturated condition. Thus, Eq. 1.17 cannot capture the full range of non-Darcian flow behavior 

under different conditions. (Note that under unsaturated conditions, K in Eq. 1.17 and other related 

equations corresponds to the unsaturated conductivity that is defined as the hydraulic conductivity 

multiplied by the relative permeability for water flow.)  

 

 
Fig. 1.6  Comparisons between  Eq. 1.21 with two different  values and data of Cui et al. (2008) for the constant-

volume tests (Liu and Birkholzer 2013) (Reproduced by permission of Elsevier). Note that Swartzendruber equation 

(Eq. 1.17)  corresponds to the curve for  =1 

 

Another commonly used flux-gradient relationship is given as (e.g., Bear, 1979): 

 

0xq                                 for Ii                                                  (1.18-1) 

)sgn()( xx IiKq i         for Ii                                                 (1.18-2) 

 

The above equation also involves only two parameters (K and I) and is mathematically simpler than 

other relationships. However, it cannot adequately capture the non-Darcian flow behavior (or 
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nonlinear flux-gradient relationship) (e.g., Swartzendruber 1961; Blecker 1970), because flux is not 

always zero at low i values in reality. Therefore, Eq. 1.18 should be applied only when i is large 

such that the flux-gradient relationship in the low i range is not important anymore. It is also of 

interest to note that Eq. 1.18-2 is a limiting case of Eq. 1.17 for Ii / . 

 

Zou (1996) proposed a nonlinear flux-gradient relationship based on an assumption that the 

activation energy of pore water is not only variable with the distance from the solid particle surface, 

but also with the flow velocity of pore water. His model includes several empirical parameters and 

is able to fit several data sets that show nonlinear flux-gradient relationships at low hydraulic 

gradients. His flux-gradient relationship is: 

 

)exp(1 cib

Ki
q


                                                                         (1.19) 

 

where b and c are empirical parameters. However, this equation, for i , gives a linear flux-

gradient relation going through the origin in Fig. 1.5, or is reduced to the exact form of Darcy’s law. 

In other words, Eq. 1.19 cannot capture the effect of threshold gradient on the flux-gradient relation 

for large gradient i, while this effect has been often observed from test results, as shown in Fig. 1.6. 

   

From the above discussions, it is clear that a more general relationship between water flux and 

hydraulic gradient is required. Most recently, Liu and Birkholzer (2013) proposed to generalize the 

Swartzendruber’s (1961) relationship using:  
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where   is non-negative constant, and I* is a parameter related to  and I and will be defined in 

Eq. 1.22-1. For  =1, Eq.1.20 is reduced to Eq. 1.16.  For  , we have 0
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for 1

*


I

i
 and 

K
di

dq
 for 1

*


I

i
. In this case, Eq. 1.20 essentially represents the flux-gradient behavior given in 

Eq. 1.18, as will be demonstrated in Fig. 1.7. Thus, with one more parameter ( ), Eq. 1.20 can 

capture a relatively large range of non-Darcian flow behavior.  

 

Integrating Eq.1.20 and again using the condition of q=0 at i=0, Liu and Birkholzer (2013) obtains 

 

)]
*

,
1

(

)
1

(

[



















I

iI
iKq                                               (1.21-1) 

or  

)sgn()]
*

,
1

(

)
1

(

[ xx
I

iI
iKq i

















                              (1.21-2) 

where  



 20 

 
















1*I
I                                                                         (1.22-1) 

 

and   refers to Gamma functions 
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In the above equation, t is a dummy variable. (Note that t also refers to time in Sect. 1.7.3.) 

 

Figure 1.6 shows a good agreement between Eq. 1.21 with   = 5 and the data from Cui et al. 

(2008). Note that Cui et al. (2008) reported flux-gradient data for three capillary pressure values. 

Each capillary pressure has its own I value. Different I values are used in Fig. 1.6 for different 

capillary pressure when calculating i/I and dimensionless flux defined as q/(KI). The determination 

of parameters I and K is discussed in the next section.  

 

 
 
Fig. 1.7 Relationship between normalized flux and gradient calculated from Eq. 1.21-1 for   = 0.1, 1.0 and 10.0 

 

 

Equation 1.21 is the generalized Darcy’s law (Liu and Birkholzer 2013), although it should be 

better considered a phenomenological model at this point. (Note that Darcy’s law was discovered 

as a phenomenological law as well.) For the threshold hydraulic gradient I=0, Eq. 1.21 is reduced 

to Darcy’s law. Thus, Darcy’s law and two important modified versions of Darcy’s law (Eqs. 1.17 

and 1.18) are special cases of Eq. 1.21. The generalized Darcy’s law includes three parameters, 

hydraulic conductivity K, threshold hydraulic gradient I, and parameter  . They are mainly 

characterized by the average pore size, degree of solid-liquid interaction, and pore-size distribution, 

respectively. These parameters and their correlations will be further discussed in the next two 

sections. Fig. 1.7 shows relations between the normalized flux and the gradient calculated from Eq. 
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1.21-1 for   = 0.1, 1.0 and 10.0, respectively, demonstrating that Eq. 1.21 covers the full range of 

the currently known flux-gradient relationships.  

   

1.4 Correlation between Permeability and the Threshold Gradient 

     

A correlation between permeability (or average pore size) and the threshold hydraulic gradient I for 

low-permeability materials is expected, because non-Darcian flow behavior is closely related to the 

pore size. A smaller pore size corresponds to a larger ratio of solid-liquid interfacial area to liquid 

volume, or a stronger solid-liquid interaction. We will demonstrate such a relationship with a 

number of data sets of permeability as a function of threshold hydraulic gradient (Fig. 1.8) in this 

section.  

 
Fig. 1.8 Correlation between permeability and threshold hydraulic gradient (Liu and Birkholzer 2013) (Reproduced by 

permission of Elsevier) 

 

 

Miller and Low (1963) presented results of laboratory experiments for Wyoming bentonite soil 

samples (with a length of 2.5 cm and diameter of 1 cm). Under the steady-state flow condition, they 

measured water flow rates through soil samples for different hydraulic gradients across the samples. 

Then water flux is calculated as the corresponding water flow rate divided by the sample cross-

sectional area. The permeability values are estimated here using the slope of the linear part of water 

flux versus gradient curves. When the number of data points corresponding to the linear part is 

limited, we use a straight line through the two data points with the largest gradients to approximate 

the linear part. Note that our definition of the threshold gradient is different from that by Miller and 

Low (1963) whose threshold gradient is the gradient below which water flow could not be detected. 

Our threshold gradient I is used to describe the intersection between the gradient axis and the linear 

part of the flux-gradient relationship (Fig. 1.5). As an example, Fig. 1.9 shows a match of Eq. 1.21 

with data from one of the experiments conducted by Miller and Low (1963).  
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Fig. 1.9 Match of Eq. 1.21 with test data for a Na-clay soil from Miller and Low (1963) (Liu and Birkholzer 2013) 

(Reproduced by permission of Elsevier) 

 

Blecker (1970) documented laboratory test results for relationships between permeability and 

hydraulic gradient for clay soils from Brolliar and Springerville soil series of northern Arizona, 

USA. His experimental setup is similar to the one used by Miller and Low (1963). The soil samples 

were compacted to have different soil densities for a given soil type. A larger density generally 

corresponds to a smaller porosity and average pore size and therefore to a smaller permeability. 

Blecker (1970) showed a good agreement between his data and Eq. 1.17 and also reported values 

for fitted permeability and I that are presented in Fig. 1.8.  
 

Consolidation of clays is important for some civil-engineering applications and closely related to 

drainage process that is largely determined by clay permeability under different stress and hydraulic 

conditions (Hansbo 2001). For this purpose, Dubin and Moulin (1986) measured the flux-gradient 

curves for Saint Herblain clay. From these curves, values for permeability and the threshold 

gradient are obtained and presented in Fig. 1.8. To evaluate his relationship for water flux and 

hydraulic gradient (Eq. 1.19), Zou (1996) also presented a data set for several soil types. Fig. 1.8 

only shows his data points for clay soil because no significant non-Darcian behavior is observed 

from other soils in his paper.  

 

Wang et al. (2011) reported core test data for rock samples collected from low-permeability Daqing 

oilfield, China, including steady-state water flow rate as a function of hydraulic gradient imposed 

across the samples under the saturated condition. The non-Darcian flow behavior is represented by 

the ratio of K
i

q
/)( (their Fig. 2); this ratio should be equal to one for Darcian flow (Eq. 1.13). 

Based on Eq.1.17, the ratio K
i

q
/)( can be expressed as  
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The above equation is used to fit the data sets of Wang et al. (2011), as shown in Fig. 1.10. The 

fitting is achieved by adjusting parameter I for a given rock sample. The fitted I values are 20.4, 

12.0 and 10.0 for rock samples with permeability values of 0.195 mD, 0.347 mD and 0.524 mD, 

respectively (Liu and Birkholzer 2013). Note that 1 mD is equal to 9.87E-16 m
2
.  The match 

between Eq.1.23 and the data is reasonable, indicating that Eq. 1.17 is valid for describing flux-

gradient relationships for these rock samples. Clearly, Fig. 1.10 shows that K
i

q
/)( is not constant 

and less than one for small i/I values. In other words, it is more difficult for fluid to flow for small 

i/I values, an indication of non-Darcian flow in low-permeability media.  

 

 
Fig. 1.10  Match of Eq. 1.23 with test data of Wang et al. (2011) (Liu and Birkholzer  2013) (Reproduced by permission 

of Elsevier) 

 

Lutz and Kemper (1959) reported the impact of clay-water interaction on hydraulic properties of 

clay soils (including Utah bentonite, halloysite, Bladen clay, and Wyoming bentonite). The tests 

were conducted under the saturated condition using fluids with different electrolyte concentrations; 

soil sample volumes were fixed by sample holders. For a given soil and hydraulic gradient, a low 

concentration generally corresponds to a low water flow rate or low permeability, because swelling 

reduces average pore size for a given soil sample volume. The steady-state water flow rate was 

monitored as a function of the gradient in their tests. The threshold gradient values for all these tests 

were calculated by Swartzendruber (1961) and used in Fig. 1.8. The data of Lutz and Kemper 

(1959) is consistent with the general trend in the figure, indicating that the impact of soil swelling, 

to a large extent, has been included in permeability values because permeability is a strong function 

of swelling (or shrinkage).    

 

All the data sets discussed above have been collected under the saturated condition. Cui et al. 

(2008) reported measurements of unsaturated hydraulic conductivity for a sand-bentonite mixture 
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compacted in a metallic cylinder (50 mm in inner diameter, 250 mm high). The instantaneous 

profile method was employed to determine the unsaturated hydraulic conductivity (Daniel 1982). 

The bottom of the vertical test cell was connected to a water reservoir, and the upper end to the 

atmosphere. Under transient and upward water-flow conditions, vertical distributions of capillary 

pressure were directly measured as a function of time at several locations along the column. Then 

the corresponding vertical distributions of water content were estimated from the relationship 

between water content and capillary pressure that was independently measured under constant 

volume conditions. Based on these time-dependent vertical distributions and water mass balance at 

each location within the soil column, they were able to estimate water flux at those locations as a 

function of capillary pressure and hydraulic gradient (their Fig. 12). Details of the instantaneous 

profile method can be found in Daniel (1982) and Cui et al. (2008). The linear part of the flux-

gradient relationship for a given capillary pressure is approximated by a straight line through the 

two points with the largest hydraulic gradients. Consequently, the threshold gradient I and the 

unsaturated permeability (that corresponds to the slope of the straight line mentioned above) can be 

obtained for each capillary pressure. Fig. 1.6 shows the match between Eq. 1.21 and the data set. 

 

As shown in Fig. 1.8, the data sets discussed above can be reasonably fitted by an empirical 

relationship between I and permeability k (m
2
) (Liu and Birkholzer 2013) 

 
'' BkAI                                                                      (1.24) 

 

with A’= 4.0  10
12 

and B’ =-0.78. This may imply the existence of a universal relationship between 

I and permeability, given the fact that these data sets were collected by different researchers for 

different types of low-permeability media.  

 

When permeability for a given medium is known, Eq. 1.24 (or Fig. 1.8) can be used to evaluate the 

relative importance of non-Darcian liquid behavior (Liu and Birkholzer 2013). As previously 

indicated, a larger I gives rise to a stronger non-Darcian flow behavior. For example, non-Darcian 

behavior may be negligible for modeling liquid flow in porous media with permeability values 

larger than 10
-13

 m
2
 because the corresponding I values are small, as shown in Fig. 1.8.  When data 

are not available for estimating site-specific values for A’ and B’, Eq. 1.24 can be employed for 

estimating parameter I based on more easily obtained permeability values. Eq. 1.24 is also useful 

for providing a criterion for permeability to be accurately measured. For example, if the hydraulic 

gradient head used in tests is less than the value calculated from Eq. 1.24, the measured 

permeability will depend on the gradient and does not correspond to the correct value, which will 

be further discussed later in this chapter. The data for unsaturated flow seems to follow the same 

relationship as that for saturated flow when permeability is replaced by unsaturated permeability 

(Fig. 1.8). The unsaturated permeability is related to sizes of pores occupied by water under 

unsaturated conditions. 

  

Parameters in Eq. 1.21 depend on the electrolyte concentration of liquid solution that flows through 

porous media and on its temperature. For example, Swartzendruber (1961) analyzed the data of 

Lutz and Kemper (1959) that were collected for solutions (with different electrolyte 

concentrations) flowing through clay soils and demonstrated that the threshold gradient decreases 

with the concentration. As previously indicated, the impact of the concentration is partially 

considered herein through the correlation between permeability and I (Eq. 1.24). For example, with 
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increasing solution concentration, permeability will increase because of shrinkage and thus 

parameter I will decrease based on Eq. 1.24. This is consistent with the analysis results of 

Swartzendruber (1961). On the other hand, osmotic flow can be important for low-permeability 

materials under certain conditions, depending on solute concentration gradient and osmotic 

efficiency (Barbour et al. 1991; Kang 2008). For the experiments discussed in this section, osmotic 

flow, however, is not significant under those test conditions, because no significant water flow was 

observed for zero-pressure gradient (under which water flow is controlled by osmosis). Therefore, 

we follow the authors who initially collected and/or analyzed the data sets discussed in this section 

and ignore osmotic flow when analyzing these data sets. 

 

There are very limited studies of the temperature impact on non-Darcian behavior in the literature. 

Miller and Low (1963) experimentally found that increasing temperature reduces their threshold 

hydraulic gradient (below which water flow could not be detected). They speculated that an 

increased temperature may weaken the forces between water molecules and clay surface (or solid-

liquid interaction). More experimental and theoretical studies are needed to fully understand 

temperature dependence of related parameters in Eq. 1.21.     

 

 

1.5 Relationship between Parameter   and Pore Size Distribution 

 

To make sure that the generalized Darcy’s law (Eq. 1.21) is physically valid, we require Eq. 1.20 to 

mathematically satisfy certain conditions (or constraints). The first condition is that the magnitude 

of water flux q always does not decrease with increasing gradient i, or  
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That is equivalent to  
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Obviously, the above equation is always satisfied. That is one of the motivations to derive the 

generalized Darcy’s law based on Eq. 1.20. 

 

The experimental observations discussed in Sect. 1.4 indicate that didq /  always increases with i 

and reaches its maximum value when the relationship between q and i becomes linear. Thus, Eq. 

1.20 must satisfy this condition, or 
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                                                                      (1.27) 

 

Based on Eq. 1.20, the above equation becomes 
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That leads to 

 

0                                                                            (1.29) 

 

because all the other terms in Eq. 1.28 are not negative. Thus, parameter   only takes non-negative 

values, as indicated in Sect. 1.3. 

 

Parameter   largely characterizes how smoothly transition occurs from the nonlinear region to the 

linear region in a q(i) curve (Fig. 1.7).  For example, for  , the generalized Darcy’s law is 

reduced to Eq. 1.18 in which  didq /  becomes discontinuous at Ii  . On the other hand, when 

0 , didq /  becomes a constant of )1( 1 eK and eventually approaches K for i . In other 

words, the transition of the q(i) curve is extremely smooth. Thus, the smaller the   value, the 

smoother the transition from the nonlinear to the linear region in a q(i) curve.  

 

Parameter    is related to the pore size distribution because pores with different sizes correspond to 

different degrees of non-Darcian flow behavior, as a result of different degrees of solid-liquid 

interaction. It should be easy to understand that a broader pore-size distribution corresponds to a 

more gradual (or smoother) transition from the nonlinear region to the linear region in a q(i) curve, 

and therefore to a smaller  value. 

 

 
   

Fig. 1.11 Demonstration of impact of pore size distribution on the shape of the q(i) curve  

 

To demonstrate the impact of pore size distribution on the shape of a q(i) curve, let’s consider two 

ideal porous media that have the same hydraulic conductivity K and threshold hydraulic gradient I, 

but different pore size distributions. Just for the demonstration purpose, we assume that the non-

Darcian flow behavior is described by Eq. 1.18 in which q is zero for i less than or equal to I and 

then linearly increases with i. Furthermore, the first porous medium has a uniform pore size and 
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corresponds to curve L1 in Fig. 1.11. The second porous medium is a layered system with flow 

direction along the interface between its two layers with uniform thicknesses. One layer has a larger 

(and uniform) pore size than the first porous medium, such that Darcian flow occurs within the 

layer (L2 in Fig. 1.11). The layer contributes to half of the total flux for the medium; the total flux is 

defined as the total flow rate divided by the cross-sectional area of the layered system. The second 

layer has a smaller (and uniform) pore size than the first porous medium and thus the threshold 

hydraulic gradient I1 is larger than I (L3 in Fig. 1.11). This layer contributes to the second half of 

the total flux for the layered system. (Obviously, the second layer should be much thicker than the 

first layer because they have the same contribution to the total liquid flux for a given hydraulic 

gradient larger than I1.)  For the second porous medium, the relationship between the magnitude of 

total flux q and hydraulic gradient i is the additive combination of L2 and L3 in Fig. 1.11. The thick 

black line (with two segments from L2 and L1 respectively) is the q(i) curve for the second medium 

(the layered system). Note that I1 is the same as the hydraulic gradient at the intersection between 

L1 and L2, because the two ideal porous media have the same threshold gradient (I).  

 

The second porous medium (the layered system) has a broader (yet discrete) pore size distribution 

than the first medium. As a result, the q changes more gradually with hydraulic gradient i than the 

first medium. For the purpose of demonstrating the concept, we have considered an extremely 

simple case in this section. The conclusion, however, holds in a more realistic case in which a 

continuous pore size distribution would generally result in a continuous slope ( didq / ) for a q(i) 

curve.  

 

1.6 Multidimensional and Anisotropic Cases 

       

The generalized Darcy’s law was developed for one-dimensional water flow, as discussed in Sect. 

1.3. In many studies, we need to investigate multidimensional water-flow processes. For that 

purpose, Liu (2014) extends Eq. 1.21 to three-dimensional, homogeneous and isotropic media:    
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where q (m/s) and ni (-) are water flux vector and unit vector for hydraulic gradient, respectively. 

The relationship between I and I
*
 is given by Eq.1.21-1. When the threshold hydraulic gradient I 

approaches zero, Eq. 1.30 is reduced to the commonly used form of Darcy’s law. It should be 

emphasized that Eq. 1.30 is an empirical relationship and developed based on one-dimensional test 

results. It is logical to directly extend Eq. 1.21 to Eq. 1.30 for homogeneous and isotropic cases 

because both equations are consistent with the one-dimensional test condition that flux and 

negative hydraulic gradient are along the same direction.  

      

Shale formations are generally anisotropic, as a result of the existence of bedding structures in 

these formations. To model water flow in them, we need a formulation of water flux in anisotropic 

media. Because of the nonlinear feature of the non-Darcian flow, it is not a trivial task to 

theoretically relate flux-gradient relationships between different dimensions and/or between 

isotropic and anisotropic cases. Thus, Liu (2014) presents an approximate formulation of water 

flux in an anisotropic medium. For simplicity, Liu (2014) choose the spatial coordinate axes to be 
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in the principal directions of the anisotropic medium (Bear 1979) such that one axis is 

perpendicular to the bedding plane.  Then, Liu (2014) proposes the water-flux formulation for 

anisotropic media by extending Eq. 1.30:   
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where K is the conductivity tensor, and subscripts x, y and z refer to components along three 

coordinate directions. Specifically, Ij (j = x, y, z) is the measured threshold hydraulic gradient in the 

jth direction from one-dimensional experiments. Because of the way the coordinate system is 

chosen, there are no cross terms in the conductivity tensor. It is also easy to show that the relation 

among the magnitude of hydraulic conductivity, conductivity components, and hydraulic gradient 

components has the same mathematical form as Eq. 1.32 if the relevant variables for the threshold 

hydraulic head in Eq. 1.32 are replaced by the corresponding variables for the conductivity.  

 

The reasonableness of the approximation (Eqs. 1.31 and 1.32) can be demonstrated by its 

consistency with known results. For one-dimensional flow along the bedding direction (e.g., the x 

direction), Eq. 1.31 is reduced to Eq. 1.21 with I = Ix. Similarly, if the z direction is perpendicular to 

the bedding plane, we can also get the expected result with I=Iz for one-dimensional flow along the 

z direction. For isotropic cases (or Ix=Iy=Iz), we can recover Eq. 1.30 from Eq. 1.31.  Thus, Eq. 1.31 

gives an approximate, yet practically reasonable way to model non-Darcian water flow in the 

bedding shale formations, while the exact formulation for water flux in anisotropic media is 

difficult to obtain (Liu 2014).   

 

 

1.7 Case Studies               
 

This section provides selected case studies to demonstrate the importance of non-Darcian flow 

behavior in several research areas associated with liquid flow in low-permeability media (Liu 2014; 

Liu et al. 2015).  

 

1.7.1 Impact of non-Darcian Flow on Performance of a Shale Repository for High-Level 

Nuclear Waste 

  

Shale formations have been considered by several countries as potential host rock type for 

geological disposal of high-level radioactive waste (Tsang et al. 2012). One major concern for a 

shale repository is that hydromechanical perturbation caused by underground excavations during its 

construction stage could alter rock properties surrounding repository tunnels and thus could 

compromise the safety performance of the repository system. The perturbation generally results in 

an excavation damaged zone (EDZ) around the repository tunnels (where the nuclear waste 

packages will be stored) and access shaft used to access the repository from the ground surface, 



 29 

because of a redistribution of in situ stresses and rearrangement of rock structures (Tsang et al. 

2012). Induced macro- and micro-fractures in the EDZ can increase the rock permeability by one or 

more orders of magnitude. Thus, the EDZ could act as a preferential flow path for advective 

transport. This is a very unfavorable condition because it can speed up radionuclide transport from 

failed waste packages toward the biosphere (Fig. 1.12). On the other hand, if water velocity in the 

EDZ was small, diffusion would be the dominant mechanism for radionuclide transport. In this case, 

the impact of the EDZ on radionuclide transport is minimal. Therefore, the relative importance of 

advection versus diffusion in the EDZ is a key issue for assessing the performance of a shale 

repository (Liu 2014).  

 

Recently, Bianchi et al. (2013) conducted a comprehensive modeling study on the relative 

importance of advection versus diffusion within the EDZ.  They developed a two-dimensional 

model of a generic repository including a single horizontal tunnel for waste emplacement, a vertical 

shaft, and a vertical cross section of the host-rock formation. The longitudinal axis of the horizontal 

tunnel, which has a total length Le equal to 600 m, is located at z = - 50 m (Fig. 1.12). (z = 0 on the 

ground surface.) The length of the model domain in the x direction is 2000 m, such that the left and 

right boundaries are sufficiently distant from the tunnel and the shaft. The total thickness of the host 

rock is 100 m, while the vertical extension of the shaft equals 50 m, from the end of the horizontal 

tunnel to the top boundary of the host formation. For their base case scenario, Bianchi et al. (2013) 

assumed a vertical hydraulic gradient of 1 m/m. This value is consistent with the hydraulic 

conditions of the Opalinus Clay at the Mont Terri site, Switzerland (Bianchi et al. 2013). The Mont 

Terri site has been intensively investigated as an analogue for a shale/clay repository. The values of 

the hydrogeological parameters assigned to the host rock and the repository components were also 

chosen to be realistic with respect to values from several sources (Table 1.1).  

 

 
Fig. 1.12 Flow pattern for a two-dimensional clay repository (Liu 2014). The horizontal structure is a repository tunnel 

connected to the ground surface through a vertical access shaft  

 

 

The base-case simulation results of Bianchi et al. (2013) are demonstrated in Fig. 1.12. The stream 

lines are generally in a vertical direction except within the EDZ surrounding the tunnel, and the 

water potential lines (each of which has the constant water head (potential)) are generally in the 

horizontal direction. The simulations did not consider the non-Darcian flow behavior.  Bianchi et al. 

(2013) found that for a given ambient hydraulic gradient, the upward water flow below the tunnel is 

intercepted by the high-permeability EDZ and advection indeed becomes important within the EDZ. 

They also found that the advection within the EDZ is limited by the amount of water flowing into it 
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from the surrounding host rock. This is expected because when there is no water flowing into the 

EDZ, water velocity within the EDZ would be zero, even though the EDZ permeability is high.      

 

 

Table 1.1 Parameter values for the generic shale repository  

 

Parameter Value 

Vertical thickness of the host rock formation 100 m 

Total length of the repository in the x direction 600 m 

Repository tunnel diameter 4.5 m 

Thickness of the EDZ in the tunnel 2.4 m 

Initial hydraulic gradient in the z direction 1 m/m 

Host rock permeability 5E-20 m
2
 

Diffusion coefficient for EDZ fractures   1.08E-9 m
2
/s 

Fracture porosity within the EDZ 0.01 

 

 

In his study, Liu (2014) further investigated the relative importance of advection versus diffusion 

within the EDZ by incorporating the non-Darcian flow behavior. The model setup and parameter 

values in Bianchi et al. (2013) are employed herein. To simplify the analysis procedure, Liu (2014) 

assumes that the EDZ permeability is infinite and the permeability of backfills in the tunnel is zero. 

Obviously, these assumptions generally lead to overestimation of the relative importance of 

advection within the EDZ. In this case, the EDZ has the same pressure head as the upper boundary 

in Fig. 1.12, because the EDZ is in equilibrium with the upper boundary as a result of EDZ’s 

infinite permeability. The simulation results from Bianchi et al. (2013) indicate that under steady 

state conditions, the hydraulic gradient in the zone below the tunnel is very close to the uniform 

distribution. The same distribution is assumed here. With these assumptions and approximations, 

the hydraulic behavior of the EDZ can be easily determined without using numerical modeling. The 

hydraulic gradient below the tunnel will be twice as large as the ambient condition (or i = 2 m/m). 

The EDZ intercepts all the upward flow from the region below the tunnel. The water flow rate (and 

velocity) will be linear along the x axis with zero value at the left end and the maximum value at the 

right end (Fig. 1.12).    
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Fig. 1.13 The normalized pore velocity as a function of threshold gradient I (Liu 2014). The normalized velocity refers 

to the ratio of the maximum pore velocity within the EDZ to that in the Darcian-flow case 

 

The water flux into the EDZ from the lower portion of the clay formation in Fig. 1.12 is estimated 

with Eq. 1.18 (for simplicity) and for i = 2 m/m. Based on the mass balance, the maximum 

(horizontal) water flow rate within the EDZ is equal to the calculated vertical water flux, multiplied 

by the length of the tunnel and by the upper diameter of the EDZ. (The multiplication gives the area 

intercepting the upward water flow.) Then, the maximum pore velocity within the EDZ is 

determined as the flow rate divided by its cross-sectional area and by fracture porosity. Figure 1.13 

shows the normalized pore velocity as a function of threshold gradient I. The normalized velocity 

there refers to the ratio of the maximum pore velocity within the EDZ to that for Darcian flow.  The 

filled circle in Fig. 1.13 corresponds to the threshold hydraulic gradient I = 2755 m/m calculated 

from Eq. 1.24 using permeability k = 5E-20 m
2
 (Table 1.1).  Obviously, the non-Darcian flow has a 

significant impact on the water velocity. For the problem under consideration with I = 2755 m/m, 

the water velocity corresponding to non-Darcian flow is more than three orders of magnitude 

smaller than that for the Darcian flow (Fig. 1.13). 

       

The relative importance of the advection within EDZ can be evaluated with the Peclet number, Pe 

(Bianchi et al. 2013; Liu 2014): 

D

vLe
Pe                                                    (1.33) 

 

where v (m/s) is the maximum pore velocity, Le = 600 m is the length of the tunnel, and D (m
2
/s) is 

the effective diffusion coefficient within fractures (Table 1.1). Note that for D here, unlike in 

porous media, we do not need to consider the tortuosity factor because transport paths in fractures 

are close to straight lines (Liu 2014). In general, Pe represents the ratio of the time for diffusion 
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(Le
2
/D) to the time for advection (Le/v). For porous media, Pe < 1 is considered to correspond to the 

solute-transport regime with dominant diffusion. This criterion, however, is too strict here because 

the matrix diffusion process can significantly enhance the role of the diffusion process in fractured 

rock (Liu et al. 2007), but is not considered in the expression for Pe. Nevertheless, the calculated Pe 

values for the problem given in Fig. 1.12 are 0.6 in the non-Darcian flow case and 1666.7 in the 

Darcian flow case, respectively.  It is obvious that solute transport within the EDZ, as a result of 

non-Darcian flow behavior, is diffusion dominated, even though the EDZ permeability is assumed 

to be infinite. In other words, advection is not the dominant transport mechanism within the EDZ 

because the water flow rate into the EDZ is essentially eliminated by the non-Darcian flow behavior 

in a shale formation. Note that our conclusion holds only under conditions without intersections 

between the EDZ and the conductive geological structures that connect the high-permeability 

formations surrounding the host rock formation. This result is significant given the fact that EDZ’s 

role in radionuclide transport has been a central issue in the performance assessment of a shale 

repository for nuclear waste.    

        

1.7.2. Influence of non-Darcian Flow on Observed Relative Permeability 

         

Two-phase flow properties of low-permeability media, including relative permeability kr, are 

necessary inputs to modeling flow processes in many practical applications. This subsection is 

going to show that if non-Darcian flow behavior is not considered, significant errors could occur in 

estimating liquid relative permeability from laboratory measurements (Liu 2014). The next chapter 

will be fully devoted to the two-phase flow process. If the reader is not familiar with the two-phase 

flow, he or she may skip this and next subsections and get back to them after going through the next 

chapter.   

 

In general, the relative permeability can be related to water saturation by (van Genuchten 1980): 

 

𝑘𝑟 = 𝑆𝑒
1/2

{[1 − (1 − 𝑆𝑒
1/𝑚)

𝑚
]}

2

                             (1.34) 

 

where m is a parameter related to pore size distribution and Se is the effective saturation defined by 

 

𝑆𝑒 =
𝑆−𝑆𝑟

1−𝑆𝑟
                                                                     (1.35) 

 

where S and Sr are water saturation and residual saturation, respectively.  

 

Since parameter m can be determined from the relatively easily measured water retention curve (or 

relation between capillary pressure and water saturation), Eq. 1.34 provides an efficient way to 

estimate relative permeability. The measurements of relative permeability are difficult and take long 

time. However, the validity of the van Genuchten (1980) relationship, as an empirical one, is an 

open question for the low-permeability media (such as shale rock) because there are very rare 

studies on the comparison between the relationship and measured relative-permeability data for the 

media. The major purpose of this subsection, as previously indicated, is to demonstrate that 

“measured” values for relative permeability are not true medium properties, but strongly depend on 

test conditions, as a result of non-Darcian flow behavior. By “true” relative permeability, we mean 

the relative permeability associated with the linear regime for the curve in Fig. 1.5. 
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To measure the relative permeability, the hydraulic gradient (i) is generally fixed, and then water 

flux (q) is measured under steady-state condition. In this case, the “measured” relative permeability 

krM can be calculated as 

 

𝑘𝑟𝑀 =
𝑞/𝑖

𝐾
                                                              (1.36) 

 

For simplicity, Liu (2014) uses Eq. 1.18 to describe the non-Darcian flow behavior. Note that under 

the unsaturated condition, hydraulic conductivity (K) in Eq. 1.18 needs to be replaced by 

unsaturated conductivity (Kkr). In this case, Eq. 1.36 becomes (Liu 2014) 

 

𝑘𝑟𝑀 = (1 −
1−𝑒

−
𝑖

𝐼𝑢𝑛

𝑖

𝐼𝑢𝑛

)𝑘𝑟                                      (1.37) 

Herein, we denote I and Iun as the threshold hydraulic gradient under the saturated and unsaturated 

conditions, respectively. To calculate Iun with Eq. 1.24, the permeability (k) there needs to be 

replaced by unsaturated permeability (kkr) (Liu and Birkholzer 2013). As previously indicated, 

water flow under the unsaturated condition generally exhibits stronger non-Darcian flow behavior 

than that under the saturated condition, because the former corresponds to smaller sizes of pores 

occupied by water.  

For demonstration purposes, and because of the lack of alternatives, we assume that kr in Eq. 1.37 

can be represented by Eq. 1.34. When hydraulic gradient (i) in a test is given, krM can be calculated 

from Eq. 1.37 with Iun and kr obtained from Eqs. 1.24 and 1.34, respectively. The value for m is 

assigned to be 0.6 (Zheng et al. 2012). Figure 1.14 shows the calculated krM curves as a function of 

the effective saturation. For each curve, the hydraulic gradient i is fixed.  The threshold gradient I is 

determined from Eq. 1.24 with k = 5E-20 m
2
. Note that I = 0 corresponds to the “true” relative 

permeability curve calculated with Eq. 1.34. 

 

Fig. 1.14 “Measured” relative permeability curves, under different hydraulic gradients, as a function of the effective 

saturation (Liu 2014). Note that I = 0 corresponds to the “true” relative permeability curve calculated with Eq. 1.34 
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Figure 1.14 shows that a measured relative permeability, for a given saturation, is significantly 

smaller than the “true” value, especially for the low saturations under which non-Darcian flow 

behavior becomes relatively strong. The measured curve is a function of the hydraulic gradient used 

in the test. A larger gradient gives results closer to the “true” values, which is expected from Fig. 

1.5.  If relatively small hydraulic gradients are used in tests, the measured relative permeability can 

be smaller than one under the saturated condition, because permeability (k) measurements are not 

made in the linear regime of the relationship between water flux and hydraulic gradient (Fig. 1.5). 

The differences between “measured” curves and the “true” curve would be even more dramatic if 

Eq. 1.21 with   values larger than one was used for describing the non-Darcian flow behavior, 

because it gives much smaller values for dq/di when the hydraulic gradient is smaller than the 

corresponding threshold gradient (Eq. 1.20). Nevertheless, Fig. 1.14 clearly indicates that without 

considering the non-Darcian flow behavior, the “measured” values for relative permeability involve 

large errors.  

The finding seems to be consistent with the relative permeability measurements of rock matrix from 

the unsaturated zone of Yucca Mountain, Nevada, USA (BSC 2004). (More information on the 

Yucca Mountain Project will be given in Chap. 2.) Those measurements, for a given saturation, are 

dramatically smaller than what are predicted from the van Genuchten relationship (Eq. 1.34) for 

samples with (absolute) permeability values below 10
-18

 m
2
.  The differences can be explained with 

the non-Darcian flow behavior in low-permeability media, as discussed above.         

There are several ways to recover the “true” relative permeability curve from raw measurements by 

incorporating the non-Darcian flow behavior (Liu 2014). The ideal one would be to use large 

enough hydraulic gradients such that throughout the tests, the relationship between water flux and 

the gradient is in the linear regime (Fig. 1.5). However, this may not be feasible in practice because 

the threshold gradient can be huge for low saturations. When the relationship between permeability 

and the threshold gradient (e.g., Eq. 1.24) is known with confidence, the only unknown in Eq. 1.37 

is kr for a given measurement krM. In this case, kr can be estimated by solving Eqs. 1.24  

(generalized for the unsaturated condition) and 1.37. If the required relationship between 

permeability and the threshold gradient is not known for a specific rock type, measurements for 

relative permeability with different hydraulic gradients, such as those shown in Fig. 1.14, need to be 

made. To recover the true curve, we can simultaneously fit the measured curves using Eqs. 1.24, 

1.34 and 1.37 with parameters A’, B’, and m being treated as fitting parameters. The advantage of 

this approach is that both the true relative permeability curve and the relationship between 

permeability and threshold gradient are simultaneously determined from measurements.    

 

1.7.3 Imbibition of Fracturing Fluids into Shale Matrix and a Methodology to Determine 

Relevant Parameters  

 

Hydraulic fracturing of horizontal wells is a widely used technique for recovering natural gas from 

shale gas and other unconventional reservoirs characterized by an extremely low permeability and 

generally involves the use of large volume of fracturing fluids along with proppants. The water-

based fracturing fluids (that are now most commonly used in hydraulic fracturing) include about 

99% of fresh or recycled water, complimented by the addition of chemicals like surfactants, friction 

reducers, biocides, clay stabilizers and scale inhibitors (e.g., Roychaudhuri et al. 2013). During 

hydraulic fracturing and the well shut-in stages, significant amount of fracturing fluids will flow 

into surrounding shale from hydraulic fractures through imbibition process. Spontaneous imbibition 
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is of particular interest, because it is the major mechanism for liquid uptake by the formation during 

relatively long well shut-in time period before gas production starts (Roychaudhuri et al. 2013; 

Rangel-German and Kovscek 2002). The liquid imbibition could cause the loss of gas relative 

permeability and lead to chemically altered zone near fracture-matrix interface. Obviously, 

accurately predicting the imbibition process has many practical implications for shale-gas 

production (Liu et al. 2015).   

           

Considerable evidence of the non-Darcian imbibition behavior exists in the shale gas literature (Liu 

et al. 2015). For example, several research groups experimentally demonstrated that the cumulative 

liquid mass of imbibition into shale samples (from spontaneous imbibition laboratory tests) as a 

function of time generally does not follow a straight line with a slope of 0.5 in the log-log plots (Hu 

and Ewing 2014; Roychaudhuri et al. 2013). The slope of 0.5 is a signature of Darcy flow, as will 

be discussed later. However, this non-Darcian liquid flow behavior has not been given enough 

attention in modeling fluid flow in shale gas reservoirs. This subsection presents a 

phenomenological model for unconventional liquid imbibition process and a methodology to 

estimate the associated model parameters from laboratory tests (Liu et al. 2015). 

 

Section 1.3 reviews the currently available relationships between water flux and hydraulic gradient 

and proposes the generalized Darcy’s law. The model of Liu et al. (2015) is consistent with the 

generalized Darcy’s law and related experimental observations. This new development also allows 

for establishing a relatively simple laboratory procedure to determine key parameters associated 

with the non-Darcian liquid flow. As previously indicated, spontaneous imbibition is of particular 

interest, because it is the major mechanism for liquid uptake by the formation during relatively long 

well-shut time period (Roychaudhuri et al. 2013; Rangel-German and Kovscek 2002). Thus, this 

subsection is devoted to spontaneous imbibition that is driven by the capillary force. The content of 

this subsection is based on the materials from Liu et al. (2015). 

 
 

 
Fig. 1.15 Approximation of Eq. 1.21-1 by power functions for i/I < 4. Note that q* is defined as flux magnitude (q) 

divided by KI (See Eq. 1.21) (Liu et al. 2015) 

 

 

The key assumption is that liquid flux is a power function of capillary pressure gradient, or    
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where 
*k  is an analogue of permeability for unsaturated liquid flow (or permeability multiplied by 

relative permeability), cp
is capillary pressure (that is negative), n is a positive parameter, x is 

location, and again  is fluid viscosity. Equation 1.38 will be reduced to Darcy’s law for n = 1. 

Note that liquid flux qx can be positive or negative to represent its direction. The assumption (Eq. 

1.38) is justified by the following two considerations. First, as shown in Fig. 1.15, Eq. 1.21 can be 

approximately represented by a power-law function for a large range of hydraulic gradient (i/I <4) 

that is capillary pressure gradient divided by fluid density and by gravitational acceleration. Second, 

more importantly, this treatment is consistent with spontaneous imbibition observations, as will be 

shown later. 

 

During the imbibition process, a unique relationship between capillary pressure and volumetric 

liquid content   exists. Thus, we have 
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Then Eq. 1.38 can be rewritten as 
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where 
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Combining Eq. 1.40 with the water volume balance yields  
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where t is time. Because water density is considered to be constant, the water volume balance is 

equivalent to water mass balance. We have so far concentrated on one-dimensional flow case, 

simply because the imbibition process can be considered one dimensional. Note that penetration 

depth of fracturing fluids into shale matrix is generally small as a result of low shale permeability.  

In order to use Eq. 1.42 to simulate liquid flow, we need to know parameter n and relationship )(D . 

Liu et al. (2015) provide a solution to Eq. 1.42 that can serve as the base for experimentally 

determining them in the laboratory under certain conditions.  
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Liu et al. (2015) consider an infinite long shale column subject to the imbibition process (from the 

inlet x = 0) and the following boundary and initial conditions: 
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For the problem under consideration, the liquid content gradient is negative. Thus, Eq. 1.42 can be 

rewritten as 
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Using the transformation 
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Liu et al. (2015) transform Eqs. 1.43 and 1.44 into 
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Note that Eq. 1.47 can be much easily solved than Eq. 1.44, although they are equivalent. This is 

because Eq. 1.47 is an ordinary differential equation with   as the only independent variable.   

 

Directly integrating Eq. 1.47 for the interval ( ,   ) yields 
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It indicates that )(D can be calculated when )( is given. 
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Based on the liquid mass balance in the whole system, one can determine cumulative imbibition (in 

terms of liquid volume) as  
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where Acs is cross-sectional area of the shale column. Combining  Eqs. (1.49) and (1.45) gives  
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Thus, the cumulative mass is a power function of time. For Darcian flow (n=1), the exponent is 

equal to 0.5. Obviously, for non-Darcian liquid flow, the exponent is not 0.5 anymore. Also note 

that for n = 1, the results (Eqs. 1.48 and 1.50) will be reduced to the classic results of Bruce and 

Klute (1956) for Darcian flow; this study can be considered a generalization of the method of Bruce 

and Klute (1956). 

 

The theoretical development discussed above relies on a key assumption that liquid flux is a power 

function of pressure gradient (Eq. 1.38). This results in an interesting relationship between 

cumulative imbibition and time (Eq. 1.50). The usefulness of the assumption and related theory can 

be demonstrated by a comparison between that relationship and the relevant experimental 

observations. In this section, Eq. 1.50 is compared with data of spontaneous imbibition tests 

reported by Hu and Ewing (2014) and Roychaudhuri et al. (2013), because the data sets and the 

associated laboratory test procedures are well documented by these authors and the related test 

conditions are consistent with those specified in Eq. 1.43.  

 

In Hu and Ewing (2014), all the test samples are from the Barnett shale formation. The samples 

were cut into rectangular prisms at about 15 mm and then oven-dried at 60
0
C for at least 48 hours 

before being subject to the imbibition experiments. The sample bottom was submerged to a depth 1 

mm in a water reservoir. Care was taken of to minimize (or eliminate) evaporation from other 

surfaces of samples and allow air escape from the top. The cumulative imbibition was monitored by 

automatically recording the sample weight change over time. Observations for a typical sample are 

shown in Fig. 1.16. At the very early time (less than 1 min), imbibition increases abnormally 

quickly, which could result from the boundary effects or balance stability problem. However, after 

that, the relationship between cumulative imbibition and time follows a nice straight line in the log-

log scale with a slope of 0.262. Obviously, this is very much consistent with Eq. 1.50 with n = 2.82. 

They found the similar behavior (with slopes ranging from 0.214 to 0.357) for all the other samples 

they investigated. This further confirms the existence of non-Darcian liquid flow behavior in shale. 

As previously indicated, Darcian flow behavior corresponds to a slope of 0.50.  

 

Hu and Ewing (2014) attributed the observed non-Darcian flow behavior to poor pore connectivity 

in low-permeability media. However, it is clearly demonstrated mathematically in the above 

derivation that the observed non-Darcian liquid flow is a direct result of the nonlinearity between 

imbibition flux and pressure gradient. We also believe that this nonlinearity is largely caused by the 
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strong solid-liquid interaction (Miller and Low 1963; Hansbo 1960), rather than pore connectivity. 

This argument, for example, is strongly supported by the experimental results of Xu et al. (2007). 

As previously indicated, he experimentally investigated the relationship between flux of deionized 

water and pressure gradient in individual micro-tubes with diameters ranging from 2 to 30 µm, and 

found that water flow in micro-tubes with diameters of less than 16 µm becomes significantly 

nonlinear. Obviously, their results have nothing to do with pore connectivity.         

 
Fig. 1.16  Observed cumulative imbibition as a function of time for a Barnett shale sample (from Hu and Ewing 2014) 

 

The similar test procedure was used by Roychaudhuri et al. (2013) in their spontaneous imbibition 

tests of shale samples from the Marcellus formation. They noticed that in the plot of cumulative 

imbibition versus 
2/1t , the observation cannot be represented by a single straight line. If they could, 

the liquid flow would follow Darcy’s law. Instead, in that plot, they used two separated straight 

lines with two different slopes to represent the data, and also interpreted the first straight line (with 

a relatively large slope) as a signature of imbibition to micro-fractures. While their interpretation is 

of interest, their data can be adequately represented by Eq. 1.50 (Fig. 1.17), which is consistent with 

the results of Hu and Ewing (2014). Also note that Sample #11 has a slope of 0.47 in Fig. 1.17 that 

is very close to 0.5, indicating that water flow is close to Darcian flow in this sample. Nevertheless, 

most shale samples are characterized by unconventional flow and our theory (discussed above) can 

be applied to both Darcian and non-Darcian flow processes.      
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Fig. 1.17 Comparisons between the imbibition data of Roychaudhuri et al. (2013) and the theory (Eq. 1.50) (Liu et al. 

2015)   

 

 

The non-equilibrium imbibition has also been reported to give slope values (in the log-log plots 

shown in Figs. 1.16 and 1.17) different from 0.5 (Barenblatt and Gilman 1987; Silin and Patzek 

2004; Guen and Kovscek 2006). The non-equilibrium theory assumes that the redistribution of the 

fluids in the pore space with changing saturation is not instantaneous, but takes some time, while 

the flow process still follows Darcy’s law. Silin and Patzek (2004) provided a detailed discussion of 

the theory and the related mathematical development.  They found that cumulative imbibed liquid 

volume, under the non-equilibrium condition, is described by Eq. 1.51 for early time and Eq. 1.52 

for late time.   
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where n0 is a positive constant.  
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where 0 is called relaxation time that is a positive constant as well. Obviously, Eq. 1.51 shows that 

at the early time the cumulative volume (or mass) is indeed a power function of time with the 

exponent that is different from 0.5, or more specifically larger than 0.5. (The exponent here 

corresponds to the slope in the log-log plots.) Because the term 0/
1

t
e


 increases with time, if one 

uses a power function of time to approximate Eq. 1.52, the exponent would be larger than 0.5. 

Thus, the non-equilibrium always gives exponent larger than 0.5, which is not consistent with the 

theoretical and observed results for non-Darcian imbibition that corresponds to an exponent less 

than 0.5 (Figs. 1.16 and 1.17). In other words, the non-equilibrium is not the mechanism for non-

Darcian imbibition. Our argument is consistent with findings by Schmid and Geiger (2012; 2013). 

Based on their analyses of a large number of spontaneous imbibition test data sets, Schmid and 

Geiger (2012; 2013) concluded that consideration of the non-equilibrium is not necessary to explain 

those data sets. 
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As indicated in Eq. 1.40, parameter n and function )(D need to be given for modeling non-Darcian 

liquid flow. Based on the analytical results for one-dimensional spontaneous imbibition process 

(Eqs. 1.48 and 1.50), Liu et al. (2015) propose a laboratory test procedure to estimate n and )(D .   

The laboratory test should be designed in such a way that test conditions are consistent with initial 

and boundary conditions to obtain Eqs. 1.48 and 1.50. The imbibition occurs from one end of a 

shale column (not from its sides) and the length of the column should be long enough such that it 

can be approximately considered infinite for the imbibition. The latter should be easily satisfied in 

practice because imbibition into shale sample is a slow process. Care also needs to be taken such 

that evaporation from the shale column is eliminated or minimized. Then using a procedure similar 

to that of Hu and Ewing (2014), the cumulative imbibition as a function of time, M(t), is monitored. 

The log-log plot of M(t), like Figs. 1.16 and 1.17, allows for determination of parameter n by fitting 

the data with Eq. 1.50; the slope in the plot is equal to 1/(n+1). 

 

To estimate )(D from Eq. 1.48, we need to experimentally determine )( (or ))( . Based on 

the transformation given in Eq. 1.45, )( can be calculated from  spatial distribution for a given 

time, or from  as a function of time at a given location, when parameter n is known. In this study, 

the use of  spatial distribution at the time when imbibition test is finished is considered more 

practical. Since the imbibition depth is likely small, a high-resolution measurement of  distribution 

along the shale column is required. For example, Pagels et al. (2013) used a specialized titration 

method for determining water content distributions for shale samples.  

 

For many practical reasons, an observed  spatial distribution is often not smooth and involves 

certain degree of fluctuation, which may cause some problem with calculating )(D from Eq. 1.48 

when directly observed )( (or ))( is employed. This issue has been addressed by many studies 

on applications of the method of Bruce and Klute (1956) to determining soil water diffusivity. Since 
 distributions generally follow certain regular shapes, a number of empirical algebraic expressions 

for )(  exist and can be used to fit observed )( data adequately (e.g., Brutsaert 1982; 

Evangelides et al. 2010); these expressions correspond to smooth curves. Furthermore, these 

expressions allow for derivation of algebraic expressions for )(D  that are convenient to use in 

modeling studies.  

 

To demonstrate the usefulness of the treatment discussed above, we focus on a relatively simple 

expression for )( :  
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Fig. 1.18 shows )(*  curves for several α’ values. A large α’ value corresponds to a relatively 

sharp liquid content profile and a small α’ value to a gradually varying profile. Inserting Eq. 1.53 

into Eq. 1.48 yields (Liu et al. 2015) 
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Fig. 1.18 Curves calculated from Eq. 1.53 for several α’ values (Liu et al. 2015)  

 

Values for parameters ' and  can be determined by fitting the )( data with Eq. 1.53, which is 

subject to the constraint:  
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where the value for the left hand side of Eq. 1.56 is determined when the cumulative imbibition 

(M(t)) data is fitted with Eq. 1.50. From the derivation of Eq. 1.50, it is evident that Eq. 1.56 is a 

constraint associated with liquid mass (volume) balance. 

 

1.7.4 Non-Darcian flow and abnormal liquid pressure in shale formations 

 

The non-Darcian flow behavior is consistent with the often observed abnormal liquid pressure in 

shale formations. The abnormal pressure refers to the pore pressure that is considerably higher 

(overpressure) or lower (underpressure) than the hydrostatic pressure (Deming 1994; Tremosa et al. 

2012).  The hydrostatic pressure is defined as the pore pressure when fluid column is in equilibrium 

with gravity under the condition that pores are well connected in the vertical direction. 

 

It is also well known that a shale formation is capable of confining anomalous pressure over 

geologic time, or plays a role as a pressure seal. The existence of abnormal pressure within shales 

themselves and the capability of shales to confine pressure are closely related because both of them 

result from the same fact that shale formations can prevent considerable pressure propagation. 
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Based on his analyses of pressure propagation processes, Deming (1994) concluded that the 

permeability needed for a geologic unit to act as a pressure seal over a time span of about one 

million years is about 10
-21

 to 10
-23

 m
2
, a range generally lower than most measurements of shale 

permeability. Note that the use of lower permeability values than actual ones is essentially 

equivalent to the consideration of non-Darcian flow behavior when the hydraulic gradient is less 

than the threshold gradient (Fig.1.5). The dominant mechanism for the anomalous pressure in shale 

formations has been an issue of debate in the literature. The osmotic pressure within shale 

formations has also been proposed as a major mechanism (e.g., Tremosa et al. 2012). It may 

contribute to the persistence of observed overpressures, but cannot explain the frequently observed 

pore pressures that are lower than hydrostatic ones in shale formations.  

 

Figure 1.19 demonstrates the impact of non-Darcian flow on the existence of abnormal pressures 

within shale formations. Again for simplicity, we use Eq. 1.18 for describing the non-Darcian flow 

behavior. Consider that initially there is a pressure discontinuity at interfaces between a shale 

formation and upper and lower adjacent formations, which leads to infinite pressure (hydraulic) 

gradient there. As indicated by Eq. 1.18, shale-formation water near the interfaces is mobile for the 

given gradient and released into the adjacent formations. Consequently, pressure gradients near the 

interfaces decrease with time until hydraulic gradient i reaches its threshold value I. Based on Eq. 

1.18, water is not mobile anymore below the hydraulic gradient less than I. Thus, a pressure 

distribution (the bolder curve in Fig. 1.19) will not change anymore with time, leading to a steady-

state abnormal pressure distribution.      

 

While the process for the formation of abnormal pressure discussed above is, in principle, 

applicable to a realistic case, two issues need to be taken into consideration for determining a more 

realistic pressure distribution in a shale formation. Firstly, non-Darcian flow is actually described 

by our generalized Darcy’s law (Eq. 1.21), rather than Eq. 1.18. Based on Eq. 1.21, liquid water 

will never be completely immobile except for a zero hydraulic gradient. Thus, a real pressure 

distribution should be smoother than that predicted with Eq. 1.18 (the bolder line in Fig. 1.19). 

Secondly, since water is always mobile for non-zero pressure gradient, the real pressure distribution 

is transient and not in a steady state. However, because water flow is extremely slow for relatively 

low hydraulic gradient (Fig 1.5), a shale formation can contain or be capable of confining 

anomalous pressure over geologic time. A more realistic pressure distribution within a shale 

formation is also given in Fig. 1.19 as well.        
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Fig. 1.19 Demonstration of the impact of non-Darcian flow on the pressure seal effect. P refers to pore water pressure. 

Elevations at A and B correspond to interfaces between shale formation and the overlying and underlying formations, 

respectively 

 

 

 

1.8 Concluding Remarks 

 

(A) The key result from this chapter is the generalized Darcy’s law given as 
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where the threshold hydraulic gradient I and parameter   characterize impacts of solid-liquid 

interaction and pore size distribution, respectively. The above relationship is very general in a sense 

that it includes Darcy’s law and the two commonly used forms of modified Darcy’s law as its 

special cases. The consistency between the above equation and experimental observations from 

different sources is demonstrated. Extensions of the above equation from one-dimensional to 

multidimensional cases are explored.  

 

(B) The generalized Darcy’s law and its variations are used to attack several key technical issues 

facing the geoscience community, including the relative importance of diffusion in the excavation 

damaged zone (EDZ) for a shale repository of high-level nuclear waste, the accurate measurement 

of relative permeability for multiphase flow in a low-permeability porous medium, non-Darcian 

flow behavior during imbibition of fracturing fluids into a shale gas reservoir, and formation of the 

pressure seal in shale formations.  
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(C) Our generalized Darcy’s law (Eq. 1.21) is phenomenological in nature. Its mathematical form 

may be refined by more fundamental studies on the impact of solid-liquid interaction on liquid flow. 

Furthermore, influences of environmental factors (e.g., temperature and pressure) on the threshold 

hydraulic gradient I and parameter   are not totally clear yet.     
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Chapter 2 

Generalization of the Darcy-Buckingham Law: Optimality and Water Flow in 

Unsaturated Media 
 

Darcy’s law has been regarded as the most fundamental physical law in describing fluid flow in the 

subsurface. This law, however, should be called the Darcy-Buckingham law for multiphase flow, 

because Edgar Buckingham (1867-1940), an American physicist, independently discovered the 

relationship between water flux and hydraulic gradient in a water-air two-phase flow system (or 

unsaturated soil); Darcy’s law was initially discovered for single phase flow only. This chapter 

discusses the Darcy-Buckingham law, its valid range, and our work on extending this important 

physical law based on an optimality principle that the water flow pattern in unsaturated media is 

self-organized in such a way that total water flow resistance is minimized. The developments in this 

chapter are mainly based on materials from Liu et al. (1998; 2011a, b), Sheng et al. (2009) and Liu 

(2010).   

 

 

2.1 Edgar Buckingham and His Law for Water Flow in Unsaturated Soils 

 

 
 
Fig. 2.1 Edgar Buckingham (1867-1940) (https://en.wikipedia.org/wiki/Edgar_Buckingham) 
 

 

Largely because Edgar Buckingham (Fig. 2.1) had worked on water flow in unsaturated soils for a 

relatively short time period, his original contributions to multiphase flow theory are not well known 

beyond the soil physics community, although the Darcy-Buckingham law has been used widely in 

many areas including reservoir engineering. Nimmo and Landa (2005) presented an excellent 

review of Edgar Buckingham’s life and related scientific contributions. This section is based on the 

materials reported in Nimmo and Landa (2005). 

 

Buckingham was born in Philadelphia, PA, in 1867. He earned a bachelor’s degree in physics from 

Harvard University in 1887. Then he traveled to Europe and became a graduate assistant in the 

physics department at the University of Strasbourg and the University of Leipzig, where he studied 

under chemist Wilhelm Ostwald who won the Nobel Prize in 1909. At that time, the best 

universities in the world were all in Europe.  Buckingham got his Ph.D. degree in physics from 

Leipzig in 1893 and then began teaching physical chemistry and physics at Bryn Mawr College 



 50 

where he wrote a textbook on thermodynamics. He left Bryn Mawr College in 1899 as an associate 

professor. After a one-year stint at the University of Wisconsin as an instructor in physics, he joined 

the US Department of Agriculture (USDA) Bureau of Soils (BOS) in 1902 as a soil physicist to 

work on the dynamics of gas and water flow in soils. In the BOS, he made admirable contributions 

to several areas. He was the first person to introduce an energy concept into multiphase fluid flow 

in porous media, to measure water capillary pressure as a function of water saturation in soils, and 

to investigate the relative importance of diffusion versus advection for gas transport in porous 

media. Most importantly, he discovered the Darcy-Buckingham law and documented it in his 

famous USDA report (Buckingham 1907). He left BOS in 1906 for the National Bureau of 

Standards (NBS), where he remained until retirement in 1937. His work at the NBS includes 

research on helium production for the military, technical oversight of NBS support for rocketry 

studies by Robert Goddard, and lecturing on thermodynamics at Naval Postgraduate School in 

Annapolis, Maryland, USA.  In 1914, in the field of dimensional analysis, he published the famous 

  theorem, the other celebrated achievement in his career that has been used widely in many 

different areas (Buckingham 1914). He died in Washington DC, USA, in 1940.    

  

The Darcy-Buckingham law was initially written as (Nimmo and Landa 2005): 

 

x
Q







 )(                                                    (2.1) 

where Q is the magnitude of water flux,   is volumetric water content,  is “the capillary 

conductivity of the soil” that is called unsaturated conductivity (closely related to relative 

permeability) in the modern literature,  is the matrix potential defined by Buckingham (1907) as 

“a quantity which measures the attraction of the soil at any given point for water,” and x is the 

location coordinate in the horizontal direction. The matrix potential, a concept originated by 

Buckingham (1907), is closely related to capillary pressure. (Note that the symbol  represents two 

different variables in Eqs.1.45 and 2.1, respectively.)  

 

 

        

 
 
Fig. 2.2 Capillary water in a prismatic wedge (Buckingham 1907) 
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“Buckingham’s desire to measure retention curves was constrained, but not prevented, by the lack 

of a direct method of measuring  ” (Nimmo and Landa 2005). The water retention curve refers to 

the matrix potential (or capillary pressure) as a function of water content, or )( . Based on the 

principle that for a vertical soil column under equilibrium conditions, the  value  can be known 

from the vertical location with respect to a water table, Buckingham was able to measure retention 

curves (by determining vertical water-content distribution along a soil column) for the first time for 

several soils (Buckingham 1907). (It can be shown that under equilibrium conditions the magnitude 

of the capillary pressure at a location along a vertical soil column is equal to the height difference 

[between that location and water table] multiplied by the water density and by gravitational 

acceleration.) Buckingham (1907) also discussed the dependence of unsaturated conductivity on 

water content, including how thin-film and filled-pore flow paths conduct water and how prismatic 

wedges near soil-particle contacts hold capillary water (Fig. 2.2).  

 

The Darcy-Buckingham law was presented by Buckingham (1907) as a “formal analogy with 

Fourier’s and Ohm’s laws”.  He, however, did not mention Darcy’s law in his report. While the 

Darcy-Buckingham law is indeed an extension or generalization of Darcy’s law, it is an issue of 

debate as to whether Buckingham knew of Darcy’s law when he did his work on water flow in 

unsaturated soils. The author intends to believe that he did not for the following reasons. 

Buckingham did not have any personal motivation to purposely ignore Darcy’s law. After leaving 

the BOS, he never revisited his theory of multiphase flow and even never worked on flow in porous 

media in general (Nimmo and Landa 2005). It is very likely that Buckingham at that time did not 

regard his work on water flow in unsaturated soils to be a very important scientific contribution. 

This point of view is supported by the fact that in his report (Buckingham 1907), he even did not 

care to write a concluding statement in the section documenting the Darcy-Buckingham law 

because he wanted to rush for his new job in the NBS. It is common that scientists intend to revisit 

and promote their scientific works that are considered important contributions by themselves. Also, 

Buckingham was described as an “uncompromisingly truthful” person (Nimmo and Landa 2005). 

 

Twenty-four years after Buckingham (1907) published his work on soil water flow, Lorenzo 

Richards (1931) combined the Darcy-Buckingham law and the continuity (mass balance) equation 

for water flow in his Ph.D. study and published the final result as a partial differential equation that 

explicitly includes gravitational potential in addition to Buckingham’s  matrix potential (Richards 

1931). Since then, Richards’ equation has been used widely in modeling unsaturated water flow in 

the soil science and hydrogeology communities. Five years later, Muskat and Meres (1936) and 

Wyckoff and Botset (1936) published their work on multiphase flow theory and the related 

laboratory studies within the context of reservoir engineering. In their papers, they called 

multiphase fluids as “heterogeneous fluids”. Their theory is essentially the same as the Darcy-

Buckingham law, but they did not mention Buckingham’s work and gave all the credit to Henry 

Darcy. They were likely not aware of Buckingham’s work at that time. Nevertheless, because of his 

original contributions to the subject, Edgar Buckingham should be regarded as the father of 

multiphase flow in porous media.     

 

2.2 Unsaturated Flow Constitutive Models under Local Equilibrium  

  

A key assumption of the Darcy-Buckingham theory is local equilibrium or uniform capillary 

pressure in a control volume, as evidenced in the original development procedure of the law 
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documented in Buckingham (1907). The so-called control volume refers to a gridblock for 

numerical modeling, or a core sample for measuring flow properties in the laboratory. The 

assumption explains why the soil water conductivity in Eq. 2.1 is a function of water content (or 

capillary pressure) only, and has nothing to do with water flow dynamics (such as water flux), 

which will be further explored in this chapter. The local equilibrium assumption has been 

subsequently employed in many studies on determining multiphase flow properties and modeling 

multiphase flow processes in the subsurface. This section reviews some commonly used 

unsaturated flow property models, or constitutive models, to demonstrate that these models are all 

based on the local equilibrium assumption. For simplicity, in this and other relevant sections of this 

chapter, we focus on water-air flow process in soils; mechanisms and results discussed here, in 

principle, can be extended to other multiphase flow systems. Note that for a water-air flow process 

in a soil, air pressure is generally considered to be constant and equal to the atmosphere pressure. 

This is because air viscosity is significantly smaller than that of water, and soil air is well connected 

to the atmosphere. Under such conditions, soil air remains in equilibrium with the atmosphere to a 

good approximation.    

   

2.2.1 Burdine Model for Relative Permeability and the Brooks-Corey Relation  
 

Burdine (1952) developed one of the first models for relative permeability that is defined as fluid 

conductivity (for a phase at a given phase content) divided by the conductivity under saturated 

conditions. In the Burdine (1952) model, a porous medium is conceptualized as a group of 

individual capillary tubes each with a uniform radius corresponding to a particular pore size. Under 

unsaturated conditions when both water and air exist in the pores of a porous medium, all the 

capillary tubes in the bundle have the same capillary pressure for water because of the local 

equilibrium assumption.     

 

From the Young-Laplace equation, a single capillary-tube of radius r is related to the magnitude of 

capillary pressure (pc) as 

 

c

s

p

T
r

'cos2 
                                                            (2.2) 

 

where Ts is surface tension between water and air and β’ is the contact angle. For a given water-air 

flow system, both Ts and β’ are treated as constants.  The capillary-tube radius calculated from Eq. 

2.2 is called the critical radius herein. For a capillary tube with a radius equal to or less than the 

critical radius, it is filled with the wetting fluid (water). Otherwise, it would be filled with non-

wetting fluid (air).     

 

The water distribution in a soil is generally much more complex than what is described by a group 

of capillary tubes. Thus, we focus on the portion of water that is mobile and associated with 

capillary flow. This portion of water corresponds to an effective water content defined by 

re   , where  and r are the actual and residual volumetric water contents, respectively. The 

residual water content corresponds to the portion of soil water that is immobile in a practical sense 

(e.g., bounding water on solid surface and water occupying dead-end pores). 
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Consider a soil slab isolated from a homogeneous soil column (along x direction) by two parallel 

cross sections normal to the x axis and separated by a distance of dx. For a given water content (or 

capillary pressure), the contribution of the capillary tubes with a radius r to water flux, based on Eq. 

1.10, is given by  

 

edr
dx

dH
dq 2                                                     (2.3) 

 

where q is water flux through the soil slab and H is again the hydraulic head defined by 
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where z is elevation and   and g are water density and gravitational acceleration, respectively. 

Note that in Eq. 2.3, ed is the fraction of the cross-sectional area corresponding to the capillary 

tubes with the radius r.  

 

Integrating Eq. 2.3 and using Eq. 2.2, we have  
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Based on the Darcy-Buckingham law, unsaturated hydraulic conductivity, Kun, for water is equal to 

water flux divided by hydraulic gradient. Thus, the unsaturated conductivity is obtained from Eq. 

2.5 as 
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where subscript un refers to the unsaturated condition. Note that in Eq. 2.6, unlike in Eq. 2.1, we do 

not use  to denote hydraulic conductivity to be consistent with the current literature.  Equation 2.6 

also implies that capillary tubes with radii larger than the critical radius do not contribute to the 

water conductivity because they are filled with air, not water. 

 

Sometimes, it is more convenient to use effective saturation defined by 
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where sat  is saturated water content. In terms of Se, Eq. 2.6 is rewritten as  
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By definition, the relative permeability can be calculated by 
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where K is hydraulic conductivity under the water-saturated condition. However, the above 

formulation is obtained under a condition that all the capillary tubes are straight and along the x axis. 

This is not true in reality. The water flow paths are generally tortuous in a porous medium. To take 

this into consideration, the right hand side of Eq. 2.9 is multiplied by an additional tortuosity factor 

that is an empirical parameter and generally treated as a power function of saturation. In the 

Burdine (1953) model, the exponent of the power function is two. Therefore, the Burdine (1953) 

model is given as 
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Equation 2.10 is for the wetting phase. For the non-wetting phase, replacing Se with 1-Se, a similar 

procedure can be used to obtain the non-wetting phase relative permeability as 
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Note that in the above equation, (1-Se) is equal to the non-wetting phase effective saturation and the 

integral interval for the numerator reflects the fact that nonwetting phase occupies capillary tubes 

with radii larger than the critical radius.  

 

The Burdine model and other similar models are useful because they provide correlations between 

relative permeability and capillary pressure (as a function of saturation). The latter can be much 

more easily measured than the former. Once we know pc(Se), the relative permeability can be 

estimated from Eqs. 2.10 and 2.11.  

 

There are different functional forms of pc(Se) in the literature. One of the most commonly used 

forms was provided by Brooks and Corey (1964). Based on laboratory test results for a number of 

soil samples, they found that the relationship between water saturation and capillary pressure can be 

represented by  
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 1eS                for pc < pb 

 

where λ* is a  parameter characterizing the pore-size distribution and pb, called air-entry capillary 

pressure, is a measure of the maximum pore size forming a continuous network of flow channels 

within the medium (Brooks and Corey 1964).  

 

Inserting Eq. 2.12 into Eq. 2.10 yields  
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Similarly, combining Eq. 2.12 and Eq. 2.11 gives relative permeability for the non-wetting phase: 
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where subscript nw refers to the non-wetting phase. 

 

2.2.2 Mualem Model for Relative Permeability and the van Genuchten Relation  
 

In the Burdine (1953) model, water flow is characterized by a group of capillary tubes each of 

which has a uniform radius. This is not true in reality. A flow path likely consists of pores with 

different sizes. In other words, a flow path should be better conceptualized as a capillary tube with 

variable radius. To partially address this issue, Mualem (1976) developed a new conceptual model 

for liquid water flow in the unsaturated soil. 

 

The water content can be related to pore size based on the fact that the contribution of water-filled 

pores with radii between r and r + dr to the water content is 

 

drrfd e )(                                                        (2.15) 

 

where f(r) is the volumetric pore-size density distribution function.  

 

Again consider a soil slab isolated from a homogeneous soil column (along x direction) by the two 

parallel cross sections. A capillary tube (flow path) with variable radius intersects the two sections 

where the radii are r and  , respectively. The water flux through capillary tubes with the same 

radius distribution as the one mentioned above is given by 
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where re is the effective radius for the capillary tube and approximated by 
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rre                                                               (2.17) 

 

The above equation was derived for two connected pores whose radii are proportional to their 

lengths (Mualem 1976). Obviously, it is only an approximation considering the fact that a flow path 

(or capillary tube) between the two cross-sections of a soil slab consists of a number of pores with 

different pore radii, not necessarily two of them. The term of  drdrae ),( in Eq.2.16 represents 

“effective area” for the corresponding capillary tubes and equals to the joint probability for r and 

to simultaneously occur at the cross-sections of the soil slab. If sizes of pores are not spatially 

correlated, one has (Mualem 1976; Mualem and Dagon 1978): 
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Inserting Eqs. 2.17 and 2.18 into Eq. 2.16 and integrating it yields 
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Again based on the Darcy-Buckingham law, the unsaturated water conductivity is derived from Eq. 

2.19 as follows 
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Following the same procedure to derive Eq. 2.9, we get 
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Incorporating the tortuosity factor into Eq. 2.21 yields the Mualem (1976) model as 
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Note that the exponent value of the tortuosity factor in Eq. 2.22 is different from that in Eq. 2.10 

because of different assumptions regarding the capillary tube. A procedure similar to that used to 

derive Eq. 2.11 can be followed to obtain the non-wetting phase relative permeability for the 

Mualem (1976) model. We leave the derivation to readers. 

 

van Genuchten (1980) proposed an empirical relationship between capillary pressure head 

( )/( gph c  ) and effective water saturation Se: 
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where m, nVG, and αVG are fitting parameters.  The first two parameters (m and nVG) are measures of 

pore-size distribution and the last one is a measure of the largest pore size or the air-entry capillary 

pressure head. Compared with Eq. 2.12, Eq. 2.23 gives continuous edSdh /  near Se = 1, whereas the 

former does not. This is generally regarded as an advantage of Eq. 2.23 over Eq. 2.12 because 

continuity is consistent with observations in most cases.  

 

Inserting Eq. 2.23 into Eq. 2.22 gives 
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where 
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Substitution of x’=(y’)
m

 into Eq. 2.25 yields 
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In a general case, a closed-form expression cannot be derived from Eq. 2.26. However, for a special 

case with m=1-1/nVG, integration of Eq. 2.26 leads to 
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Then Eq. 2.24 becomes (van Genuchten 1980): 
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Both Brooks-Corey and van Genuchten relations between capillary pressure and water saturation 

(Eqs. 2.12 and 2.23) can be combined with either the Burdine (1953) model or the Mualem (1976) 

model. The particular combinations discussed herein are consistent with conventions in the 

literature; they are found to be more useful than other combinations in representing laboratory 

measurements under the local equilibrium condition.   

     

2.3 Optimality Principles and the Euler-Lagrangian Equation  

 

In the above section, the relevant results are valid only under the local equilibrium condition. In 

many cases, the local equilibrium may not hold, especially when fingering flow occurs in a porous 

medium. Fingering-flow patterns were investigated in a sand box by a number of researchers (e.g., 

Glass et al. 1988). The glass-walled box was filled with dry sand as homogenously as possible. 

Thus, the sand is approximately homogeneous at the continuum scale. Then water was introduced 

from the top of the sand box with an application rate less than the saturated hydraulic conductivity 

of the sand. In this case, gravitational fingering flow developed (e.g., Glass et al. 1988).    

 

 
 
Fig. 2.3 Two scales used to model fingering flow  

 

There are two major mechanisms for the fingering flow. One is the subsurface heterogeneity. 

Spatial variabilities of flow properties in a porous medium can result in nonuniform multiphase 

flow patterns with preferential flow paths. The second mechanism is nonlinear instability. As 

shown in Fig. 2.3, when the lighter air is displaced by water, water flow becomes unstable because 

of the density difference between water and air and therefore gravitational fingering flow develops. 

Preferential flow caused by gravitational fingering is the most frustrating process in terms of 

hampering accurate prediction of contaminant transport in the vadose zone (or unsaturated soil 

zone) (Sheng et al. 2009). When a fluid is displaced by another less viscous fluid, viscous fingering 

flow will occur, which is a major technical issue in the field of oil and gas reservoir engineering, 

because viscous fingering significantly impacts oil recovery rate and the efficiency for oil to be 

displaced in a reservoir.  For a real-world problem, fingering flow is really caused by a combination 

of the two mechanisms (Sheng et al. 2009). In this chapter, we focus on gravitational fingering in 
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homogeneous media for a water-air flow system. The methodology and relevant results, however, 

can be further extended to other multiphase flow systems. 

 

There are generally two approaches to model the fingering flow in the subsurface (Fig. 2.3). One is 

fine-grid simulation in which the size of a numerical gridblock is much smaller than the width of a 

fingering flow path. In this case, the local equilibrium condition approximately holds on the 

gridblock scale such that the classic Darcy-Buckingham law is valid. However, the computational 

effort is very intensive in this case, and it is not feasible for field-scale three-dimensional problems. 

Also, the required measurement problem is untenable. The other approach is to use relatively coarse 

grid systems in which a numerical gridblock may include one or more flow fingers. Obviously, the 

local equilibrium condition no longer holds because in a grid block capillary pressures are different 

within and outside fingering paths, while the coarse-grid simulation is more useful for practical 

applications. A new theory for the coarse-grid simulations that relaxes the local equilibrium 

condition is needed. The focus of this and following sections is on the development of such a theory 

for a water-air flow system (Liu 2011a). The development is based on an optimality principle that 

the water flow pattern in a natural unsaturated porous medium self-organizes in such a way that the 

total water flow resistance is minimized.    
 

Optimality principles refer to the state of a physical process that is controlled by an optimal 

condition subject to physical and resource constraints (Liu 2011a). These principles have been used 

in many different areas, including evolution of vegetation coverage under water-limited conditions 

(Eagleson 2002; Liu 2011c), tree-like paths for liquid flow and heat transfer (Bejan 2000), and 

application of the maximum entropy production principle, in a heuristic sense, to the prediction of 

steady states of a wide range of systems (e.g., Tondeur and Kvaalen 1987; Bejan and Tondear 1998; 

Nieven 2010; Kleidon 2009). However, the theoretical connections between these optimality 

principles and the currently existing fundamental laws are not fully established. Bejan (2000) 

argued that these principles are actually self-standing and do not follow from other known laws. In 

our opinion, these principles are probably a result of the characteristics of chaotic (nonlinear 

dynamical) systems. For a chaotic system, details of system behavior on a small scale are not 

predictable. However, emergent patterns, as a result of self-organization, often occur on 

macroscopic scales. More importantly, these patterns are self-organized in such a way that they are 

efficiently adapted to conditions of the relevant environment (Heylighen 2008). This adaption 

feature may correspond to the optimality principles. Most recently, Liu (2014) made an effort to 

establish a thermodynamic hypothesis for the related optimality principles, which will be discussed 

in Chap. 4. 

                  
The potential role of optimality principles in the formation of complex natural patterns has been 

recognized for many years in the surface hydrology community (Leopold and Langbein 1962; 

Howard 1990; Rodriguez-Iturbe et al. 1992; Rinaldo et al. 1992; Liu 2011b). For example, Leopold 

and Langbein (1962) proposed a maximum entropy principle for studying the formation of 

landscapes. Rodriguez-Iturbe et al. (1992) postulated principles of optimality in energy expenditure 

at both local and global scales for channel networks. However, application of these principles in the 

area of subsurface fluid flow has been very limited, probably because flow patterns in the 

subsurface are difficult to observe and characterize as a basis to motivate research activities on  

related emergent patterns.   
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Fig. 2.4 Optimal and relatively random walk paths between points A and B 

 

In fact, optimality is really part of our daily life. As shown in Fig. 2.4, a normal person would take a 

straight walking path from A to B in an open space if there is not anything to be avoided between 

the two locations. That is the optimal path which takes the minimum energy and shortest walking 

time. If someone takes the relatively random path in Fig. 2.4, he or she may either be drunk or crazy 

because much more time and energy will be expended. However, the relatively random pathway is 

not irrelevant to our practice to model water flow process. If all the water elements (or “particles”) 

travel relatively randomly through a porous medium, the overall flow pattern should be relatively 

uniform and fingering would not occur. For example, a diffusion process is characterized by 

random walks of “particles”, but generates relatively uniform or smooth transport patterns.  
   

 
Fig. 2.5 Functions y(x) and Y(x)  
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A useful mathematical tool for dealing with optimality problems is the calculus of variations that 

will be used in some sections of this chapter. While readers are encouraged to consult the relevant 

mathematical books on the calculus of variations (e.g., Weinstock 1974), the rest of this subsection 

will briefly review some basic calculus results for the convenience of readers who are not familiar 

with the calculus of variations.  

 

The calculus of variations studies functionals that are defined as functions of one or more functions. 

For example, Iy in Eq. 2.29 is a functional that is a function of unknown function y with x being an 

independent variable: 
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where L is called a Lagrangian and is a known function for a given problem,  and y’=dy/dx. The 

major purpose of the calculus of variations is to determine the unknown function y by solving an 

optimization problem for the functional Iy. (Note that x and y are used as spatial coordinates in other 

parts of this chapter, but here refer to an independent and a dependent variable, respectively.)  

 

We first introduce a parameter  and an arbitrary smooth function )(x and then construct a 

function like that in Fig. 2.5 

  

)()( xxyY                                                              (2.30) 

 

where y(x) is considered the solution to Eq. 2.29 when Iy is at its maximum or minimum. We further 

consider that )(x satisfies the following boundary condition such that Y would take the same 

values as y at boundaries: 
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Equation 2.30 also leads to: 
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Replacing y with Y in Eq. 2.29 and using Eq. 2.32, we have 
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When Iy reaches its optimum (minimum or maximum) value, Y should approach y (or 0 ) and 

the derivative given in Eq. 2.33 should be zero. Thus, from Eq. 2.33, we obtain 

 

 










2

1

0)'
'

()0('

x

x

y dx
y

L

y

L
I                                                     (2.34) 



 62 

 

Integrating the 2
nd

 term by parts gives 
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Equation 2.31 yields the zero value for the first term on the right hand side of Eq. 2.35: 
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Given the fact that  is an arbitrary function, Eq. 2.35 leads to the well-known Euler- Lagrangian 

equation 
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The Euler-Lagrangian equation (Eq. 2.37) is a key result for the calculus of variations and has been 

widely employed in optimizing a functional. 

 

Equation 2.37 was obtained only for problems involving one independent variable. For more 

independent variables, a functional Iw can be defined as 
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where x, y, z are independent variables, w is an unknown function, and wx, wy, and wz are derivatives 

of w with respect to x, y and z, respectively. Following the same procedure used to derive Eq. 2.37, 

the corresponding Euler-Lagrangian equation is given as (e.g., Weinstock 1974) 
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2.4 Generalization of the Darcy-Buckingham Law Based on an Optimality Condition 

 

As previously indicated, the Darcy-Buckingham law was developed under the local equilibrium 

condition. This condition sometimes does not hold, especially when subgrid-scale fingering occurs. 

(The subgrid scale refers to the scale below a numerical grid block.) In this case, a new theory that 

is not restricted by the local equilibrium condition is needed. This section presents a theory of this 

kind based on the optimality principle that water flow pattern in an unsaturated porous medium is 

self-organized in such a way that the total water flow resistance is minimized (Liu 2011a).    
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Consider a steady-state unsaturated flow system associated with a homogeneous and isotropic 

porous medium. Based on the water mass conservation with a constant water density, the steady-

state water flow equation is given by 
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where x and y are two horizontal coordinate axes, z is the vertical axis,  and qx, qy and qz are 

volumetric fluxes of water along x , y  and z directions, respectively. 

 

We use E (a function of x, y and z) to represent the energy of per unit weight of liquid water in soils. 

When kinetic energy is ignored (a common approximation for unsaturated flow because the water 

velocity is generally small), E is the same as the hydraulic head: 
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where   is the water density assumed to be a constant, and h is capillary pressure head. 

Accordingly, the energy expenditure rate for a unit volume of porous medium, 
E , can be 

expressed as 
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The above equation simply states that for a given unit volume of porous medium, the energy  

expenditure rate there is equal to the energy carried by water flowing into the volume minus the 

energy carried by water flowing out of the volume. Obviously, a smaller energy expenditure rate 

corresponds to a smaller water flow resistance. 

 

A combination of Eqs. 2.40 and 2.42 yields  
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Throughout this development, the form of the Darcy-Buckingham law is still assumed to apply to 

unsaturated flow:   
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where the unsaturated hydraulic conductivity Kun, unlike that in the traditional Darcy-Buckingham 

law (e.g., Sect. 1.2), is proposed to be (Liu 2011a) 
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The relative permeability kr is assumed to be a function of both capillary pressure head (h) and the 

square of the energy gradient (
*S ). Assuming kr to be a function of water flux is equivalent to 

assuming it to be a function of hydraulic head gradient, because water flux, hydraulic head gradient 

and Kun are related through the Darcy-Buckingham law. This assumption is used herein to take into 

consideration of the non-equilibrium flow condition, as will be demonstrated later in this chapter. 

Our theory here is developed for a macroscopic scale (or coarse numerical gridblock) that may 

include a number of subgrid fingering or preferential flow paths (Fig. 2.3). The unsaturated flow 

process on a local scale is mainly controlled by the pore-scale physics, while the macroscopic 

water-flow pattern is determined by the optimality (or the minimization of global energy 

expenditure rate). The local scale here refers to the continuum scale within each finger. 

 

When we combine Eqs. 2.43 and 2.44, the global energy expenditure rate throughout the water-flow 

domain    is given as (Liu 2011a) 
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The optimality principle in this study is to minimize the absolute value of the above integral.  

 

Based on Eqs. 2.44-5 and 2.45, the Lagrangian for the given problem is 
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Note that the first term on the right hand side of the above equation is from Eq. 2.45 and the other 

term is a constraint from Eq. 2.44-5. The Lagrange multiplier L is a function here. The constraint 

related to the water mass conservation, Eq. 2.40, is not included in Eq. 2.46, but, for the 

mathematical convenience, will be handled later. (Also for the convenience of readers who are not 

familiar with the mathematical background of the Lagrange multiplier, an appendix to this chapter 

provides an alternative derivation of Eq. 2.48 without using the Lagrange multiplier.) 

 

The Euler-Lagrange equation (Eq. 2.39) is used to determine unknown functions associated with L 

to minimize the integral defined in Eq. 2.45. Equation 2.39 was derived for a single unknown 

function and under non-constraint conditions. However, it can be shown that Eq. 2.39 is also 

applied to problems with multiple unknown functions and constraints. To do so, the corresponding 

Lagrangian must incorporate constraints with Lagrange multipliers and the equation is applied to 

each unknown function separately (e.g., Weinstock 1974). Note that the use of Eq. 2.39 requires 

fixed-value boundary conditions which, however, can be satisfied by the fact that observed 
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boundary conditions correspond to the optimal flow processes and are considered fixed for the 

steady-state flow problems under investigation here. 

 

Replacing w with S* in the Euler-Lagrangian equation (Eq. 2.39) yields 
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Replacing w in the Euler-Lagrangian equation with h (or E) in Eq. 2.46 and using Eq. 2.47 and the 

continuity equation (Eq. 2.40), we have (Liu 2011a) 
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To avoid the trivial solution of zero water flux (resulting in zero energy expenditure), we need to 

consider an additional constraint that the magnitude of water flux averaged over the whole flow 

domain, q , is non zero and fixed. In general, it is difficult to obtain an analytical solution to Eq. 

2.48. To obtain a practically useful closed-form result, we introduce the following approximation: 
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KS unun , where q  is the magnitude of water flux and 

given by Eq. 2.53. Note that in the above approximation, we use the magnitude of average water 

flux to represent the local value on the right-hand side term of Eq. 2.48. This approximation should 

be reasonable for relatively uniform water-flux fields on the macroscopic scale. In more general 

cases, the effect of this approximation is expected to be absorbed by the fitting parameter a0 in the 

final solution (Eq. 2.54).    

 

A comparison between Eq. 2.48 (without the term on the right hand side) with the continuity 

equation (Eqs. 2.40 and 2.44) yields 
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where A’ is a constant. 

 

Furthermore Liu (2011a) considers Kun to be approximately expressed by 
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where fh and gs are functions of h and S*, respectively.  Substituting Eq. 2.50 into Eq. 2.49 results in 

(for a given location) 
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Based on the Darcy-Buckingham law, Eq. 2.51 can be rewritten as 
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where q  is the magnitude of water flux given by 
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Combining Eqs. 2.50 and 2.52 gives the final conductivity relationship of Liu (2011a) as follows 
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where a0 is a constant. Eq. 2.54-1 may be rewritten as 
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There may be different interpretations of Eq. 2.54. One interpretation is that Fh(h) is the local-scale 

relative permeability within the fingering-flow zone, such as those discussed in Sect. 2.2, and that 

the power function of flux in the equation represents the fraction of fingering flow zone in the cross 

section normal to the water flux direction. (Note that the local scale here refers to the continuum 

scale within each finger, as previously indicated.)   

 

The validity of Eq. 2.54 for homogeneous soils was demonstrated with laboratory-experimental 

observations of vertical fingering flow (Wang et al. 1998). After compiling and analyzing a number 

of data sets for fingering flow in sand boxes, Wang et al. (1998) empirically found that the fraction 

of fingering flow zone (or effective water-flow area), f,  is given as 
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Obviously, this empirical relation is consistent with our theoretical result (Eq. 2.54) with a0=0.5. At 

this point, our theory is not able to give a definite value for parameter a0; whether a universal a0 

value exists for water flow in unsaturated porous media is an issue needing further research.   

 

Equation 2.54 clearly shows that for a gravity-dominated unsaturated flow process, relative 

permeability is not only a function of water capillary pressure head (or saturation), but also a power 

function of water flux. Treating relative permeability as a function of fluid capillary pressure head 

(or saturation) only has been used widely in the fields of vadose zone hydrology, soil sciences, and 
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reservoir engineering. This needs to be revisited, because the treatment is based on the local-

equilibrium assumption that capillary pressure is uniform within a numerical gridblock. This 

assumption is obviously violated at a large scale by the existence of fingering flow (Fig. 2.3), as 

previously indicated. The power-function term in Eq. 2.54 largely reflects the self-organization of 

flow patterns driven by the minimization of total flow resistance, or the global energy expenditure 

rate.  In fact, Eq. 2.54 also provides a method to relate local-scale laboratory measurement (or 

Fh(h)) to large-scale hydraulic properties (Eq. 2.54-2).  

 

An interesting analogue of our new development is a relationship for viscous fluid flow in the fluid 

mechanics literature. In Table 2.1, in the upper left hand corner is a well-known relationship 

between shearing stress ( w ) and velocity gradient for water (a Newtonian fluid), where vw is 

velocity parallel to the stress direction, µ again is viscosity, and y here is a spatial axis normal to the 

stress. When water flow is laminar (stable), the viscosity, corresponding to Kun in this work, is a 

water property and independent of the velocity. However, when water flow becomes turbulent 

(unstable), the apparent viscosity is related to Reynolds number (Re) that is a function of water 

velocity. Note that the turbulent-flow case corresponds to our new expression for the conductivity 

because both cases are associated with unstable flow processes. This analogue highlights the needs 

to develop different theories for different flow regimes. While the classic Darcy-Buckingham law 

was developed based on the local equilibrium assumption, the new theory intends to deal with water 

flow when the assumption is not valid anymore.    

 

Table 2.1 A scientific analogue 
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Laminar Flow: viscosity 

  is a water property and 

independent of velocity 

 

“Uniform” Flow: Kun is a 

function of saturation and 

independent of water flux 

 

Turbulent Flow: 

viscosity depends on 

velocity (through Re 

number) 

Fingering Flow: Kun is a 

function of water flux 

    

 

While there are a number of studies on applications of optimality in the literature, the study of Liu 

(2011a) is unique in revealing that the unsaturated hydraulic conductivity is a power function of 

water flux. This interesting finding has several important implications. Firstly, it makes sense 

within the context of resource (or conductance) allocation. The power-function relationship with a 

positive exponent value always gives a relatively small flow resistance at a location with a large 

flux, such that flow in the whole system is the most efficient. This allocation strategy is also 

consistent with our daily-life experience. For example, in a highway system, locations with high 

traffic flux are generally wider or have larger conductivities. Secondly, while complex partial 

differential equations are involved in the derivation procedure discussed above, the form of the final 

results (a power function) is very simple. This form likely has something to do with fractal patterns, 
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involving nonlinear dynamics, that have been observed and studied intensively in the literature (e.g., 

Feder 1988). In general, a fractal has many features that can be characterized by power functions 

and is related to chaotic systems. A detailed exploration of a possible linkage between our finding 

and fractals is beyond the scope of this book and left to future investigations. Thirdly, one grand 

challenge facing us in the area of subsurface flow is the need to develop physical laws for large-

scale multiphase-flow problems. At a local scale smaller than the finger width, fluid distribution is 

mainly controlled by capillarity and not sensitive to flow conditions. That is why relative 

permeability at a local scale can be successfully described as a function of saturation (or capillary 

pressure) only. At a large scale, this is not the case anymore, although local-scale relationships have 

been widely used at large scales because alternatives are unavailable. It is fair to say that as a result 

of the high nonlinearity involved, how to model large-scale multiphase flow is an issue that has not 

been resolved at a fundamental level. The result here (Eq. 2.54) suggests that function forms of 

large-scale relationships to describe multiphase flow are very likely different from their 

counterparts at the local scale, which cannot be resolved by upscaling parameters based on the same 

function forms as those at local scales. It is our hope that the optimality approach may provide an 

important way to obtain such large-scale relationships.   

 

We need to indicate that Eq. 2.54 can be rewritten in some approximate forms that are more 

convenient for practical applications. For example, for gravitational fingering flow, gravity is the 

dominant driving force for vertical flow and capillary pressure gradient can be practically ignored. 

In this case, hydraulic gradient equals to negative one (Eq. 2.44), and Eq. 2.44 becomes 
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where Ka is the average (unsaturated) hydraulic conductivity within the fingering flow region (or 

the active flow region that is denoted by the subscript a), and f  again is volumetric fraction of a 

porous medium occupied by fingering flow and is  given by  
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The above equation is a direct result of Eq. 2.54-2. Also note that in Eq. 2.56, the multiplication of 

Ka by f takes into consideration that only a fraction of a porous medium actually involves water 

flow while the rest is simply bypassed.  
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Fig. 2.6 Normalized water pore velocity as a function of γ, calculated with Eq. 2.64, for 40   and for q’=q/K =0.1 

and 0.3, respectively. The pore velocity calculated with the Darcy-Buckingham law corresponds to a normalized pore 

velocity equal to one 

 

We further apply the Brooks-Corey (1964) relation (Eq. 2.13) to water flow within the fingering 

flow region:                                    
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where Sa is effective water saturation within the fingering flow region, 0 is a constant, and Se is 

defined in Eq. 2.7. Combining  Eqs. 2.56 to 2.58 yields 
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To briefly demonstrate the practical importance of the generalized Darcy-Buckingham law, we use 

an ideal example to show differences between calculation results from the classic Darcy-

Buckingham law and its generalized version. Consider a one-dimensional vertical water flow 

process in initially dry and homogeneous soil (with zero residual water content); the flow is gravity 

dominated. Then we estimate the water pore velocity (v) under the steady-state flow condition for a 

fixed water flux imposed on the top surface of the soil: 
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where   is soil porosity. By definition, we can obtain the dimensionless water flux q’ as 
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Combining Eqs. 2.58, 2.59 and 2.62 gives: 
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Then the normalized pore velocity v , defined as the pore velocity divided by the pore velocity 

without fingering flow (or  =0), is: 
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Figure 2.6 shows the normalized water pore velocity as a function of  , calculated with Eq. 2.64, 

for 40   and for q’=q/K =0.1 and 0.3, respectively. There are several interesting observations that 

can be made from Fig. 2.6. Firstly, as expected, the pore velocity calculated with the generalized 

Darcy-Buckingham law (  >0) can be significantly larger than that calculated with the classic 

Darcy-Buckingham law. This is because the latter is based on the local-equilibrium assumption and 

could not theoretically handle fingering-flow effects. Underestimation of water pore velocity (or 

contaminant advection velocity) has a significant consequence for environmental assessment of 

groundwater contamination originating from the ground surface (e.g., Sheng et al. 2009). Secondly, 

for a given water flux, the pore velocity is a strong function of parameter  . A larger  generally 

corresponds to a smaller water saturation Se (Eq. 2.63), and consequently to a larger pore velocity. 

Note that in an extreme case,  =1 gives water saturation within the fingering flow region 

1/ 1  
eea SfSS . In this case, the fingering flow region is fully water-saturated and thus the 

corresponding pore velocity is the highest for a given water flux. Thirdly, for a given  value, the 

normalized pore velocity decreases with increasing water flux. This is because a larger water flux 

enhances the fingering flow region and therefore generally reduces the non-uniformity of the water 

flow pattern.  

 

2.5 Verification with Field Observations of Unsaturated Water Flow in Soils 

In Sect. 2.4, we have presented a new theory for liquid water flow in unsaturated media, or the 

generalized Darcy-Buckingham law, based on an optimality principle. Its consistence with 

laboratory experiments reported by Wang et al. (1998) is discussed there as well. The focus of this 

section is on a further verification of the theory using field-scale data related to gravitational 

fingering flow in unsaturated soils. The new theory is now called the active region model (ARM) in 

the literature of modeling unsaturated water flow in soils (Liu et al. 2005). The contents of this 

section are mainly based on the work by Sheng et al. (2009).   

 

2.5.1 Field Experiments 

 

For verifying the ARM, dyed-water infiltration tests were conducted in unsaturated soils at two 

different field sites under various hydraulic conditions, from June 2006 to Oct. 2007. For each test, 

dyed water was applied from the soil surface, which allows for determination of water flow patterns 

by visualizing dye patterns. Site I (Fig. 2.7) is located in the Irrigation and Drainage Station of 
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Wuhan University, China, and the corresponding soil is a quite homogeneous loam. Site II (Fig. 2.7) 

is located at the foot of Mountain Luojia, China. Because macropores were observed in the top soil 

layer at Site II, the top 40 cm soil layer was removed before performing the tests, such that the tests 

did not involve water flow in macropores to simplify the flow process under investigation. Soil 

below the depth of 40 cm at Site II consists of unstructured clay without macropores. Soil samples 

were collected at each site from the depth intervals of 0-10, 10-20, 20-50 and 50-100 cm. Then soil 

properties were measured for these samples, including the soil texture, bulk density, porosity, and 

saturated hydraulic conductivity (Table 2.2). The soil water retention function for each site was 

estimated from soil texture; the residual water contents are 0.07 and 0.12 for the loam (Site I) and 

clay (Site II) soils, respectively. 

 

Seven distinct dyed-water infiltration tests were conducted at Site I (plots 1 through 7) and six tests 

at Site II (plots 8 through 13) (Table 2.3). A test location at a given site is called a test plot here. The 

experimental design is shown schematically in Fig. 2.7 for each plot, including two rectangular 

frames embedded concentrically into the given plot. The outer frame is larger than the inner frame 

by 1 m in both length and width, such that lateral boundary effects can be essentially eliminated for 

water flow within the inner frame, below which experimental observations were made. Each plot 

was leveled to ensure a uniform surface (boundary) condition for the infiltration tests. Test plots at 

the same site were placed at least 2 m apart to avoid interference among them. Top soil surface of a 

plot was initially covered with a plastic film. Then, the inner frame top surface was prepared by 

ponding dyed water on the top of the plastic film, while the outer border area was ponded to the 

same depth with fresh water. When the experiment started, the plastic film was removed 

immediately, thus creating an almost instantaneous ponding infiltration from both inner and border 

frames. Then the experimental plot was covered to prevent evaporation and left for 12 hours to 

complete the infiltration process (Yasuda et al. 2001; Wang et al. 2006). 
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Fig. 2.7 Experimental set-ups: (a) Site I and (b) Site II (Sheng et al. 2009) (Reproduced by permission of Elsevier) 

 

Twelve hours after the dyed water was applied at the top boundary, the flow pattern visualization 

was started for soil surfaces created during excavation of the corresponding soil column. For a plot 

at Site I, the soil was removed horizontally layer by layer (Fig. 2.7 (a)) with a vertical interval of 1 

to 5 cm from top to bottom. At Site II, a trench (that is 1.0 m apart from a test plot) was manually 

dug to a depth of 1.5 m, one day before the dyed water was applied. After infiltration, vertical soil 

profiles were excavated across the plot at a horizontal interval of 5 cm. After each soil layer or 

vertical profile was exposed, the soil surface was leveled and cleaned with a brush to remove soil 

particles generated from digging. The dyed (or “stained”) flow patterns in the horizontal (Site I) and 

vertical (Site II) soil slices were recorded during day time using a CCD digital camera. Then soil 

samples were collected from both the stained regions and the unstained regions in a soil slice to 
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measure the soil water content distributions.  

 

Table 2.2 Soil physical and hydraulic properties at the two test sites (Sheng et al. 2009) 

 

Site 

depth texture 
bulk 

density 
porosity 

saturated hydraulic 

conductivity 

cm 
>50  

% 

2~50  

% 

<2  

% 
g cm

-3
 % cm s

-1
 

I 

0-10 29.4 49.2 21.4 1.38 38.8 3.4 10
-4

 

10-20 28.2 49.4 22.4 1.40 40.2 1.2 10
-4

 

20-50 31.3 46.2 22.5 1.44 40.6 1.1 10
-4

 

 50-100 32.1 44.8 23.1 1.45 44.4 1.1 10
-4 

 

II 

0-10 3.5 55.0 44.5 1.44 40.2 5.8 10
-5

 

10-20 4.4 51.5 44.4 1.50 42.7 2.1 10
-5

 

20-50 4.3 51.4 44.3 1.50 44.8 2.2 10
-5

 

50-100 4.7 50.7 44.6 1.59 45.1 1.4 10
-5

 

*Reproduced by permission of Elsevier 

 

Table 2.3 The dye infiltration conditions of each plot (Sheng et al. 2009) 

Ponding water depth Loam Clay 

(mm) 100×100 cm
2 

100×100 cm
2
 100×200 cm

2
 100×400 cm

2
 

20 Plot 1 Plot 2 Plot 8 / / 

40 Plot 3 Plot 4 Plot 9 Plot 12 Plot 13 

60 Plot 5 Plot 6 Plot 10 / / 

80 Plot 7 / Plot 11 / / 

*Reproduced by permission of Elsevier 

 

 

 

2.5.2 Data Analysis Methods 

 

The new theory is given in Eq. 2.54 or Eq. 2.59. The two equations are equivalent for gravity 

dominated flow. Herein we focus on Eq. 2.59 because it can be easily compared with field 

observations. In the traditional continuum approaches, the whole flow region is considered to be 

conductive, the flow and transport occur in the whole flow region, and all the parameters used in 

the governing equations are related to the whole flow region. The main idea behind the new theory 

is that the flow domain can be divided into active and inactive regions, and (fingering) flow occurs 

only in the active region, so that the inactive region is simply bypassed. Thus, the theory is called 

the active region model (ARM) for water flow in unsaturated soils (Liu et al. 2005), as previously 

indicated. The relative portion of the active region is dynamic and expressed as a power function of 

soil effective saturation, as given in Eq. 2.59 with  being called the ARM parameter in this study. 

Also, Eq. 2.59 is derived under a condition that water content is at its residual value in the inactive 

region. When the above condition is not met and yet water is relatively immobile in the inactive 

region, effective saturation Se in Eq. 2.59 should be replaced by , the average active water 

m m m



















*
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saturation for the whole flow region, defined as: 

 

 
p

aw
e

V

V
S *                                                            (2.65) 

 

where awV is the total water volume (excluding the volume corresponding to the residual water 

content) in the active region, pV is the pore volume (excluding the volume corresponding to the 

residual water content) of the whole flow region (including both the active and inactive parts). From 

the definition of , , as previously indicated, can be calculated by 

 

                                                        (2.66) 

 

where  the effective water saturation (within the active region)  is given as 

 

ap

aw
a

V

V
S                                                          (2.67) 

 

where apV is the pore volume (excluding the residual pore volume) of the active region. Thus,  is 

calculated by the following equation 

 

       
rsat

ra
aS








                                        (2.68) 

 

where a is the water content in the active region. As defined in Eq. 2.7, sat  is saturated water 

content and 
r  is residual water content. 

 

We evaluate the ARM by examining (a) whether Eq. 2.59 satisfactorily represents the relevant field 

observations and (b) whether the parameter  is constant with different test conditions for a given 

test site (Sheng et al. 2009). We also investigate how the parameter  changes with test scale. In 

the ARM, the parameter  is a positive constant (between zero and one), depending on soil 

properties, and is used for characterizing the fingering water flow properties (Liu et al. 2005).  

 

 

2.5.3 Results and Discussion 

      

Fingering flow patterns are generally complex, as demonstrated by dyed flow paths in Figs. 2.8 to 

2.11. The stained or dyed region is considered to be the active region, or the location where water 

flow occurs. Fig. 2.8 shows vertical flow patterns for selected soil slices at Plots 8, 9, 10 and 11 at 

Site II. Relatively homogeneous flow patterns are observed only in the upper soil layer with a 

thickness of 5 to 20 cm. The flow becomes irregular and preferential below that soil layer and 

bypasses a significant soil portion. The observed flow pattern also depends on test conditions, such 

as ponding water depth applied to the top surface. A larger water depth results in a larger average 

f
*

eS

ae fSS 
*

aS

aS






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water-penetration depth. Because the water flow is three dimensional in nature, some 

disconnections of flow patterns are observed in Fig. 2.8 and other relevant figures that present two 

dimensional patterns only. Fig. 2.9 shows stained patterns in horizontal planes at various depths for 

Plot 3 and Plot 4 at Site I. Figs. 10 and 11 present vertical flow patterns for two plots (Plots 12 and 

13 at Site II) with relatively large horizontal sizes (Table 2.3).  While the soils at the two test sites 

are relatively homogeneous, the flow patterns are so irregular that it will be very difficult, if not 

impossible, to model all the details in practice. Within a macroscopic (or coarse-grid) modeling 

framework, the flow is treated as a one-dimensional process along the vertical direction. Observed 

flow patterns clearly show that equilibrium in a horizontal plane does not exist. Thus, the classic 

Darcy-Buckingham law does not apply for a coarse-grid model. This highlights the needs to relax 

the local-equilibrium assumption, as previously discussed.    
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(a) Plot 8 (ponding water depth: 20mm) 

 

 
(b) Plot 9 (ponding water depth: 40mm) 

 

 

 
(c) Plot 10 (ponding water depth: 60mm) 

 

 
(d) Plot 11 (ponding water depth: 80mm) 

 

 
Fig. 2.8 Flow patterns for Plots 8, 9, 10 and 11 at site II (Sheng et al. 2009) (Reproduced by permission of Elsevier) 
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z=5cm            z=10cm            z=20cm          z=40cm 

(a) Plot 3 

 

 
z=5cm            z=10cm            z=20cm          z=40cm 

(b) Plot 4 

 
Fig. 2.9 Stained patterns at various depths (or elevations) for Plot 3 and Plot 4 at Site I. Note that z = 0 on the ground 

surface  

 

 

 

 

 
(a) x=40cm 

 

 
(b) x=60cm 

 

 
(c) x=80cm 

 

 
Fig. 2.10 Flow patterns in vertical cross sections for Plot 12 at site II 
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(a) Plot 13 x=40cm 

 

 
(b) Plot 13 x=60cm 

 

 
(c) Plot 13 x=80cm 

 
Fig. 2.11 Flow patterns in vertical cross sections for Plot 13 at site II (Sheng et al. 2009) (Reproduced by permission of 

Elsevier)  

 

To verify the generalized Darcy-Buckingham law, or ARM in this case, we need to demonstrate that 

Eq. 2.59 is consistent with the field observations.  In a horizontal plane, the ratio of dyed soil area 

to the total soil area is called coverage of the stained region and taken to be the fingering flow zone 

fraction (or f) at the corresponding depth. Fig. 2.12 shows the coverage of the active (stained) 

region (the stained region) versus depth for the plots. As previously indicated, Sheng et al. (2009) 

used effective saturation calculated from the water saturation in the active region, defined in Eq. 

2.66, to evaluate the relationship between f and water saturation (Eq. 2.59). In the active region, all 

the water, excluding residual water, is assumed to be mobile. Therefore, experiments should ideally 

be carried out under conditions with initial soil saturation near the residual value. However, under 

field conditions, it is virtually impossible to carry out experiments under such conditions. To 

analyze the test data, as previously discussed, Sheng et al. (2009) assumed that before the test, all 

water initially in the soil is immobile during the time periods of the tests, although the water content 

is higher than the residual water content. This can be justified, given the fact that water flows much 

more quickly in the active (stained) region. Therefore, soil water in the “inactive” region with initial 

water content higher than the residual content can be approximately considered immobile at least 

during test periods.   
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Fig. 2.12 Coverage of the stained region as a function of depth (Sheng et al. 2009) (Reproduced by permission of 

Elsevier) 

 

The relation between the effective saturation and the stained coverage for each plot is presented in 

Fig. 2.13. In general, Eq. 2.59 fits the test results reasonably well for a full range of water 

saturations under different test conditions, indicating that the complex preferential flow feature can 

be captured with the ARM. The fitted  values are close for different initial water contents and 

different total infiltrating water depths for a given test site (Fig. 2.14). This is consistent with the 


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ARM in which the parameter  is constant for a given site, although the flow pattern details may 

change considerably with different test conditions (Figs. 2.8 to 2.11). The standard deviation of 

dyed flow depth  is also given in the Fig. 2.14 as a measure of complexity or heterogeneity of the 

water flow pattern. For a given location on the soil surface, the so-called dyed flow depth is defined 

as the largest depth of dyed soil. 

 

 

 

 

 
 

 

 
Fig. 2.13 Relationships between the soil water saturation and the coverage of stained region that are used to fit ARM 

parameter (Sheng et al. 2009) (Reproduced by permission of Elsevier) 

  




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Fig. 2.14 ARM parameter  and parameter as functions of infiltration water depth (Sheng et al. 2009) (Reproduced 

by permission of Elsevier). Both parameters are related to flow-pattern heterogeneity  

 

 

As indicated in Fig. 2.14, while the degree of flow-pattern heterogeneity (characterized by ) can 

vary considerably with test conditions (such as the ponding water depth), variations in  values 

estimated from the observations are small. The flow patterns for the plots with ponding-water 

depths of 40 mm and 60 mm are most heterogeneous (characterized by the largest  values in Fig. 

2.14) for plots with a horizontal dimension of 100×100 cm
2
 at both Sites I and II. To test impacts of 

test scales, the infiltration tests were also conducted for two relatively large plots (Plots 12 and 13 

with horizontal dimensions of 100×200 cm
2
 and 100×400 cm

2
, respectively) (Table 2.3). The 

observed flow patterns for selected vertical soil slices are given in Figs. 2.10 and 2.11. As indicated 

in Table 2.4, the estimated values for these two large plots are similar to those for the smaller 

plots at the same site, indicating that the ARM is robust in dealing with fingering flow at different 

scales, although the test scale range is not large enough to obtain more conclusive results regarding 

 







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this issue.    

 

In summary, the test results provide a valuable data set for evaluating the ARM that is based on the 

generalized Darcy-Buckingham law (Sect. 2.4). It was found that the horizontally averaged water 

flow patterns under different test conditions are satisfactorily described by the ARM relation (Eq. 

2.59), supporting the validity of this model. While details of flow patterns (or flow heterogeneity) 

are obviously dependent on specific test conditions, our analysis shows that the fitted values for the 

ARM parameter are not sensitive to the test conditions including the initial water content and the 

top boundary condition for a given test site. This further supports the validity of the ARM in which 

the parameter  is constant for a given site and soil type. 

  

2.6 The Active Fracture Model: An Equation for a Mountain 
 

As indicated in the preface, the work documented in this book was motivated by the needs in 

practical applications. Our effort of generalizing the Darcy-Buckingham law is a direct result of 

addressing an important technical issue for the Yucca Mountain Project: the accurate modeling of 

long-term flow and transport processes. Yucca Mountain is located in Nevada, USA, and is about 

90 miles from Las Vegas. It is the US’s national site for geological disposal of high-level nuclear 

wastes. The project, given the total number of capable scientists and engineers involved, can be 

regarded as the “Manhattan” project in the area of subsurface science and engineering. This section 

briefly introduces the Yucca Mountain Project and the active fracture model that was developed for 

modeling flow and transport processes in Yucca Mountain and is an application of the generalized 

Darcy-Buckingham law.   

 

2.6.1 Yucca Mountain Project 

 

High-level radioactive wastes are the highly radioactive material produced as a byproduct of the 

reactions occurring inside nuclear reactors that generate electricity in nuclear power plants. Because 

of their highly radioactive fission products, high-level waste and spent fuel must be handled and 

stored with care. There are approximately 72,500 metric tons of nuclear wastes nowadays in USA 

(Garrick and Bella 2014). Since the only way for radioactive waste to finally become harmless is 

through decay, which for high-level wastes can take hundreds of thousands of years, the waste must 

be stored and finally disposed of in a way that provides adequate protection of the public for a very 

long time. Geological disposal has been considered the most feasible way to manage nuclear wastes.  

In 1982, the US Congress passed the Nuclear Waste Policy that is a federal law to deal with the 

geological disposal of high-level nuclear waste in USA. According to the law, the US Department 

of Energy (DOE) has the responsibilities to site, construct, operate and close a geologic repository 

(US DOE 2002). DOE began studying Yucca Mountain, Nevada, and other potential sites in 1978 

to determine whether they would be suitable for being the first national geologic repository. In 

1984, President Ronald Reagan approved three sites for further scientific investigation that is called 

site characterization. In 1987, the US Congress passed an amendment to the Nuclear Waste Policy 

Act that directed DOE to investigate the Yucca Mountain site exclusively (US DOE 2002). The site 

was recommended by President George W. Bush in 2002, which ended the site characterization 

phase and allowed the DOE to move forward to establish the first national repository to store 

nuclear waste at the Yucca Mountain site. However, the Yucca Mountain Project has not been 




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popular in Nevada. Following the 2006 mid-term congressional elections, Harry Reid, the 

democratic Nevada senator and a longtime opponent of the repository, became the US senate 

speaker. In this capacity, he has successfully and significantly cut DOE’s funding for the Yucca 

Mountain Project. The US DOE, however, was able to complete the License Application 

documenting the scientific investigations and engineering designs for the site and submitted it in 

2008 to Nuclear Regulatory Commission (NRC) that, in addition to its other responsibilities, serves 

as the regulator for the Yucca Mountain Project. During his 2008 presidential campaign, Senator 

Barack Obama promised to Nevada voters to cancel the Yucca Mountain project. President Barack 

Obama, after elected, then dismantled DOE’s Office of Civilian Radioactive Waste Management 

that managed Yucca Mountain Project and zeroed out federal funding for the project. This caused 

several lawsuits against Obama administration’s decision. Forced by a court ruling, NRC used the 

funding left over from the previous years to finish several key reports by its scientific staff, called 

safety analysis reports, in 2014 and 2015 to independently evaluate the scientific work documented 

in DOE’s License Application. Conclusions of these NRC’s reports generally indicate that the 

DOE’s scientific work is valid and adequate for supporting the development of a national 

geological disposal repository at the Yucca Mountain site.   

2.6.2 The Active Fracture Model (AFM) 

Numerical models are the only tools to help determine if a geological repository can safely store 

high-level nuclear wastes in a way that provides adequate protection of the public for a very long 

time (a million year in the case of Yucca Mountain Project). Thus, the accurate modeling of long-

term flow and transport processes impacting the migration of radionuclides from nuclear waste 

packages is a key technical issue for assessing the performance of a repository. The active fracture 

model (AFM) was developed by Liu et al. (1998) to address that issue for the Yucca Mountain 

Project and has been used as the base case theory for modeling flow and transport in the unsaturated 

zone of the site. This subsection briefly discusses the geological model for the unsaturated zone of 

Yucca Mountain and then presents the AFM, including its relation with our optimality results (Sect. 

2.4) and verification with field data. 

Geological formations of the unsaturated zone of Yucca Mountain were grouped into stratigraphic 

units, based on their degrees of welding, by Montazer and Wilson (1984). The stratigraphic units 

consist of the following, in descending order from the ground surface: welded Tiva Canyon Tuff 

(TCw); mainly nonwelded Paintbrush Group (PTn); welded Topopah Spring Tuff (TSw); mostly 

nonwelded and sometimes altered Calico Hills Formation (CHn); and the mostly nonwelded and 

altered Crater Flat (undifferentiated) Group (CFu) (Fig. 2.15). The nonwelded zones near the water 

table in the CHn and CFu can be subject to zeolitic alteration that reduces the matrix permeability 

by orders of magnitude (Bandurraga and Bodvarsson 1999). Furthermore, each stratigraphic unit is 

subdivided into a number of hydrogeologic layers each of which is considered to have uniform 

hydraulic properties. There are totally 35 hydrogeologic layers in the unsaturated zone of Yucca 

Mountain (Bandurraga and Bodvarsson 1999). 

http://en.wikipedia.org/wiki/Harry_Reid
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Fig. 2.15 Stratigraphic units and other features of the Yucca Mountain site 

Welded formations are highly fractured and have low matrix permeability, while nonwelded 

formations have relatively small fracture densities and relatively high matrix permeability. 

Consequently, liquid water flow occurs mainly in the tuff matrix for nonwelded formations and in 

fractures for welded formations. Conceptual models of flow and transport in the unsaturated zone of 

Yucca Mountain can be found in Bodvarsson et al. (2000), Flint et al. (2001), and Liu (2004). For 

each of the 35 hydrogeologic layers, hydraulic properties include permeability and van Genuchten 

parameters for both fracture and matrix continua, with γ (Eq. 2.59) as an additional parameter. 

These properties are estimated based on small-scale property measurements and by model 

calibration against field data. The model calibration, also called history matching in the literature of 

reservoir engineering, is a procedure to adjust values of model parameters or properties such that 

model results match field observations. The property measurements are used to constrain the 

calibration results. The methodology of the model calibration and the data types used for the 

calibration are reported in Bandurraga and Bodvarsson (1999) and Liu et al. (1998). 

Flow and transport in unsaturated fractured rocks are generally complicated because of the 

complexity of fracture-matrix interaction mechanisms, distinct differences in hydraulic properties 

between fractures and matrix, and nonlinearity involved in unsaturated flow. Several approaches are 

available in the literature for modeling flow and transport in unsaturated fractured rocks. When 

classified according to the manner in which fracture networks are treated in the model structure, 

these approaches mainly fall into one of the two categories: the continuum approach and the 

discrete fracture network approach.  
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Fig. 2.16 Conceptualization of water flow within Yucca Mountain, Nevada 

  

Both continuum and fracture network approaches have advantages and limitations. Because the 

number of fractures is on the order of 10
9
 at Yucca Mountain (Doughty 1999), it is practically 

impossible to construct and calibrate a discrete fracture network site-scale model with so many 

fractures in it, considering data availability and computational feasibility. Therefore, the dual-

continuum approach, in which fractures and matrix are treated as two overlapping and interactive 

continua, has been used for modeling flow and transport within Yucca Mountain (Liu 2004). 

Because water flow in a fracture continuum can be treated practically in the same way as that in a 

porous medium, the generalized Darcy-Buckingham law that was developed for water flow in 

porous media can be applied to modeling unsaturated water flow in fractures. Note that the AFM 

was initially proposed as an empirical relation and later shown to be equivalent to the generalized 

Darcy-Buckingham law (Liu et al. 1998; Liu 2011a).     

Gravitational fingering flow occurs at two different scales in fractures, at the single fracture scale 

and the fracture network scale (Fig. 2.16). The AFM was developed to deal with this fingering flow 

processes. The active fracture concept is based on the reasoning that, because of fingering flow, 

only some fractures in a connected, unsaturated fracture network contribute to liquid water flow, 

while other fractures are simply bypassed. The portions of the connected fractures that actively 

conduct water are called active fractures. We hypothesize that the number of active fractures in the 

unsaturated zone of Yucca Mountain is small compared to the total number of connected fractures, 

such that active fractures, rather than total connected fractures, must be used in numerical models 

for water flow. We further hypothesize that the number of active fractures within a grid block is 

large such that the continuum approach is still valid for describing fracture flow. These hypotheses 
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are consistent with the consideration that fractures conducting water in the unsaturated zone of 

Yucca Mountain are many and highly dispersed (Liu 2004). When using the active fracture concept 

for modeling flow and transport in fractures, we treat active fractures as a portion of the 

“homogeneous” fracture continuum for a given grid block.  

The portion of the active fracture continuum, f, is calculated with Eq. 2.59. It was the search for the 

physical basis of the AFM that led to the use of the optimality principle for the generalization of the 

Darcy-Buckingham law discussed in Sect. 2.4. Note that only the active fracture continuum, a 

portion of the total fracture continuum, contributes to the flow and transport in fractures and the 

fracture-matrix interaction. Fracture hydraulic properties should thus be defined for active fractures. 

Based on the water mass balance with a constant water density, the effective water saturation of 

active fractures, Saf, is related to the effective water saturation of all the connected fractures, S
ef
, by 

 1

ef

ef

af S
f

S
S                                                                    (2.69) 

Because S
af 

≤ 1 by definition, γ should be smaller than or equal to one. 

If all connected fractures are considered to be active in conducting water, the water capillary 

pressure for the fracture continuum may be described by the well-known van Genuchten (1980) 

relation (Eq. 2.23). In the active fracture model, however, the van Genuchten capillary-pressure 

relation is considered to be relevant for the active fracture continuum only, rather than for the whole 

fracture continuum. Replacing Se with Saf in the van Genuchten relation leads to 
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afef SSSh
/1/)1(/1/1 ]1[
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1
)(   


                    (2.70)          

For a given effective water saturation for all the connected fractures, a larger γ value corresponds to 

a larger effective water saturation in active fractures, and therefore to a lower absolute value for 

capillary pressure (Fig. 2.17(a)). 
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(a) 

 

 (b) 

 

Fig. 2.17 (a) Capillary pressure curves and (b) relative permeability curves for γ =0, 0.5 and 0.9.  

The liquid-phase relative permeability for the active fracture continuum, k
ar 

, is directly determined 

by the effective water saturation of active fractures. However, because only a portion of the 

fractures are active, the relative permeability of the entire fracture continuum, k
r
, should be the 

relative permeability of active fractures multiplied by f, or 

arefarr kSkfk                                                                   (2.71) 
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where k
ar 

can be given by the following van Genuchten’s (1980) relative permeability relation: 

2/)1(2/)1(2/12/1 ]}1{1[]}1{1[ mm

efef

mm

afafar SSSSk            (2.72) 

Combining the above two equations gives 

2/)1(2/)1( ]}1{1[ mm

efefr SSk                                                   (2.73) 

In general, relative permeability (k
r
) is affected by γ in a complicated manner for a given S

ef
. A 

larger γ value, resulting in a higher effective water saturation in active fractures (S
ae

), gives rise to a 

larger value of k
ar

. On the other hand, a larger γ value corresponds to a smaller value of f. Because 

the former effect is dominant, a larger γ value gives a larger relative permeability for a given 

effective water saturation of the fracture continuum (Fig. 2.17(b)).  

In an unsaturated fracture network, the ratio of the fracture-matrix interface area (contributing to 

flow and transport between fractures and the matrix) to the total interface area (determined 

geometrically from the fracture network) is called the fracture-matrix interface area reduction factor 

by Liu et al. (1998). In the active fracture model, this reduction factor results from three 

considerations. Firstly, the average interface area between mobile water in an active fracture and the 

surrounding matrix is smaller than the geometric interface area. Secondly, the number of active 

fractures is smaller than that of connected fractures. Thirdly, average active fracture spacing is 

much larger than that for the connected fractures; under the quasi-steady-state condition, flow and 

transport between fractures and their surrounding matrix is inversely proportional to the 

corresponding fracture spacing. Based on these considerations, Liu et al. (1998) derived an 

expression for the reduction factor: 

 1

effm SR                                                                                    (2.74) 

Conventionally, all the connected fractures are assumed to contribute to fracture-matrix interaction, 

which gives 1fmR . According to the above equation, the reduction factor can be significantly 

smaller than one as a result of fingering flow, especially when fracture water-saturation is low.  

2.6.3 Verification of the AFM with Field Observations 

Since the AFM was used as the base case theory for all models of flow and transport within the 

unsaturated zone of the Yucca Mountain Project, it has been evaluated by a number of studies. It 

was shown that simulation results based on the AFM match the rock-matrix water saturation and 

potential data collected from long boreholes at the Yucca Mountain site (e.g., Liu et al. 1998). 

These simulation results are also consistent with flow and tracer transport data observed from a 

field test (on a scale of about 20 m) performed in a densely fractured unit within Yucca Mountain 

(Liu et al. 2003a). This subsection focuses on evaluating the AFM with C-14 age data and fracture 

coating data that provide important information regarding large-scale unsaturated flow processes in 

fractures and fracture-matrix interaction within Yucca Mountain. Discussions in this subsection are 

mainly based on materials from Liu (2004) and Liu et al. (2003b).   
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Carbon-14 age data have been collected from different locations in the the unsaturated zone of 

Yucca Mountain, including perched water, pore water, and gas samples (Yang 2002; Fabryka-

Martin et al. 2000). They largely reflect the time for water travel from the ground surface to the 

locations where the data were collected.  Carbon-14 data collected from perched water are not used 

for validating the AFM because water travel time from the ground surface to the perched-water 

bodies was dominated by PTn, where flow occurs mainly in the rock matrix, and thus simulated 

water travel time to the perched water bodies is insensitive to the AFM parameters. (Note that the 

AFM was developed for modeling water flow in fractures.) Pore-water carbon-14 data from various 

boreholes at Yucca Mountain are not considered to be representative of the pore-water residence 

time because of probable contamination by atmospheric 
14

CO
2 

during drilling, resulting in 

apparently shorter residence times (Yang 2002; Fabryka-Martin et al. 2000). Yang (2002) reported 

that carbon-14 data from gas samples are most representative of in situ pore-water conditions based 

on two considerations. Firstly, atmospheric 14CO
2 during drilling is not expected to contaminate 

those gas samples collected several years after drilling. Secondly, gas phase carbon-14 age should 

be the same as that of the local pore water because of the  rapid exchange of gas-phase CO
2 

(in 

hours to days) with dissolved CO
2 

(and HCO
3

-

) in pore water. Furthermore, the amount of carbon in 

an aqueous-phase reservoir is hundred-times greater than carbon in the CO
2 

gas-phase reservoir. 

Consequently, the aqueous phase will dominate the gaseous phase when exchange occurs, 

indicating the reasonableness of using gas phase carbon-14 age to represent the corresponding pore-

water age (Yang 2002). Gas samples were collected from two kinds of boreholes: open surface-

based boreholes and instrumented (closed) surface-based boreholes. The data from the latter 

boreholes (USW SD-12 and USW UZ-1) are the most reliable indicators of the in situ conditions, 

because these boreholes are not directly connected to the atmosphere such that the contamination of 

gas samples from atmospheric 14CO
2 was minimal (Fabryka-Martin   2000). Thus, carbon-14 

residence ages (Fabryka-Martin et al. 2000) calculated with the gas phase data from these two 

boreholes are used for validating the AFM. 

The fracture-coating data are also useful for validating the AFM. These data have important 

implications for water flow through Yucca Mountain since they are generally a signature of 

historical water flow paths. The process of unsaturated-zone mineral deposition is initiated during 

infiltration where meteoric water interacts with materials in the soil, after which a portion may then 

enter the bedrock fracture network, resulting in mineral coatings on fracture surfaces. Fracture 

coating data were collected in an underground tunnel that was constructed for investigating field-

scale flow and transport processes in the unsaturated zone of Yucca Mountain. Spatial distribution 

of fractures with observed coatings was used to estimate the portion of active fractures. For a given 

survey interval along the tunnel, characters of fractures intersecting the survey line were 

documented.  The ratio of the number of coated fractures along the survey line within a geological 

unit to the number of total fractures within the same unit provides an estimate of the portion of 

active fractures for the unit. The estimated average portion of active fractures for the TSw is about 

7.2 %. Note that fracture coatings may not precisely represent all the active flow paths in the 

unsaturated zone of Yucca Mountain, because not all the flow paths correspond to fracture coatings 

(Liu et al. 1998). Nevertheless, these values give us at least an order-of-magnitude estimate of the 

portion of active fractures that is about 10 %. The data also show that mineral-coating growth rate 

has been more or less constant with time in the unsaturated zone of Yucca Mountain, implying that 
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the fracture network there has maintained a large degree of hydrologic stability and fracture flow 

paths in the deep unsaturated zone are buffered from climate-induced variations in precipitation and 

infiltration (Fabryka-Martin et al. 2000). If the AFM accurately represents water flow processes in 

the unsaturated zone of Yucca Mountain, modeling results based on the AFM should be consistent 

with this important observation.  

The AFM-based simulation results are compared with the carbon-14 age data. One-dimensional 

dual-permeability numerical models are developed for vertical flow and transport along rock 

columns corresponding to boreholes USW SD-12 and USW UZ-1. Calibrated rock properties 

reported by Liu and Ahlers (2003) are used in the models, except for γ values associated with the 

TSw formation (where the repository is located). The value of the AFM parameter γ for the TSw 

formation is varied for different simulations to check the sensitivity of simulated water travel times 

to this parameter within the formation, because water travel time corresponds to the carbon-14 age. 

The present-day infiltration rate and a constant tracer concentration are used as the top boundary 

conditions for flow simulations and for transport simulations. The tracer concentration is assumed 

to be zero initially within the fractured rocks. The dispersion process is ignored here, because 

previous studies indicate that dispersion has an insignificant effect on overall solute transport 

behavior in unsaturated fractured rocks (Bodvarsson et al. 2000; Liu et al. 2000). An effective 

diffusion coefficient value of 1.97E-10 m
2
 /s, equal to the average value of coefficients for tritiated 

water measured from matrix samples from the Yucca Mountain site, is employed for modeling 

tracer transport. TOUGH2 and T2R3D codes (Pruess 1991; Wu et al. 1996) are used for simulating 

steady-state water flow and tracer transport processes. There is good agreement between simulation 

results using the above two codes for solute transport in the unsaturated zone of Yucca Mountain, 

and those obtained using a particle tracking method without numerical dispersion (Liu et al. 2000), 

indicating that the effects of numerical dispersion are indeed insignificant for the problem under 

consideration. Simulated water travel times (or ages) for the rock matrix are compared with carbon-

14 ages that are believed to correspond to the matrix. At a given location, the simulated water travel 

time is determined as the time when the matrix concentration reaches 50% of the top-boundary 

concentration because it represents the average travel time for water particles from the ground 

surface to the location under consideration.  

Figure 2.18 shows vertical distributions of simulated water travel times (ages) for different γ values. 

The simulated results within the TSw unit are quite sensitive to the AFM parameter γ, indicating 

that carbon-14 data are useful for validating the AFM and for constraining the γ values for the 

TSw unit. For γ  values ranging from 0.2 to 0.4, simulated results approximately match the 

observations for the two boreholes simultaneously, although, as a result of subsurface 

heterogeneity, a better match is obtained for USW SD-12 than that for USW UZ-14. (The 

heterogeneity within each geological layer is not considered in the numerical models.) The water 

travel time at a given location is the summation of travel times within fractures and matrix, but is 

dominated by that in the matrix for the TSw unit because matrix diffusion there is a much slower 

process than advection in fractures. Thus, a larger γ value generally corresponds to a longer travel 

time, resulting from the smaller degree of matrix diffusion owing to a smaller fracture-matrix 

interfacial area available for mass transport between fractures and  matrix (Eq. 2.74). Because of the 

spatial variability of the degree of matrix diffusion, the simulated water travel times and the 

observed ages in Fig. 2.18 are not always monotonically increasing with depth in the TSw.  
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There is a sharp decrease in simulated water travel times at an elevation of about 1,100 m for the 

two boreholes (Fig. 2.18). This is because the upper portion of the TSw unit above that elevation 

has relatively small fracture density values and therefore corresponds to a smaller degree of matrix 

diffusion for a given γ value, or longer water travel times for the rock matrix. For the borehole 

USW UZ-1, simulated water travel time is generally longer than the observed age data at a given 

elevation, which may result from a subsurface heterogeneity that gives larger fracture densities at 

the borehole location than what are used in the numerical model. (Layer-averaged fracture 

properties are used in the numerical model.) In general, Fig. 2.18 indicates that simulated water 

travel times, based on the AFM with γ values for the TSw between 0.2 to 0.4, reasonably represent 

the observed carbon-14 ages. 

To check the consistency of the AFM with the coating data, the one-dimensional model for 

borehole USW SD-12, described above, is further used for estimating the portion of the active 

fractures under different climate conditions. As indicated previously, the fracture coating data is the 

signature of water flow history in fractures. USW SD-12 is located near the middle of the 

underground tunnel where coating data were collected, and thus chosen here for the model study. 

Two infiltration rates (Flint et al. 1996), present day mean infiltration rate (3.4 mm/yr) and glacial 

maximum infiltration rate (17.3 mm/yr), are employed as the top boundary conditions. The latter 

infiltration rate is about five times as large as the former rate and represents the maximum 

infiltration rate in the past climates. Again, uniform γ distributions for the TSw formation are 

assumed. 

Figure 2.19 shows the simulated average portion of active fractures, f, for the TSw formation as a 

function of γ for the two infiltration rates. The average effective saturation for the TSw formation is 

used to calculate f with Eq. 2.59. For γ values ranging from 0.4 to 0.2, that are similar to those used 

for matching the carbon-14 data, the calculated f
 
values are about 10 % to 40%. Recall that the 

active fracture portion estimated from fracture coating data in the TSw was about 10%. This 

estimate corresponds to the lower limit of the calculated f
 
values because not all the active flow 

paths are associated with coatings. For example, Wang et al. (1999) found that a flow feature does 

not have coatings under ambient conditions in the unsaturated zone of Yucca Mountain. Since the 

number of active fractures increases with γ, γ = 0.4, giving rise to f =10%, may roughly represent 

the upper limit for the actual γ values. For γ values less than 0.4, the calculated f 
 
values do not 

change significantly for the two infiltration rates (Fig. 2.19), which is consistent with the 

observation of the stability of flow paths over time associated with different climate conditions.  

In summary, Liu et al. (2003b) showed that the AFM-based simulation results, for γ = 0.2 – 0.4, 

approximately match the observed carbon-14 age data collected from the two boreholes, and they 

are consistent with the portion of active fractures estimated from the fracture coating data in the 

TSw unit. The simulated portion of active fractures range from 10% to 40%, while 10% is believed 

to represent the lower limit for the actual portion, as previously discussed. The insensitivity of the 

portion of active fracture (where water flows) to infiltration rates, for γ = 0.2 – 0.4, is also 

consistent with the stability of flow paths over time that was observed from the unsaturated zone of 

Yucca Mountain. All these support the validity of the AFM in a practical sense. 
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(a) 

 

(b) 

Fig. 2.18 Comparisons between simulated water travel times (ages) for rock matrix at boreholes (a) USW UZ-1 and (b) 

USW SD-12 and the corresponding Carbon-14 ages for several γ values (Liu 2004). The solid triangles are 

measurements and the  interval is 0.1 for the simulated curves 
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Fig. 2.19 Simulated average portion of active fractures for the TSw formation as a function of infiltration rate and γ  

 

2.6.4 Comparisons with Fracture Network Modeling Results 

Başağaoğlu et al. (2009) presented a detailed study on unsaturated flow behavior in a two-

dimensional fracture network (Fig. 2.20). The results are valuable for improving our understanding 

of unsaturated flow processes, but not really ideal  for evaluating the AFM that was developed for 

capturing large-scale preferential flow in fractured rocks, because the corresponding fracture-

network geometry (Fig. 2.20) is relatively idealized. Nevertheless, the data set is useful for 

demonstrating the validity of the AFM in a corroborative manner (Liu 2010). 

The numerical experiments (simulations) conducted by Başağaoğlu et al. (2009) are based on the 

lattice-Boltzmann method. (The lattice-Boltzmann method represents fluid as an ensemble of 

particles that synchronously stream along bonds of a regular lattice and undergo mass- and 

momentum-conserving collisions at nodes.) The fracture network has a uniform fracture aperture 

and a total of 19 flow channels, consisting of 5 long horizontal and 14 short vertical channels (Fig. 

2.20). Water was injected at an injection port from the topmost vertical channel at a constant rate 

for different tilt angles of inclination for the network. For a given tilt angle, four injection rates 

were used; the ratios of the first injection rate to the subsequent injection rates are 1/2, 1/3 and 1/4, 

respectively.  Fig. 2.21 shows flow patterns for a tilt angle of 2.5
0
; the injection rate in Fig. 2.21(b) 

is four times as large as that in Fig. 2.21(a). 
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Fig. 2.20 Fracture network used by Başağaoğlu et al. (2009) for numerical experiments 

 

 (a)                                                          (b) 

  

Fig. 2.21 Flow patterns for a tilt angle of 2.5
0
. The injection rate in (b) is four times as large as that in (a) (Başağaoğlu 

et al. 2009) 

 

The unique aspect of the study by Başağaoğlu et al. (2009) is that the values for Se and the active 

fracture portion f are directly available from simulation results. For a given tilt angle, the focus here 

is on simulation results when the flow reaches steady state or is close to it (e.g., after water reaches 

the bottom of the network), such that the analysis results are representative of the whole network. 

The active fracture portion f is estimated by the ratio of length of fractures containing water to the 
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total length of all the fractures in the fracture network.  Based on Eq. 2.59, the parameter γ can be 

calculated once Se and f are known.  Başağaoğlu et al. (2009) reported that the γ value depends on 

fracture network orientation. This is expected because the parameter γ is considered a constant for a 

given fracture network, and fracture networks with the same geometry but different orientations 

should be considered different fracture networks.  

 

 

                                         (a)                                                  (b) 

  

 

                   (c)                                                                        (d) 

 

Fig. 2.22 A comparison between the theoretical relationship (Eq. 2.59) and simulation results (data points) from 

Basağaoğlu et al. (2009) for tilt angles of 5, 15, 25 and 35 degree (modified from (Liu 2010)) 
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For a given tilt angle, there are four numerical experiments with different flow rates, giving rise to 

four estimates of parameter γ. Başağaoğlu et al. (2009) shows that the γ value varies for each tilt 

angle, but the variation is considerably smaller than that among different tilt angles. Shown in Fig. 

2.22 are comparisons between results calculated from Eq. 2.59 and those determined from 

Başağaoğlu et al. (2009). The averaged γ value of Başağaoğlu et al. (2009) is used for the 

calculation with Eq. 2.59 for a given tilt angle. Thus, no curve-fitting exercise is conducted in Fig. 

2.22. Given the simplicity of the AFM and the complexity of the unsaturated flow processes in a 

fracture network, the AFM relationship reasonably matches the simulation results of Başağaoğlu et 

al. (2009), as shown in Fig. 2.22.  In other words, the AFM has done a reasonable job in 

characterizing key macroscopic water-flow features simulated by Başağaoğlu et al. (2009).  

 

2.7 Optimality and Surface Water Flow  

The focus of this chapter is on the generalization of the Darcy-Buckingham law for water flow in 

unsaturated media including both soils and fractured rocks. However, the discovered power-law 

relationship between the conductivity and the corresponding flux seems to be general. To 

demonstrate this point, this section presents such a relationship for water flow on the land surface 

owing to rainfall events. The discussion here is based on the study of Liu (2011b). 

 

Following Liu (2011b), we consider a landscape involving steady-state water flow and a surface 

evolution processes. (The latter refers to a stabilized landscape that does not change significantly 

with time.) This steady-state assumption has been implicitly employed in previous studies on 

topological structures of channel networks (Leopold and Maddock 1953; Howard 1990; Rodriguez-

Iturbe et al. 1992; Rinaldo et al. 2006). (A more detailed justification of this steady-state 

assumption can be found in Liu (2011b).) 

 

Based on the above simplifications, coupled water-flow (over a land surface) and surface-elevation 

equations can be derived from the principle that global energy expenditure rate is at a minimum. 

From water mass conservation and considering water density to be constant, the steady-state water 

flow equation is given by 
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where x and y are two horizontal coordinate axes, qs,x and qs,y  are the components of water fluxes 

(vertically-averaged water velocity multiplied by water depth) along the x and y directions, 

respectively, and Qs   is the rainfall rate. The subscript s refers to the land surface in this section. 

 

Accordingly, the energy expenditure rate for the flow over a unit land-surface area, Es, , can be 

expressed as (based on energy conservation) (Liu 2011b) 
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The above equation simply states that for a given unit area, the energy expenditure rate at that 

location is equal to the energy carried by water flowing into the area minus the energy carried by 

water flowing out of the area. The rainfall is assumed to have the same energy as water at the 

location where the rain falls. The head, Es (a function of x and y), refers to water energy per unit 

weight, including both potential (corresponding to elevation z) and kinetic energy, and is given by: 
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                                                                                    (2.77) 

 

where g again is gravitational acceleration and vs is water velocity. Note that the second term is 

generally small and has been ignored in some previous studies (e.g., Howard 1990; Rinaldo et al. 

2006). For completeness, this term is included here.  

 

A combination of Eqs. 2.75 and 2.76 yields  
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The water flux is considered to be given by  
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In Eqs. 2.79-1 and 2.79-2, Ks(hs, S*) is conductivity and  hs (m) is water depth. Note that in Liu 

(2011b), the specific formulation of conductivity is given based on Manning’s equation.   In this 

study, we assume hs to be a function of local slope Ss only (Gupta and Waymire 1989). Many 

studies indicate that on average a number of hydraulic parameters can be considered as functions of 

local slope (Leopold and Maddock 1953). In this case, Ks is a function of Ss* only. 

      

When combining Eqs. 2.78 and 2.79, the global energy expenditure rate throughout the water-flow 

domain    is given by 

 

 
 

 dxdySKdxdy ssEs )(
*,                                                           (2.80) 

 

The optimality principle in our problem is to minimize the absolute value of the above integral. To 

do so, we employ the calculus of variations that seeks optimal (stationary) solutions to a functional  

by identifying unknown functions (Sect. 2.3). In this section, the functional corresponds to the 

integral defined in Eq. 2.80 and the unknown function to land-surface elevation distribution z(x,y).  
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Furthermore, we employ the following constraint for the optimization problem (Liu 2011b): 

 

 


CdxdyEs                                                                                        (2.81) 

 

where C is a constant. Since Es is mainly composed of potential energy z, the above equation 

essentially states that the average elevation throughout the model domain (or total volume of the 

landscape under consideration) remains unchanged, which is consistent with the steady-state 

assumption made in this study. It should be emphasized that the optimality principle corresponds to 

the minimization of the global energy expenditure rate, not the total energy within the model 

domain.  

       

Based on Eqs. 2.79, 2.80 and 2.81, the Lagrangian for the given problem is given by 
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Note that the first term on the right hand side is from Eq. 2.80 and other terms are constraints from 

Eqs. 2.79 and 2.81, respectively. The Lagrange multipliers 
*

1  and 
*

2   are a function of location 

and a constant, respectively. The last term on the right hand side of Eq. 2.82 corresponds to the 

constraint defined in Eq. 2.81. The constraint related to water flow, Eq. 2.75, will be handled later 

for mathematical convenience.  

    

The following Euler-Lagrange equation (Eq. 2.39) is used to determine an unknown function w 

associated with Ls defined in Eq. 2.82: 

 

0












































y

s

x

ss

w

L

yw

L

xw

L
                                                         (2.83) 

 

where wx and wy are partial derivatives with respect to x and y, respectively. In this study, w 

corresponds to Ss* and Es, respectively.       

    

Applying the Euler-Lagrange Equation (Eq. 2.83) to Ss* in Eq. 2.82 gives 
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 Applying the Euler-Lagrange Equation (Eq. 2.83) to Es yields 
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For the optimization results to be physically valid, they must satisfy the water flow equation (Eq. 

2.75). A direct comparison between Eqs. 2.75 and 2.85 and consideration of Eq. 2.79 reveal that 

Eqs. 2.75 and 2.85 are identical under the following conditions 
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Combining Eqs. 2.84 and 2.86 gives 
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From Eqs. 2.79 and 2.87, water flux qs and local slope Ss have the following relation: 
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where 
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The power-function relationship between water flux (or discharge) and local slope has been 

intensively investigated and validated in the literature (Rodriguez-Iturbe et al. 1992; Rinaldo et al. 

2006; Banavar et al. 2001). Also note that the power value in the power-function relationship varies 

with different site conditions. However, previous studies (Leopold and Maddock 1953; Rodriguez-

Iturbe et al. 1992; Rinaldo et al. 2006; Banavar et al. 2001) indicate that the averaged exponent 

value is about -2 in Eq. 2.88, suggesting that 
sQ

*2   is close to -1 in an average sense.  

       

Equations 2.87 and 2.88 lead to a relationship between the conductivity Ks (or flux divided by the 

energy gradient) and flux: 
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When  
sQ

*

2 is close to -1, the exponent value in the above equation is about 1.5.  The equation, again, 

indicates that under optimal conditions, a location where a relatively large water flux occurs 

corresponds to a relatively small resistance (or a large conductance). As demonstrated in Sect. 2.3 

and Chap. 4, the notion that the flow conductivity is a power function of flux seems to be a 

common rule for different macroscopic flow systems under the optimal flow conditions.  
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2.8 Concluding Remarks 

  

(A) The Darcy-Buckingham law was developed based on the local-equilibrium condition that, 

however, does not always hold especially when fingering flow occurs. This chapter is devoted to 

generalizing this important law by relaxing the local-equilibrium condition. The new development 

is based on an optimality principle that water flow in unsaturated media is self-organized in such a 

way that the resistance to water flow is minimized. The key result is given as 
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Unlike the classic Darcy-Buckingham law, the relative permeability is a function of water flux, 

which is a direct result of the non-equilibrium flow behavior. 

 

(B) The generalized Darcy-Buckingham law has been shown to be consistent with laboratory 

observations and field data for gravitational fingering flow processes in unsaturated soils. It is also 

demonstrated that this generalization is the theoretical foundation for the active fracture model, the 

key constitutive relationship for modeling flow and transport in the unsaturated zone of Yucca 

Mountain that is the national high-level nuclear waste disposal site in the USA. 

 

(C) The notion that conductivity is a power function of flux seems to be a general relationship for 

different flow systems. As an example, we used water flow process on the land surface to 

demonstrate this result. It will be further discussed in Chap. 4.   

 

(D) While the focus of this chapter is on gravitational fingering flow in unsaturated media, the 

methodology is likely applicable to viscous fingering that, under certain conditions, is important for 

fluid flow in oil and gas reservoirs. This needs further research.     

 

Appendix A.  An Alternative Derivation of Eq. 2.48 without using the Lagrange Multiplier  

 

Equation 2.48 was derived in Sect. 2.4 based on the calculus of variations involving a Lagrange 

multiplier (Eq. 2.46). For the convenience of readers who are not familiar with the mathematical 

background of the Lagrange multiplier, this appendix provides an alternative derivation of Eq. 2.48 

without using the Lagrange multiplier. 

 

From Eq. 2.46, the Lagrangian (without using the Lagrange multiplier) for the given problem is 

 

*SKL un                                                                                   (2.A1) 

 

where S* is given as: 
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Equation 2.48 is then derived by solving the following Euler-Lagrangian equation with w = E:  
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Because E=h+z, we have 
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Combining Eqs. 2.A3-1 to 2A3-3 yields: 
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In a similar procedure, we obtain 
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Inserting Eq. 2.A2 and Eqs. 2.A4 to 2.A6 into Eq. 2.39 and using the following form of water mass 

balance equation; 
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we finally obtain 
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Chapter 3  

Two-Part Hooke Model (TPHM): Theory, Validation and Applications 
 

Subsurface fluid flow is often coupled with mechanical deformation of subsurface media where 

fluid flow occurs.  In many cases, this coupling can play a dominant role. Hooke’s Law is the most 

fundamental law governing elastic deformation of solids. However, a natural rock has unique 

features compared with other solids such that elastic mechanical deformation of the natural rock 

does not follow exactly the traditional Hooke’s Law; the related mechanical properties, unlike those 

assumed in the Hooke’s Law, are not constant under certain conditions. This chapter briefly reviews 

Hooke’s life and his law, and presents our newly developed two-part Hooke model (TPHM) that 

incorporates small-scale mechanical heterogeneity of natural rocks. The validation and applications 

of the TPHM are also discussed. Note that definition and physical meaning of a symbol (denoting a 

variable or function) in this chapter (that is closely related to rock mechanics) may be different from 

the same symbol in the previous chapters unless the same physical meaning is explicitly indicated. 

This will allow this chapter to follow the conventional usage of symbols in the literature of rock 

mechanics. The discussions in this chapter are mainly based on the materials from Liu et al. (2009), 

Zhao and Liu (2012), Liu et al. (2011, 2013), Liu and Rutqvist (2010, 2013) and Li et al. (2014).   

 

3.1 Robert Hooke and His Law for Elastic Deformation 

 

Hooke’s Law was discovered by English scientist Robert Hooke (1635-1703). It states that the 

amount by which a material (e.g., rock) body is deformed (the strain) is linearly related to the force 

(stress) causing the deformation. While Robert Hooke is now primarily remembered for Hooke’s 

Law, he was widely involved in science and had many other achievements. For example, he coined 

the word “cell” that is one of the most commonly used terms in biology. Robert Hooke is a very 

controversial and possibly underestimated figure in the science history, largely because of his 

involvement in several famous disputes of priorities of scientific discoveries.  This section does not 

intend to give a comprehensive overview of Hooke’s life and all his major scientific achievements, 

but focuses on those that may be relevant to the discovery of Hooke’s Law. Readers who wish to 

know more about Hooke are encouraged to read his two biographies by Jardine (2004) and Inwood 

(2005). There is also a relatively comprehensive description of Hooke’s life and scientific 

contributions in Wikipedia’s item “Robert Hooke” (http://en.wikipedia.org/wiki/Robert_Hooke).    

 

Robert Hooke was born in 1635. As a youth, Hooke already demonstrated extraordinary gifts to 

make precise measurement and to do complex mechanical works. It was reported that Hooke 

dismantled a brass clock and built a wooden replica that seemed to work well enough. Hooke 

entered Westminister School in London in about 1648 and then in 1653 went to Oxford as a 

chorister at Christ Church. Hooke himself characterized his Oxford days as a source of his lifelong 

passion for science and the friends he made there were important to him throughout his career. 

Some of his friends went on to form the nucleus of the Royal Society. From 1655 to 1662, Hooke 

worked with Robert Boyle, a professor at Oxford, as his laboratory assistant. He built up air pumps 

for Boyle that were believed to help discover the Boyle’s gas law that describes how the pressure of 

a gas tends to decrease as the volume of a gas increases for a given temperature. One year later after 

the Royal Society was founded in 1690, Hooke was appointed as the Curator of the society, with a 

responsibility to demonstrate experiments from his own methods or at the suggestion of members. 

He then became a fellow of Royal Society and Professor of Geometry at Oxford in 1664. He 

http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Gas
http://en.wikipedia.org/wiki/Volume
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received the degree of “Doctor in Physics” in 1691. Hooke was a very hard working and productive 

person. He had never been married and died in London in 1703.  

 

Hooke discovered Hooke’s Law in 1676 and announced his discovery in the anagram 

“ceiiinosssttuv”. During that time, anagram was sometimes used by scientists to establish priority 

for a discovery without revealing details. In 1968, Hooke published the solution to the anagram as 

“Ut tension, sic vis” meaning “As the tension, so the force”. A current statement of Hooke’s Law is 

given in the beginning of this section. In his presentation of Hooke’s Law, Hooke illustrated the law 

by discussing several different experimental situations, including loading a wire, a spiral spring, and 

a watch spring (Moyer 1977). As one of the most important physics laws, Hooke’s Law gave the 

birth to quantitative solid mechanics and can be found in any standard high-school textbook 

including mechanics.      

 

The dispute between Robert Hooke and Isaac Newton over credit for the work on gravitation has 

been well known in the science history (Jardine 2004; Inwood 2005). In 1686, Newton presented 

his book “Principia” to the Royal Society that documented the universal gravitational law. Hooke 

then claimed that Newton got the idea initially from him (through letter exchanges) that gravitation 

is inversely proportional to square of distance between enters of the two bodies, but accepted that 

the associated mathematical developments and demonstrations were wholly Newton’s. There are 

different versions of what really happened. It was told that when Newton famously said that he saw 

farther than others because he stood on the shoulders of giants, what Newton really meant was that 

his discovery had nothing to do with Hooke who, in real life, was a very short person (Crease 2010). 

However, partially as a result of the dispute, Newton did acknowledge in all editions of “Principia” 

that Hooke, along with two other scientists, separately appreciated the inverse square law in the 

solar system.  One year later after Hooke died, Newton became the president of the Royal Society 

in 1704 and did much to obscure Hooke, including destroying his only known portrait. Nevertheless, 

Robert Hooke has now been recognized as one of the most important scientists of his age. 

   

 

 3.2 Two-Part Hooke’s Model 

 

Mechanical deformation processes in porous and fractured rocks are often coupled with thermal and 

hydrological processes. These coupled processes are important in a number of areas, including 

geothermal energy development, oil and gas extraction, nuclear waste geological disposal, 

geological sequestration of carbon dioxide, and deep well injection of liquid and solid wastes. The 

stress-strain relationship is the fundamental requirement for modeling mechanical deformation and 

the associated coupled processes in porous and fractured rocks and has been generally described by 

Hooke’s Law for elastic mechanical deformation. However, the current application of the Hooke’s 

Law to porous and fractured rocks is not without questions.  Strictly speaking, the proportionality in 

the observed stress-strain relationship should be constant for elastic deformation if the current 

application of Hooke’s Law is perfectly valid, simply because according to Hooke’s Law, the strain 

is linearly related to the stress. However, a number of studies have already indicated that the 

proportionality is not always constant, but rather stress-dependent in many cases (e.g., Mavko and 

Nur 1978; Zimmerman 1991; Al-Tahini and Abousleiman 2010). Several researchers (e.g., Walsh 

1965a; Walsh 1965b; Nur 1971) have made efforts to relate this stress-dependent behavior to the 

microstructures of “cracks” in porous rock. An excellent review of these efforts is presented in a 
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chapter entitled Micromechanical Models in Jaeger et al. (2007). It is generally difficult to 

characterize small-scale structures accurately and then relate their properties, in a relatively 

straightforward and simple way, to large-scale mechanical properties that are of practical interest.  

What is more desirable for practical applications is to have a macroscopic-scale theory that does not 

rely on the detailed description of small-scale structures, and that can physically incorporate the 

stress-dependent behavior of relevant mechanical properties. This section presents a theory of this 

kind, the two-part Hooke model (TPHM) proposed by Liu et al. (2009). The TPHM-based 

constitutive relationships between stress and hydraulic/mechanic properties are also discussed. 

      

3.2.1 TPHM for Isotropic Stress Condition 
 

The TPHM is based on the two key arguments. The first one is that an appropriately defined strain, 

other than the one commonly used in the rock mechanics literature, should be used in Hooke’s Law. 

The second one is that Hooke discovered Hooke’s Law for homogeneous systems (Sect. 3.1), while 

a natural rock exhibits a high degree of mechanical-property heterogeneity. For example, micro-

cracks have dramatically different mechanical properties than the rest of the rock mass and at the 

same time could dominate fluid flow process within the rock body. They should be treated 

differently from the rest of rock mass on the continuum scale. For simplicity, we consider the 

relationship here for the volumetric strain to demonstrate these arguments, although our results can 

be extended to other types of strains. This subsection is based on the material from Liu et al. (2009). 

 

Under the isotropic stress (or hydrostatic stress) condition, Hooke’s Law describes the elastic 

volumetric deformation of a homogeneous and isotropic subsurface material by 

 

tvKdd ,                                                                       (3.1) 

 

where   is the hydrostatic (effective) stress that is positive in the compressive direction, K is bulk 

modulus, and tv,  is the natural or true volumetric strain defined by (Freed 1995) 

 

V

dV
d tv ,                                                                       (3.2) 

 

where V is the total volume of subsurface material under the current state of stress. In Eqs. 3.1 and 

3.2, the positive strain corresponds to a decrease in the volume. The first hypothesis of the TPHM is 

that Hooke’s Law holds for natural strains. Freed (1995) provided a historical review of the 

development of the concept of natural strain in the literature of material science and argued that the 

natural strain should be used for accurately describing material deformation.  

 

In previous studies (e.g, Jaeger et al. 2007), the following engineering strain ( ev, ) is often used 

when applying Hooke’s Law: 

0

,
V

dV
d ev                                                                                      (3.3) 

where V0 is the bulk volume under zero stress.  
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Inserting Eq. 3.3 into Hooke’s Law (Eq. 3.1) and performing the integration under the condition 

that V = V0 for   = 0, one obtains 

 

)1(0
K

VV


                                                                                  (3.4) 

 

Similarly, the use of natural strain in Hooke’s Law (Eq. 3.2) yields  
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Equations 3.4 and 3.5 are nearly identical for small values of 
K


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In the literature of rock mechanics, the engineering strain has been exclusively used; it is generally 

believed that the elastic strain is small for most practical applications. A porous and fractured rock, 

however, differs from purely solid materials in that it is inherently heterogeneous and includes both 

solid phase and pores (and/or fractures) with a variety of geometric shapes that exhibit a large 

degree of variation in mechanical properties. While the bulk elastic strain may be indeed small in 

most of the rock for stress changes of practical interest, the strain can be considerably larger within 

some portions of a rock body. For example, some pores (or fractures) in a rock can be subject to 

significant deformation, and even further, they can be completely closed under a certain range of 

stress changes encountered in practice. For these pores, the (engineering) strain is not small, but 

could be on the order of one. An accurate description of the deformation of this portion of the rock 

is important for coupled mechanical and hydrological processes, because fluid flow occurs in pores 

and fractures. 

 

 

 
 
Fig. 3.1 A composite spring system consisting of two springs (Liu et al. 2009) (Reproduced by permission of Elsevier). 

The hard and soft springs follow engineering-strain-based and natural-strain-based Hooke’s Law, respectively  

 

 

To deal with this issue, the TPHM conceptualizes a heterogeneous rock to have two parts, and 

hypothesizes that one part (a portion of pore volume or fracture apertures) needs to be described 

with natural-strain-based Hooke’s Law, and the other part can be adequately described with 

engineering-strain-based Hooke’s Law because the deformation is small for this part. For simplicity, 
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the first part is called “soft” part and the other called “hard” part. This conceptualization can be 

represented by a hypothesized composite spring system shown in Fig. 3.1. These two springs are 

subject to the same stress, but their deformations are governed by different varieties of Hooke’s 

Law. In his study on anisotropy of pore-fluid enhanced shear modulus, Berryman (2006) also 

divided a poroelastic medium into “hard” and “soft” portions for the similar purpose. Mavko and 

Jizba (1991) considered rock porosity to consist of a soft part and a stiff part in investigating grain-

scale fluid effects on velocity dispersion in rocks. The “two-part” conceptualization of the TPHM is 

generally consistent with these previous studies. In this chapter, we use subscripts 0, e, and t to 

denote the unstressed state, the hard part and the soft part, respectively, for a rock body. Then we 

have  

 

te VVV ,0,00                                                                                  (3.6) 

 

and 

 

te dVdVdV                                                                                (3.7) 

 

Applying Eqs. 3.4 and 3.5 to rock volumes Ve and Vt, respectively, in Eq. 3.7 yields 
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te  1                                                                                         (3.10) 

 

where Ke and Kt are the bulk moduli for the hard and soft parts, respectively, and t  and e  are 

volumetric fractions of the hard and soft parts, respectively, under the unstressed condition.  

Equations 3.8-3.10 together comprise the proposed stress-strain relationship, or the TPHM, in terms 

of volumetric strain (Liu et al. 2009).  

 

We should emphasize that the TPHM mathematically holds only when the soft and hard parts have 

dramatically different bulk moduli such that variations of mechanical properties within each part is 

much smaller than the corresponding differences between the two parts and therefore can be 

ignored when calculating the bulk deformation from the two parts. It is clearly the case for natural 

rocks, as demonstrated in the sections to be followed in this chapter.   
 

The TPHM is a macroscopic-scale approximation that uses natural-strain-based Hooke’s Law to 

describe nonlinear deformation behavior of a fraction of pore volume (consisting of a collection of 

pores with a variety of geometry) subject to larger deformations. This nonlinear deformation could 

result from combining effects of non-uniform pore size distributions and pore-geometry 

heterogeneity (Jaeger et al. 2007). A rough fracture can also be considered a collection of pores 
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with different sizes and geometries for the purpose of deformation calculations. The validity of this 

approximation will be evaluated in the following sections. 

 

3.2.2 TPHM-Based Constitutive Relationships for Isotropic Stress Condition 

       

In this subsection, we use the TPHM to derive constitutive relationships between stress and 

mechanical or hydraulic properties for porous rock subject to elastic deformation under isotropic 

stress conditions. The derived relationships are also compared with the corresponding empirical 

expressions and experimental data, as an effort to verify the TPHM. This subsection is based on the 

materials from Liu et al. (2009) and Zheng et al. (2015). 

 

3.2.2.1 Bulk Rock Compressibility  

Bulk rock compressibility is a measure of the capability for a rock body to deform when stress is 

changed under a constant pore-pressure condition. Mathematically, the bulk rock compressibility is 

expressed as (Jaeger et al. 2007): 

 






V

V
Cbc

0

1
                                                                                   (3.11) 

 

Substituting Eq. 3.8 into Eq. 3.11 yields 
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The derived stress-compressibility relation consists of two terms, with the first term being a 

constant and the second one being an exponential function. This is consistent with an observation 

that rock compressibility data have often been empirically fitted to exponentially decreasing 

functions of the form (e.g., Zimmerman 1991; Jaeger et al. 2007; Wyble 1958): 

 





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


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*
exp)(

P
CCCC bc

init
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                                                   (3.13) 

 

where the superscript init denotes the initial (zero stress) value, the superscript denotes the value 

at high stress (or 
*P


), and P* is a parameter that can be considered as a characteristic stress. 

Based on certain assumptions, Jaeger et al. (2007) rewrote the above equation as 
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

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
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exp
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                                                             (3.14) 

where crack  is the porosity of crack-like voids in a porous rock sample. These voids are believed to 

be responsible for observed nonlinear deformation (Jaeger et al. 2007). The measured 

compressibility data of three consolidated sandstones, Boise, Berea, and Bandera, were fitted to 

functions of the form of Eq. 3.13 by Zimmerman (1991). We refer the readers to Zimmerman 

(1991) for the details of his curve-fitted results.  

 

 

Fig. 3.2 Bulk compressibility as a function of stress calculated from Eq. 3.14 using the fitted parameter values  (Cbc

 = 

0.082 GPa
-1

, P*=8.33 MPa and  crack =0.0044) (Liu et al. 2009) (Reproduced by permission of Elsevier)  

 

Several interesting observations can be made when comparing the derived expression for rock 

compressibility (Eq. 3.12) with the empirical relation given by Eq. 3.13 or Eq. 3.14. Firstly, our 

theoretical result is consistent with the empirical relations and the related experimental data used to 

develop the relation, as evidenced by the fact that the functional forms of Eqs. 3.12 and 3.14 are 

essentially identical. Secondly, the curve-fitted results of Zimmerman (1991) give ranges of t  

(defined in Eq. 3.12 and equivalent to crack in Eq. 3.14) between 0.2% and 0.5% for the three 

sandstones under consideration, suggesting that the so-called soft part of the rock body is only a 

small percentage of pore volume. Note that a typical porosity value for a sandstone rock is between 

10% and 20%. This observation will be further confirmed by more results to be discussed later in 

this chapter. Thirdly, the values for Kt for the three sandstones (4.74 to 8.33 MPa) are significantly 

smaller (by three orders of magnitude) than those for Ke (9.5 to 12.2 GPa). In other words, the soft 

part is indeed much “softer” than the rest of the rock body. The observed significant difference 
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between Kt and Ke supports the argument (used in developing the TPHM) that variations of 

mechanical properties within each part are much smaller than the corresponding differences 

between the two parts. Note that the second term on the right hand side of Eq. 3.12 is not 

necessarily smaller than the first one, especially for low stress states, although t  is generally 

small, as demonstrated in Fig. 3.2.   

A relationship between bulk compressibility and stress was also proposed by Shapiro and his 

coworkers (Shapiro 2003; Shapiro and Kaslow 2005; Becker et al. 2007). Their studies are based on 

a key assumption that the compressibility is a linear function of crack porosity and change in the 

stiff porosity that is similar to rock porosity of the hard part in this study. However, the TPHM 

differs from their work in several important aspects. Firstly, the TPHM is based on the natural-

strain-based Hooke’s Law, which is fundamentally different from the physical origin of Shapiro and 

his coworkers. Secondly, their theory is limited to rocks with moderate or small porosity, on the 

order of 10% or less (Shapiro and Kaslow 2005). As evidenced by the derivation procedures in this 

chapter, the TPHM-based results are not subject to this limitation.  Finally, Shapiro and Kaslow’s 

(2005) theory is valid only when their compliant (or crack) porosity is a very small portion of total 

porosity. The TPHM does not suffer from this limitation either, largely because the TPHM has a 

different physical origin. It can be applied to cases in which soft porosity is large. For example, 

based on the TPHM, Liu et al. (2009) successfully derived a relationship between stress and 

fracture aperture. Unlike the “soft” part of porous rock, the “soft” part in a fracture corresponds to a 

much larger portion of fracture voids than the hard part (Liu et al. 2009), as will be discussed in 

Sect. 3.3. 

   

3.2.2.2 Pore Compressibility 

The pore compressibility refers to relative change in pore volume per unit change in stress under a 

condition of constant pore pressure. Mathematically, this compressibility can be expressed by 
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                                                                          (3.15) 

where superscript p refers to pores.  Using similar notions from Sect. 3.2.1, we have 
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In the above two equations, Vt is considered to be a portion of pore volume (e.g., micro-cracks) in a 

rock body. Following the same procedure used to derive Eqs. 3.4 and 3.5, we obtain 
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where Ce is the compressibility for the hard fraction of pore volume where engineering strain is 

applicable.  
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Fig. 3.3 Match of Eq. 3.20 to the data points of pore compressibility (10
-6

/psi) as a function of confining pressure (or 

stress) (psi) presented in Jaeger et al. (2007) (Liu et al. 2009) (Reproduced by permission of Elsevier) 

 

Combining Eqs. 3.15 to 3.19 yields (Liu et al. 2009) 
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Figure 3.3 shows the match of Eq. 3.20 to a compressibility data set presented in Jaeger et al. 

(2007). The data set was derived from a measured relationship between pore strain and confining 

stress for a Frio sandstone from East Texas (after Carpenter and Spencer (1940)). The satisfactory 

match indicates that our derived result is able to capture the key features of these experimental 

observations. The fitted parameter values are:  33.3


pcC  x 10
-6

 psi
-1

 = 4.83 x 10
-4

 MPa
-1

, Kt = 1.1 

x 10
3
 psi = 7.6 MPa, and 

0

 t  =0.011. For typical porosity ( 0 ) values of 10-20% for a sandstone, 

the t  value from pore compressibility data ranges from 0.11 to 0.22%, which again supports the 

notion that the so-called “soft” part is only a small percentage of pore volume. These parameter 
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values are reasonably close to those obtained from rock compressibility data provided in the 

previous subsection. 

 

3.2.2.3 Rock Porosity 

Accurate descriptions of stress-dependent behavior for rock porosity ( ) are especially important 

for modeling coupled hydrological and mechanical processes, because the porosity is a critical 

parameter for fluid flow in porous rock. In this subsection, we derive a theoretical relationship 

between rock porosity and stress based on the TPHM. 

Using the same notations as in the previous subsections and by definition of rock porosity, we have 

V

dVdV

V

dV
d t

p

e

p 
                                                    (3.23) 

where V is the bulk volume of porous rock. Note that the above equation ignores the effect of V 

change with stress on porosity change, considering that for most practical applications, V can be 

approximated by the unstressed volume 0V  for calculating rock porosity. Using this approximation 

and Eqs. 3.18 and 3.19, we obtain 
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where 

te   0                                                                                  (3.25) 

Integrating Eq. 3.24 and using 0   for 0 gives (Liu et al. 2009) 
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The first term on the right hand side of Eq. 3.26 results from the hard part and the second term from 

the soft part. When the term eC  is much smaller than one, the above equation can be 

approximately reduced to 
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Rutqvist et al. (2002), based on laboratory experiments on sandstone by Davis and Davis (1999), 

proposed an empirical stress-porosity expression that is identical in form to Eq. 3.27. Similar 

empirical expressions were originally reported by Athy (1930) and further discussed in Neuzil 

(2003). Equation 3.26 is a more general stress-porosity relation and will be evaluated using data 

sets of Coyner (1984) who reported measured porosity-confining pressure relations for several 

types of rocks. His laboratory measurements for Berea sandstone and Weber sandstone samples are 

employed here, because these rock samples exhibit a relatively large degree of stress dependence of 

porosity. Note that confining pressure is used here to approximate the effective stress based on the 

test conditions (Berryman 1992; Liu et al. 2009).  
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Fig. 3.4 Match between porosity values (as a function of confining pressure) calculated from Eq. 3.26 and the measured 

data for Berea Sandstone from Coyner (1984) (Liu et al. 2009) (Reproduced by permission of Elsevier) 

 

Fig. 3.5 Match between porosity values (as a function of confining pressure) calculated from Eq. 3.26 and the measured 

data for Weber Sandstone from Coyner (1984) (Liu et al. 2009) (Reproduced by permission of Elsevier) 

 

Equation 3.26 includes four parameters: e  , Ce, t  and Kt. To avoid the non-uniqueness of 

parameter estimation from curve fitting, Liu et al. (2009) employed a simple procedure to determine 

parameter values from porosity versus confining pressure data. As shown in Figs. 3.4 and 3.5, the 

measured porosity is a well-defined linear function of the confining pressure for relatively high 
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pressures (stresses). The slope of the straight line is used to determine eeC  because the second 

term on the right hand side of Eq. 3.26, as a result of micro-crack closing, is negligible for high 

stress values. The porosity value at the intersection between the straight line and the vertical axis in 

Fig. 3.4 or 3.5 gives e  value corresponding to the value for the first term (at zero effective stress or 

confining pressure in this case) on the right hand side of Eq. 3.26. The measured porosity value at 

the zero confining pressure is equal to te   , as suggested from Eq. 3.26. The above procedure 

allows for direct determination of values for e  , Ce , and t . The value for parameter Kt can be 

estimated using porosity data at relatively low confining pressures corresponding to the non-linear 

regime. Here, the Kt value is simply calculated from Eq. 3.26 using measured porosity value at a 

pressure of 10 MPa.  

 

Table 3.1 Fitted parameter values from the experiment data sets of Coyner (1984)
 

 

Rock Type 
 

Parameter 

e (%) eC  (MPa
-1

) t  (%) tK (MPa) 

Berea 

sandstone 

17.52 3.04 x 10
-4

 0.28 9.97 

Weber 

sandstone 

9.00 2.96 x 10
-4

 0.48 10.60 

*
Parameter values are from Liu et al. (2009)  

 

 

  

Fig. 3.6 A comparison between bulk modulus values (as a function of confining pressure) calculated from Eq. 3.26 and 

the measured data for Berea Sandstone from Coyner (1984) (Liu et al. 2009) (Reproduced by permission of Elsevier) 

Confining Pressure (MPa)

B
u

lk
M

o
d

u
lu

s
(G

P
a

)

0 20 40 60 80 100
0

10

20

30

40

Berea Sandstone



 119 

 

Fig. 3.7 A comparison between bulk modulus values (as a function of confining pressure) calculated from Eq. 3.26 and 

the measured data for Weber Sandstone from Coyner (1984) (Liu et al. 2009) (Reproduced by permission of Elsevier) 

 

Satisfactory matches between results calculated from Eq. 3.26 (with the determined parameter 

values) and porosity data are shown in Figs. 3.4 and 3.5. The estimated parameter values for Berea 

and Weber sandstones are presented in Table 3.1. The estimated values for t  and Kt are generally 

consistent with those reported in the previous subsections where they are estimated from different 

types of data, suggesting that these two parameters (introduced in the TPHM) are very well defined 

and experimentally robust.   

To further validate the TPHM, Liu et al. (2009) used parameter values estimated from the porosity 

data to calculate relations between the bulk-modulus and the pressure (stress), with a focus on 

checking if the calculated results could match the measured bulk modulus data for the same rock 

samples used for measuring porosity values (Coyner 1984). The stress-strain relationship (Eq. 3.8) 

gives the bulk modulus K as 
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The above equation can also be derived from Eq. 3.12. Values for 
e

eK


correspond to K values for 

high stresses and must be determined from measured K data; they cannot be directly determined 

from the porosity data. Based on the data shown in Figs. 3.6 and 3.7, the value of 
e

eK


is set to 13.5 

GPa for Berea sandstone and 17.5 GPa for Weber sandstone.  These figures show that the 

calculated K curves are in a good agreement with the data. Considering that a curve-fitting 
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procedure is not used there, the good agreement is encouraging and also further supports the 

robustness of the TPHM.   

A formula to describe the stress sensitivity of the bulk modulus was also proposed by MacBeth 

(2004).  He assumed (1) that the stress dependence behavior is a result of small-scale flaws or 

elements of compliance (Sayers and Kachanov 1995; Schoenberg and Sayers 1995) and (2) that the 

stress dependence of compliance is empirically approximated by an exponential function of stress. 

His formula for the bulk modulus is essentially the same as Eq. 3.28, and was successfully used to 

fit 179 sets of laboratory measurements on reservoir cores and outcrop sandstones that have low to 

moderate porosity and a range of clay fractions and cementation. This again supports the validity of 

Eq. 3.28 derived from the TPHM.  

 

3.2.2.4 Relationship between Permeability and Porosity for Low-Permeability Rock 

In this subsection, we discuss some currently available relationships between permeability (k) and 

porosity ( ) and then present the TPHM-based relationship. The content of this subsection is based 

on the materials from Zheng et al. (2015). 

One commonly used relationship between permeability and porosity of a rock has been empirically 

expressed by a power law (e.g., David et al. 1994; Ghabezloo et al. 2009b; Dong et al. 2010): 

 𝑘/𝑘0  = (𝜙/𝜙0)𝑚 (3.29) 

where 𝑘0 and 𝜙0 are permeability and porosity under the zero stress condition, respectively, and 𝑚 

is a material constant. David et al. (1994), using Eq. 3.29, analyzed permeability and porosity data 

under different effective stresses for five types of sandstones and also reviewed several published 

data sets on permeability-porosity relations for different geomaterials. They found that values for 

the exponent 𝑚 range from 1.11 to 25.4. Ghabezloo et al. (2009b) measured permeability-porosity 

relation for an oil-well cement paste and showed that the observed relation obeys a power law 

identical to Eq. 3.29 with an 𝑚 value equal to 11.00. Dong et al. (2010) conducted a series of 

permeability and porosity tests under different effective stresses and reported that their data are 

consistent with Eq. 3.29 with exponent 𝑚  values ranging from 2.04 to 5.04 for fine-grained 

sandstone and from 9.92 to 70.17 for silty-shale samples. 

The observed large values of the exponent 𝑚 for most low-permeability rock mean that a small 

reduction in porosity (due to the applied stress) causes a significant decrease in permeability. 

However, there is not any physical justification for such large m values up to 70.17 for a porous 

medium characterized by a single continuum. The use of the total porosity in Eq. 3.29 essentially 

assumes that all pores, including micro-cracks and the alike, equally contribute to permeability, 

although micro-cracks are actually the decisive factor of pore connectivity for a low-permeability 

rock, as indicated by a number of researchers.  For example, Byrnes (1997) and Byrnes and Castle 

(2000) found that average pore-throat sizes in some low-permeability sandstones under in-situ 

stress decrease by as much as 50% to 70% from the zero-stress condition, while the  porosities 

under in-situ stress are just several percent less. The micro-cracks and crack-like interconnecting 

throats generally constitute only a small portion of porosity, but can make a significant contribution 

to permeability (Byrnes 1997; Byrnes and Castle 2000). Since the relatively compliant part of rock 

body (e.g., micro-cracks) acts as critical fluid-flow paths, more attention should be paid to its 
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deformation in determining hydraulic properties. However, almost all of the previous studies 

(Gangi 1978; Shi and Wang 1986; Dewhurst et al. 1998; Ghabezloo et al. 2009a; Dong et al. 2010) 

ignored the fact that different parts of rock have different mechanical responses under stress and at 

the same time affect the bulk permeability differently.  

Micro-cracks are generally more deformable and thus experience a relatively large degree of 

deformation in a low effective stress range. Consequently, the impropriety of homogenizing the 

contributions of different types of pores to permeability (e.g. Eq. 3.29) becomes more pronounced 

for a low-permeability rock under a low effective stress. (For a high-permeability rock, this may not 

be a significant issue because the contribution of micro-cracks to the bulk permeability is relatively 

small anyway, as demonstrated in Dong et al. (2010)). It is therefore necessary to separate 

contributions of micro-cracks (and the alike) and the other pores for a low-permeability rock. The 

division of the hard and soft parts in the THPM provides a framework to consider such 

heterogeneity in developing stress-dependent permeability and porosity relationships. The TPHM-

based derivations of these relationships are given below. 

In the TPHM, micro-cracks and the alike correspond to the soft part, while the rest of pores belongs 

to the hard part. As indicated in Eq. 3.26, the porosity of a rock sample is the summation of the hard 

part porosity, i.e., 𝜙𝑒 = 𝜙𝑒,0(1 − 𝐶𝑒𝜎) that has a linear relationship with the effective stress, and 

the soft part porosity, i.e., 𝜙𝑡 = 𝛾𝑡exp (−
𝜎

𝐾𝑡
)  that changes exponentially with effective stress. The 

two porosities experience different degrees of reduction with increasing effective stress. 

Specifically, the soft part is more important in the low-stress range, but negligible in the high stress 

range because 𝐾𝑡 is relatively small such that exp (−
𝜎

𝐾𝑡
) ≈ 0 for σ ≫  𝐾𝑡. 

The division of total porosity into the soft part and the hard part (that obey different relationships 

with effective stress within the TPHM framework) allows for consideration of their respective 

effects on the bulk permeability. Permeability changes in the relatively high effective-stress range 

are mainly controlled by the hard part, considering that the soft part porosity could be neglected in 

this stress range owing to the micro-crack closure. Mathematically, the stress-dependent 

permeability contributed by the hard part (referred to as “hard part permeability” hereafter) could be 

empirically given as: 

 𝑘𝑒 = 𝑘𝑒,0exp[𝛽(𝜙𝑒 − 𝜙𝑒,0)] = 𝑘𝑒,0exp[−𝛽𝐶𝑒𝜙𝑒,0𝜎 ] (3.30) 

where 𝜙𝑒 and  𝑘𝑒 are the stress-dependent hard-part porosity and permeability, respectively, and  𝛽 

is a constant that represents a stress sensitive coefficient. Equation 3.30 seems to be consistent with 

most of the experimental observations that generally show a linear relationship between the 

logarithm of permeability and the effective stress in the relatively high effective stress range (David 

et al. 1994; Evans et al. 1997; David et al. 2001; Kwon et al. 2012). 

The stress-sensitive permeability changes in the low effective stress range are mainly caused by the 

deformation of the soft part, although the soft part porosity makes up only a small portion of the 

total pore volume. The permeability contributed by the soft part, referred to as the “soft part 

permeability” hereafter, could be approximately considered as the bulk (total) permeability minus 

the hard part permeability: 
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 𝑘𝑡 = 𝑘 − 𝑘𝑒 (3.31) 

where 𝑘  is the total permeability and 𝑘𝑡  is the soft part permeability. Mathematically, the 

relationship between soft part porosity and soft part permeability may be approximated as: 

 𝑘𝑡 = 𝛼𝜙𝑡
𝑚

 (3.32) 

where t  and tk are the soft part porosity and permeability, respectively, and 𝛼 and 𝑚 are material 

constants. Note that parameter m here is different from that in Eq. 3.29. 

Combining Eqs. 3.26, 3.31 and 3.32 yields the total permeability as (Zheng et al. 2015): 

 𝑘 = 𝑘𝑒,0𝑒𝑥𝑝[−𝛽𝐶𝑒𝜙𝑒,0𝜎 ] + 𝛼 [𝛾𝑡exp (−
𝜎

𝐾𝑡
)]

𝑚

 (3.33) 

As previously mentioned, the soft part corresponds to those thin and slit-like micro-cracks and the 

alike. If such a hypothesis holds, the permeability change caused by the soft part deformation 

should obey the “cubic law” that defines the relationship between bulk fracture permeability and the 

corresponding average fracture aperture (Witherspoon et al. 1980; Zimmerman and Bodvarsson 

1996; Kwon et al. 2012). In other words, the soft part permeability should be well related to the soft 

part porosity through a relationship similar to the “cubic law”, i.e., 𝑚 in Eq. 3.32, depending on 

how micro-cracks are connected with each other and with pores, should not be very far from 3. 

Note that the average fracture aperture corresponds to the soft-part porosity. Zheng et al. (2015) 

evaluated the proposed relationships using the experimental observations collected from the 

literature. 

A number of researchers have reported stress-dependent permeability data for low-permeability 

rock in the literature (e.g., McLatchie et al. 1958; Vairogs et al. 1971; Thomas and Ward 1972; 

Walls et al. 1982; Kilmer et al. 1987; Brighenti 1989; Spencer 1989; Kwon et al. 2012; Lei et al. 

2007; Jasinge et al. 2011; Konecny and Kozusnikova 2011; Metwally and Sondergeld 2011). 

However, one also needs stress-dependent porosity data for evaluating the relationships discussed 

above. To the best of our knowledge, only a few researchers provided the data sets of the both types 

for a same rock (Wyble 1958; Jones and Owens 1980; Yale and Nur 1985; David et al. 1994, 

Mohiuddin et al. 2000; Dong et al. 2010). In the selection of the suitable experimental data sets for 

the evaluation, several criteria are considered by Zheng et al. (2015). Firstly, the samples and the 

associated measurement procedures need to be well documented such that enough information is 

available for checking the reliability of the data. Secondly, the working fluid to measure the 

permeability is gas rather than liquid, because gas (e.g., nitrogen and helium) is more chemically 

inert than liquid (e.g., pure water and NaCl solution). Thirdly, the samples collected from the 

subsurface are preferred over outcrop rock samples, since the relationships of interest are mostly for 

underground engineering applications. Other considerations include sufficient data density and 

microscopic pore structure analysis. Given these considerations, Zheng et al. (2015) selected the 

data set of Dong et al. (2010) to evaluate the proposed relationships. 

In the study of Dong et al. (2010), rock samples were collected from the depths of 900–1235 m as a 

part of a deep drilling project (Taiwan Chelungpu fault Drilling Project, TCDP-A) in the Western 

Foothills of Taiwan. Relatively homogeneous cores were selected by Dong et al. (2010) for their 

study. They prepared for the samples carefully to reduce the occurrence of obvious cracks during 
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sample preparation and conducted a series of stress-dependent porosity and permeability tests for 

the dry rock samples on an integrated porosity and permeability measurement system. A steady 

state flow method was employed to measure the sample permeability under different stresses while 

stress-dependent porosity was estimated by a gas expansion method. Nitrogen was used as the test 

fluid for both tests. In the experiments, the confining pressure were first gradually increased 

(loading) from 3 to 5 MPa, then to 20 MPa (in 5 MPa increments), and finally to 120 MPa (in 10 

MPa increments). The confining pressure was then gradually reduced (unloaded) back to 3 MPa in 

the reverse order. The average pore pressures are relatively low compared with confining pressures; 

they are 0.13–1.40 MPa for the permeability measurement and 0.3–1.41 MPa for the porosity 

measurement. The effective stress is calculated as the difference between confining pressure and 

pore pressure. There are two types of tested samples, i.e., Pliocene to Pleistocene fine-grained 

sandstone and silty-shale. In this subsection, we focus on the stress-dependent hydraulic properties 

of the silty-shale that has relatively low permeability. The related geophysical properties of the 

silty-shale samples are listed in Table 3.2. 

Table 3.2 Basic geophysical properties of the silty-shale samples (Zheng et al. 2015) 

Sample name  Depth(m)  Dry density (g/cm3)  Rock type 

R255_sec2  902.68  2.59  Silty-shale 

R287_sec1  972.42  2.58  Silty-shale 

R351_sec2  1114.33  2.59  Silty-shale 

R390_sec3  1174.24  2.66  Silty-shale 

*Reproduced by permission of Elsevier 

Since the porosity under zero effective stress (𝜙𝑒,0) was not available from Dong et al. (2010), we 

rewrite Eq. 3.26 as (Zheng et al. 2015): 

 𝜙 = 𝜙𝑒,𝑙(1 − 𝐶𝑒∆𝜎) + 𝛾𝑡,𝑙exp (−
𝛥𝜎

𝐾𝑡
) (3.34) 

where 𝜙𝑒,𝑙 is the hard-part porosity at the lowest observed effective stress l  and related to 0,e by 

)1(0,, leele C   , the subscript 𝑙 here refers to the lowest effective stress state,  𝛥𝜎 = 𝜎 − 𝜎𝑙, and  

𝛾𝑡,𝑙 is the soft-part volumetric fraction at l and related to t by )exp(,
t

l
ltt K


  . Note that Eq. 

3.34 is an approximation relation because its derivation uses )1(,0,,   eleeele CC . This 

is a reasonable approximation when l is close to zero. 

 

Similarly, Eq. 3.33 can be rewritten as (Zheng et al. 2015): 

 𝑘 = 𝑘𝑒,𝑙exp[−𝛽𝐶𝑒𝜙𝑒,𝑙𝛥𝜎 ] + 𝛼 [𝛾𝑡,𝑙exp (−
𝛥𝜎

𝐾𝑡
)]

𝑚

 

(3.35) 

 

where 𝑘𝑒,𝑙  is the permeability at the stress l  and related to ek  by )exp( ,, lleelee Ckk  . 
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The procedure to determine parameters in Eq. 3.34, by matching the stress-dependent porosity data 

(e.g., Fig. 3.8(a)), is already described in Sect. 3.2.2.3. Similar procedure is used to determine the 

related parameters in Eq. 3.35. For example, Fig. 3.8(b) shows a permeability-effective stress 

relation and a linear relation exists for 𝑙𝑜𝑔(𝐾𝑒) versus 𝜎  for the relatively high effective stress 

range, as shown by the red straight line in the figure. In the linear regime, the contribution of the 

soft part to the bulk permeability can be neglected, because the second term on the right hand side 

of Eq. 3.35 approaches zero. The slope of the straight line gives the value of (−𝛽𝐶𝑒𝜙𝑒,𝑙) that is 

used for the determination of  . Note that 𝜙𝑒,𝑙 and 𝐶𝑒 are determined by fitting the porosity-stress 

data with Eq. 3.34. Parameter 𝑘𝑒,𝑙  can then be obtained as the permeability on the straight line at 

l  . After the hard part permeability is known, the soft part permeability is approximated by the 

total or bulk permeability minus the hard part permeability. The use of Eq. 3.32 to fit the estimated 

relation between the soft part permeability and the soft part porosity yields the corresponding value 

for 𝑚. The 𝑚 values for different samples are given in Figs. 3.8-3.11. 

Reasonable matches between Eqs. 3.34 and 3.35 and the experimental data, shown in Figs. 3.8–3.11, 

support the validity of these TPHM-based porosity-stress and permeability-stress relationships. As 

shown in the figures for the porosity-stress relation, the soft part mainly accounts for the nonlinear 

porosity reduction with effective stress in the low stress range and the corresponding porosity 

reduction in this range is largely a result of the closing process of slit-like micro-cracks. In addition, 

as shown in the figures for the permeability-stress relation, changes in the soft part permeability 

significantly contribute to the overall permeability reduction in the low effective stress range. While 

the soft part porosity is only a small portion of the total pore volume, the soft part acts as critical 

flow paths for fluid flow in a low-permeability medium and therefore its deformation significantly 

affects the permeability.  

The determined values of 𝜙𝑒,𝑙, 𝐶𝑒, 𝛾𝑡,𝑙, 𝐾𝑡, 𝑘𝑒,𝑙, 𝛽 , 𝛼 and 𝑚 are listed in Table 3.3. As expected, the 

soft part porosity at l  , 𝛾𝑡,𝑙 , is generally small (0.07% to 0.77%). The elastic modulus of the 

soft part ranges from 2.83 to 14.81 MPa that are significantly smaller than that for the hard part. 

The values for 𝑘𝑒,𝑙 are much smaller than the total permeability at l  . In addition, the observed 

relationships between the soft part permeability and the soft part porosity are reasonably fitted by a 

power law relation with average exponent 𝑚  values of 2.28 for loading process and 2.04 for 

unloading process. These m values are not very far from 3 (corresponding to the cubic law) and 

therefore generally support the hypothesis that the soft part permeability is controlled by the slit-

like micro-cracks and the alike. The discrepancy between the estimated m values and 3 is very 

likely a result of the fact that effects of interactions between the hard and soft parts, for simplicity, 

are ignored here when calculating permeability for the two parts.   
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(a)                                                          (b) 

  

(c)                                                                (d) 

Fig. 3.8 The matching result of the proposed relationships and the test data for sample R255_sec2 (Zheng et al. 2015): 

(a) porosity-stress (loading stage), (b) permeability-stress permeability (loading stage), (c) porosity-stress (unloading 

stage), and (d) permeability-stress (unloading stage) (Reproduced by permission of Elsevier) 
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(a)                                      (b) 

 

(c)                                                               (d) 

Fig. 3.9 The matching result of the proposed relationships and the test data for sample R287_sec1 (Zheng et al. 2015): 

(a) stress-porosity (loading stage), (b) stress-permeability (loading stage), (c) stress-porosity (unloading stage), and (d) 

stress-permeability (unloading stage) (Reproduced by permission of Elsevier) 
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(a)                                                       (b) 

 

(c)                                                                (d) 

Fig. 3.10 The matching result of the proposed relationships and the test data for sample R351_sec2 (Zheng et al. 2015): 

(a) stress-porosity (loading stage), (b) stress-permeability (loading stage), (c) stress-porosity (unloading stage), and (d) 

stress-permeability (unloading stage) (Reproduced by permission of Elsevier) 
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(a)                                                           (b) 

 

(c)                                                                (d) 

Fig. 3.11 The matching result of the proposed relationships and the test data for sample R351_sec3 (Zheng 

et al. 2015): (a) stress-porosity (loading stage), (b) stress-permeability (loading stage), (c) stress-porosity 

(unloading stage), and (d) stress-permeability (unloading stage) (Reproduced by permission of Elsevier) 
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Table 3.3 Fitted parameter values from the experimental data of Dong et al. (2010) (Zheng et al. 

2015)
 

Sample 𝜙𝑒,𝑙 

(%) 

𝛾𝑡,𝑙 

(%) 

𝐶𝑒 

(MPa−1) 

𝐾𝑡 

(MPa) 

𝑘𝑒,𝑙 

(m2) 

𝛽 𝛼 

(m2) 

𝑚  

R255_
sec2 

Loading 9.73 0.07 8.75×10
-4

 2.83 1.97×10
-19

 0.61 1.66×10
-15

 1.70  

Unloading 9.01 0.34 2.41×10
-4

 4.84 1.51×10
-19

 1.30 1.99×10
-17

 2.41  

R287_
sec1 

Loading 10.40 0.41 6.81×10
-4

 14.81 9.54×10
-19

 3.25 1.32×10
-16

 2.34  

Unloading 9.75 0.36 1.48×10
-4

 13.04 1.19×10
-19

 2.53 5.53×10
-18

 2.65  

R351_
sec2 

Loading 8.75 0.49 6.97×10
-4

 8.09 2.54×10
-19

 2.24 2.61×10
-17

 3.03  

Unloading 8.26 0.90 2.35×10
-4

 6.67 1.01×10
-19

 2.68 4.12×10
-19

 1.54  

R390_
sec3 

Loading 10.64 0.33 8.11×10
-4

 8.74 3.66×10
-17

 3.30 5.42×10
-15

 2.04  

Unloading 9.87 0.77 2.12×10
-4

 11.30 2.04×10
-18

 1.49 1.33×10
-18

 1.62  

*Reproduced by permission of Elsevier 

 

3.2.3 TPHM for Anisotropic Stress Condition 

  

In Sect. 3.2.2, we discussed the TPHM for the isotropic stress condition. This section is devoted to 

the TPHM for the anisotropic stress condition. Note that in the both sections, the mechanical 

properties are isotropic. Without losing generality, we consider stress-strain relationships 

corresponding to the three principal stresses (Fig. 3.12). The content of this subsection is based on 

the materials from Zhao and Liu (2012). 

 

 
Fig. 3.12 Principal stresses 
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To extend the TPHM to the anisotropic stress condition, Zhao and Liu (2012) assumed, for the 

convenience of mathematical development, that the principal strain resulting from the soft part is a 

function of the principal stress along the same direction only and has nothing to do with the other 

principal stresses. The validity of this assumption will be evaluated by comparing the related 

theoretic results with experimental observations. 

 

Following the procedure to derive Eq. 3.8, Zhao and Liu (2012) derive the following expressions 

for the principal strains: 
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where 1 , 2 , 3  are principal stresses, 1 , 2 , 3  are principal engineering strains,   is Poisson 

ratio for the hard part, '

t  is the ratio of the soft-part length to the length for the entire rock body in 

one principal direction (under unstressed conditions), 
il is the rock length in i  principal direction, 

and eE  and tE refer to Young’s (elastic) modulus for the hard and soft part, respectively. Again, we 

use subscripts 0, e, and t to denote the unstressed state, the hard part and the soft part, respectively, 

for a rock body. 

 

The first term on the right hand side of Eq. 3.36 results from the hard part and the second term from 

the soft part. Without the second part, our developed strain-stress relationship is consistent with the 

general engineering-strain-based Hooke’s Law (Jaeger et al. 2007).  

    

To derive the relationship between the t (Eq. 3.9) and 
'

t  for the soft part, we consider a rock 

element whose volume 0V ,  by definition, is related to the length 
il0 (i =1, 2, 3) by 
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Because 
'

t is generally much smaller than one, we can neglect the high-order terms of 
'

t  in Eq. 

3.42-1. Then 0V can be written as: 
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Combining Eqs. 3.8, 3.9, 3.10 and 3.42 yields (Zhao and Liu 2009): 
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It is well known that the engineering volumetric strain is the sum of three principal strains (Jaeger 

et al. 2007): 
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 where v  is the volumetric strain. Combining  Eqs. 3.36, 3.43 and 3.44 yields 
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To make Eqs. 3.8 and 3.45 consistent under the isotropic stress condition ( 321   ), we can 

relate the Young’s modulus eE   to bulk modulus eK  by  
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where t and 
'

t  are generally on the order of 10
-2

, much smaller than one for most porous rocks 

and therefore can be neglected in Eq. 3.46. In this case, we obtain 
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Furthermore,  consistency between Eqs. 3.8 and 3.45 requires 

 

tt EK                                                                                                      (3.48) 

 

With the definitions given in Eqs. 3.46 and 3.47, Eq. 3.8 becomes a special case of Eq. 3.45. 
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Based on Eq. 3.43 and the condition that strains are zero under unstressed state, principal strains 

can be solved from Eq. 3.36 as (Zhao and Liu 2009) 
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Note that the second term on the right hand side is from the soft part in Eqs. 3.36 and 3.49. That 

term, unlike the first term resulting from the hard part, is only a function of the corresponding 

principal stress and not related to other stresses. In other words, Poisson's ratio is ignored for the 

soft part in Eqs. 3.36 and 3.49. 

   

The treatment of Poisson's ratio for the soft part, as the first step, is considered a rough 

approximation, and further research may be needed to refine the treatment (by incorporating 

Poisson's ratio for the soft part). Poisson's ratio is defined as the negative ratio of transverse strain 

to the longitudinal strain, under the uniaxial stress condition (Jaeger et al. 2007). Although the use 

of approximate or typical values in most rock-mechanics applications does not create significant 

problems, Poisson's ratio plays an undeniably important role in the elastic deformation of rocks and 

rock masses subjected to static or dynamic stresses. Furthermore, its effects emerge in a wide 

variety of rock engineering applications, ranging from basic laboratory tests on intact rocks to field 

measurements for in situ stresses or deformability of rock masses (Gercek 2007). Poisson (1829) 

recommended the value of Poisson's ratio as 1/4. To make Young's shear and bulk moduli of a 

material positive, the theoretical value of Poisson's ratio must lie in the range between -1 and ½ 

(Jaeger et al. 2007). According to Gercek (2007), the values of Poisson's ratio for many materials 

are between 0 and 0.5. For the case of rock, many factors, including the porosity and the geometry 

(size and the orientation), distribution, and connectivity of pores, are expected to influence the value 

of Poisson's ratio (Gercek 2007). Zhao and Liu (2009) assume that only the hard part has Poisson's 

effect. As demonstrated later in this section, this approximation may be adequate for most practical 

applications in rock mechanics.  
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Fig. 3.13 Stress components in the general coordinate system. The components are shown only on the three sides of the 

rock element here 

 

 

Equations developed above are for the principal stress/strain coordinate system. The relationships 

between stress and strain in a general coordinate system ( x , y , z ) can be obtained through the 

coordinate transformation. Transformation of Eq. 3.49 from a principal stress/strain coordinate 

system to a general coordinate system, as shown in Fig. 3.13, yields (Poulos and Davis 1974): 
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where ),cos( xili  ， ),cos( yimi  , ),cos( zini   and 3,2,1i  is the index for the direction of i 

principal stress. The functions ),cos( xi , ),cos( yi , and ),cos( zi are the cosine of the angles 

between i  and x , y, and z directions, respectively, and are given as 
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To evaluate the validity of the developed stress-strain relationship (Eq. 3.49), Zhao and Liu (2012) 

used the relationship to fit the unconfined compression tests presented in Corkum and Martin 

(2007a) and Olalla et al. (1999) for Opalinus Clay rock. In Corkum and Martin (2007a), rock 

samples with a diameter of 83 mm were saw-cut from Boreholes BRA-1 and BRA-2, drilled using 

oil and air as drilling fluids, respectively (Corkum and Martin 2007a). In Olalla et al. (1999), rock 

samples were 78 mm in diameter.  

     

To avoid (as much as possible) the non-uniqueness of parameter estimation from the curve fitting, 

Zhao and Liu (2012) used the procedure similar to that used in Sect. 3.2.2.3 (for analyzing stress-

dependency of porosity) to estimate values for the parameters from stress-strain data. As shown in 

Fig. 3.14, measured relations between stress and strain are very well represented by a straight line 

for relatively high stresses. The slope of the straight line is used to determine 
'3

3

e

e

t

e EE





, because 

the exponential terms on the right hand side of Eq. 3.49 are negligible for high stresses. The strain 

value at the intersection between the straight line and the strain axis in Figs. 3.13 and 3.14 gives the 
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3

' t
t


   value, considering that the straight line represents the first term on the right-hand side of 

Eq. 3.49. The above procedure allows for direct determination of values for eE , 
'

e  and 
'

t . The 

remaining parameter tE  can be estimated using a data point at relatively low stress corresponding 

to the nonlinear regime. 

 

As indicted in Fig. 3.14, the data are in excellent agreement with our theoretical results, suggesting 

that the assumption regarding Poisson's ratio for the soft part seems to be adequate. Fitted parameter 

values are given in Table 3.4. As an example, Fig. 3.15 also shows a comparison between hard-part 

and soft-part strain for specimen 9963. Several interesting observations can be made when 

comparing theoretical results with experimental observations. Firstly, the soft part has a larger 

strain than the hard part at an early stage of uniaxial loading, even though the volumetric ratio t  is 

much smaller than that for the hard part (Fig. 3.15). Secondly, when applied stress loading on the 

rock frame increases, the shape of pores in the soft-part changes, trending toward completely 

closure, while the hard-part pores remain hard and resist closure. Note that the Young’s (elastic) 

modulus for the soft-part tE  ranges from 0.2 MPa to 1.2MPa, which is much smaller than the 

Young’s (elastic) modulus for the hard-part eE , which ranges from 2164.5 MPa to 3345.1 MPa 

(Table 3.4). The difference between the Young’s (elastic) moduli indicates that the soft part, as 

expected, is subject to relatively larger deformation at low stress. Thirdly, the estimated t  values 

for the 11 clay rock samples under consideration range from 0.11% to 0.69%, smaller than the 

typical porosity of Opalinus Clay rock (12% ~ 21%) (Corkum and Martin 2007a). This difference 

again suggests that the soft part is only a small percentage of pore volume. These observations are 

consistent with those discussed in Sect. 3.2.2. 
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(a) 

 
(b) 

 
Fig. 3.14 Matches between results calculated from Eq. 3.49 and experimental data from unconfined compression tests 

on clay rock reported by (a) Corkum and Martin (2007a) and (b) Olalla et al. (1999) (Zhao and Liu 2012) 
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Table 3.4 Fitted parameter values from the experiment data for Opalinus Clay rock (Zhao and Liu 2012) 

 

Specimen eE (MPa) e  tE

( MPa) 
t  

bra2-2a 2537.5 0.99310 0.3 0.00690 

bra1-7a 2643.5 0.99490 0.7 0.00510 

bra1-3a 2438.8 0.99640 1.2 0.00360 

bra2-2b 2414.4 0.99817 1.0 0.00183 

bra1-7b 2682.9 0.99892 0.7 0.00108 

9949a 2080.0 0.99520 0.3 0.00480 

9963 2448.8 0.99640 0.2 0.00360 

9949b 2326.9 0.99703 0.5 0.00297 

9972 2164.5 0.99793 0.6 0.00207 

9957 2804.4 0.99844 0.6 0.00156 

9984b 3345.1 0.99847 0.6 0.00153 

 

 
Fig. 3.15 Comparisons between the hard-part strain and the soft-part strain for specimen 9963 (Zhao and Liu 2012) 

 

To further verify the stress-strain relationship, Zhao and Liu (2012) compare the theoretical results 

with data from triaxial compression tests for shale rock (Xu et al. 2006) and conglomerate rock (Hu 

and Liu 2004). These triaxial tests involve a cylindrical rock sample subject to a constant confining 

pressure c  (corresponding to axial strain c ) and then controlled increases in stress 1 . In these 

tests, the measured relationship between deviatoric stress  c 1  and axial strain  c 1  are 

generally reported and used in the evaluation. When the confining pressure is constant, applying Eq. 

3.49 yields: 
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Figures 3.16 and 3.17 show the satisfactory matches of Eq. 3.53 with observed data from rock 

samples under triaxial compression conditions. The curve-fitted results indicate that the t  value 

ranges from 0.9% to 1.02% for the conglomerate rock, and is 1.65% for the shale rock. Because 

different rock samples are used for different stress conditions during the triaxial compression tests, 

some variations in the fitted values for rock parameters are observed for a given rock type. The 

fitted parameter values are listed in Table 3.5. 

  

To demonstrate the relative importance of the soft part under a triaxially stressed state, Fig. 3.18 

shows the results of both the soft-part strain and the ratio of soft-part strain to the hard-part strain, R, 

as a function of axial stress for a shale sample. The curve describes the overall deformation 

behavior of the soft part, showing a significant initial increase in strain with stress and then a slower 

change later. The R decreases with increased confining pressure at a given deviatoric stress, and 

also with increased axial stress at a given deviatoric stress. The conglomerate rock samples show 

the similar behavior.  

 

In summary, the laboratory data of stress-strain relations, obtained under the anisotropic stress 

condition, are consistent with the theoretical development presented in this subsection (Zhao and 

Liu 2012). 

 

Table 3.5 Fitted parameter values from the experimental data (Zhao and Liu 2012) 

Sample
 Confining 

pressure(MPa) eE (MPa) e  tE

( MPa) 
t  

Conglomerate 

rock 

2 4670.0 0.9910 1.6 0.0090 

3 4670.0 0.9898 2.0 0.0102 

4 4670.0 0.9898 2.0 0.0102 

Shale rock 

0 6100.0 0.9835 5.0 0.0165 

4 6100.0 0.9835 5.0 0.0165 

7 6100.0 0.9835 5.0 0.0165 
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Fig. 3.16 Matches between results calculated from Eq. 3.53 and experimental data from triaxial compression tests on a 

conglomerate rock reported by Hu and Liu (2004) (Zhao and Liu 2012). The parameter c is confining stress (pressure) 

 

 

 

 
Fig. 3.17 Matches between results calculated from Eq. 3.53 and experimental data from triaxial compression tests on a 

shale rock reported in Xu et al. (2006) (Zhao and Liu 2012). The parameter c is confining stress (pressure) 
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Fig. 3.18 Soft-part strain and R (the ratio of soft-part strain to the hard-part strain) as a function of axial stress at 

different confining pressures for a shale rock (Zhao and Liu 2012). The parameter c is confining stress (pressure) 

 

 

3.2.4 TPHM-Based Constitutive Relationships for Anisotropic Stress Condition 

       

The stress-strain relationships presented in Sect. 3.2.3 allow derivation of a variety of additional 

constitutive relationships between stress and mechanical/hydraulic properties for the anisotropic 

stress condition. This subsection presents the stress dependence of porosity, compressibility and 

shear modulus, as illustrative examples. The content of this subsection is based on the materials 

from Zhao and Liu (2012). 

 

3.2.4.1 Rock Porosity  

 

Following the procedure to derive Eq. 3.26, we assume that the soft part is a fraction of pore space. 

In this case, we rewrite Eq. 3.23 as 
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where again V is the bulk volume of rock and subscript p refers to pore space. Liu et al. (2009) 

indicated that for the purpose of calculating porosity, the total rock volume V could be 

approximated with the unstressed volume V0, because their differences are small in practical 

applications. 

 

For the hard part of the pore space, we have 
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To derive the above equation, we use the following relations: 

t

p
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V
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where 
p

eV ,0  is hard part of the pore volume under unstressed conditions,  0  again is porosity under 

unstressed conditions, and eC  is the pore compressibility (and constant).  

 

From Eq. 3.45 and its derivation procedure, it can be mathematically shown that the porosity 

change owing to the soft part, 
0V

dVt
, is the same as the last three terms on the right-hand side of  Eq 

3.45. Thus, based on Eqs. 3.54 and 3.55, we have 
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Using the condition that unstressed porosity is 0 , we obtain the following (Zhao and Liu 2012)   
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Experimental results from uniaxial strain tests are used to verify the porosity-stress relation, or Eq. 

3.59; relevant data are very limited for more complex stress conditions. Peng and Zhang (2007) 

reported a data set of porosity (as a function of axial stress) under uniaxial strain conditions for two 

sandstone specimens from 1,000 m below the sea floor. Satisfactory matches between results 

calculated from Eq. 3.59 and the porosity data are shown in Fig. 3.19. The fitted parameter values 

are given in Table 3.6. 
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Fig. 3.19 Matches between results calculated from Eq. 3.59 and experimental data from uniaxial strain tests for two 

sand specimens reported in Peng and Zhang (2007) (Zhao and Liu 2012) 

 

 

Table 3.6  Fitted parameter values from the experiment data of the sandstone samples (Zhao and Liu 

2012) 

Specimens 0 (%) eC (10
-4

MPa
-1

) tE (MPa) t  

1 36.75 5.11 5.0 0.0180 

2 33.60 4.44 5.0 0.0144 

 

 

3.2.4.2 Bulk Compressibility 

      

The relationship between bulk compressibility and stress is given in Sect. 3.2.2.1 for the isotropic-

stress condition. A more general relationship is given in this subsection. Here, we define the bulk 

compressibility (associated with a principal stress i ) by  
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Based on the above equation and Eq. 3.45, the compressibility can be readily determined as (Zhao 

and Liu 2012) 

 

 
 
















t

i

t

t

e

t

i
EEE

C


exp
33

)21(3
(i=1, 2, 3)                                 (3.61)   

 

Morgenstern et al. (1969) investigated the relationship between the compressibility and stress for 

Bunter sandstone.  Results from unconfined compression tests of Morgenstern et al. (1969） were 

employed to verify the compressibility-stress relation (Eq 3.61). For unconfined compression tests, 

we need only to consider 1C , because 032  . As shown in Fig. 3.20, the relation can 

satisfactorily match the data, further supporting the overall TPHM-based theoretical results 
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developed for the anisotropic condition. The estimated parameter values for sandstone are presented 

in Table 3.7. Note that the compressibility C, defined by Morgenstern et al. (1969), is three times 

the compressibility given in Eq. 3.61. In Fig. 3.20, the former is used. Note that the value for tE  is 

generally consistent with those reported in Table 3.6 for the sandstone. However, the estimated t  

values are much lower than those given in Table 3.6, which may be a result of the fact that rock 

porosity values in this case are much lower as well.  

 

 

 

 
Fig. 3.20 Matches between the unconfined compression test data for Bunter sandstone from Morgenstern et al. (1969) 

and the compressibility-stress relationship (Eq. 3.61) (Zhao and Liu 2012) 
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3.2.4.3 Shear Modulus 

    

Shear modulus is an important parameter for various engineering projects and can be described as:  
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where   and   are shear stress and strain, respectively, and again x, y, z are spatial coordinates. 

Based on the above definitions and Eqs. 3.51 and 3.52, shear modulus xyK  can be easily determined 

as  
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Under the stress condition of 32   , one can get 
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  xzyzxy KKK 
                                                                                                       (3.65) 

    

Stress-dependent data for shear modulus are relatively limited in the literature. Thus, we use results 

calculated from Eq. 3.64 (with estimated parameters from Table 3.4) to demonstrate the stress-

dependent behavior of shear modulus in Fig. 3.21. No comparison is made with experimental 

observations. However, note that Eq. 3.64 is the direct result of a mathematical transformation of 

Eq. 3.36. The validation of Eq. 3.36, discussed above, is equivalent to that of Eq. 3.65. For 

simplicity, we set 032  in Fig. 3.21, which shows the strong stress dependence of shear 

modulus at low stress values. 
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Fig. 3.21 Shear modulus as a function of 

1 for the three rock samples with parameter values given in Table 3.4 (Zhao 

and Liu 2012) 

 

3.2.5 Implementation of the TPHM in a Geomechanical Simulator 

 

The TPHM and the related constitutive relations can be implemented into a geomechanical 

simulator for practical applications. Incorporation of them into an existing geomechanical simulator 

may be a convenient choice in many cases. As an example, this subsection briefly discusses how 

the related constitutive relations are incorporated into FLAC3D (Itasca Consulting Group 2005), a 

geomechanical simulator that has been widely used in the fields of geotechnical, geomechanical, 

civil, and mining engineering, while a more detailed  presentation of the implementation procedure 

can be found in  Li et al. (2014).  

 

FLAC3D uses dynamic equations of motion in its explicit, time-marching scheme. The solution of 

solid body problems in FLAC3D invokes the equations of motion (Newton’s law of motion), 

constitutive relationships, and boundary conditions. When running the FLAC3D code in its 

mechanical or thermomechanical configuration mode, the code solves the following equation of 

motion in an iterative manner with the stress–strain relationship: 

                                            (3.66) 

where is average density of the rock mass and  is solid velocity with respect to a fixed system. 

The incremental stress and strain during a time step is governed by various elastic or elasto-plastic 

constitutive relationships that can be written in a general form as: 

 

                                                 (3.67) 

 

in which H contains given material functions,  is the infinitesimal strain-rate tensor, and  is a 

time increment. The constitutive relationships in the above equation are applied to the effective 

stress calculated as: 

0

200

400

600

800

1000

1200

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Maximum Principle Stress(MPa)

S
h

e
a
r 

 M
o

d
u

lu
s 

 K
x

y
(M

P
a）

bra1-7a

bra1-3a

bra2-2b

dt

d
mm

v
gσ  

m v

),'(' t  H

 t



 146 

 

  σ = σT +IαBP                         (3.68) 

 

where 
B is Biot’s effective stress parameter (Biot 1941), P is pore pressure, I is unit tensor and σ 

and σT are effective stress and total stress tensors, respectively. One useful feature of FLAC3D is 

that users can modify the existing constitutive models in the simulator or create their own 

constitutive models as dynamic-linked libraries (DLLs).  

 

All constitutive models in FLAC3D share the same incremental numerical algorithm. Given the 

stress state at time t and the strain increment for a time step , the purpose of the constitutive 

models is to determine the corresponding stress increment and the new stress state at time t + . 

When plastic deformations are involved, only the elastic part of the strain increment will contribute 

to the stress increment. In this case, a correction must be made to the elastic stress increment (as 

computed from the total strain increment) in order to obtain the actual stress state for the new time 

step. 

 

As a stress-strain relationship, the TPHM is implemented into FLAC3D by modifying the Mohr–

Coulomb model; the linear elastic portion of the Mohr–Coulomb model is replaced by the TPHM. 

To do so, an elastic guess ( ) at time t + is first computed by application of the TPHM to the 

given strain increments , for  i,j = 1, 2, 3. New stress values at time t + , elastic guesses ( ), 

are then obtained from the relationship 
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ij   0                         (3.69) 

 

where 0

ij  are the initial stresses at time t. If the new stresses violate the yield criterions, plastic 

deformation takes place and needs to be considered. Then the new stress components are corrected 

by using the plastic flow rule to ensure that they lie on the yield surface in stress space. If the point 

representing new stresses in the stress space is located below failure envelope, no plastic flow takes 

place for this step and stresses obtained from Eq. 3.69 are acceptable.  In Eq. 3.69, the  can 

be directly obtained from the following equation: 
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Equation 3.70 is an incremental formulation of Eqs. 3.50 and 3.51. In Eq. 3.70, the strain 

increments , , , , ,  are known values, i.e., , while the right-hand-side 

items  , , , , ,  are the strain increments for the soft part and can be 

expressed as 

  (3.71) 

In Eq. 3.71, the principal stresses ,  and  (not their increments) are approximated with the 

stresses  at time t based on the stress transformations in three dimensions (Poulos and Davis 

1974; Jaeger et al. 2007). An algorithm function for calculating ,  and  has been provided by 

the module of the C++ source code for the Mohr–Coulomb model in FLAC3D. The principal stress 

increments , , and  in Eq. 3.71 can be expressed as  

    (3.72) 

where , , and ( ) can be calculated by Eq. 3.52 using stresses at time t.  

 

After inserting Eqs. 3.71 and 3.72 into Eq. 3.70, Eq. 3.70 becomes a system of linear equations with 

unknowns , , , ,  and  that correspond to  in Eq. 3.69. Thus, one 

can obtain by solving the system of linear equations. 

 

Note that the TPHM is only applicable to compression conditions. The soft part, just like a pore or 

fracture, cannot sustain tensions, and thus the conventional Hook’s law is used in this case. In other 

words, if one of the principal stresses is in tension, the strain for the soft part in the same direction 

as the principal stress will be omitted. The computational scheme implemented into FLAC3D is 

shown in Fig. 3.22.  
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Fig.3.22 Computational scheme for the numerical implementation of the TPHM into FLAC3D (Li et al. 2014) 

(Reproduced by permission of Elsevier) 

 

 

3.3 Fracture Deformation and Properties 

 

Fractures, existing at different spatial scales, are the common geological structures in the earth’s 

upper crust. Fracture deformation has an important effect on fluid flow in a discontinuous rock 

mass under changing stress conditions (Bandis et al. 1983). Specifically, fluid flow takes place 

predominantly through fractures in a fractured rock rather than the rock matrix, and the 

permeability of a rock depends strongly on fracture apertures. An improved understanding of 

fracture deformation is needed for a number of practical applications, such as hazardous waste 

disposal, coal mining, oil recovery from fractured reservoirs, natural gas recovery from shale 

formations through hydraulic fracturing, CO2 geological sequestration, and geothermal energy 
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extraction. Many experimental and theoretical studies have thus been conducted focusing on the 

mechanical properties of fractures and their relationship with hydraulic properties (Brown and 

Scholz 1986).  

 

In Sect. 3.2, we present the basic concepts of the TPHM and its applications to rock matrix (or 

porous media). In this section, we will further demonstrate that the TPHM is also applicable to 

fractures. Fracture deformation can occur under compression and/or shearing. The focus of this 

section is on fracture deformation driven by the normal stress because it is directly relevant to the 

TPHM. The readers are referred to Wei et al. (2013) for a recent review of the progress in 

determining fracture deformation resulting from shearing. The content of this section is based on 

the materials from Liu et al. (2011, 2013) and Liu and Rutqvist (2010).  

 

3.3.1 Normal-Stress Dependence of Fracture Hydraulic Properties  
 

This subsection (Sect. 3.3.1) presents the TPHM-based relationships between normal stress and 

fracture hydraulic properties; the latter are also strong functions of shearing (e.g., Bandis et al. 

1983).  The content of this subsection is based on the study of Liu et al. (2013). 

       

The stress dependence of fracture hydraulic properties (e.g., permeability, aperture or closure) has 

been investigated by a number of researchers. Note that fracture permeability and fracture aperture 

(or closure) are closely related through the cubic law and its variations (e.g., Zimmermann and 

Bodvarsson 1996). Goodman (1974) proposed an empirical hyperbolic relationship between normal 

stress and fracture closure that was later modified by Bandis et al. (1983) to better fit observations. 

Other models, based on Hertzian theory, have also been developed to describe the nonlinear stress-

deformation behavior (McDermott and Kolditz 2006). These models suggested that the observed 

nonlinear behavior could be attributed to the increasing contact areas as the normal stress increases. 

For example, Brown and Scholz (1985, 1986) used Hertzian theory to study fracture closure as a 

function of normal stress. Based on Hertzian theory of deformation of spheres, Gangi (1978) 

developed a relationship for stress-dependent fracture permeability. Most recently, Liu et al. (2009) 

proposed the TPHM for describing the relationship between stress and elastic strain, which has 

been discussed in previous sections of this chapter. The main idea of the TPHM is to capture 

heterogeneous deformation processes at a macroscopic scale, resulting from the existence of 

heterogeneity of rock mass, by conceptualizing the rock mass (or a fracture) into two parts with 

different mechanical properties. While the TPHM has been validated for different rock types, 

evaluation of its validity for fractures is limited (Liu et al. 2009; Zhao and Liu 2012; Liu et al. 

2011). This subsection (Sect. 3.3.1) gives a more comprehensive evaluation of the TPHM using 

data on fracture deformation gathered from the literature. The normal stress dependence of fracture 

two-phase flow properties will also be discussed. 

       

                

3.3.1.1 Fracture Aperture or Closure under Different Normal Stresses 

      

Fracture aperture is an important parameter for both mechanical and hydraulic processes within a 

fractured rock. In this subsection (Sect. 3.3.1.1), a relationship, based on the TPHM, is developed 

for the dependence of fracture aperture (or closure) on the normal stress (Liu et al. 2013). Also note 
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that the term stress here refers to effective stress to take account of the effect of pore-liquid 

pressure. 

Following Sect. 3.2, the subscripts 0, e, and t are used again to denote the unstressed state, the hard 

part and the soft part, respectively. Consider a fracture to be subject to a normal stress n and 

divide fracture space into hard and soft parts along the direction normal to the fracture plane. Then, 

the volumetrically-averaged fracture aperture (b) is given by:  

 

te bbb ,0,00                                                                                             (3.73) 

under the unstressed condition, and  

te bbb                                                                                                   (3.74) 

under the stressed condition. Hooke’s Law for the two parts can be expressed by 
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where K  is the fracture Young’s modulus and subscript f refers to fracture.  The stress in the two 

equations above refers to far-field normal stress, rather than local stress. 

         

Combining Eqs. 3.73 to 3.76 gives 
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Integrating the above equation and using the following relationship obtained from Eq. 3.75: 
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                                                                             (3.78) 

Liu et al. (2013) obtained
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                                                       (3.79) 

Note that the derivation of Eq. 3.79 uses the condition that for ,0n  ee bb ,0  and tt bb ,0 . 

In Eq. 3.79, the stress-dependent behavior of fracture aperture is controlled by the second term at a 

low stress and the first term at a high stress. However, in many laboratory tests, fracture closure, 

rather than aperture, is measured. The fracture closure (  ) as a function of normal stress can be 

derived from Eq. 3.79 as follows (Liu et al. 2013): 
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                                   (3.80)                  

 

Equations 3.79 and 3.80 give relationships between fracture aperture, closure and normal stress.  

In the above equations, fracture aperture b is a mechanical aperture, rather than the hydraulic 

fracture aperture that determines fracture permeability through the cubic law (Witherspoon et al. 

1980; Olsson and Barton 2001). These two apertures are generally different, except for the case of 

smooth fractures. Barton et al. (1985) and Zimmerman and Bodvarsson (1996) proposed 

mathematical expressions to relate these two apertures that are functions of fracture roughness and 

contact area. When information on fracture roughness and contact area is available or can be 

estimated, the stress-dependence of fracture permeability can be estimated through the cubic law 

and one of these relations between mechanical and hydraulic apertures. A simpler approach is to 

use the ratio of mechanical apertures at different stresses to approximate the corresponding ratio of 

hydraulic apertures for a given fracture. In this case, the cubic law leads to (Liu et al. 2013): 
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where k is the fracture permeability corresponding to fracture aperture b, and again subscript 0 

refers to the zero-stress condition. This treatment seems to be supported by several studies. For 

example, Elliott and Brown (1988) experimentally show that flow rate through a fracture is 

approximately proportional to the cube of mechanical aperture for a range of aperture values (15 to 

21 μm). It is obvious from the cubic law that their results essentially indicate the proportionality of 

mechanical aperture to hydraulic aperture under the corresponding test conditions. Liu et al. (2009, 

2011) successfully match two datasets of fracture permeability as a function of stress using Eq. 3.81. 

Therefore, the above equation can be used as a first-order approximation for practical applications.   
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Fig.3.23 Comparisons between measured data (from (a) Matsuki et al. (2001) and (b) Malama and Kulatilake (2003)) 

and results calculated from Eq. 3.80 (Liu et al. 2013). Items in parenthesis refer to the sample numbers from Table 3.8  

 

It is useful to further emphasize that the TPHM has two key elements. Firstly, it hypothesizes that 

in Hooke’s Law, true strain, rather than engineering strain, should be used. However, because the 

hard part is subject to a small deformation, engineering and true strains are practically identical for 

the hard part. In this case, the engineering strain, for the mathematical simplicity, is used to describe 

the mechanical deformation of the hard part. Secondly, the TPHM conceptualizes the rock mass (or 

a fracture) to consist of two parts, hard and soft. This is largely motivated by the well-known 

heterogeneity of subsurface material. The existence of the soft part in porous media, in terms of 

micro-cracks and pore space near the grain contacts, has been discussed in previous investigations 

(e.g., Mavko and Jizba 1991) and in Sect. 3.2. The soft and hard parts for fracture apertures are 

those corresponding to relatively small and large contact areas within fractures, respectively. 

Nevertheless, the TPHM, as a macroscopic model that is not derived from micro-mechanics, should 

be ultimately evaluated by how consistent it is with a large range of observations.   
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Table 3.8 Values for fitting parameters from experimental data (Liu et al. 2013) 
 

Rock type 
Initial 

aperture 

Sample # 

(loading cycle) 

Fitting parameters (as defined in the text) 

Ref. 
b0,e (mm) Ke,f  (MPa) 

b0,e/Ke,f  

(mm/MPa) 
b0,t (mm) Kt,f (MPa) R2 

Granite 

0.016 mm Sample 1 0.00748 4179.3 0.000120 0.00852 3.81679 0.985 
Indraratna et 

al. (1999) 0.006 mm Sample 2 0.00315 15181 3.29359E-05 0.00285 3.81679 0.985 

0.0045 mm Sample 3 0.00033 16160 3.09406E-05 0.00417 1.79856 0.947 

          

Diorite 0.38 mm Dr-1 0.128 39.635 0.003229 0.25200 2.31922 0.985 

Malama & 
Kulatilake 

(2003) 
Granodiorite 

rock 

0.505 mm Grd-1 0.046 36.508 0.001260 0.45913 2.07031 0.975 

0.481 mm Grd-2 0.042 39.628 0.001060 0.43949 2.38408 0.998 

0.683 mm Grd-3 0.064 25.106 0.002549 0.61854 2.00781 0.990 

Slate <=0.1 mm 
Fresh-slate 

cleavage (3) 
0.0750 2309.814 3.24749E-05 0.02499 7.35294 0.991 

Bandis et al. 

(1983) 

Dolerite 0.15 mm 
Fresh-dolerite 

joint (3) 
0.1179 4678.191 2.52003E-05 0.03211 5.84795 0.987 

Limestone 0.2 mm 
Fresh-limestone 

bedding (3) 
0.1875 8386.160 2.23624E-05 0.01247 3.96825 0.999 

Slate 0.5 mm 
Weathered-slate 

cleavage (3) 
0.4303 1506.220 0.000286 0.06965 5.52486 0.996 

Limestone 0.5 mm 
Weathered-

limestone joint (3) 
0.4336 2004.390 0.000216 0.06644 9.70874 0.977 

Siltstone 0.6 mm 

Weathered-

siltstone bedding 
(3) 

0.5286 2374.240 0.000223 0.07137 6.62252 0.996 

Fused-silica 

glass 
Max = 113 um 

CGL965  

(Cycle 4,5) 
0.1024 657.89 0.000156 0.01060 0.69686 0.928 

Brown & 

Scholz 

(1985) 

Fused-silica 

glass 
Max = 37.8 um CGL0394 0.0304 377.39 8.05533E-05 0.00735 0.87184 0.969 

Fused-silica 

glass 
Max = 28 um CGL0234 0.0204 90.054 0.000227 0.00757 0.72727 0.988 

Cheshire 
quartzite 

Max = 35.9 um CCQ0073 0.028 557.34 5.02386E-05 0.00793 6.36943 0.960 

Brown & 
Scholz 

(1986) 

Cheshire 

quartzite 
Max = 74 um 

CCQ0102 (Cycle 

3) 
0.0657 2204.2 2.98067E-05 0.00828 6.32911 0.927 

Marble Max = 37.9 um 
CSM0042 (Cycle 

3) 
0.0299 156.04 0.000192 0.00798 0.94518 0.951 

Carnmenellis 

granite 
- Sample 1 - - 0.001453 0.06019 2.18341 0.955 

Elliott & 
Brown 

(1988) 

- - 
Mated 

- - 
0.000591 0.10327 1.5674 0.997 Goodman 

(1976) Unmated 0.001979 0.34471 3.63636 0.992 

Granite - - - - 0.000569 0.10939 0.54975 0.988 Iwai (1976) 

          

Kikuma 
granodiorite 

262 um NKGD (Cycle 2) 0.12 148.16 0.000810 0.14202 0.90416 0.903 

Iwano (1995) 

Kikuma 

granodiorite 
627 um TKGD (Cycle 2) 0.4511 272.84 0.001653 0.17588 3.11526 0.959 

Kikuma 

granodiorite 
201 um SKGD (Cycle 2) 0.0842 230.94 0.000365 0.11678 1.35685 0.924 

Inada granite 650 um TIGN (Cycle 2) 0.4464 743.5 0.000600 0.20361 2.43309 0.905 

Chichibu schist 283 um TCSH (Cycle 2) 0.1626 437.63 0.000372 0.11945 0.96993 0.984 

Kimachi 

sandstone 
396 um TKSS (Cycle 2) 0.0837 36.668 0.002283 0.31226 0.80645 0.882 

Carnmenellis 

granite 
- 

NJ1 

- - 

0.002053 0.04239 0.38183 0.952 
Zhao & 
Brown 

(1992) 

NJ2 (180°C) 0.003940 0.04854 0.87336 0.967 

NJ2 (200°C) 0.003762 0.08679 0.48309 0.943 
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NJ6 0.007062 0.09304 0.77942 0.984 

Artificial tension 

fractures 
- 

EF1 0.001617 0.0536 1.14943 0.993 

EF3 0.011696 0.01032 1.01937 0.981 

EF7 (2nd loading-

120°C) 
0.009166 0.0644 0.8244 0.997 

Charcoal black 

granite 
- 

Sample 1 (Cycle 

3) 

- - 

0.000246 0.02448 4.29185 0.992 

Raven & 

Gale (1985) 

Sample 2 (Cycle 

3) 
0.000623 0.06751 3.10559 0.923 

Sample 3 (Cycle 
3) 

0.001226 0.09352 1.14286 0.948 

Sample 5 (Cycle 

3) 
0.002049 0.07512 1.51976 0.990 

Inada granite 

0.526 mm IG10 0.438 219 0.002 0.088 0.83542 0.982 

Matsuki et al. 

(2001) 

0.589 mm IG15 0.5128 410.2 0.001250 0.07625 1.80505 0.965 

0.39 mm IG20 0.3386 176.07 0.001923 0.05141 1.83486 0.998 

0.697 mm IG25 0.61 586.54 0.001040 0.087 1.443 0.949 

Granite block - Sample 1 - - 0.000599 0.085 1.28866 0.994 
Sharifzadeh et 

al. (2008) 

Quartz 

monzonite 
(Stripa granite) 

- 

E30 (Cycle 2) 

- - 

4.76281E-05 0.00493 12.1951 0.994 

Pyrak-Nolte et 

al. (1987) 
E32 4.70057E-05 0.00151 3.77358 0.993 

E35 0.000287 0.00341 2.89017 0.994 

Granite samples - GO3 - - 0.000799 0.0157 10.6383 0.995 
Chen et al. 

(2000) 

Granodiorite 

1001 um Load cycle 2 0.8711 403.07 0.002161 0.12993 2.88184 0.991 

Schrauf & 

Evans (1986) 
600 um 

Uniform flow 

field 
0.4968 170 0.002922 0.10319 0.5848 0.974 

760 um Radial flow field 0.5961 168.55 0.003537 0.16386 1.54799 0.941 

Westerley 
(Rhode Island) 

granite 

0.11-0.21 mm Sample 1, mated 
- - 

0.000125 0.1 17.5439 0.964 Durham & 
Bonner 

(1994) 0.59 mm Sample 1, offset 0.0005 0.27 16.9492 0.968 

Austin chalk. - 

2nd Cycle 

- - 

0.006351 0.04623 1.41243 0.996 
Olsson & 

Brown 

(1993) 

Offset 1 mm 0.006774 0.12593 1.54321 0.998 

Offset 3 mm 0.009991 0.11868 1.29534 0.996 

 

To evaluate the usefulness of Eqs. 3.79 and 3.80, we examine whether these equations can 

satisfactorily match experimental observations from different sources (Liu et al. 2013). Since most 

laboratory data are for fracture closures, the focus of the evaluation is on Eq. 3.80. A relatively 

comprehensive literature survey of the closure-stress data was performed. The selection of the 

datasets to be used for the comparisons is based on several considerations. Firstly, the dataset and 

its measurement procedure must be well documented, such that there is a good understanding of the 

dataset and the possible errors involved in the measurements. Secondly, as suggested by Barton et 

al. (1985), the closure-stress measurements may be representative of in situ fracture behavior from 

the third or fourth loading cycles. Therefore, the analysis is focused on the data obtained from these 

cycles, or data corresponding to the largest cycle numbers when measurements from the third or 

fourth loading cycles are not available. Table 3.8 presents information on the datasets used in this 

study. Readers are referred to the original data sources listed in Table 3.8 for the details of data-

collection procedures. The literature survey is by no means exhaustive, but Table 3.8 should include 

typical datasets for closure-stress measurements available in the public literature.      
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As examples, Fig. 3.23 shows comparisons between theoretical results from Eq. 3.80 and measured 

data from two experiments. The comparisons are typical for all the other experiments. To avoid 

non-uniqueness in the parameter estimation, values for parameters in Eq. 3.80, for a given dataset, 

are determined in the manner similar to that used for determining parameters characterizing stress-

dependent rock porosity. In a closure-stress plot (Fig. 3.23), data at high stress can be 

approximately represented by a linear relationship. As indicated by Eq. 3.80, the slope of the linear 

relationship is b0,e /Ke,f and its intersection with the closure axis is b0,t. Then Kt,f can be estimated 

from a data point at a low stress.  In order to estimate b0,e, additional information on either Ke,f or 

total aperture b0 under the unstressed condition is needed. In some cases, the information is not 

available (Table 3.8). This, however, does not impact on the evaluation of the TPHM, because Eq. 

3.80 only requires the ratio b0,e /Ke,f , rather than b0,e, to calculate a fracture closure. 

Figure 3.23 and Table 3.8 indicate that the TPHM adequately represents experimental observations. 

As expected, significant portions of the fracture aperture (or closure) are soft and characterized by 

high nonlinearity, as shown in Fig. 3.23, and the modulus for the soft part is significantly lower 

than that of the hard part. Note that for most datasets collected for different rock types and by 

different researchers (Table 3.8), the values for the correlation coefficient of curve fitting (R
2
) are 

above 0.95.  

It is important to mention that the TPHM, as previously discussed, is a macroscopic model that 

deals with mechanisms of micro-mechanics in a phenomenological manner. Its validity is 

demonstrated by its consistence with a number of datasets (Table 3.8). The fitted values for Kt,f are 

relatively small, because they characterize fracture deformation at low normal stress corresponding 

to small contact areas within fractures. The values for Ke,f are much larger, because Ke,f 

characterizes fracture deformation corresponding to relatively stabilized contact areas as stress 

changes. The upper limit of Ke,f should be of the same order of magnitude as that for the rock 

matrix.  

As a relatively simple model, the TPHM has two unique aspects in describing rock deformations. 

Firstly, it was developed by extending the stress-strain relationship described by Hooke’s Law; the 

TPHM is reduced to the conventional form of Hooke’s Law when the soft-part portion is zero. 

Thus, it can be used to derive relevant constitutive relationships for hydraulic and mechanical 

properties using a consistent set of parameters with clear physical meanings (Liu et al. 2009; Zhao 

and Liu 2012), because the corresponding stress-strain relationship is the foundation for deriving 

other constitutive relationships. Secondly, comparisons between results calculated from the TPHM 

and test data show that the TPHM is quite general and can be applied to both fractures and porous 

media.   

   

3.3.1.2  Two-Phase Flow Properties 

     

Multiphase flow occurs in a number of practical applications associated with fractured rock, such as 

geological sequestration of CO2 and nuclear waste disposal. However, most of the previous studies 

on the stress dependence of fracture properties have focused on single-phase flow properties, such 

as permeability (and fracture aperture or closure). A systematic study on relationships between two-

phase or multiphase flow properties for fractures (such as relative permeabilities for different 

phases) and normal stress was recently reported by Liu et al. (2013).  
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Even without considering the stress-dependence, determination of two phase flow properties is a 

challenging task for fractures. There are currently two kinds of approaches to developing the related 

constitutive relationships (between capillary pressure, relative permeability and saturation) for two 

phase flow. One is a porous-medium approach, in which constitutive relationships developed for 

porous media are simply borrowed or modified for either single fractures or fracture networks (e.g., 

Therrien and Sudicky 1996). However, the physical meaning of relevant parameters in these 

relationships is not always clear for fractures, because the geometry (and connectivity) of fracture 

apertures is essentially two dimensional on the fracture plane, whereas that of pores in porous 

media is three dimensional. The second approach, called the pipe-flow approach, has been 

developed based on similarities between the observed multiphase-flow behavior within fractures 

and pipes, including the fact that both wetting and non-wetting phases are discontinuous and yet 

mobile (Wong et al. 2008; Weerakone et al. 2011), or stratified owing to density differences within 

horizontally-inclined fractures (Fourar and Lenormand 1998; Indraratna et al. 2002). This approach 

may be valid when fluid-phase distributions are not strongly dependent on fracture apertures (or 

capillary force). From laboratory test results for nitrogen/water flow within horizontal fractures, 

Diomampo (2001), however, did not observe pipe-flow behavior. It is obvious that different 

regimes may exist for two phase flow within fractures. The focus here is on two-phase flow within 

a horizontal fracture when flow paths are mainly determined by capillarity (or the aperture 

distribution). This subsection (Sect. 3.3.1.2) will present the TPHM-based closed-form relationships 

between two-phase flow properties and normal stress for horizontal fractures that were proposed by 

Liu et al. (2013). 

 

When flow paths in a horizontal fracture are mainly determined by capillarity, the concept used to 

derive two-phase flow properties for porous media can be adopted here, although the related 

relationships for porous media cannot be directly borrowed, as previously indicated. The standard 

approach used in porous media is based on the local equilibrium assumption that capillary pressure 

is uniformly distributed within the pore space corresponding to representative elementary volume 

(e.g., Mualem 1976). The assumption essentially implies that liquid distribution for a given phase is 

completely controlled by capillary force and is independent of liquid flux. That is why capillary 

pressure and relative permeability can be expressed as functions of saturation only, as discussed in 

Chap. 2.  

 

However, in many cases, the local equilibrium assumption does not hold, especially when 

instability (or fingering) occurs. For example, for the upward flow of CO2 in a saline aquifer at a 

geological CO2 sequestration site, significant CO2 fingering will occur because CO2 is lighter than 

ambient brine. When a numerical grid block contains a number of CO2 fingers (which is generally 

the case, because the grid-block size cannot be too small for practical applications), the local 

equilibrium assumption will be violated at the grid-block scale.   Chapter 2 proposes a new theory 

for multiphase flow to deal with this challenging issue, based on the optimality principle that 

unstable liquid-flow patterns are self-organized in such a way that total flow resistance is minimal. 

In this case, the relative permeability is a function of not only saturation, but also liquid flux. 

Nevertheless, it is appropriate to apply the local equilibrium assumption to individual horizontal 

fractures that are not subject to gravitational instability for flow process.  
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The capillary pressure Pc, defined as the difference between non-wetting-phase and wetting-phase 

pressures, is given by the Young-Laplace equation for a fracture element (with aperture B) at the 

fluid interface: 

 

 
B

T
P s

c
2

'cos 
                                                                                    (3.82) 

 

where Ts is surface tension and '  is contact angle. Based on the local equilibrium assumption and 

above equation, fracture apertures larger than Tscos ' /(2Pc), for a given capillary pressure Pc, are 

generally occupied by non-wetting phase and the rest by wetting phase. This reasoning is the 

foundation for deriving the capillary pressure-saturation relationship, as discussed in Chap. 2. Note 

that B is fracture aperture at a given location of the fluid interface within a fracture plane and b 

(often used in Sect. 3.3.1.1) is the average aperture for a fracture. Their relation is mathematically 

given in Eq. 3.88 to be discussed later. 

 

 
Fig.3.24 Gaussian (dashed curve) and truncated-Gaussian (solid curve) aperture distributions (Liu et al. 2013). The 

solid curve is subject to a larger normal stress. The parameters u0 and u are means for the Gaussian distribution for the 

dashed curve and the corresponding Gaussian distribution for the solid curve, respectively. They correspond to the 

largest probability values  

 

 

The relationship between capillary pressure and fluid saturation is determined by the probability 

density function (PDF) of the fracture aperture (within a single fracture) and its dependence on 

stress. Approximately Gaussian or truncated-Gaussian aperture distributions are commonly 

observed in both natural and man-made fractures (Walsh et al. 2008). As shown in Fig. 3.24, with 

increasing stress, small apertures are reduced to zero and the PDF is close to a truncated-Gaussian 

distribution. A number of researchers reported that the PDF under normal load might be described 

by log-normal distributions to characterize its skewed behavior (e.g., Pruess and Tsang 1990). 

Recently, Sharifzadeh et al. (2008) developed a new method for measuring fracture-aperture 

distributions and reported measurement results for several artificial fractures. They found that the 

observed PDFs are similar to Poisson or log-normal distributions. Thus, different kinds of 

distribution may be used for describing the PDF for fracture apertures. In the study of Liu et al. 

(2013), for simplicity, it was assumed that the fracture-aperture PDF is described by a truncated-

Gaussian distribution: 
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where u and δ are mean and standard deviation, respectively, for the corresponding non-truncated 

Gaussian distributions. Note that the integration of f(B) within the valid range of B ≥ 0 is less than 

one, as a result of truncation. A mathematically rigorous PDF requires the integration to be one. To 

meet this requirement, the right-hand side of Eq. 3.83 can be multiplied by a normalized factor. 

However, as demonstrated by derivation procedures to be discussed later, the direct use of Eq. 3.83 

is valid for this study, because normalization processes are always involved when this equation is 

used. 

 

Based on the local equilibrium assumption and Eq. 3.83, the non-wetting phase saturation (Snw) for 

a capillary pressure given by Eq. 3.82 is obtained as (Liu et al. 2013): 
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where f(x) is the PDF defined by Eq. 3.83 and x here is a dummy variable.  

 

The corresponding wetting-phase saturation (Sw), by definition, for a two-phase flow system is: 

 

nww SS 1                                                                                         (3.86) 

 

In Eq. 3.84, fracture aperture B can be replaced by capillary pressure Pc using Eq. 3.82. If a 

capillary pressure Pc = P* is known for a fracture aperture B = B* that corresponds to fracture 

elements at the interface between wetting and non-wetting phases, then Eq. 3.82 can be rewritten 

as:   

 

B
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P

Pc *

*
                                                                                         (3.87) 

 

Equations 3.82 (or 3.87), 3.84 to 3.86 together comprise the relationship between Pc, Snw, and Sw. 

For a given capillary pressure, Eq. 3.82 or 3.87 is used to estimate fracture aperture B associated 

with the interface between wetting and non-wetting phases. Then, saturations are calculated from 

Eqs. 3.84 to 3.86.   

 

To determine the stress dependence of capillary pressure–saturation relationships, it must be known 

how the fracture-aperture PDF changes with normal stress. The latter corresponds to complex 

mechanical deformations because of the variability in fracture asperity and contact areas. Recently, 

Walsh et al. (2008) conducted a detailed numerical simulation of mechanical deformation within a 
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fracture under different normal stresses. They found that the aperture PDF becomes more skewed 

with increasing normal stress, but is still closer to a truncated-Gaussian distribution than a log-

normal distribution. They also noticed that the PDF evolution can be approximately described by a 

so-called penetration model, in which fracture aperture changes uniformly while aperture values are 

limited to being zero or positive. The same model was used by other researchers in determining 

stress-dependent fracture properties (e.g., Brown 1987; Oron and Berkowitz 1998). Thus, the 

penetration model is adopted here. In other words, parameter δ is treated as being independent of 

stress, but u will change with stress, as illustrated in Fig. 3.24, where the solid curve represents a 

PDF corresponding to a larger stress. The parameter u can be related to average aperture b (Eq. 

3.79) by (Liu et al. 2013): 
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where t00 is defined in Eq. 3.85. Note that in Eq. 3.88, Bf(B)dB represents the volume occupied by 

fracture segments with apertures from B to B + dB. The stress dependence of b is given in Eq. 3.79. 

For a given value of b, u can be derived from Eq. 3.88, but an iterative numerical procedure is 

needed. Then the capillary pressure-saturation relationship can be calculated through the 

dependence of u on stress.  Figure 3.25 shows curves of capillary pressure (as a function of wetting-

phase saturation) for two different stresses (or u values). As expected, the capillary pressure curve 

strongly depends on the normal stress.     

 

The relationship between fracture permeability and stress is given in Eqs. 3.79 and 3.81. Modeling 

of two-phase flow processes also requires the relative permeability for different phases. As 

previously indicated, studies on fracture relative permeability are very limited and no systematic 

study has been found in the literature, except Liu et al. (2013), that investigates stress-dependent 

fracture relative permeability. The relationships of Liu et al. (2013) will be presented between 

fracture relative permeability, saturation, and stress for a two-phase flow system. 

 

The general approach to developing closed-form relationships in porous media involves two key 

aspects, as discussed in details in Chap. 2. Firstly, based on the PDF of pore-size distribution, a 

conceptual model of two-phase flow through the medium is developed. There are currently two 

commonly-used conceptual models. One was proposed by Mualem (1976), in which the spatial 

distribution of soil pores is completely random. The other one is the model developed by Burdine 

(1953), in which a perfect spatial correlation of soil pores is assumed, such that flow paths can be 

conceptualized as a group of parallel capillary tubes. In both models, pore size is determined from 

capillary pressure–saturation relationship using the Young-Laplace equation that suggests that pore-

size is inversely proportional to the capillary pressure.  Note that pore size for porous media 

corresponds to fracture aperture herein. The second aspect of this general approach is to make 

further corrections to the results, determined from these conceptual models, by multiplying them 

with a tortuosity factor. The rationale behind this is that in those conceptual models, flow paths are 

assumed to be straight, while in reality, they are tortuous as a result of the geometric complexity of 

the pore spaces. The tortuosity factor is generally assumed to be a power function of saturation for a 



 160 

given phase and the exponent value needs to be empirically determined from measurements. In the 

current study, this general approach is followed to develop relative permeability for a horizontal 

fracture. Note that the corresponding relationships cannot be directly borrowed from porous media, 

simply because geometry (and connectivity) of fracture apertures is essentially two dimensional and 

is different from that of pores in porous media, which is three dimensional.    

 

 

 
Fig. 3.25 Normalized capillary pressure (Pc/P*) as a function of wetting-phase saturation (Sw) for two stresses, with the 

solid curve corresponding to a smaller normal stress (Liu et al. 2013). The parameter values are:  u = 0.145 mm (for the 

solid curve) and 0.045 mm (for the dashed curve), and δ = 0.03 mm (parameters as defined in the text) 

 

      

Burdine’s (1953) model was employed herein, based on the consideration that flow paths in 

fractures are close to parallel capillary tubes that have been implied by commonly-reported long-

range correlations (fractal behavior) of aperture distribution and observed channelized multiphase 

flow patterns (e.g., Walsh et al. 2008; Brown 1987; Power and Tullis 1992; Chen and Horne 2006). 

The wetting phase relative permeability, kwr, is expressed as (Burdine 1953): 
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where the power function term for Sw is the tortuosity factor with m’ as an empirical parameter, and 

dV is the volume element corresponding to fracture aperture B associated with capillary pressure Pc: 

 

dBBBfdV )(                                                                            (3.90) 

 

In Eq. 3.89, Bmin refers to a critical fracture aperture. When the wetting phase is confined to fracture 

apertures smaller than Bmin, the wetting phase becomes discontinuous and thus immobile. Inserting 

Eqs. 3.82 and 3.90 into Eq. 3.89 yields: 
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Similarly, the relative permeability for the non-wetting phase (knwr) can be written as: 
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where Bmax is the other critical fracture aperture. When the non-wetting phase is confined to fracture 

apertures larger than Bmax, the non-wetting phase becomes immobile as a result of blockage by the 

wetting phase. Note that Bmin and Bmax correspond to residual saturations for wetting and non-

wetting phases, respectively.  

 

As previously discussed, the fracture-aperture PDF can be presented by a truncated-Gaussian 

distribution given in Eq. 3.83.  Before presenting the relative permeability relationships subject to 

the PDF, it is useful to define several derived integration functions: 
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where u and δ are parameters associated with the fracture-aperture PDF defined in Eq. 3.93. Also in 

this equation, x, y, and t are dummy variables. 

        

Inserting Eq. 3.83 into Eqs. 3.91 and 3.92 and using Eq. 3.93, the relative-permeability expressions 

are obtained for wetting and non-wetting phases as (Liu et al. 2013):   
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where tb is defined in Eq. 3.85. 

 

Relative permeability (Eqs. 3.94 and 3.95) is a function of the parameter u that is related to stress 

through fracture aperture (Eq. 3.88). The relationship between average fracture aperture and stress 

is described by the TPHM (Eq. 3.79). Relative permeability is also a function of Bmin or Bmax. For 

the non-wetting phase, the residual saturation can be determined using the following percolation 

procedure. Consider a horizontal fracture to be initially filled with a wetting phase. Then the largest 

apertures occupied by the wetting phase are replaced by a non-wetting phase step by step until a 

continuous non-wetting flow path is formed. The corresponding non-wetting phase saturation is the 

residual saturation. Since fracture aperture changes uniformly (Fig. 3.24), regions within a fracture 

that are occupied by a residual non-wetting phase remain the same under different stress conditions. 

In other words, Bmax follows: 

 

refref uuBB  max,max                                                                          (3.97) 

 

where the subscript ref refers to a reference condition under which related parameter values can be 

estimated from testing data. Applying a similar consideration to the wetting phase, that the smallest 

apertures initially occupied by the non-wetting phase are replaced by a wetting phase step by step 

until a continuous wetting flow path is formed, gives:  

 

 refref uuBB  min,min                                                                          (3.98) 

 

where the smallest value for Bmin is limited to being zero. Equation 3.98 is based on an argument 

that fracture regions containing a residual wetting phase (including fracture space that is closed as 

result of increasing stress) remain unchanged with changing stress. Unlike the non-wetting phase, 

the situation for the wetting phase is more complex, because the residual regions involve opening 

and closing fracture apertures with changing stress, which can considerably alter wetting-phase 

connectivity in some cases. Thus, Eq. 3.98 is considered to be a first-order approximation at this 

point. It is also useful to note that Bmin = 0 and Bmax =  correspond to zero residual saturations for 

wetting and non-wetting phases, respectively. As an example, Fig. 3.26 shows relative permeability 

curves for two stresses (or different u values), indicating considerable sensitivity to the stress 

change. 

 

So far the closed-form relationships between capillary pressure, saturation, and stress have been 

developed for two-phase flow in a horizontal fracture. The dependence of these relationships on 

stress is realized through parameter u that changes with stress. Unfortunately, testing data on the 

stress dependence of multiphase flow properties for fractures are very rare, if they even exist, in the 

literature. Liu et al. (2013) therefore evaluated these relationships for fractures that are not subject 

to mechanical deformation. Two aspects in this evaluation are of particular interest: (1) whether the 

relationships can satisfactorily represent experimental observations; and (2) whether a tortuosity 
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factor with the same m’ value (Eqs. 3.94 and 3.95) can be applied to different phases for different 

tests. As indicated in Chap. 2, the universal m’ value has been used in porous media (Brooks and 

Corey 1964). 

 

The data set of Chen and Horne (2006) is employed here for evaluating the theoretical results, 

because this data set, including information on the fracture-aperture PDF (Gaussian distribution), 

and the corresponding experimental procedures are very well documented (Liu et al. 2013). Chen 

and Horne (2006) conducted concurrent, steady-state, air-water flow experiments in horizontal 

fractures at the room temperature. The fractures for the experiments, with dimensions of around 35 

cm x 15 cm, were created by mounting a rough glass plate on top of a smooth aluminum plate, 

confined by a metal frame bolted to the bottom plate. All measurements were digitized 

automatically with a high-speed data acquisition system. Two fractures with distinct surface 

roughness, i.e., one is homogeneously rough (HR) and the other randomly rough (RR), were used in 

the tests; the former does not have correlation in spatial-aperture distribution and the latter does.  

Their test results show strong channelized flow behavior and they also reported relative 

permeability data as a function of water saturation for both the wetting phase (water) and the non-

wetting phase (air). Details of the data set and its collection procedure can be found in Chen and 

Horne (2006). Data for a smooth fracture were also reported in Chen and Horne (2006), but are not 

used in this study because all natural fractures are rough (Liu et al. 2013).  

 

 
Fig.3.26 Relationships between relative permeability and saturation for two different normal stresses with the dashed 

curve corresponding to a larger stress (Liu et al. 2013). The parameter values are:  u = 0.145 mm (for the solid curve) 

and 0.045 mm (for the dashed curve), Bmin = 0.13 mm (for the solid curve) and 0.03 mm (for the dashed curve), Bmax = 

0.165 mm (for the solid curve) and 0.065 mm (for the dashed curve), and δ = 0.03 mm (parameters as defined in the 

text) 

 

 

Figure 3.27 shows comparisons between the relative permeability data of Chen and Horne (2006) 

and results calculated from Eqs. 3.94 and 3.95 for two (RR and HR) fractures. Parameter values for 

u and δ are taken directly from Chen and Horne (2006). Values for parameters Bmin, Bmax, and m’ in 

Eqs. 3.94 to 3.96 are adjusted to achieve curve fitting.  In general, matches between calculated 

results and test data are reasonable, suggesting that the theoretical relationships can satisfactorily 
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represent the test data.  It is especially of interest to note that a single m’ value of 1.0 was used for 

both wetting and non-wetting phases for the two fractures. Note that m’ = 2 in the widely-used 

Brooks and Corey (1964) model that was developed for soils from Burdine’s (1953) model, which 

means that for a given saturation soils have smaller tortuosity-factor values than fractures. This 

makes sense physically, because flow paths are more tortuous in three-dimensional pore space for 

soils than in essentially two-dimensional fracture space. However, it is acknowledged that further 

evaluation of the relationships with more data sets, when they become available, is necessary to 

further confirm the result of m’ =1 for fractures (Liu et al. 2013). 
 

 
Fig.3.27 Comparisons between the relative permeability data reported in Chen and Horne (2006) (black squares and 

blue circles) and calculated results (solid curves) from Eqs. 3.94 and 3.95 for two fractures (Liu et al. 2013): (a) 

Homogeneously rough; and (b) Randomly rough. Parameter values are: (a) u = 0.145 mm, Bmin = 0.13 mm, Bmax = 

0.165 mm, and δ = 0.03 mm; (b) u = 0.24 mm, Bmin = 0.22 mm, Bmax = 0.28 mm, and δ = 0.05 mm (parameters as 

defined in the text) 



 165 

 

3.3.2 Internal Swelling Stress  

 

Fracture deformation becomes more complex for some subsurface media subject to swelling or 

shrinkage. For example, carbon dioxide (CO2) injected into deep, unminable coal seams can give 

rise to enhanced production of coal bed methane by displacing methane (CH4) from coal, but at the 

same time causes the swelling of coal as well. One key parameter for CO2 injection is coal 

permeability, because high coal permeability is required for sufficient and practical injectivity of 

CO2 into coal seams and for efficient recovery of CH4 (Cui et al. 2007). Note that coal is a fractured 

medium and its permeability mainly comes from fractures (cleats). Results from field and 

laboratory experiments indicate that coal permeability can change significantly as controlled by at 

least two distinct mechanisms (Harpalani and Zhao 1989; Palmer and Mansoori 1998; Mavor and 

Vaughn 1997; Robertson 2005; White et al. 2005; Lin et al. 2008). The first one is the gas pressure 

increase, which tends to mechanically open coal cleats (fractures) and thus enhance coal 

permeability. The second mechanism is the adsorption of CO2 into coals, which induces swelling in 

the coal matrix and thus reduces coal permeability by narrowing and even closing fracture (cleat) 

apertures.  

 

The other example is shale rock that swells (or shrinks) with increasing (or decreasing) water 

content. Shale rock has been considered worldwide as a rock type for geological disposal of high-

level nuclear waste. Recovery of natural gas from a shale gas reservoir with hydraulic fracturing 

also involves water-based fracturing fluid flowing from hydraulic fractures to surrounding shale 

rock matrix. Thus, rock swelling has important implications for these two applications related to 

shale formations.  

 

It is obvious that relationships between fracture deformation (and fracture properties) and rock 

matrix swelling are important for understanding and modeling coupled hydro-mechanical processes 

in all the examples mentioned above. In this subsection, we will present such a relationship for a 

rock involving swelling that is based on the TPHM and the concept of internal swelling stress (Liu 

and Rutqvist 2010; Liu et al. 2011).  

 

3.3.2.1 Effective Stress for Fractures Involving Rock Swelling 

It is relatively straightforward to deal with the effective stress for rock matrix involving swelling. 

The treatment is essentially the same as handling volume expansions of the rock matrix owing to 

temperature increases (e.g., Jaeger et al. 2007). However, some special consideration needs to be 

given to fractures when swelling processes are involved. The content of this subsection is based on 

the study of Liu and Rutqvist (2010). 

Based on Biot’s theory, the effective stress is defined as (Jaeger et al. 2007) 

 PBT         (3.99) 

where T is total stress, P is fluid pressure, and B is Biot’s coefficient of effective stress. Note that 

compressive stress is again considered positive here.  
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The traditional concept of effective stress (Eq. 3.99) cannot effectively describe the often observed 

changes in fracture permeability (aperture) with rock-matrix swelling. For example, let’s consider a 

rock containing an infinite fracture (generally assumed for modeling flow and transport in fractured 

rock). In this case, matrix swelling, based on Eq. 3.99, will not affect the effective stress under 

conditions of the constant confining (total) stress and pore pressure that are commonly used in 

laboratory measurements. In other words, one cannot relate matrix swelling and the resultant 

fracture-permeability changes to the effective stress defined in Eq. 3.99.  

In general, rock matrix blocks are not completely separated from each other by fractures. Fig. 3.28 

shows a simplified horizontal cross section of a rock (involving swelling) with two adjacent vertical 

fractures, separated by a matrix “bridge” that connects matrix blocks on the different sides of 

fractures. During matrix swelling, fractures are compressed, because they are weak and soft 

structures within the rock, and therefore an additional force (corresponding to stress I) will be 

imposed on the fractures. At the same time, the matrix bridge is subject to an additional force in the 

opposite direction to I.  If these two forces are completely balanced, fractures will be subject to this 

additional stress I, while confining stress remains unchanged. Because this stress largely results 

from internal structures (or the connectivity of matrix blocks) within the rock body and can be 

internally balanced under constant confining stress conditions, it is called “internal swelling stress”. 

In this case, the effective stress for fractures should be given as (Liu and Rutqvist 2010)  

 IBT P        (3.100) 

Note that I is positive for matrix swelling and negative for matrix shrinkage. The concept of 

“internal swelling stress” was first put forward by Liu and Rutqvist (2010) who derived a similar 

effective stress equation for coal seams associated with swelling. 

The concept of internal swelling stress implies that rock-matrix strain resulting from swelling (s) 

can be divided into two parts: 

       (3.101) 

where sI is the strain corresponding to the internal swelling stress, and sB is the strain contributing 

to the bulk strain in the fractured rock (involving swelling) generally measured in the laboratory. It 

is sI (a portion of s) that results in fracture permeability (or aperture) changes under constant 

confining stress conditions.  

The relationship between s and sI may be a complex function of matrix block connectivity within 

the rock and other relevant factors. As a first approximation, Liu and Rutqvist (2010) assumed the 

ratio between the two strains to be a constant: 

      (3.102-1) 

where f is a value between zero and one and can be determined from measurements. This treatment 

will be evaluated against laboratory test results and more studies may be needed to develop more 

rigorous relationships between f and other properties in the future. Based on Hooke’s Law, I  can 

be related to swelling strain by  

sIsBs  

ssI f 
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msI Kf                   (3.102-b) 

where Km is the bulk modulus for rock matrix and can be stress dependent.   

 

Fig. 3.28 A schematic description of internal swelling stress (Liu and Rutqvist 2010). The arrows I  correspond to 

stresses imposed on the left part of the rock as a result of swelling 

3.3.2.2 A Data Analysis 

This subsection demonstrates the usefulness of the internal swelling stress concept by comparing 

the theoretical results with selected laboratory measurements for a shale (or clay) rock. The content 

of this subsection is based on the study of Liu et al. (2011). 

Davy et al. (2007) reported on laboratory measurements of single fractures within macro-cracked 

Callovo-Oxfordian argillite samples subject to both confinement and water-induced swelling. The 

data set provides a unique opportunity to examine the proposed formulations for estimating fracture 

permeability as a function of effective stress that considers the effects of swelling.  

For water permeability tests, the experimental procedure was designed as follows (Davy et al. 2007). 

Apply an initial continuous fluid flow through the fracture, and then superimpose an additional 

pulse flow for permeability measurements made at each confining pressure level, either right after 

loading or after several hours at a given confining pressure (the total stress), or right after unloading. 

For all of the tests, a posteriori visual inspection of the water-permeability samples shows limited 

water penetration in the argillite sample bulk. Figure 3.29 shows the test procedure in terms of the 

changes in confining pressure and fracture closure for Sample 2 (Davy et al. 2007). Although water 

permeability measurements are provided for two samples (samples 2 and 5) in Davy et al. (2007), 

test results for Sample 2 are analyzed only in Liu et al. (2011), because Sample 2 is subject to a 

more complex test procedure (Fig 3.38).  For a given confining pressure, the fracture closure 

increases from point 1 to 2, which cannot be explained based on elastic deformation and is very 

likely due to water-induced plastic deformation at the beginning of the test. Therefore, the analysis 

focuses on data points after Point 2. Liu et al. (2011) also assumed elastic deformation in that data 

range—mainly justified by the fact that our analysis based on the elastic deformation seems to be 

able to explain the majority of experimental observations.  
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Fig. 3.29  Test procedure of water permeability measurement (in terms of confining pressure and fracture (crack) 

closure) for sample 2 of Davy et al. (2007) (Liu et al. 2011).  The numbers in the figure indicate the chronological order 

of points 

In Fig. 3.29, points 3, 4, 7, 10 and 14 correspond to the same confining pressure but different 

amounts of swelling (measured as the difference in crack closure between a given point and Point 

3). We believe that it is largely due to the transient behavior of water flow from fractures into the 

rock matrix. A longer time corresponds to a larger water penetration depth into the rock matrix near 

the fracture, and therefore to a larger rock volume involving swelling. Note that during the water 

permeability measurement, water was injected into the fracture. For simplicity, Liu et al. (2011) 

assumed that water penetration depth as a function of time can be estimated from Eq. 1.50 and 

Darcy’s law is approximately valid here. Under ponding conditions on the ground surface, Eq. 1.50 

indicates that the cumulative amount of water infiltrating into unsaturated soil with uniform initial 

water saturation is proportional to the square root of time. Consequently, if we view the fracture 

wall as the ground surface, then approximate the water penetration depth by the amount of 

accumulative infiltrating water (in depth) divided by the difference between saturated and initial 

water contents, and further assume that swelling within the water-penetrating zone is uniform and 

occurs simultaneously once water content is increased, then the total swelling, SW, will be 

proportional to water penetration depth, or 

 
2/1AtSW       (3.103) 

where A is a constant and t is time. The above equation (with A = 3.08E-2 mm/d
-1/2

) seems to fit 

observed swelling for Points 3, 4, 7, 10, and 14 (corresponding to different times) satisfactorily (Fig. 

3.30), indicating that the above reasoning is valid. Note that the observed crack-closure value in 

Davy et al. (2007) is a combination of rock swelling and the corresponding change in fracture 

aperture. However, as a result of the low water permeability of fracture, the fracture aperture value 
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(estimated from the cubic law) is negligibly small, only on the order of 1E-3 mm. Therefore, the 

swelling is approximated here by the observed crack closure.  

 

Fig. 3.30 Comparison of observed swellings for points (3, 4, 7, 10, and 14) with those calculated from Eq. 3.103 (solid 

curve) (Liu et al. 2011) 

Because fracture permeability is proportional to the cube of fracture aperture (Eq. 3.81), the fracture 

permeability k, based on the combination of Eqs. 3.79 and 3.81, is given by (Liu et al. 2011) 
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where is the permeability corresponding to . Assuming that the entire fracture aperture is 

“soft”, one has 
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Given the fact that shale or clay rock is generally viewed as soft rock, it seems logical to use Eq 

3.105 for fractures in clay rock. This is supported by a number of laboratory measurements that 

show linear relationships between the log of measured fracture permeability and stress (e.g., 

Blumling et al. 2007; Zhang and Rothfuchs 2008; Popp et al. 2008). However, data reported by 

Jobmann et al. (2010) seem to indicate that permeability relationships are better represented by a 

curve with additional contribution from the hard part. For simplicity, we focus on Eq. 3.105, which 

seems to be reasonable for most clay (shale) studies reported in the literature, while Eq. 3.104 may 

be employed for more general cases (Liu et al. 2011). 

0k 0b
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When confining and pore pressures are constant, fracture permeability purely due to swelling may 

be obtained from Eqs. 3.100 and 3.105 and given as 
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where k3 is the permeability at Point 3 and  is the difference in internal swelling pressure 

between a given point and Point 3. Using the definition of the internal swelling stress (Eq. 3.102) 

together with Eq. 3.103, the difference in internal swelling pressure is given as        
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where L is fracture spacing (approximated by the rock-sample’s radius in Davy et al. (2007)), and B 

is a constant. Combining  Eqs. 3.106 and 3.107 yields (Liu et al. 2011) 

                (3.108) 

Again, Eq. 3.108 fits fairly well the observations for the data points 3, 4, 7, 10 and 14 (in Fig. 3.29) 

that correspond to the same confining pressure, but different amounts of swelling (Fig. 3.31). 

 

 

Fig. 3.31 Match between observed values for (k/k3)
1/3

 for points (3, 4, 7, 10 and 14) with those calculated from Eq. 

3.108 (solid curve) (Liu et al. 2011) 
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Equation 3.108 is applicable only when confining pressure (or total stress) and the pore pressure of 

water in the fracture are constant. Pore pressure changes are negligible here in comparison with the 

much larger confining pressure in the water permeability experiments of Davy et al. (2007). This 

can be justified by the observation that fracture permeability changes are mainly determined by 

confining pressure and swelling (Davy et al. 2007).  

A more general permeability relationship (that considers the effects of both confining pressure and 

swelling) can be obtained by combining Eqs. 3.105, 3.100 and 3.108 (Liu et al. 2011):  
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The only unknown in the above equation is Kt,f which can be estimated from the permeability data 

as a function of both confining pressure and time (Davy et al. 2007). We are especially interested in 

whether Eq. 3.109 is sufficient to represent the data. The estimated (or fitted) Kt,f is 16 MPa that is 

generally consistent with the range of estimated Kt,f in Table 3.8. Fig. 3.32 shows a comparison 

between measured and estimated permeability values as a function of time. Note that for a given 

time in Fig. 3.32, there are two data points corresponding to the observed and estimated values, 

respectively. Given the complexity of the experimental processes, the agreement is remarkable, 

supporting the validity of the relevant constitutive relationships.  

To further examine the usefulness of our generalized effective stress (Eq. 3.100), Fig. 3.33 shows k 

as a function of effective stress difference (between a given point and Point #3) calculated by 

     

2/1

, BtK ftTIT                          (3.110) 

Based on Eqs. 3.100 and 3.105, log(k) is a linear function of the effective stress difference given in 

the above equation. Again, the agreement with data supports the theoretical results (Fig. 3.33). 

Finally, it is important to indicate that the creeping processes are ignored in the data analysis, based 

on the consideration that permeability changes due to creeping are not expected to be significant in 

the experiments of Davy et al. (2007). For example, the laboratory experiments of Jobmann et al. 

(2010) showed that over about 5 days, fracture permeability was reduced by 20% only for Opalinus 

clay. This permeability change is much smaller than those observed in the experiments of Davy et 

al. (2007) (Fig. 3.32), although Opalinus clay is softer than the Callovo-Oxfordian argillite rock 

studied in Davy et al. (2007) and therefore subject to a larger degree of creeping.    
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Fig. 3.32 Comparisons between observed and simulated fracture permeability changes as a function of time. The solid 

circles are measurements (Liu et al. 2011). The numbers in the figure have the same meaning as in Fig. 3.29 and each 

number here corresponds to a pair of measured and simulated values for a given time 

 

Fig. 3.33 Comparisons between observed and simulated relationships between log of permeability and the difference in 

effective stress defined in Eq 3.110. The points are measurements 
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3.4 Coupled Hydro-Mechanical Processes in a Dual-Continuum System 

 
The coupled hydro-mechanical process in fractured rocks, as previously indicated, is important for 

many energy development and environment management applications. Mechanical deformation of 

subsurface materials generally affects fluid flow within them because their hydraulic properties are 

dependent on the deformation. On the other hand, effective stress distribution is influenced by the 

flow process that determines the corresponding pore-pressure distribution. This section, based on 

the work of Liu and Rutqvist (2013), discusses modeling of the coupled hydro-mechanical process 

associated with multiphase flow in fractured rock.  

As indicated in Chap. 2, two major approaches are available in the literature for modeling flow and 

transport processes in fractured rocks: the discrete-fracture-network approach and the continuum 

approach. They differ in their manners to treat fracture networks in the model structure. The 

fracture-network approach explicitly considers individual fractures, their interaction with rock 

matrix, and flow process within them. Thus it often involves computational generation of synthetic 

fracture networks, based on observed fracture geometry data, and subsequent modeling of flow and 

transport in these networks. This approach is useful for detailed studies of small-scale flow 

processes and for dealing with situations where flow process is dominated by a small number of 

fractures or features (e.g., faults). However, it does have some limitations for practical applications. 

For example, it is very computationally intensive if all the individual fractures are considered for a 

large-scale problem. Furthermore, significant uncertainties exist in determining fracture geometry, 

fracture spatial distribution, and the associated flow properties, which may make the corresponding 

simulation results not very meaningful in some cases.  

The continuum approach is essentially an upscaling approach and focuses on processes at a scale 

much larger than a typical length of fractures under consideration. Below that scale, fractures are 

considered to be sufficiently ubiquitous and distributed in such a way that they can be meaningfully 

described statistically (Barenblatt and Zheltov 1960; Warren and Root 1963). Thus, the continuum 

approach is a large-scale approach and based on a reasoning that large-scale processes may not 

depend on specific details of fracture geometry and distribution in space.  In this case, connected 

fractures and rock matrix are viewed as two or more overlapping interacting continua and the 

continuum-mechanics formulations can be used to describe flow and transport in each continuum. 

Coupling of the processes between different continua is determined by their interaction mechanisms 

at a subgrid scale. Because the continuum approach is relatively simple and straightforward to 

implement, it is preferred for many applications encountered in practice (National Research Council 

1996). Note that the above discussion about the fracture-network approach and the continuum 

approach is applicable to the mechanical deformation process as well.    

The most commonly used continuum approach is the so-called dual continuum approach in which 

fracture and rock-matrix are treated as two overlapping continua. While the dual-continuum 

approach was initially developed for modeling flow process and has been widely used in the 

literature for both single-phase and multiphase flow systems (e.g., Barenblatt and Zheltov 1960; 

Warren and Root 1963; Kazemi and Gilman 1993; Liu et al. 1998), considerable effort has  been 

made with respect to modeling mechanical deformation processes and their coupling with flow 

processes in fractured rock (e.g., Wilson and Aifantis 1982; Bai et al. 1993; Berryman and Wang 

1995). These latter studies generally demonstrate the importance of dual-continuum behavior in 

flow and mechanical deformation processes resulting from dramatic differences between fracture 
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and matrix (hydraulic and mechanical) properties. This section introduces the work of Liu and 

Rutqvist (2013) that is based on the TPHM and the dual-continuum approach. Considering that 

micro-fractures (and the alike) play an important role in the development of the TPHM, it may be 

useful to emphasize the difference between micro-fractures and the fractures mentioned here. It is 

relevant at least for some readers, given the fact that fractures exist at different scales. In general, 

micro-fractures are small fractures with a typical length on the order of micro meters and fractures 

correspond to those that we can see with our eyes from the surface of a fractured rock.   

As noted by Liu and Rutqvist (2013), most of the previous studies of coupled hydro-mechanical 

processes in dual continuum systems are associated with single-phase flow process (e.g., Wilson 

and Aifantis 1982; Bai et al. 1993; Berryman and Wang 1995). Multiphase flow systems are 

generally more complex, because flow properties (such as permeability) depend on both stress and 

fluid saturations of different phases. To the best of our knowledge, Liu and Rutqvist (2013) 

reported one of the very few studies in the literature on modeling coupled hydro-mechanical 

processes in dual-continuum systems associated with multiphase flow process.   

In commonly used coupled hydro-mechanical models (codes), as reviewed in Rutqvist et al. (2001), 

the coupling between hydraulic and mechanical deformation processes is implemented mainly 

through the mass conservations of the fluid component and solid phase. When fluid flow is of the 

most interest, it is more straightforward to study the coupling between fluid flow and rock 

deformation through a governing equation that focuses on the evolution of pore space (rather than 

solid phase) during the deformation, because fluid flow occurs in pore spaces (or within fractures). 

Liu and Rutqvist (2013) provided a derivation of such a governing equation that will be discussed 

later.  

There are two numerical methods for modeling coupled hydro-mechanical processes, as discussed 

in a number of studies on single continuum systems (e.g., Settari and Mourits 1998; Settari and 

Walters 2001, Rutqvist et al. 2002; Mainguy and Longuemare 2002). One is called a “fully” 

coupled method that directly solves governing equations for the coupled processes within an 

individual code. The other is a “partially” coupled method that uses a conventional reservoir 

simulator in conjunction with a geomechanical simulator, and information exchanges between the 

two simulators. Both methods can accurately solve coupled hydro-mechanical processes. In 

addition to its ease of implementation, the latter method can take advantage of the fact that powerful 

and sophisticated simulators are available in both areas and their capabilities have kept expanding. 

(Studies on how to achieve numerically stable solutions to problems using the “partially” coupled 

method for flow and mechanical processes are also reported by Armero and Simo (1992), Armero 

(1999), Wheeler and Gai (2007) and Zienkiewicz et al. (1988).) Nevertheless, both methods require 

the development of formulations for coupled processes such that they allow for accurate 

information exchange between flow and mechanical deformation processes. This section will 

present the formulations (governing equations and constitutive relationships) for coupled hydro-

mechanical processes associated with multiphase flow in deformable fractured rock (Liu and 

Rutqvist  2013). 

3.4.1 Governing Equations 

Governing equations, generally in a form of differential equations, are mathematical expressions of 

basic physical laws, such as mass balance and energy conservation. The governing equations for the 
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coupled hydro-mechanical processes are based on mass conservation of fluid and solid phases 

(Rutqvist et al. 2001). This subsection derives an equation for the evolution of pore space during 

deformation, and then presents fluid mass balance equations for a dual-continuum system (Liu and 

Rutqvist  2013).  

3.4.1.1 Pore-Space Evolution 

Pore-space evolution refers to the pore-space change, as a function of time, within a control volume 

(Vc) with fixed boundaries in the deformed rock body. For simplicity, the rock is assumed to be 

homogeneous and isotropic. The pore-space evolution process can be described by that the increase 

in pore space (storage term) for the rock body within the control volume during a unit time is equal 

to the summation of net pore-space flux into the control volume due to solid flow (advection term) 

and local expansion of pore space (expansion term) within the control volume during that unit time. 

It is easy to show that the storage and advection terms are 

 
t

V jc



 

  and 
 jsjcV ,v

, respectively, 

where j is porosity for continuum j and defined as the ratio of pore volume for that continuum to 

the total (bulk) volume of rock body (including all the continua), t is  time, and  vs is the solid 

velocity vector.  A useful way to understand the above two terms is to consider the pore space to be 

a flowing fluid with a density of j and a velocity of  vs. If some readers cannot directly obtain the 

terms based on the similarity to fluid flow, they are encouraged to check the terms by deriving them 

for a relatively simple one-dimensional system.    

The pore space evolution equation that describes the pore evolution process consists of storage, 

expansion and advection terms and will be presented later. While the storage and advection terms 

are given above, the rest of this subsection is to derive an expression for the expansion term in order 

to obtain the pore space evolution equation. During the following derivation, the small strain 

assumption, following Liu and Rutqvist (2013), will be used for simplicity. However, the derivation 

procedure can be extended to a more general case.     

Liu and Rutqvist (2013) derived the expansion term from bulk volume change and solid-phase 

volume change for a unit rock volume. Using the definition of strain, bulk-volume change is given 

as 

  jvjj dVdV ,,0 
                                 (j = f, m)                                              (3.111) 

where V is the bulk rock volume, V0 is the rock volume under the zero stress condition, and v is the 

volumetric strain that is considered positive for expansion in this section. (Readers should keep in 

mind that in Sect. 3.4 the positive directions for both volumetric strain and stress are opposite to 

those in the other sections of this chapter such that the volumetric strain and porosity change have 

the same positive direction here (Liu and Rutqvist 2013).) The subscripts f and m refer to the 

fracture and matrix continuum, respectively. Similarly, solid volume change can be expressed as 

jsjsjs dVdV ,,, 
                                                                                             (3.112) 
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where subscript s refers to the solid phase here. Using definitions of the solid and bulk rock 

volumes, respectively, one can obtain 

 
  jjjs VV ,0, 1 

                                                                                 (3.113) 

Hooke’s Law further gives 

                                                                                      (3.114) 

and 

                                                                                       (3.115)  

where  s,j and Ks,j are the (average) normal stresses acting on the solid phase and solid-phase 

modulus for the continuum j, respectively. The variables j and Kj are respective (average) effective 

stress and bulk modulus for the continuum j. Considering that effective stress is defined with 

respect to the bulk rock body (including both solid phase and pore space), one can relate it to s,j by  

                                                        (3.116) 

where  Pj and are the pore pressure and Biot’s coefficient, respectively, in the 

continuum j. The above equation is derived from the relation

   
jjjjsjjjjjjsjjjjtj PPPP )(11 ,,,  
, where jt ,

is the total stress 

for continuum j. Differentiating the above relation, while ignoring the porosity change (small strain 

assumption) yields Eq. 3.116. 

Combining Eqs. 3.111 through 3.116 results in the following expansion term 
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where   
c

j

j
V

V ,0


 is the volume fraction of jth continuum (in the control volume) under the 

unstressed condition, and the volume difference Vj-Vs,j is equal to the pore volume for that 

continuum within the control volume. 

Based on the obtained mathematical expressions for all three terms (storage, advection and 

expansion), the pore-space evolution equation can be given as (Liu and Rutqvist 2013) 
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It establishes the fundamental relationship among porosity, solid-phase flow and local volumetric 

strain during rock deformation processes. While the derivation has focused on a homogeneous and 

isotropic rock body, it can be extended to more complex situations.  Note that a solid phase for the 

fracture continuum does not exist because a fracture continuum consists of fracture voids only. 

Thus a consideration of solid-phase volume change is not required for deriving a pore-space 

expansion term for the fracture continuum. Accordingly, Biot’s coefficient (f) should be equal to 

one (Berryman and Wang 1995). In other words, the use of f =1 in the above equation gives the 

correct result for the fracture continuum.  

3.4.1.2 Fluid Mass Conservation 

Fluid mass conservation equations are the governing equations for modeling flow processes. In its 

general form, a fluid mass conservation equation for multiphase flow is given as (e.g, Olivella et al. 

1994; Pruess 1991;  Rutqvist et al. 2001; Liu and Rutqvist 2013) 

                                                                                         (3.119) 

where is the fluid mass with jth  continuum per unit control volume of  fractured rock, 

superscript k is the fluid component (such as water, air, or CO2), subscript  is the phases (gas, 

liquid, or solid). The symbol  represents fluid flux (within the jth continuum) with respect to 

the spatial reference system, and  
k

jQ ,  is the production rate of component k per unit volume. The 

above equation simply states that for a given fluid component in a given phase and continuum, the 

rate of increase in its mass within a control volume is equal to a combination of the net fluid flux 

into the control volume and the production rate within it.  

In Eq. 3.119, the mass  and mass flux  can be expressed as 

                                                                          (3.120) 

and 
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where is the phase saturation for the jth continuum, is mass of the fluid component k per 

unit volume of the phase,   sv
 again is the solid velocity, and   is  fluid flux relative to the solid.  

The relative velocity is defined by  
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  jsjrj ,,, vvv                                                                          (3.122) 

where  ,jv
is the velocity of the fluid phase with respect to a fixed reference system.  

As demonstrated in Chap. 1, Darcy’s law describes fluid flow when solid phase is fixed. When the 

solid phase involves deformation, it should be applied to describe , rather than . As a result, 

we need to derive the fluid mass balance equation in terms of  that is generally used in 

reservoir simulators for modeling multiphase flow within rigid media. Combining Eqs. 3.119 to 

3.122 yields 
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Expanding the third term in the above equation and using the pore-space evolution equation (Eq. 

3.118) gives 
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Note that we ignore the small term  
 k

jjjsj S   ,,, v
 (owing to small strain or small solid 

velocity) in the above derivation. Inserting Eq. 3.124 into Eq. 3.123 results in the final form of the 

fluid mass-balance equation of Liu and Rutqvist (2013): 

        (3.125) 

The third term in Eq. 3.125 is an additional term owing to mechanical deformation, as compared 

with the fluid mass balance equations commonly used in reservoir simulators without considering 

the effect of mechanical deformation (e.g., Pruess 1991). The relative importance of this term, 

which will be evaluated in a sensitivity study to be discussed later, determines whether the term 

needs to be included for modeling coupled hydro-mechanical processes.  

Equation 3.125 can be further simplified in some special cases. For example, when solid phase is 

incompressible, the corresponding Biot’s coefficient (j) is equal to one. Biot’s coefficient 

characterizes the degree of coupling between hydraulic and mechanical processes. A larger Biot’s 

coefficient corresponds to a larger degree of coupling. For a zero value of the Biot’s coefficient, 

hydraulic and mechanical processes are not coupled, but rather remain independent. A simple 

relationship between volumetric strain and porosity can be obtained for j = 1.  

For a fractured rock with an incompressible solid phase, one has 
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where superscript p again refers to pore space. By definition, porosity can be related to pore volume 

Vp,j by 
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Combining Eqs. 3.126 and 3.127 and using  
1

0


V

V
(owing to small strain) yields 

                                                                    (3.128) 

where   
0V

dV
d v 

is total volumetric strain for bulk fractured rock (including both fracture and 

matrix continua). Applying the procedure to derive Eq. 3.128 to the bulk rock body, one can obtain: 

                                                                                 (3.129) 

where  is the total porosity for fractured rock.  Based on the above two equations, Eq. 3.125 can be 

simplified to (Liu and Rutqvist 2013) 

                                 (3.130) 

Note that the third term (the additional storage term) on the left hand side of the above equation is 

actually dependent on the total porosity, rather than the porosity of the corresponding continuum.  

3.4.1.3 Momentum Conservation   

The momentum-conservation equation is a fundamental relation used for simulating rock 

deformation processes. While details regarding derivation of this equation are available in the 

literature (e.g., Jaeger et al. 2007; Fjær et al. 2008), it is presented here just for the sake of 

completeness. In the absence of an inertia term (commonly assumed for modeling coupled hydro-

mechanical processes), the momentum conservation can be expressed as (Rutqvist et al. 2001) 

0 gσ bT 
                                                                       (3.131)       

where Tσ is the total stress tensor, g is the acceleration vector for gravity, and b is the bulk density 

including contributions from both fluid and solid phases. 
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3.4.2 Constitutive Relationships 

In addition to the governing equations, constitutive relationships (between hydraulic parameters, 

mechanical parameters, and related variables) are needed for modeling the coupled hydro-

mechanical process. While constitutive relationships for uncoupled hydraulic and mechanical 

processes have been very well documented in the literature (e.g., Pruess 2001; Jaeger et al. 2007), 

this subsection presents the TPHM-based relationships for the coupled hydro-mechanical process in 

a dual-continuum system (Liu and Rutqvist 2013). 

3.4.2.1 Stress-Dependent Hydraulic Properties  

The coupling between hydraulic and mechanical processes is largely determined by the stress 

dependence of hydraulic properties, which is closely related to the stress-strain relationships in 

fractured rock.  Based on Eq. 3.28, the bulk modulus Kj for the jth continuum is given by 

                                                             (3.132) 

where subscripts 0, e, and t again denote the unstressed state, the hard part and the soft part, 

respectively, for a rock body, and  Ke and Kt refer to bulk moduli for the two parts. The constants 

 and  represent volumetric fractions of the hard and soft parts under the unstressed condition 

( ).  

The stress-dependent matrix porosity is given by Eq. 3.26 or Eq. 3.27. Once the matrix porosity is 

known for a given stress, matrix permeability can be estimated through the relations between 

permeability and porosity (Sect. 3.2.2.4).   

The relationship for the stress-dependence of fracture aperture (for a single fracture) (Eq. 3.79) 

allows for relating fracture aperture b (and fracture porosity) to the effective normal stress by  

                          (3.133) 

In the above equation, the stress-dependent behavior of fracture aperture is controlled by the second 

term at a low stress and the first term at a high stress on the right hand side. There is a considerable 

amount of laboratory data indicating that fracture closure (or fracture aperture) remains practically 

unchanged at high stress (e.g., Goodman 1976; Barton et al. 1985). This is equivalent to saying that 

in practice the following condition holds: 

                                                                                (3.134) 

In this case, Eq. 3.133 can be reduced to (Liu and Rutqvist 2013): 
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                                           (3.135) 

Then stress-dependence of fracture permeability can be estimated by the cubic law that states that 

fracture permeability is proportional to the cube of the fracture aperture (a function of stress), as 

discussed in Sect. 3.3.1.1. However, Eqs. 3.133 to 3.135 are developed by considering normal stress 

only and should be used when fracture planes are perpendicular to principal stresses.  

Note that Liu and Rutqvist (2013) do not yet consider the stress-dependent multiphase flow 

properties, such as capillary pressure and relative permeability. The stress dependence of these 

multiphase flow properties is already discussed in detail in Sect. 3.3 and may be combined with the 

work of Liu and Rutqvist (2013) for future studies.  

3.4.2.2 Effective Parameters for Dual Continua 

A geomechanical simulator generally models bulk deformation (including both fractures and rock 

matrix). When the “partially” coupled method is used, it is necessary to develop expressions of 

effective parameters for such a dual-continuum system such that appropriate information transfer 

can occur between geomechanical and reservoir simulators. 

One important parameter for modeling the coupled hydro-mechanical process is the effective stress 

that depends on both total normal stress, T , and fluid pressure. For a dual-continuum system under 

hydrostatic stress conditions (with the total stress assumed to be the same in both continua as a 

requirement for continuity of stress), one has 
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Combining Eqs. 2.136 to 2.138, Liu and Rutqvist (2013) obtained the effective modulus Keff and 

stress for a dual-continuum system given by 
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Effective parameters (Eqs. 3.139 and 3.140) are directly used in a geomechnical simulator to model 

deformation processes. Equation 3.140 is reduced to Eq. 3.99 for a single continuum system with 

,0 f   
1m , and meff KK 

. (Note that Eqs. 3.99 and 3.140 have the opposite positive 

directions for the stress.) Thus, Eq. 3.140 can be considered to be a generalization of its counterpart 

for the single continuum (Eq. 3.99). 

As previously indicated, Eqs. 3.139 and 3.140 are developed under the uniform stress condition. 

The same condition has also been used in previous studies of dual-continuum mechanical behavior 

(e.g., Berryman and Wang 1995). Consequently, the results here are essentially identical to those 

reported in Berryman and Wang (1995). When the total stress is direction dependent, effective 

stress σeff in a principal-stress direction is calculated using the total stress in that direction.  On the 

other hand, Eqs. 3.139 and 3.140 are developed by considering normal stress only and therefore  

valid when fracture planes are perpendicular to principal stresses. More studies are needed for 

developing rigorous approaches to dealing with more complex fracture networks.  

The simulation procedure for the “partially” coupled method, using formulations presented in Sect. 

3.4, can be briefly described as follows. For an assumed pressure distribution, effective parameters 

are calculated with Eqs. 3.139 and 3.140. Then, the corresponding geomechanical simulator is run 

to obtain distributions for stresses and strains. Effective stresses and strains for the two continua are 

evaluated using Eqs. 3.136, 3.137 and 3.140. The stress-dependent hydraulic properties are updated 

using relationships described in Sect. 3.4.2.1. The fluid mass balance equations are solved using a 

reservoir simulator with updated parameters to obtain flow fields and fluid pressure distributions. 

With the new pressure distributions, effective parameters are updated and the corresponding 

geomechanical simulator is rerun. This iteration procedure continues until convergence is achieved 

for a given time step.    

3.4.3 An Application to In Salah CO2 Injection Project 

CO2 geological sequestration is a technique for the long-term storage of CO2 in deep geological 

formations to mitigate or defer global warming; the CO2 (stored by the technique) is either 

removed from the atmosphere or other sources that otherwise would release the CO2  into the 

atmosphere. The technique involves injection of supercritical CO2 into a deep formation that 

disturbs the ambient pore pressure distribution there and induces effective stress changes. As a 

result, the coupled hydro-mechanical process plays an important role in almost all the CO2 

geological sequestration projects.    

Sections 3.4.1 and 3.4.2 present a systematic approach to modeling coupled hydro-mechanical 

process in a dual-continuum system. In this subsection, we demonstrate usefulness of the approach 

by showing the consistence between modeling results with data from a CO2 injection test that is 

part of the In Salah Project. The In Salah Project, located in the central region of Algeria, is the 

world’s first on-shore industrial scale CO2 storage project. Natural gas produced from the area is 

high in CO2 and that CO2 is being returned to the earth for geological storage. Nearly one million 

tonnes of CO2 per year has been injected since August 2004 into relatively low-permeability, 20 m 
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thick, water-filled carboniferous sandstone at a depth of about 1,800 to 1,900 m, around the 

Krechba gas field (Fig. 3.34). To ensure adequate CO2 flow-rates across the low-permeability sand-

face, the In Salah Gas Project decided to use long-reach (about 1 to 1.5 km) horizontal injection 

wells (Wright 2008). The storage formation is an excellent analogue for much of North-West 

Europe and the U.S. Midwestern region, where large CO2-storage will be required if CO2 capture 

and geological storage is to make a significant contribution to addressing CO2 emissions. The 

formation where CO2 injection has occurred is known to contain well-connected fractures. 

Based on the dual-continuum approach presented in Sects. 3.4.1 and 3.4.2, Liu and Rutqvist (2013) 

developed a numerical model of CO2 injection for the In Salah Gas project. To the best of our 

knowledge, the work probably represents the first effort to use a dual-continuum approach for 

modeling coupled processes in a CO2 sequestration problem. It is also important to emphasize that 

the focus of the model is on evaluating the relative importance of the additional storage term in Eq. 

3.224, rather than on the detailed hydro-mechanical processes involved in the CO2 geological 

sequestration of the In Salah Gas project. 

 
 

Fig. 3.34 A schematic cross section of In Salah site
 

Because the formation for the CO2 injection is relatively thin (20 m thick), a two-dimensional fine-

grid model was developed to represent this formation (Fig. 3.35). Each gridblock contains a fracture 

and a matrix element. Fluid flow occurs through fractures and between fractures and the rock 

matrix.  Relatively small grid spacing (20 m) is employed near the injection well, and constant-

pressure boundary conditions were used on the four sides of the model domain. The model domain 

includes the gas reservoir treated as a constant-pressure body. This is justified because pressure in 

the gas reservoir is not expected to change dramatically during the period of CO2 injection as a 

result of the large volume of the gas reservoir. Hydraulic and mechanical properties are determined 

from laboratory and field measurements. The matrix porosity (e,m) and permeability are 17% and 5 

md, respectively, and the matrix bulk modulus is 9 GPa. Fracture properties are calibrated using 

well-injection data (to be discussed later), while the matrix properties remain fixed during 

calibration, given that reliable laboratory measurements are available for these parameters. 
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Fig. 3.35 The two-dimensional numerical grid. The injection well is located in the center of the grid (Liu and Rutqvist, 

2013) 

 

 

 

For this simplified two-dimensional model for the injection formation, Liu and Rutqvist (2013) 

further assumed the total stress to be unchanged during CO2 injection processes. In this case, 

changes in effective stress are totally determined by changes in fluid pressure. A recent study seems 

to indicate that this assumption may be reasonable for determining a first-order estimation of 

maximum sustainable injection pressure (associated with CO2 geological sequestration), although a 

more accurate consideration of coupling between fluid flow and geomechanical processes is 

desirable (Liu and Rutqvist 2013). Note that this assumption will eliminate the need to directly 

couple the reservoir simulator with a geomechanical simulator, as long as the reservoir simulator 

incorporates the new governing equation for fluid flow (e.g., Eq. 3.124) and stress-dependent 

hydraulic properties. The reservoir simulator TOUGH2 (Pruess 1991) was used in this study. 

TOUGH2 is a general numerical simulator for flow and transport in porous and fractured media and 

includes a module (ECO2N) specifically developed for modeling CO2 geological sequestration in 

deep aquifers. In the study of Liu and Rutqvist (2013), TOUGH2 is modified to consider the 

additional storage term in the governing equation for fluid flow and stress dependence of hydraulic 

properties.    
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Fig. 3.36 Comparison between simulated and observed pressure differences (Liu and Rutqvist 2013) 

  
Fig. 3.37 The measured injection rates at the injection well. The dashed line is used in modeling study as an 

approximation of injection rate data (Liu and Rutqvist 2013) 

 

The numerical model is calibrated against wellhead pressure (WHP) data observed from the In 

Salah Project site (Fig. 3.36). The pressure difference in Fig. 3.36 is defined as the difference 

between WHP and its value corresponding to the zero injection. In this part of the study, Liu and 

Rutqvist (2013) considered this difference to be the same as bottom hole pressure (BHP) difference.  

The measured flow rates at the injection well are given in Fig. 3.37. During model calibration, the 
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measured flow rates are approximated by a step function (Fig. 3.37) because the data is subject to a 

large-degree of temporal fluctuation. The calibrated parameters are fracture permeability under the 

ambient condition and the mechanical properties given in Eq. 3.135.  In general, injection pressure 

data before 200 days are used for determining ambient fracture permeability, because stress-

dependent behavior becomes more pronounced for high-pressure differences at later time. 

Calibrated fracture permeabilities are 35 md and 7 md, respectively, in the y and x directions (Fig. 

3.35). During the calibration, the permeability ratio of 5 is assigned, and fracture porosity under 

ambient conditions is assumed to be 1%.  Calibrated fracture mechanical properties (Eq. 3.135) are 

 and Kt,f = 3 MPa and consistent with the fracture property values given in Sect. 3.2. The 

calibration results capture the observed pressure changes (Fig. 3.36). 

 

 
Fig. 3.38 Simulated injection pressures with and without considering the new storage term in the governing equation for 

fluid flow (Eq. 3.130) (Liu and Rutqvist 2013) 

 

 

The calibrated model is then used for predicting injection pressure (at the injection well) as a 

function of time. The injection rate is assumed to be constant for the next 20 years and the same as 

the injection rate averaged over the last 100 days of the time period used for model calibration (Fig. 

3.45). After 20 years, injection stops.  The simulated injection pressures are presented in Fig. 3.38. 

Pressure initially increases and then decreases with the spreading of CO2 plume. This pressure 

decrease is largely caused by the impact of the gas reservoir located on the left side of the injection 

well under consideration, and about 500 m away (in the x direction) from the well. When the CO2 
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plume approaches the gas reservoir, the pressure increase can be significantly adsorbed by the gas 

reservoir that is assumed to have a constant pressure during the CO2 geological sequestration period.    

 

Note that simulated results with and without considering the storage term (in Eq. 3.130) are almost 

identical, suggesting that this new term has little effect on simulated fluid flow processes for this 

particular problem. Liu and Rutqvist (2013) examined this issue for a number of simulation 

scenarios and obtained similar comparison results. One particular scenario is that the matrix 

porosity decreases by 70% and injection rate increases by 100%, as compared with those used for 

generating simulation results in Fig. 3.38.  These parameter changes are expected to enhance the 

coupling between fluid flow and mechanical deformation for the fracture continuum, but still result 

in negligible differences between simulation results. However, more studies for different systems 

are needed to further confirm this finding, while the additional storage term can be easily 

incorporated into the currently existing reservoir simulators. 

 

3.5 A Case Study: The Use of the TPHM to Model a Mine-by Test at Mont Terri Site, 

Switzerland  

 

Shale has been considered as a potential host rock for geological disposal of high-level radioactive 

waste in several countries, as mentioned in Sect. 1.7.1. The key technical issue associated with a 

shale repository is the formation and evolution of the excavation damaged zone (EDZ) around 

repository, because the EDZ has higher permeability than intact rock, as a result of excavation-

induced fractures, and therefore may act as the fast path for the leakage of the nuclear waste 

contaminations (Tsang et al. 2012). The mine-by (MB) test is a field-scale test conducted at the 

Mont Terri underground rock laboratory near the town of St. Ursanne in the Jura Mountains of 

northwestern Switzerland. The test objectives include investigating the EDZ behavior and the 

associated coupled hydro-mechanical processes in the Opalinus Clay during the excavation (Bossart 

and Thury 2007; Vietor 2011). MB test data sets provide a unique opportunity for validating 

numerical models. As a case study, this section briefly introduces the MB test and presents 

comparisons between simulation results and field measured data from the MB test (Bossart and 

Thury 2007) to demonstrate the TPHM’s capability to predict the dynamic hydro-mechanical 

properties of the rock mass around the excavation. This section is mainly based on the work of Li et 

al. (2014).  

 

 

3.5.1 Mine-by (MB) Test at the Mont Terri Site and Numerical Model 

 

The layout of the Mont Terri rock laboratory is shown in Fig. 3.39. Gallery 98 is the first dedicated 

research gallery there and was excavated in 1998. It was then extended in 2004 and the extension is 

called Gallery 04. The Mont Terri laboratory was expanded, at the end of 2006, by adding another 

gallery (called Gallery 08) of 165 m in length and 4 niches (called MB niches numbered 1 through 

4) whose plan view is shown in Fig. 3.40(a). An experiment team from several international 

organizations interested in shale repository, including Nagra, Andra, GRS, BRG, and Obayashi, 

took the opportunity to set up the MB test to investigate the deformation and the coupled hydro-

mechanical behavior of the Opalinus Clay around bedding-parallel excavations (Bossart and Thury 

2007; Vietor 2011). Sensors of different types were installed around MB Niche 2 (as shown in Fig. 

40(b)), before it was drilled, to capture the hydraulic and mechanical effects of the excavation 
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(Vietor 2011). The test focus was on acquiring data on the deformation and pressure evolution in 

the near field of MB Niche 2. The collected data sets are then used for improving the understanding 

of the processes leading to permanent damage of the clay rock and for model development and 

validation.  

 

The main concern of this case study is the near-field responses around MB niche 2, including the 

deformation and hydraulic response to the excavation. As a 24 m long dead-end side niche of 

Gallery 08 with a diameter of 4.5 m, MB niche 2 was excavated from October 13
th

 to November 7th 

in 2008 by a road header. Anchors and light shotcrete were chosen as permanent support (as shown 

in Fig. 3.41). To make sure that the test results are applicable, as much as possible, to a high-level 

waste emplacement tunnel, the niche was constructed in a similar manner for constructing the waste 

tunnel using the circular geometry of the niche section, small deviations from intended face 

geometry (vertical, without rounded corners), a constant excavation rate of 1.3 m/day with small 

variations, full-face excavation, and the same activity pattern every day. The resulting data are 

available for comparisons with modeling results for the niche deformation and the associated 

hydro-mechanical coupled processes during the excavation. 
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(a) 

 
(b) 

Fig.3.39 The layout of the Mont Terri rock laboratory, (a) vertical cross-section of the Mont Terri anticline along the 

motorway tunnel, and (b) the general view of the layout of the Mont Terri rock laboratory (Bossart and Thury 2007) 

(Reproduced by permission of Swiss Geological Survey at Swisstopo) 
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 (a) 

 
 (b) 

Fig.3.40 The layout of MB Niche 2, (a) Gallery 08 and MB Niche 2 as planned (status Nov 2008) and (b) the 

instrumentation near MB Niche2 (Vietor 2011) (Reproduced by permission of Nagra) 

 

MB Niche2 

Gallery 08 

Gallery 08 

MB Niche2 
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(a)                            (b) 

Fig.3.41 MB Niche 2 in construction: (a) the excavation advancing face, and (b) the view of the niche after 

reinforcement with shotcrete (Vietor 2011) (Reproduced by permission of Nagra) 

 

 

The excavation chronology of MB niche 2 is shown in Fig. 3.42. The total excavation period lasted 

over four weeks. For each sequential excavation and support step, support measures were usually 

installed in the morning, followed by renewed excavation in the afternoon. The pore pressure and 

deformation around the niche were monitored at selected locations with sensors (Fig. 3.40(b)). This 

excavation chronology is incorporated in the model study discussed in this section. 

 

 
 

Fig.3.42 The excavation chronology of MB niche2 (Li et al. 2014) (Reproduced by permission of Elsevier) 

 

The geomechanical simulator, FLAC3D code (Itasca Consulting Group, 2005) was used for all the 

numerical simulations for the case study. The TPHM was implemented into FLAC3D as the 

constitutive model here (Sect. 3.2.5). As previously indicated, the simulation results are compared 

with data sets from the MB tests, including a dataset of changes in pore pressure as a function of 

time at selected locations around the niche. Change in pore pressure, P, is related to change in 

volumetric fluid content and volumetric strain, , by (Jaeger et al. 2007): 

 

v
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where  is the variation in fluid content or variation in fluid volume per unit volume of porous 

material due to diffusive fluid mass transport, as introduced by Biot (1956), and MB is Biot’s 

modulus. The above equation is derived based on the water mass balance.  

 

For a porous material, the Biot’s modulus, MB, is related to the fluid bulk modulus flK  (Jaeger et al. 

2007): 
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where again  is the porosity and Kss is the bulk modulus of solid skeleton. Within the TPHM 

framework, the relationship between the porosity and principal stresses (Eq. 3.59) contains the 

compressibility for the hard fraction of pore volume,
 

 , that is selected as 2.0×10
-9

 Pa
-1

 here 

(Nagra 2002). The impact of porosity change on permeability change is small for this case study 

and thus not considered for modeling the MB test. Also, the long-term response (creep or delayed 

plastic response) was not considered either in the model development, given the fact that the MB 

experiment only lasted a relatively short time period (Li et al. 2014). 
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(a) the model mesh 

 

 
(b) a section plane along Y-axis 

 
Fig.3.43 The mesh of the numerical model  

 

 

The FLAC3D grid for MB niche 2, with a total of 100,256 zones (grid cells), is shown in Fig. 3.43 

and has dimensions 40 m × 46 m × 44 m. Located in the center of the model is the MB niche 2 that 

is represented by a 24 m long tunnel. The longitudinal axis of the niche is located 22.0 m below the 

upper surface of the model. A system of coordinate axes is defined with the origin at the center of 

the tunnel, the z-axis in the upward direction and the y-axis along the axis of the niche. The inputs 

into the numerical model include hydraulic and mechanical properties for the rock formation and 

related components of the tunnel and also include operation parameters related to the excavation 

process, such as the excavation chronology. MB tests were conducted in the Opalinus Clay 

formation.  Because Opalinus Clay is of interest as both a potential host formation for the 

radioactive waste repository and a formation through which new transportation tunnels have been 

constructed, a number of experimental investigations regarding values for hydraulic and mechanical 

parameters (obtained from laboratory experiments and field research) have been published by 

22m 
24m 
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different groups (Corkum and Martin 2007b; Zhang et al. 2008; Bock 2009; Bock et al. 2010; 

Jobmann et al. 2010), as shown in Table 3.11. These parameter values are employed in this study. 

 

Table 3.11 Physico-mechanical parameters used in simulations (Li et al. 2014) 

Parameter Value  

Rock bulk density  2450 kg/m
3
 

Young’s modulus for the hard part 4.0 GPa 

Poisson’s ratio  0.27  

Tensional strength  1.2 MPa 

Cohesion  4.0 MPa 

Friction angle 24.0
o 

 

Young’s modulus for the soft parts
 
 2.0 MPa 

 0.02  

Initial porosity  0.137  

Permeability for the intact rock mass 2e-20 m
2
 

Biot’s coefficient  0.6  

Fluid bulk modulus  1000 MPa 

Fluid density   1000 kg/m
3
 

Fluid viscosity  1e-3 kg/(m·s) 

                  *Reproduced by permission of Elsevier 

 

The rock permeability value given in Table 3.11 corresponds to the intact rock mass. The shale 

matrix is assumed to be homogenous and fully saturated. The observed pore pressure is 2.0 MPa in 

the undisturbed state. The fluid flow in the matrix is assumed to be the single-phase fluid flow 

following Darcy’s law with isotropic hydraulic conductivity. After rock failure, the observed 

permeability in the damage zone is generally several orders of magnitude higher than the 

undisturbed rock (Bossart et al. 2004). A larger permeability gives rise to quicker pore pressure 

dissipation in the damage zone. In the model, the damage zone permeability is increased by a factor 

of 100. The reasonableness of this treatment will be discussed later. 

 

The concrete tunnel lining (15 cm in thickness) is modeled as zones with the properties of the lining 

material. In the model, the hydration of shotcrete is not taken into account (no time-dependent 

evolution of stiffness and strength) and the shotcrete is modeled as an elastic material. The Young’s 

modulus ( ), compressive strength ( ) and Poisson’s ratio ( ) for the shotcrete are  = 10 

GPa,  = 10 MPa and  = 0.35, respectively (Mont Terri Consortium 2009). The initial state of 

stress is assumed to be S1 = 6.5 MPa (vertical), S2 = 4.0 MPa (strike along Ga08) and S3 = 2.5 MPa 

(strike along Niche2) (Bossart and Thury 2007). These stresses are applied to the outer boundaries 

of the model.  

 

It is important to note that a comparison between the model prediction results, purely based on 

measured parameter values as model inputs, and the experiment observations allows for a true 

evaluation of the predictive capability of the corresponding model within the range of parameter 

uncertainties that always exist in a practical application. The satisfactory matches between data and 

model results, obtained through model calibration (or matching the field observations through 

t

sE s s sE

s s
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adjusting model parameters), is not necessarily a good indicator of model predictive capability 

beyond the range of observations used for calibration. This is because a good match can be the 

result of over parameterization of the model, rather than the ability of the model to capture the 

essence of the physical mechanisms (Li et al. 2014). Based on the above considerations, Li et al. 

(2014), in this case study, used the measured (rather than calibrated) parameter values given in 

Table 3.11 as direct inputs into the model for the mine-by test and performed model predictions of 

MB test results without model calibration.  

 

3.5.2 Simulated Results and Discussion 

 

Shown in Fig. 3.44(a) and Fig. 3.45(a) are the simulated damage (plastic) zones around the niche 

after 1.5 days, 18 days, and 25 days since the excavation. The grayscale shades distinguish between 

shear and tensile failure modes. The damage zone is generated by redistribution of the stress around 

the niche caused by mechanical unloading (excavation). Near the excavation advancing face, tensile 

failure is the major damage form and the maximum damage zone depth is about 2.0 m. Tensile 

failure is also observed in the roof and floor of the niche while shear failure occurs at the sidewalls. 

The damage zone penetrates about 0.7 m into the rock matrix near the roof and floor and about 1.4 

m near sidewalls. Figure 3.46(b) shows the damage zone in a vertical cross-section at y = 12 m and 

perpendicular to the MB niche 2. The in-situ experimental investigation revealed a dense, 

interconnected EDZ-fracture pattern with a maximum depth of 1.1 m from the tunnel wall; the 

deepest impregnated EDZ-fracture recorded was found at a depth of 2.0 m (Bossart et al. 2002; 

Bossart et al. 2004; Jaeggi et al. 2012). The numerical results are generally consistent with the 

reported data on the EDZ. Note that the observed dense fractures within the EDZ also justify the 

use of the continuum modeling approach in this study (Vietor 2011). 

 

Shown in Fig. 3.44(b) and Fig. 3.45(b) are the pore-pressure distributions around the niche after 1.5 

days, 18 days and 25 days, respectively, since the excavation. The pore pressure shows a sharp 

change at the edge of the damage zone adjacent to the intact rock mass. Just at the niche walls, the 

pore pressure is 0.1 MPa that is equal to the atmospheric pressure because the niche is well 

connected to the atmosphere and thus has the atmospheric pressure. Beyond a certain distance from 

the niche walls in rock matrix, the pore pressure evolution shows a tendency to stabilize at a 

constant value of 2.0 MPa corresponding to the in-situ pore pressure within the intact rock mass. 

Pore pressure increase becomes visible at about 11 m ahead of the mine-by excavation face. Near 

the excavation advancing face, the maximum pore water overpressure is about 3.3 MPa (as shown 

in Fig. 3.45(b)).  

 

The pore pressure evolution is a relatively sensitive response to the excavation progress and there is 

a good correlation between the simulated damage zone and the low pore-pressure zone with 

pressure values similar to the niche wall pressure (0.1 MPa) (Li et al. 2014). The latter is because 

pore pressure within the damage zone becomes equilibrium with the niche wall pressure rapidly, as 

a result of that the assigned permeability for the damage zone in the model is two orders of 

magnitude higher than the undisturbed rock. While the observed permeability in the damage zone is 

several orders of magnitude higher than the undisturbed rock (Bossart et al. 2004), further increases 

in damage zone permeability from the two orders of magnitude do not change the simulation results 

significantly. Also note that air flow from niches to the damage zone likely occurred during the 

time that the damage zone was formed; because rock matrix permeability is very low, water flow 
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from the matrix does not have enough time to fill in the new fractures created in the EDZ during the 

test. The air flow would allow the pore-pressure equilibrium between damage zone and the niche 

wall to take place rather quickly, given the fact that for a given permeability, the mobility of air 

flow is much higher than that for water flow because air has much smaller viscosity. The two-phase 

flow process in fractures is complex (Liu et al. 2002) and the simplification is practically needed for 

this model study. The good correlation between damage zone and the low pore-pressure zone also 

has important practical applications for monitoring EDZ evolution with pore-pressure sensors (Li et 

al. 2014). 

 

Three distinguishable zones are observed from the simulated pore pressure distributions: the low-

pressure zone corresponding to the damage zone, the undisturbed zone away from the damage zone, 

and the elevated pore-pressure zone near the edge of the damage zone (Figs. 3.44 and 3.45). The 

existence of the third zone is because the stress at the edge of the EDZ needs to be increased to 

compensate for the fact that the damage zone is not effective in supporting the overburden. The 

increased stress induces the elevation of pore pressure. Beyond this high pore-pressure zone into the 

rock, the unloading effects due to excavation and the associated damage zone gradually disappears. 
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Fig.3.44 Simulated results based on the TPHM for horizontal cross-section along MB niche 2: (a) the damage zone (and 

mode) and (b) pore pressure contours (Pa) (Li et al. 2014) (Reproduced by permission of Elsevier) 

 

 

(b1), t = 1.5day 
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Fig.3.45 Simulation results based on TPHM for a vertical cross-section along MB niche 2: (a) the damage zone (and 

mode) and (b) pore pressure contours (Pa) (Li et al. 2014) (Reproduced by permission of Elsevier) 

 

(a1), t = 1.5day (b1), t = 1.5day 
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(a)                                           (b) 

Fig.3.46 The TPHM-based simulation results for the damage zone and deformation around MB niche 2 after 

construction for a vertical cross-section at y = 12 m and perpendicular to the MB niche 2: (a) the damage zone (and 

mode) and (b) displacement distribution (Li et al. 2014) (Reproduced by permission of Elsevier) 

 

As a comparison, Figs. 3.46 and 3.47 show the simulated damage zones and displacement 

distributions based on the TPHM and the conventional Hooke’s Law or the single-part Hooke’s 

Law (SPHM), respectively. The SPHM-based results show that the simulated damage zone 

develops up to an average distance of about 0.16 m into the rock near the roof and floor and up to 

about 0.44 m near the sidewalls. Clearly, the damage zone size from the TPHM-based model is 

larger than that obtained with SPHM and more consistent with field observations, as previously 

discussed. The better performance of the TPHM can be explained as follows for this specific 

problem. During the excavation, near-field unloading process occurs, resulting in a low stress range 

in the rock mass near the tunnel. (The normal stress on the tunnel surface is zero.) Because the 

“soft” part of the rock is more important in low-stress regions, rock mass surrounding the tunnel 

becomes much softer during excavation than it is under the ambient conditions corresponding to 

higher stresses. At a high stress, the “hard” part plays a more important role. This softening effect 

gives rise to a larger region of rock mass surrounding the tunnel (that can mechanically feel the 

unloading effects due to excavation) than the region simulated with the SPHM that does not 

consider the “soft” part. Consequently, the softening effect results in a relatively large EDZ size. 

The difference in the simulation results does highlight the advantages of the TPHM and the needs to 

use it for modeling the EDZ evolution, a critical feature determining the performance of a clay 

repository.      
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Fig. 3.47 The SPHM-based simulation results for the damage zone and deformation around MB niche 2 after 

construction for a vertical cross-section at Y = 12 m and perpendicular to the MB niche 2: (a) the damage zone (and 

mode) and (b) displacement distribution (Li et al. 2014) (Reproduced by permission of Elsevier) 

 

To further evaluate the TPHM, Fig. 3.48 presents comparisons between the simulated results (from 

both the TPHM and SPHM) and the observed radial displacement, as a function of time, at two 

selected monitoring locations at the inclinometer chains BMB30 (Fig. 3.48(c)). These two 

monitoring locations are near the central part of the model such that the influence of boundary 

effects on the numerical results at these locations can be ignored. As previously indicated, the 

deformation of surrounding rock matrix becomes visible at about 11 m before the mine-by 

excavation front and more significant with time. The calculated inward displacements based on the 

TPHM are larger than those predicted with the SPHM and match measured data very reasonably 

(Fig. 3.48). On the other hand, the predicted deformation (strain) based on the SPHM is about 50% 

of the observations. One may argue that the SPHM-based model could provide a better match with 

model calibration by adjusting values for the related parameters. It is the author’s belief that model 

calibration makes sense only when the model contains the correct physical mechanisms. Otherwise, 

the good match to observations would not be very meaningful and could not be used as an indicator 

of the model’s predictive capability either, as previously indicated. Nevertheless, the better 

performance of the TPHM-based model is a result of the fact that the TPHM takes into account the 

mechanical behavior of “soft” features within the rock mass. 
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(a) displacement at sensor BMB30_4 

 

 
(b) displacement at sensor BMB30_1 

 

 
(c) the locations of displacement monitoring sensors (BMB30) 

 
Fig.3.48 Excavation advancing and (simulated and observed) inward displacements as a function of time (Li et al. 

2014) (Reproduced by permission of Elsevier) 
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Figure 3.49 shows comparisons between the simulated and the observed pore pressures (as 

functions of time) at two locations corresponding to sensors BMB15 and BMB16 (Fig. 3.49(c)) that 

are 16.0 m and 22.0 m, respectively, away from the beginning of the niche along the niche’s 

longitudinal direction. The observations can be explained based on the evolution of the three pore-

pressure zones discussed above. The sensors were initially located within the undisturbed rock mass 

and therefore provided flat pore pressure distributions with a pressure value corresponding to the 

ambient condition. With the excavation advancing, the locations became closer to the evolving 

EDZ and reached the elevated pressure zone where the stress (and pore pressure) at the edge of 

EDZ needs to be increased to compensate for the fact that the damage zone is not effective in 

supporting the overburden. Then when the sensor locations were within the EDZ, the pore pressures 

started to decline rapidly with time because the EDZ has a relatively large permeability that allows 

for quick pore-pressure dissipation. The observed pore-pressure histories at two sensor locations are 

realistically predicted by the TPHM simulation results. The SPHM does a good job as well for 

sensor BMB16 (Fig. 3.49(b)), but considerably underestimates pore pressure decline for BMB15, 

because the SPHM underestimates the EDZ size and consequently underestimates the pore-pressure 

dissipation rate at the sensor (BMB 15) location.      
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(a) pore pressure at sensor BMB15 

 
(b) pore pressure at sensor BMB16 

 

  
(c) the locations of pore-pressure monitoring sensors (BMB15 and BMB16) 

 
Fig. 3.49 Excavation advancing and (simulated and observed) pore pressures as a function of time (Li et al. 2014) 

(Reproduced by permission of Elsevier) 
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Given the fact that Li et al (2014), in this case study, directly used the measured property data as 

model inputs and did not conduct any model calibrations, it is remarkable that the TPHM-based 

simulation results have excellent agreements with observations of different kinds from the MB 

tests, including the sizes of damage zone, displacements near the niche, and pore pressure evolution 

at multiple locations. While results from a single case-study should be interpreted with caution, this 

study does clearly indicate that the model results from the conventional Hooke’s Law (or the 

SPHM) can significantly underestimate the mechanical deformation and the damage near a tunnel 

because the SPHM is not able to capture the contribution from the soft part consisting of micro-

cracks that becomes significant in low effective stress zones.  

 

The low stress zones occur in many practical applications associated with subsurface excavation 

and fluid injection into the depth. For example, hydraulic fracturing of horizontal wells has been a 

widely used technique for recovering natural gas from shale gas and other unconventional 

reservoirs characterized by an extremely low permeability. In order to fracture the rock, the 

effective stress needs to be negative by increasing pore pressure through fluid injection (Eq. 3.68). 

Thus, there must be rock zones near the generated hydraulic fractures that should have low effective 

stress if the injected fluid can flow into these zones to increase pore pressure there during the 

hydraulic fracturing process. In the other words, micro-cracks, or the soft part, in these zones are 

stimulated. Because these cracks may dominate rock-matrix permeability for low-permeability 

media, stimulation of these cracks is critical for recovering hydrocarbon fluid flow from the rock 

matrix in unconventional reservoirs. The TPHM is useful for modeling the stimulation of these 

micro-cracks and their impact on hydraulic and mechanical properties.                   

 

3.6 Concluding Remarks 

 

(A) The key results from this chapter are the TPHM given by Eq. 3.8 and its variations:  
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                                                  (3.8) 

 

where V is the rock volume, V0 is the rock volume under zero stress, σ is the stress, γe and γt are the 

volumetric fractions of hard and soft parts of a rock, respectively,  under zero stress and Ke and Kt 

refer to bulk moduli for the hard and soft parts, respectively. Without the soft part, the TPHM is 

reduced to conventional Hooke’s Law. The development is based on a well-known fact that micro-

cracks (soft part) exist in natural rock and exhibit very different mechanical behavior from the rest 

of rock mass.  Note that micro-cracks can serve as the dominant flow pathways with a rock matrix 

in many cases.   

 

(B) The generality of TPHM is demonstrated in the chapter.  It allows for derivation of a variety of 

constitutive relationships. We show the consistence of these relationships with empirical 

relationships and data sets from different sources. Furthermore, the TPHM is shown to be 

applicable to both rock matrix and fractures.   

 

(C) The TPHM needs to be further developed at least in two aspects. Firstly, the TPHM has been 

developed for mechanically isotropic medium for both isotropic and anisotropic stress conditions. It 

needs to be extended to anisotropic media (such as bedding media).  Secondly, the current version 
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of the TPHM is limited to elastic deformations. How to relate the TPHM to micro-crack evolution 

during the damage process should be investigated. 
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Chapter 4 

A Thermodynamic Hypothesis Regarding Optimality Principles for Flow 

Processes in Geosystems 
 

An optimality principle refers to that state of a physical system is controlled by an optimal 

condition being subject to physical and resource constraints. As discussed in Chap. 2, the principles 

of this kind have a long history in science, and they have been proven to be useful for many 

engineering applications. It is, however, surprising that the thermodynamic basis for these 

principles has not been fully established yet, probably because the non-equilibrium thermodynamics 

is still a scientific area under active development (Glansdorff and Prigogine 1978; Eigen 2013). 

This short chapter focuses on a newly proposed thermodynamic hypothesis for flow process in 

geosystems, mainly based on the materials from Liu (2014). Note that the definitions and physical 

meanings of the same symbol (denoting a variable or function) herein may be different from those 

in the previous chapters unless the same physical meanings are explicitly indicated. 

4.1 Two Optimality Principles and Their Inconsistency 

Optimality principles have been used, as a holistic approach, for flow processes in several important 

geosystems. Rodriguez-Iturbe et al. (1992) postulated the minimization of energy expenditure rate 

principles (MEE) at both local and global scales for channel networks in a river basin. At a given 

location, the energy expenditure rate is represented by water flux multiplied by water energy 

gradient along the flow direction, as discussed in Chap. 2. The water energy gradient reflects the 

energy expenditure for a unit amount of water during the water flow process. Without the energy 

expenditure, the energy gradient should be zero because of the energy conservation. The MEE 

means that flow structures (e.g., the channel networks) in a system form in such a way that the total 

energy expenditure rate is minimal across that system. 

Rinaldo et al. (1992) developed MEE-based modeling approaches to generate optimal channel 

networks, and compared their results with those from natural river basins. Striking similarity was 

observed for natural and optimal networks in their fractal aggregation structures and other relevant 

features. Using the similar optimality principle, Liu (2011a) developed a group of (partial 

differential) governing equations for steady-state optimal landscapes (including both channel 

networks and associated hillslopes) using calculus of variations (Sect. 2.7). Most recently, Liu 

(2011b) applied the MEE to gravity-dominated unstable (fingering) water flow in unsaturated 

media (Sect. 2.4). He found that the relative permeability or hydraulic conductivity for unsaturated 

water flow, in this case, is not only a function of water saturation or capillary pressure (as indicated 

in the classic theory by Buckingham (1907)), but also a power function of water flux. Furthermore, 

he showed that conductivities of water flow in both unsaturated soils and on landscapes follow 

similar power-function relationships (with water flux), but with different exponent values.  

On the other hand, the maximum entropy production principle (MEP), initially proposed by 

Paitridge (1975), has been shown to be useful for predicting behavior of the Earth-atmosphere 

system. The MEP states that a flow system subject to various flows or gradients will tend towards a 

steady-state position of the maximum thermodynamic entropy production (Nieven, 2010). We refer 

readers to Glansdorff and Prigogine (1978) for the formulations for entropy production of a flow 

system involving different physical processes and their mathematical derivations.  
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Some inconsistency seems to exist between the MEE and the MEP, even they have been 

successfully applied to different geosystems. Under isothermal conditions, energy expenditure rate 

is proportional to entropy production rate (Li 2003). Thus, under such conditions, the MEP requires 

that a river network forms in such a way that the energy expenditure rate for water flow should be at 

its maximum, which directly contradicts the MEE supported by empirical data for a river basin. 

This calls for the development of a more precise understanding of fundamental physical laws to 

reconcile different optimality principles within the context of thermodynamics. 

The physical origin of these optimality principles is not totally clear at this point. They cannot be 

directly deduced from the currently existing thermodynamic laws (Bejan 2000), although some 

effort has been made to make the connections between the optimality principles and these laws (e.g., 

Martyushev and Seleznev 2006; Sonnino and Evslin 2007). Bejan (2000) argued that these 

thermodynamics laws deal largely with processes within systems treated as black-boxes and were 

not developed for describing internal structures for flow processes in these systems that are 

associated with the optimality principles. We agree with this assessment. As an effort to develop a 

general principle to resolve the above issue, Bejan (2000) proposed the constructal law that states 

that “for a finite-size open system to persist in time (to survive) it must evolve in such a way that it 

proves easier and easier access to the currents that flow through it”. The constructal law has been 

used to explain many natural phenomena including the related optimality principles (Bejan 2000). 

However, a geosystem generally involves a number of flow processes and empirical evidence 

indicates that not all the flow processes are subject to optimality, as will be discussed below. Liu 

(2014) proposed a general principle to identify which flow process is subject to optimality for 

geosystems. It may also help resolve the inconsistence between the MEE and the MEP, the two 

commonly used optimality principles.  

4.2 A Thermodynamic Hypothesis 

 

Liu (2014) proposed the following thermodynamic hypothesis: a nonlinear natural system that is 

not isolated and involves positive feedbacks tends to minimize its resistance to the flow process  that 

is imposed by its environment.  

It is important to emphasize that we deal with a system here that is not isolated and subject to mass 

and/or energy transfer between it and its environment. The system must be nonlinear and involve 

positive feedbacks such that the relevant flow process plays an important role in forming the flow 

paths and, at the same time, the formation of these flow paths would further enhance the flow. In 

such a system, several flow processes (including heat flow or heat transfer) may co-exist. For 

example, a river basin at least involves surface water flow and soil erosion processes associated 

with water flow. The hypothesis indicates that the system (river basin) does not tend to provide the 

minimum resistance to all the flow processes (e.g., soil erosion or soil particle flow), but to the 

process imposed by its environment (rainfall), or the driving process that is water flow. We will 

further demonstrate this point in the next section with different geosystems. 

The hypothesis is motivated by the notion that natural systems tend to evolve to more and more 

uniformity (Bejan 2000). A classic example of this is an isolated system in which all the physical 

properties are completely uniform when it becomes equilibrium. In a system that is not isolated, 
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because of energy and/or mass exchange with its environment, it never becomes completely 

uniform spatially, but approaches another kind of uniformity that we call “dynamic uniformity” 

here and may involve emergent structures. Take a river basin as an example. Water entering the 

river basin has larger energy than the downstream water. Thus, the former has the tendency to 

equilibrate with the latter. To do so, the former tends to flow to the latter location as quickly as 

possible and with as little energy loss as possible. Note that the less energy loss means better 

uniformity (in terms of energy). In this regard, dynamic uniformity corresponds to the MEE.  

Therefore, the hypothesis is equivalent to: “a nonlinear natural system that is not isolated and 

involves positive feedbacks tends to maximize the degree of dynamic uniformity for the flow 

process imposed by its environment.” To some extent, the concept of dynamic uniformity is similar 

to entropy in an isolated system in which entropy tends to be maximized.  

The hypothesis also implies the existence of often observed hierarchy structures in some natural 

systems. This is simply because it applies to both the whole system, such as, for example, a river 

basin, and a subsystem, such as a part of a river basin associated with a branch of a river network. 

In this case, the minimum resistance to water flow should occur in the entire river basin and a part 

of it. As a result, similar flow structures (river/channel geometry) occur at different levels of spatial 

scales.   

The hypothesis specifies the conditions under which optimality occurs for flow processes in 

geosystems. It is indicated that not all the systems are subject to optimization process except for the 

nonlinear ones that are not isolated and display positive feedbacks. Especially, for a system 

involving multiple flow processes, only the driving process (that is imposed by its environment) is 

subject to resistance minimization.   

4.3 Consistence between the Hypothesis and Flow Behavior in Geosystems 

 

In this section, we demonstrate that the hypothesis is consistent with flow behavior in several 

typical geosystems (Liu 2014).  

 

4.3.1 Water Flow in Saturated Porous Media 

Steady-state saturated flow in porous media, a linear system, is employed here to demonstrate that 

the minimization of flow resistance, in general, may not occur for a linear system, as implied by our 

hypothesis. 

The energy expenditure rate, EE, for water flow in saturated porous media across an entire flow 

domain   can be given by
 
Liu (2011b) 

 


 dVHKEE
2                                                                  (4.1) 

where K is hydraulic conductivity, H is hydraulic head, and V is porous-medium volume. Note that 

the local energy expenditure rate,  2HK  , is equal to the product of Darcy flux and hydraulic 

gradient.  
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By minimizing EE (Eq. 4.1) using Euler equation (Eq. 2.39), we obtain: 

0 H                                                                              (4.2) 

Comparing the above equation with the following water volume (mass) balance equation for water 

flow in saturated porous media:    

0)(  HK                                                                         (4.3) 

one can conclude that the flow process (that always follows Eq. 4.3) satisfies the MEE only for 

homogeneous porous media, because Eq. 4.2 is the same as Eq. 4.3 for constant K for these media. 

In fact, this result can also be directly obtained from the well-known Prigogine theorem of the 

minimization of entropy production which is valid for linear irreversible processes (Prigogine 

1955). However, when K is a function of location, which is generally the case for real world 

problems, steady-state flow processes will not follow the MEE principle, because Eq. 4.2 (or Eq. 

4.1) is not identical to Eq. 4.3 anymore. An alternative argument is that for linear systems, there are 

no feedback mechanisms because, for example, K distributions in saturated porous media are not 

impacted by water flow at all.  

From the above discussion, it is evident that not all flow processes follow optimality principles in 

terms of flow resistance, especially for linear systems. That is why the hypothesis excludes linear 

systems. 

 

4.3.2 Water Flow in Unsaturated Porous Media 

We use unsaturated flow in porous media to show that for a nonlinear system, the existence of 

positive feedback mechanisms, as indicated by the hypothesis, is required for generating the 

minimum resistance to water flow. 

For a downward, gravity-dominated water flow in unsaturated porous media, fingering (unstable) 

flow patterns generally occur (Chap. 2). In such a system, the flow process imposed by its 

environment is water flow because water intrudes into porous media. It is well-known that 

unsaturated flow is a nonlinear process; the conductivity for water flow is a function of properties 

associated with water flow itself. Furthermore, positive feedback mechanisms occur here as well. 

When fingering takes place, more water tends to flow through fingers and therefore makes fingers 

grow, because fingers provide flow paths with smaller flow resistance than the uniform flow. Thus, 

the hypothesis indicates that the MEE should apply here.     

Based on the MEE, we derived the following relationship for gravity-dominated unsaturated flow in 

homogeneous porous media in Chap. 2: 

oa

sat

r
K

q
hFk 










 )(                                      (4.4) 

where kr is relative permeability for water flow, F(h) is a function of capillary pressure head h, q is 

the magnitude of Darcy flux, again Ksat is saturated hydraulic conductivity, and ao is a constant 
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whose value seems to be about 0.5 from a limited number of previous studies. The above 

relationship is supported by experimental observations and is consistent with some empirical 

models
 
(Liu 2011b). Also note that Eq. 4.4 is identical to Eq. 2.54-2. 

A grand challenge facing us in the area of subsurface fluid flow is the need to develop physical laws 

for large-scale multiphase-flow problems. At a local scale, fluid distribution is mainly controlled by 

capillarity and is not sensitive to flow conditions. That is why relative permeability at a local scale 

can be successfully described as a function of saturation (or capillary pressure) only (Buckingham 

1907). At a large scale, this is no longer the case, although local-scale relationships have been 

widely used at large scales because no alternative is available. Equation 4.4 suggests that function 

forms of large-scale relationships to describe multiphase flow are very likely different from their 

counterparts at local scales, which cannot be resolved from upscaling based on the same function 

forms as those at local scales. It is our hope, as discussed in Chap. 2, that the optimality-based 

approach may provide an important way to obtain such large-scale relationships.    

However, the MEE and Eq. 4.4 cannot be applied to nonlinear unsaturated flow in an upward 

direction, because for such a flow system, there is no positive feedback and therefore no fingering 

either. Flow structures (such as fingering) are generally a signature of positive feedback 

mechanisms. Without these mechanisms, small disturbance to water flow that always exists in 

nature would not grow into flow structures, but rather die out during the flow process. As indicated 

in the hypothesis, the existence of positive feedback mechanisms is required for the flow resistance 

to be minimized.    

4.3.3 Flow Processes in a River Basin and the Earth-Climate System 

Finally, we show that the hypothesis allows for a possible reconciliation between the MEE and the 

MEP optimality principles, with a focus on the importance of the driving process imposed by the 

environment (Liu 2014).  

The consistency between water flow in a river basin and the hypothesis was already discussed. In 

this open and nonlinear system, positive feedback exists. During rain, water flows down the hill and 

tends to flow more in channels/rivers to make them grow once they are initialized by water flow 

process, because resistance to flow process in these structures is much smaller than that to flow 

uniformly along a relatively flat hill surface. Also, as previously indicated, water flow is the 

dominant process imposed by its environment; all other processes involved in a river basin (such as 

soil erosion) are initialized and driven by water flow.  Thus, based on the hypothesis, the MEE 

applies to water flow in a river basin.  

Flow processes in the Earth-atmosphere system are more complex. Many studies indicate that these 

flow processes follow the MEP (Paltridge 1975; Ozawa et al. 2003). As previously indicated, some 

inconsistency exists between the MEE and the MEP, despite they have been successfully applied to 

different geosystems. To clarify this issue, we must recognize that the Earth-atmosphere system 

generates a minimum flow resistance to (active) “flow process imposed by its environment”, but 

not for other (reactive) processes (e.g., fluid flow) that just facilitates the resistance minimization 

for the former process, as indicated by the hypothesis. The Earth receives radiation from the hot 

Sun and transfers a portion of the received heat into space. The atmosphere and oceans act as a fluid 
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system that transports heat from the hot region to the cold one with general circulation (Ozawa et al. 

2003), because the convection process is more efficient in transferring heat than the conduction 

process (Bejan 2000). Obviously, in this system, the “flow process imposed by its environment” is 

the heat flow; the heat flow process is the initiator of other flow processes.  

Under steady-state flow conditions, the average heat flow rate is closely related to entropy 

production in the Earth-atmosphere system, as shown by Paltridge (1978) and Ozawa et al. (2003), 

and the MEP corresponds to the maximum convective heat transport (Paltridge 1978). The latter 

was further confirmed by Clausse et al. (2012) who showed that the temperature distributions on the 

Earth surface is consistent with a principle (derived from the constructal law) that convective heat 

flow rate from equator region to the pole region is maximized,  or the resistance to heat flow is 

minimized at a global scale. In this case, the MEP happens to be a by-product of this heat-flow 

optimization process. Along this line, the MEP in the Earth-atmosphere system and the MEE in a 

river basin are all consistent with the hypothesis and can be reconciled in terms of minimizing 

resistance to the “flow process imposed by its environment”, or the driving process. 

The “maximum heat transfer” hypothesis was initially proposed in a theoretical study of the well-

known Rayleigh-Benard convection by Malkus and Veronis (1958). They used that hypothesis to 

identify wave lengths for the stable convection cells. However, their work has been criticized on the 

ground that their predicted relationship between the wave length and Rayleigh number is not always 

consistent with experimental observations (Koschmieder 1993). While the mathematical technique 

used by Markus and Veronis (1958) is not very reliable for nonlinear problems
 
(Getling 1998), 

there has been no observation that directly disproves “the maximum heat transfer” hypothesis itself 

(Koschmieder 1993). 

The above discussion has been based on an important argument that the minimum heat-flow 

resistance results in the maximum heat flow rate and the MEP in the Earth-atmosphere system. This 

argument can be further justified as follows. Under steady-state flow conditions, the entropy 

production in the Earth-atmosphere system is given by (Paltridge 1978; Ozawa et al. 2003): 
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where S’ is the entropy production rate, A* is the boundary (Earth surface), Q is heat flow through 

the boundary, TL and TH are average Earth surface temperatures in the low and high temperature 

regions, respectively, Tav is the average temperature of both high and low temperature regions, and  

LH TTT  . (Heat flows from the high-temperature region to the low temperature region.) The 

above equation represents the fact that the entropy production by some processes associated with 

turbulence is completely discharged into the surrounding system through the boundary under the 

steady-state condition
 
 (Ozawa et al. 2003). 

Since 2)]2/([ avTT is generally on the order of 1% and Tav can be reasonably determined based on 

global solar heat current and Earth surface radiation into space only (Clausse et al. 2012), Eq. 4.5 

can be rewritten as 
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where  Tav is considered a well constrained parameter that does not depend on Q and T . Clausse 

et al. (2012) indicated that convective flow rate from the high temperature region to the low 

temperature region can be expressed as 

2/3)( TCQ                                                                                                  (4.7) 

where C is a constant related to Earth radius and fluid properties involved in heat flow. 

Accordingly, the conductance for heat flow will be: 
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Based on Eqs. 4.6, 4.7 and 4.8, we have 
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3/13/2 QCKH                                                                                                   (4.10) 

Clearly, Eqs. 4.9 and 4.10 show that the maximum KH (or the minimum heat flow resistance) 

corresponds to the maximum heat flow rate (Q) and entropy production rate (S’). It is also of 

interest to note that the formulation for the heat conductance (Eq. 4.10) is consistent with the 

conductivity relations for water flow in both river basins and unsaturated porous media, derived 

from the optimality principle (Chap. 2), because they all are power functions of flux (or flow rate) 

with positive exponent values. 

4.3.4 A Further Discussion on the MEP 

The thermodynamic basis for MEP has been a subject of active research in the literature (Paltridge 

2009; Dewar 2003, 2005; Martyushev and Seleznev 2006). As previously indicated, the MEP is not 

a fundamental physical principle, because it is not consistent with the MEE. A fundamental 

physical principle should be able to explain observations from different areas. Our hypothesis is 

able to reconcile MEP and MEE. The discussion on the MEP in Sect. 4.3.3 is based on the result of 

Clausse et al. (2012), or Eq. 4.7 that was derived from the physics of fluid circulation between the 

low temperature and high temperature regions on the Earth surface and thus it is appropriate for the 

discussion there. Given that considerable attention has been given to seeking the thermodynamic 

basis of the MEP in the scientific community, we further demonstrate in this subsection that our 

hypothesis allows for deriving the MEP even under a more general case than that defined by Eq. 

4.7.   

There are two heat transfer mechanisms between the low- and high-temperature regions on the 

Earth’s surface: conduction and convection. The former is relatively small compared with the 
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convection and therefore ignored here for the simplicity (e.g., Clausse et al. 2012). (Inclusion of the 

conduction will not alter the final conclusion.) Under the steady-state fluid flow condition, fluid 

with temperature TH from the high-temperature region flows to the low-temperature region. At the 

same time, the same amount of fluid with temperature TL flows from the low-temperature region to 

the high-temperature region. As a result, the net heat flow rate between the two regions is given by   

TQQ fl                                                           (4.11) 

where Qfl is the fluid flow rate between the two regions.  

By definition (Eq. 4.8), the heat conductivity between the two regions can be obtained from Eq. 

4.11: 

flH QK                                                              (4.12) 

Note that fluid flow between the low- and high- temperature regions is induced by the temperature 

difference 
LH TTT  , or  

)( TfQ Qfl                                                        (4.13) 

The temperature difference results in fluid density differences, and consequently fluid pressure 

differences (through gravity) between the two regions. The latter gives rise to the fluid flow. At this 

point, we do not need to know details of function fQ, such as that given in Eq. 4.7. It is adequate to 

know that Qfl is a monotone increasing function of the temperature difference. (Figure 4.1 shows an 

example of monotone increasing function.) It is easy to understand physically that a larger 

temperature difference corresponds to a larger fluid flow rate between the low- and high- 

temperature regions. In fact, it is how the positive feedback comes to play in the system.  

 

Fig. 4.1 Z is a monotone increasing function of Y. Obviously Y is a monotone increasing function of Z as well 
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Equations 4.5 and 4.11 to 4.13 yield the entropy production as 

)()(' 22 TFTTfTQTQS Qfl            (4.14) 

Clearly, function F is also a monotone increasing function of the temperature difference because fQ 

is a monotone increasing function. From Eq. 4.14, we have 

)'(SFT inv                                                               (4.15) 

where superscript inv refers to inverse function. The function F
inv

 is the inverse function of F. 

Again, F
inv

 should be a monotone increasing function when F is a monotone increasing function, as 

demonstrated in Fig. 4.1.    

A combination of Eqs. 4.12, 4.13 and 4.15 results in 

)'())'(( SGSFfQ inv

Qfl                                       (4.16) 

and 

)'(SGKH                                                                (4.17) 

where function G is obviously a monotone increasing function, because both fQ and F
inv

 are 

monotone increasing functions. By the nature of a monotone increasing function, S’ and KH should 

reach their maximum values at the same time. This again supports the notion that the MEP in the 

Earth-atmosphere system is not a fundamental physical principle, but a by-product of maximizing 

KH (or minimizing resistance to heat flow between the low- and high-temperature regions). 

4.4 Consistency between the Hypothesis and Darwin’s Evolution Theory 

It is of interest to indicate that the proposed hypothesis is consistent with Darwin’s evolution 

theory, although the latter is for genetic phenomena. At a given time, biological creatures always 

exhibit some physical and behavioral variations on different levels (e.g., individuals in a 

community, organisms, DNA and genes). These variations result from random mutations that are 

changes in the genetic sequence. Mutations are either harmful, neutral, or in some cases beneficial 

to the organism. Through the process of natural selection,  beneficial mutations will be selected for  

and harmful ones will be selected against as the affected genes move through the subsequent 

generations.  

Table 4.1 shows that similarity exists between some key elements of Darwin’s evolution theory and 

the proposed hypothesis. Natural perturbation in fluid and medium properties, although not 

explicitly mentioned in our hypothesis, is well known to exist for all geological flow systems. This 

perturbation may be small in many cases, but serves as the seed to generate flow patterns with the 

minimum flow resistance. Thus, “natural perturbation” corresponds to “mutation” in Darwin’s 

theory.   
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Table 4.1 Similarity of some key elements of Darwin’s evolution theory and the proposed hypothesis 

Darwin’s evolution theory The proposed hypothesis 

the mutation the natural perturbation 

the inheriting beneficial mutations the positive feedback 

the natural selection  the minimum flow resistance 

For a geological flow system, if a perturbation results in a slight change in the corresponding flow 

pattern that reduces the flow resistance, this slight change will be “remembered” such that it is 

enhanced in the next moment to further reduce the resistance, which is a result of positive feedback. 

This is how fingering in unsaturated flow systems and flow channels in a river basin are formed. 

(Note that a negative feedback tends to reduce the perturbations with time.) Thus, the positive 

feedback mechanism is very similar to the procedure for the next generation to inherit the beneficial 

mutations.  Finally, the process to achieve the minimum flow resistance in a geological system is 

obviously comparable to the natural selection process to make the next generation to be better 

adapted to its environment. 

It is appropriate to state that some nonlinear flow processes in geological systems are “alive” and 

very well evolved. We need to respect them to live in harmony with them in the world which we 

share with them. We have to learn their “language” first to predict their behavior using it. 

Otherwise, our model prediction of natural processes will not be very meaningful. We believe that 

optimality is an important part of their “language”. Discussions in this chapter and Chap. 2 are 

examples of efforts to learn and make use of the “language” of the relevant nonlinear flow 

processes.    

4.5 Calculation of Inelastic Deformation of Natural Rock 

A fundamental aspect of our hypothesis is to first identify the driving process, because a system 

tends to evolve minimum resistance only to the driving process imposed by its environment. While 

the hypothesis was initially proposed for fluid flow in geosystems (Liu 2014), it has much broader 

applications. To some extent, it is related to Darwin’s evolution theory, as previously discussed. In 

this section, we present a new approach to calculate the inelastic deformation of rocks based on the 

hypothesis.     

When a rock is under stress, its deformation is initially relatively small and elastic. Chapter 3 

provides a detailed study on the elastic deformation with the two-part Hooke’s model (TPHM). 

With increasing stress, the deformation becomes inelastic and not reversible. There are two major 

mechanisms for inelastic deformation: plasticity and damage. Plasticity refers to the dislocation or 

“slip” of the solid materials at microscale and damage refers to initialization and propagation of 

micro-cracks. The former is generally more important for metals and the latter for natural rock. 

Nevertheless, the inelastic deformation of natural rock is a combination of plastic deformation and 

damage. In this section, we do not distinguish between them.     

There are a number of ways to determine inelastic deformation of natural rock (Krajcinovic 1989). 

We investigate this issue here within the context of thermodynamics. The first step is to determine 

the driving process for the inelastic deformation that is associated with the driving force. There are 
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different processes occurring in inelastic deformation, including change in strain, small-scale 

dislocation, initialization and propagation of micro-cracks, and creation of new surfaces within the 

rock. The driving force is obviously due to the stress and the result is the stress-driven change in 

inelastic strain. Let us suppose that the “purpose” of the inelastic strain development is to minimize 

the resistance to further changes in strain.  

For inelastic deformation, our hypothesis is mathematically equivalent to minimizing the following 

entropy production (EP) for a given change in strain: 
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


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ine

iidEP                                                     (4.18) 

where i  and ine

i are principal stress and inelastic strain in the i directions, respectively.  It is 

common to determine the relationship between stress and inelastic strain in stress space (e.g., 

Hansen and Schreyer 1993). In other words, in Eq. 4.18 and Eq. 4.22 to be discussed later, ine

id and 

ine

i are considered to be fixed. It is important to note that the EP actually reflects the resistance to 

inelastic deformation. For a given ine

id , a smaller EP gives smaller i (or the driving force). On the 

other hand, the expression of EP (Eq. 4.18) does not include the temperature-related coefficients 

that exist in the expression of the entropy production given by Glansdorff and Prigogine (1978). 

This treatment is just for convenience, because we assume the rock system to be isothermal in this 

section.   

The MEP has been used previously to determine inelastic deformation (Ziegler 1963; Hansen and 

Schreyer 1993; Collins and Houlsby 1997). In these conventional MEP applications, entropy 

production includes contributions from all the involved processes. As previously indicated, the 

MEP is not a fundamental principle governing a flow process; inelastic deformation is a “flow 

process”. Equation 4.18 deals with the driving process only, because the optimality should not be 

applied to the other processes.   

The minimization of EP (Eq. 4.18) is subject to a number of constraints such that the minimization 

results are physically valid and consistent with the corresponding experimental observations. 

Because the inelastic deformation occurs on a yield surface in stress space, the minimization result 

should satisfy the following equation for the yield surface that is experimentally determined: 

0),,,( 321 yf                                                               (4.19) 

where   is a hardening parameter that is generally an empirical function of inelastic strain (Fjær et 

al. 2008). 

Other constraints are the related experimental observations except the yield surface. These 

observations can be expressed as 

0),,,,,( 321321 ineineine

jF        (j=1, 2. ….N)                  (4.20) 
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where N is the total number of equations describing the observations. One of the important 

observed relations for natural rock is the inelastic volumetric strain, because it is closely related to 

propagation of fractures and change in their apertures. Consequently, it has an important impact on 

fluid flow through the rock.  The volumetric strain ( ine

v ) can be expressed as a function (Fv) of 

related observations  

0),,,,,( 321321  ineineine

v

ine

v F                                      (4.21) 

Based on Eqs. 4.18,  4.19 and 4.20, the corresponding Lagrangian is given as  
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where 0  and  j  are  Lagrangian multipliers. From 
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one can obtain: 
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Lagrangian multipliers can be obtained by solving combined Eqs. 4.19, 4.20 and 4.24.  These 

equations provide a general way to calculate inelastic strain based on our hypothesis. The 

calculation results satisfy all the experimental observations through Eqs. 4.19 and 4.20.  

Mathematically, it is important that Eq. 4.20 is given in the stress space, or it includes stresses in its 

expression. Otherwise, the constraints would not be able to be imposed, as implied by the last term 

on the right hand side of Eq. 4.24.  

Traditionally, the inelastic strain is often calculated by    
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where  is a potential function. Comparison between Eq. 4.24 and Eq. 4.25 leads to 
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When yf , the inelastic deformation is said to follow the “associated flow” rule. Otherwise, it 

would follow “non-associated flow” rule. Equation 4.26 clearly explains why the associated flow 
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rule, in general, is not the case for natural rocks because it is not able to incorporate all the 

experimental observations (Eq. 4.20) except the yield surface (Eq. 4.19).  

The traditional approach to choose potential function  is largely through a trial and error process. 

Mathematical form of   and values of the related parameters in the function are empirically 

adjusted to match the corresponding experimental observations. Our method deals with the issue 

from a very different angle that is based on the proposed thermodynamic hypothesis. We start 

directly with experimental observations with which we construct functions fy and Fj. Then without 

trial and error,  can be straightforwardly obtained from Eq. 4.26 (together with Eqs. 4.19, 4.20 

and 4.24). Thus, the procedure to calculate the inelastic deformation, outlined in this section, is 

more straightforward.  

4.6 Concluding Remarks 
 

(A) This chapter presents a thermodynamic hypothesis regarding optimality principles for flow 

process in geosystems. It states that a nonlinear natural system that is not isolated and involves 

positive feedbacks tends to minimize its resistance to the flow process that is imposed by its 

environment.  

  

(B) Consistence between the hypothesis and typical flow processes in geosystems is demonstrated. 

In spirit, the hypothesis is consistent with Darwin’s evolution theory. The hypothesis reconciles the 

seeming inconsistence between the MEE and the MEP. An application of the hypothesis to 

calculation of inelastic deformation of natural rock is also outlined.  
 

(C) The hypothesis is fundamental in nature, but is proposed in a phenomenological manner. 

Further examinations of the usefulness and potential limitations of the hypothesis in describing 

other processes, distinct from flow processes in geosystems, are needed.  
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Chapter 5  

Final Remarks: An “Unfinished” Book 
 

This book deals with the physical laws related to subsurface fluid flow processes. The major results 

from the previous chapters are recapped as follows.  

 

Darcy’s law is the fundamental law for subsurface fluid flow. However, for low-permeability media, 

Darcy’s law does not always hold because of the strong solid-liquid interaction. Chapter 1 presents 

a generalized Darcy’s law given as 
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where the threshold hydraulic gradient I and parameter   characterize impacts of solid-liquid 

interaction and pore size distribution, respectively, on liquid flow. The above relationship is very 

general in a sense that it includes Darcy’s law and the two commonly used forms of modified 

Darcy’s law as its special cases. The consistency between it and experimental observations from 

different sources is demonstrated.  

 

The Darcy-Buckingham law was developed based on the local-equilibrium condition that, however, 

does not always hold especially when fingering flow occurs. Chapter 2 is devoted to generalizing 

this important law by relaxing the local-equilibrium condition. The new development is based on an 

optimality principle that water flow in unsaturated media self-organizes in such a way that the 

resistance to water flow is minimized. The key result is given as 
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Unlike the traditional form of the Darcy-Buckingham law, the relative permeability in the above 

equation is also a function of water flux. That is a direct result of the non-equilibrium flow 

behavior. The generalized Darcy-Buckingham law has been shown to be consistent with laboratory 

observations and field data for gravitational fingering flow in unsaturated soils. This generalization 

is the theoretical foundation for the active fracture model, the key constitutive relationship for 

modeling flow and transport in the unsaturated zone of Yucca Mountain, Nevada, that is the 

national geological disposal site for high-level nuclear waste in USA. 

 

Hooke’s Law is commonly used for modeling elastic deformation of solids. However, natural rock 

has unique features compared with other solids one of which is the existence of small-scale 

deformation heterogeneities (such as micro-cracks). To address this issue, Chap. 3 presents the 

TPHM given by Eq. 3.8 and its variations:  
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Without the soft part, the TPHM is reduced to the conventional form of Hooke’s Law. The 

development is based on a well-known fact that micro-cracks (soft part) exist in natural rock and 

exhibit very different mechanical behavior from the rest of rock mass.  Note that micro-cracks can 

serve as the dominant flow pathways within a rock matrix. 

 

Optimality principles have been used in many different areas, including the generalization of 

Darcy-Buckingham law documented in this book. As discussed in Chap. 2, these principles have a 

long history in science and have been proven to be useful for many engineering applications. It is, 

however, surprising that the thermodynamic base for these principles has not been fully established. 

Chapter 4 proposes a thermodynamic hypothesis regarding optimality principles for flow process in 

geosystems. It states that a nonlinear natural system that is not isolated and involves positive 

feedbacks tends to minimize its resistance to the flow process that is imposed by its environment. 

Consistency between the hypothesis and typical flow processes in geosystems is demonstrated. In 

spirit, the hypothesis is also consistent with Darwin’s evolution theory. 

 

However, as indicated by the title of this chapter, this book is not a really “finished” book in many 

ways. While the book documents the important progresses in generalizing several physical laws 

related to subsurface fluid flow and mechanical deformation, it may or may not provide the final 

forms of the generalizations.  Thus, this book should be viewed as a starting point for revisiting 

these laws and for stimulating further research activities along the line. It is the author’s hope that 

the “book” will be eventually “finished” by future scientists or engineers, likely including readers 

of this book, who have better physical insights and out-of-box ideas.    
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