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Inflammatory and neurodegenerative serum
protein biomarkers increase sensitivity to
detect clinical and radiographic disease
activity in multiple sclerosis

Tanuja Chitnis 1, Ferhan Qureshi 2 , Victor M. Gehman2, Michael Becich 2,
Riley Bove 3, Bruce A. C. Cree3, Refujia Gomez3, Stephen L. Hauser 3,
Roland G. Henry 3, Amal Katrib2, Hrishikesh Lokhande1, Anu Paul1,
Stacy J. Caillier3, Adam Santaniello 3, Neda Sattarnezhad1, Shrishti Saxena1,
Howard Weiner 1, Hajime Yano1 & Sergio E. Baranzini 3

Themultifaceted nature ofmultiple sclerosis requires quantitative biomarkers
that can provide insights related to diverse physiological pathways. To this
end, proteomic analysis of deeply-phenotyped serum samples, biological
pathway modeling, and network analysis were performed to elucidate
inflammatory and neurodegenerative processes, identifying sensitive bio-
markers of multiple sclerosis disease activity. Here, we evaluated the con-
centrations of > 1400 serum proteins in 630 samples from three multiple
sclerosis cohorts for association with clinical and radiographic new disease
activity. Twenty proteins were associated with increased clinical and radio-
graphicmultiple sclerosis disease activity for inclusion in a customassaypanel.
Serum neurofilament light chain showed the strongest univariate correlation
with gadolinium lesion activity, clinical relapse status, and annualized relapse
rate. Multivariate modeling outperformed univariate for all endpoints. A
comprehensive biomarker panel including the twenty proteins identified in
this study could serve to characterize disease activity for a patient with mul-
tiple sclerosis.

Multiple sclerosis (MS) is a chronic inflammatory demyelinating
disease of the central nervous system, with a variable presentation
and heterogenous disease course1,2. While the exact pathophysiol-
ogy of MS remains elusive, inflammatory and degenerative pro-
cesses are believed to play a role3–5. Identifying disease-specific
biomarker sets may assist in predicting diverse disease courses,
classifying patients to high versus low risk for disease activity (DA)
and progression (DP) and may also provide insights into mechan-
isms of new inflammatory DA6,7. Multivariate models reflecting
multiple biological pathways involved in the complex

pathophysiology of MS will likely increase the predictive accuracy
of these biomarkers6.

Most studies have focused primarily on neurofilament light chain
in blood serum (sNfL) as a biomarker in MS. Concentration of sNfL has
been associated with neurodegeneration in MS and correlates with
manifestations of DA, including the presence of gadolinium-enhancing
(Gd+) lesions and clinical relapse6–11. For example, in a recent study of
over 500 samples, a significant elevation in sNfL was observed after a
clinical relapse only when associated with a Gd+ lesion12. In the
3 months after a Gd+ lesion, an average 35% elevation in sNfL
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(p < 0.0001) was reported when comparedwith samples frompatients
in remission12. Similarly, an average 32.3% elevation in sNfL was
observed at the time of, or prior to a Gd+ lesion (p =0.002) versus
remission12. However, the observed increase in sNfL levels during a
relapse has limited sensitivity and specificity and is of the same mag-
nitude as the group-level coefficient of variation seen across popula-
tions of healthy individuals, thus rendering this metric insufficient for
clinical decision-making12,13.

The MS relapse disease process includes both an inciting inflam-
matory peripheral and central immune activation, with subsequent
central nervous system damage in the form of myelin and neuronal
degradation1, as evidenced by immunological studies, and response to
specific immune cell–targeting disease-modifying therapies. More-
over, MS genetic susceptibility studies demonstrate involvement of T
and B cell–associated genes14. Thus, including additional inflammatory
and neurodegenerative protein biomarkers, can offer deeper insights
and reveal stronger correlations to clinical and radiographic DA than
sNfL alone.

In the search for more specific and comprehensive sets of mar-
kers, several cytokines, chemokines, and other immune-related
molecules have been associated with DA in patients with MS. For
example, baseline levels of cerebrospinal fluid (CSF) proteins CXCL13,
CXCL12, IFNγ, TNF, sCD163, LIGHT, and APRIL have been associated
with evident DA compared with no evidence of DA (NEDA) in patients
withMS15. CSF levels of glial biomarkers, including glial fibrillary acidic
protein (GFAP) and Chitinase 3-like-1 (CHI3L1 or YKL-40), have been
associated not only with DA but also with disability16,17. Masvekar et al.
found that the additive model of IL12p40 and CHI3L1 correlated with
new MS lesion activity18. MS disease severity has been associated with
alterations in proteins reflecting astrocyte (MMP7, SERPINA3, GZMA,
and CLIC1) and microglial activation (DSG2 and TNFRSF25)19.

To provide insights and identify sensitive biomarkers of new MS
DA, both radiographic (new Gd+ lesions) and clinical (relapses), we

evaluated over 1400 serum proteins in over 600 samples from three
MS cohorts. Biological pathway modeling and network analysis were
performed to ensure comprehensive representation of MS neuro-
physiology and to gain insights into the inflammatory, immune, and
neurodegenerative process in MS.

Results
Results from this cross-sectional study are divided into the following
three sections: protein (i.e., feature) selection analysis, univariate
analysis of each endpoint outlined in the Methods, and multivariate
modeling of each endpoint.

Twenty proteins associated with disease activity were selected
for the custom assay panel (CAP)
The final list of CAP proteins was selected by examining the univariate
andmultivariate associations of 1411 proteins with our three endpoints,
constrained by a number of analytic and operational considerations. A
detailed discussion of the process for arriving at this final list can be
found in the Protein feature-selection section (and Table 1). GFAP was
not one of the original proteins described in the Methods section. It
was added to our panel after much of the development work described
in this report was completed because of its strong association with
several DA- and DP-related endpoints. Therefore, it was not part of the
analysis. The remaining 20 proteins in Table 1 were carried forward.

Univariate analysis identified several individual proteins
significantly associated with Gd lesion regression, Gd lesion
classification, and annualized relapse rate (ARR)
As a precursor to a formal univariate analysis of each endpoint, we
grouped samples by label and represented the results as box plots to
look for qualitative trends in concentration for each class at a popu-
lation level. Gd lesion samples were separated into groups for zero,
one, two, and three or more Gd+ lesions (Fig. 1). Purely binary end-
points include clinical relapse status (CRS, quiescence vs. exacerba-
tion) and low versus high annualized relapse rate (ARR, ≤0.2/year for
low and ≥ 1.0/year for high) were split according to positive and
negative labels (Fig. 2).

To quantitatively investigate the univariate significance, Spear-
man’s correlation and Student’s t test were used. The former checked
for correlation between protein concentration and lesion count. The
latter checked for differences in protein concentration means in the
binary endpoints, univariate separation of samples associated with no
Gd lesions from those associated with ≥ 1, as well as CRS and ARR
status. Spearman’s correlation and Student’s t test were computed for
each protein in Fig. 3 to assess the relationship between protein con-
centration and all endpoints.

Examination of the bar charts in Fig. 3 allowed us to check the
directionality and significance of all univariate statistical tests. Of
particular interest were proteins showing consistency between the
direction of the correlation/separation for all endpoints. Agreement
between correlation and separation was particularly important for Gd
lesion count and presence, since these two endpoints are not inde-
pendent of each other. Proteins showing a test statistic with opposite
signs between the twoGd tests did not pass the significance threshold.
Furthermore, only CDCP1 shows a difference between the Gd end-
points and the other two, with negative correlation/separation for Gd
lesions, but positive mean shift with clinically active disease state
(CDCP1 shows no significant relationship to our ARR endpoint).

The proteins passing the significance threshold in each of the
univariate analyseswere (with test p-values): Gd lesion regression: (NfL
[3.3 × 10−34], MOG [1.6 × 10−7], CDCP1 [5.0 × 10−3], CXCL9 [8.4 × 10−3], IL-
12B [2.4 × 10−2], TNFSF13B [2.7 × 10−2], OPG [2.8 × 10−2], CCL20
[4.2 × 10−2]); Gd lesion classification: (NfL [1.0 × 10−19], MOG [1.9 × 10−6],
APLP1 [2.3 × 10−3], VCAN [9.9 × 10−3], CDCP1 [1.8 × 10−2], CXCL9
[4.7 × 10−2]); CRS: (NfL [5.0 × 10−5], GH [4.4 × 10−3], SERPINA9

Table 1 | Custom assay panel (CAP) proteins picked in the
protein feature-selection process

Analyte Protein name/alias UniProt ID

APLP1 Amyloid β Precursor-Like Protein 1 P51693

CCL20 C-C Motif Chemokine Ligand 20 (MIP-3) P78556

CD6 Cluster of Differentiation 6 P30203

CDCP1 CUB Domain Containing Protein 1 Q9H5V8

CNTN2 Contactin 2 Q02246

COL4A1 Collagen-α1(IV) Chain Q07325

CXCL9 Chemokine (C-X-C Motif) Ligand 9
(MIG: Monokine Induced by γ Interferon)

O43927

CXCL13 C-X-C Motif Chemokine Ligand 13, BLC P02462

FLRT2 Fibronectin Leucine-rich Repeat Transmembrane O43155

GFAP Glial Fibrillary Acidic Protein P14136

GH Growth Hormone, Somatotropin P01241

IL-12B Interleukin-12 Subunit Beta P29460

MOG Myelin Oligodendrocyte Glycoprotein Q16653

NEFL Neurofilament Light Polypeptide Chain, NfL P07196

OPG Osteoprotegerin, TNFRSF11B O00300

OPN Osteopontin P10451

PRTG Protogenin Q2VWP7

SERPINA9 Serpin Family A Member 9 Q86WD7

TNFRSF10A Tumor Necrosis Factor Receptor Superfamily
Member 10A (TRAIL-R1), DR5, Death Receptor 5

O00220

TNFSF13B Tumor necrosis factor superfamily member 13B,
B Cell Activating Factor, BAFF

Q9Y275

VCAN Versican Core Protein, Versican Proteoglycan P13611
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[5.3 × 10−3], FLRT2 [6.6 × 10−3], CDCP1 [1.6 × 10−2], PRTG [4.2 × 10−2]);
ARR: NfL (7.9 × 10−4).

Multivariate models significantly outperform univariate models
with NfL emerging as the strongest biomarker
Forward selection curves, regression, and classification Gd lesion
analysis, aswell as the classificationofCRS andAARare shown in Fig. 4.

Multivariate model performance for all four analyses, along with
permutation-based feature importance were plotted in Fig. 5. Results
for the Gd lesion regression analysis were presented as a two-
dimensional histogram depicting the distribution of actual versus
predicted lesion count for the regression analysis, and as receiver
operating characteristic (ROC) curves for the classification analysis.
The central line in each ROC band represented the mean of the ROC
across all bootstraps; bandwidthwas the uncertainty in thatmean. The
regression analysis panel of Fig. 5 also included the bestfit line through
the results drawn in solid black with the root mean square error as a
shaded gray region. Perfect agreement (actual = predicted) was drawn
for reference in dashed gray. For the classification analysis panels, we
included the following two feature sets in addition to the greedy for-
ward selection (GFS) proteins for each endpoint: NfL only, and all
features except NfL. Feature importance was estimated by randomly

permuting the concentration values of eachprotein individually across
samples and checking the performancedecrease of themodel for each
bootstrap built on the GFS features.

For the Gd lesion detection endpoint, we quantified model per-
formance in three different ways. General DA (GDA) was used for
separation of samples with no Gd lesions from those with any positive
count of lesions, Subtle DA (SDA) was used for separation of samples
with no Gd lesions from those with only one lesion, and Extreme DA
(EDA) was used for separation of samples with no Gd lesions from
those with three or more lesions.

While we only trained lesion detection models on GDA, we
includedmodel performancemetrics for the SDA and EDA endpoints
as well in our discussion of Gd lesion detection. Additionally, we
checked Gd lesion regression performance on models constructed
from both NfL only and all proteins except NfL for comparison to the
classification endpoint. The GFS feature models performed as fol-
lows: the square of Pearson’s correlation coefficient
(R2) = 0.280 ± 0.027 for Gd lesion count regression, area under the
receiver operator characteristic (AUROC) = 0.813 ± 0.015 for GDA
classification, AUROC= 0.845 ± 0.026 for CRS classification, and
AUROC= 0.803 ± 0.039 for ARR status classification. We tabulated
the performance of all multivariate analyses in Table 2.

Fig. 1 | Univariate dependence of the 20 CAP protein concentrations on Gd-
enhanced lesion count. Different color boxes correspond to the lesion count in
that population of samples (blue for zero lesions, yellow for one, orange for two,
and red for three or more). Sample counts for each lesion bin are 138 for 0 lesions,
126 for 1, 148 for 2, and 89 for 3 ormore. The black line through each box shows the

median (50th percentile) of the population. The height of each box shows the
interquartile range (25th–75th percentile). The whiskers show the central 90% of the
distribution (5th–95th percentile). The 5% of outliers furthest from the median are
drawn as open black circles. Source data are provided as a Source Data file. CAP
custom assay panel, Gd gadolinium, NPX normalized protein expression.
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a b

Fig. 2 | Univariate box plots for the CAP proteins separation of samples (a) and
box plots of the univariate separation of CAP proteins for low and high
ARR (b). a Univariate box plots for the CAP proteins separation of samples taken
during quiescence (remission, blue boxes, 64 samples) or exacerbation (relapse,
red boxes, 60 samples).bBox plots of the univariate separation of CAP proteins for
low ( ≤0.2/year, blue boxes, 148 samples) and high ( ≥ 1.0/year, red boxes,

13 samples) ARR. The black line through each box shows the median (50th per-
centile) of the population. The height of each box shows the interquartile range
(25th–75th percentile). The whiskers show the central 90% of the distribution
(5th–95th percentile). The 5% of outliers furthest from the median are drawn as
open black circles. Source data are provided as a Source Data file. ARR annualized
relapse rate, CAP custom assay panel.

Fig. 3 | Univariate statistical tests for all endpoints. Top: Spearman’s ⍴ correla-
tion between NPX concentration and Gd lesion count (green bars, left axis) and
Student’s t statistic (two-sided) for separation of samples associated with zero
lesions from those with one or more by NPX concentration (purple bars, right axis)
for each protein. Bottom: Student’s t statistic (two-sided) for separation of samples
associatedwith clinically inactive from those with clinically active disease state (left

axis) and those associated with low from high ARR (right axis) by NPX concentra-
tion. Bars corresponding to statistical tests showing a p-value > 0.05 have been
drawn in a lighter shade of the same color to denote their lack of statistical sig-
nificance. Source data are provided as a Source Data file. ARR annualized relapse
rate, Gd gadolinium, NPX normalized protein expression.
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Fig. 4 | GFS curve for the regression (top) and classification (bottom three)
analysis of all endpoints. The points represent the mean over the bootstrap splits
and the shaded region represents the standard deviation. The protein features
selected for each of the multivariate analyses were Gd lesion regression (NfL, GH,
IL-12B, CNTN2,MOG, TNFSF13B), Gd lesion classification (NfL, CNTN2, TNFRSF10A,
CXCL13, TNFSF13B), Clinical relapse status (NfL, SERPINA9, TNFSF13B, FLRT2), and

annualized relapse rate (NfL, OPG, CD6). Note that the regression analysis was
clipped at a lesion count of five (only 5.6% of our samples had more than five
lesions, making any model behavior above that range unreliable). Source data are
provided as a Source Data file. AUROC area under the receiver operator char-
acteristic, ARR annualized relapse rate, CRS clinical relapse status, Gd gadolinium,
GFS greedy forward selection, NfL neurofilament light chain.
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Comparison of the actual versus estimated Gd lesion count (left
panel, Fig. 5) showed that the regression model slightly overpredicts
Gd lesion count for samples with no lesions and underpredicts it for
thosewith five ormore, while themodel’s accuracy for lesion counts of
1-2 anchored the performance of the model. While regression models
performed acceptably, results from the classification analysis were
considerably stronger. For all Gd lesion analyses, NfL had the largest
effect (Table 3; Fig. 5). NfLperformanceas the strongestbiomarkerwas
further reflected in the feature importance plots at the two left bottom
panels of Fig. 5. However, there is an incremental improvement in
performance between NfL only and the GFS proteins, particularly in
the Gd lesion regression analysis. Furthermore, the models using all
proteins except NfL were significantly better than random chance.
There is clearly signaling for this endpoint in the other proteins that is
drowned out by the performance of NfL for predicting Gd lesions.

WhileNfLwas the strongestperformer for CRSandARRaswell, its
lead over the other proteins was considerably attenuated. GFS protein
performance for CRS outperformed all endpoints except EDA, and
achieved similar ARR results to that of GDA. Multivariate separation of
samples by CRS and ARR was significantly better than chance and
significantly better than univariate NfL. Consistent with the Gd lesion
analysis, multivariate models trained on all features except NfL dis-
played an AUROC significantly better than random chance.

Biological context of protein-endpoint associations reveals
heterogeneous pathophysiology and complex molecular
crosstalk
The biological context of the 21 proteins listed in Table 1 was analyzed
in the following two ways: direct spatial, functional, and gene expres-
sion correlations to a curated set of open-source databases, and
expanded graph techniques using the Scalable Precision Medicine
Open Knowledge Engine (SPOKE).

For the direct correlation analysis, protein concentration values
were associatedwith data from the Human Protein Atlas20 (aggregated
lymphoid tissue, peripheral blood immune cell type, and brain region
proteomic data) as well as the Allen Brain Atlas21 (brain structure, cell
type, and transcriptomic data). Protein-protein interaction modeling
was performed by inputting proteins into STRING22 for network con-
struction. Physically and functionally associated proteins that exhib-
ited a minimum interaction score of 0.7 (high confidence) were
classified as interacting with each CAP protein. Markov Clustering23,24

was used to detect distinct subgraphs of interconnected proteins.
Topological surveillance and centrality metric calculations were per-
formed in Cytoscape25. Enrichr26 was leveraged to functionally anno-
tate protein subgraphs.

Comparative proteomic analysis across human organs, tissues,
and cell types helped home in onMS-relevant information by isolating
organ-specific blood analytes to address the blood’s pervasive nature.
This revealed the MS-specific locality of CAP proteins, facilitating
downstream directionality assessment and revealing a rich repertoire
of cell types related to MS. Constitutive expression of these proteins
helped to facilitate downstream mechanistic modeling. The resultant

Fig. 5 | Multivariate modeling results for all four analyses: Gd lesion count
estimation (zero through five or more, left panel), Gd lesion detection (center
left panel), CRS classification (center right panel), andARR classification (right
panel). For Gd lesion count estimation, the R2 is reported as themean and standard
deviation across the bootstrap splits. A heat map of the scatter plot probability
density is representedby lighter todarker shadesof red. Theblack line is the bestfit
to the scatter plot of actual vs. predicted lesion counts, and the gray shaded region
is the RMSE. For comparison, we also include a dashed line for perfect agreement
(actual equals predicted). ROC curves for the three classification analyses are

represented as a solid line for the mean and shaded region for the standard
deviation across all bootstrap splits using the following colors: red represents the
model built with the greedy forward selection proteins, green represents themodel
built with NfL/NEFL only, and blue represents the model built with every protein
but NfL/NEFL. Each analysis was plotted with the model performance plot above a
feature importance bar graph for the GFS proteins. Source data are provided as a
Source Data file. ARR annualized relapse rate, CRS clinical relapse status, Gd
gadolinium, GFS greedy forward selection, R2 square of Pearson’s correlation
coefficient.

Table 2 | Classification and regression performance for all
analyses of all endpoints for different feature setsa

Analysis GFS proteins NfL/NEFL only All except
NfL/NEFL

Gd lesion count
regression (R2)

0.280 ± 0.027 0.233 ± 0.028 0.073 ± 0.018

GDA (AUROC) 0.813 ± 0.015 0.794 ±0.016 0.636 ±0.020

SDA (AUROC) 0.720 ±0.024 0.698 ±0.024 0.599 ±0.026

EDA (AUROC) 0.920 ±0.014 0.907 ± 0.015 0.700 ±0.028

Clinical relapse
status (AUROC)

0.845 ±0.026 0.751 ± 0.035 0.658 ±0.040

Annualized
relapse rate sta-
tus (AUROC)

0.803 ±0.039 0.781 ± 0.042 0.544 ±0.064

aWe report mean performance and its uncertainty (standard deviation) across all bootstrap
simulations.
AUROC area under the receiver operating characteristics curve, EDA extreme disease activity,
Gd gadolinium,GDAGeneral disease activity,GFS genome-based peptide fingerprint scanning,
NfL neurofilament light chain, R2 the square of Pearson’s correlation coefficient, SDA Subtle
disease activity.
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mapping of the 21 CAP proteins onto 10 biological hallmarks of MS is
presented in the left panel of Fig. 6. The 10 hallmarks were each sub-
divided into two to three related biological processes. CAP proteins
were then sorted into these processes based on their correlations with
the databases and tools mentioned.

The SPOKE Neighborhood Explorer (https://spoke.rbvi.ucsf.edu)
allows targeted exploration of any component of the SPOKE knowl-
edge graph. SPOKE is a comprehensive graph with millions of biome-
dical concepts and has been previously utilized for drug repurposing27,
to conduct genetic analyses28, and for clinical predictions29. SPOKE has
integrated data from close to 40 databases, including ChEMBL, OMIM,
LINCS, and the Human Protein Atlas, among others. As such, SPOKE
contains all human genes and proteins, more than a million pharma-
ceutical compounds, more than 7000 diseases, and a comprehensive
representation of signaling and metabolic pathways. Further, biologi-
cal interpretation of the 21 proteins also included spatial expression
profiling, Protein-Protein interaction modeling, and Gene Set Enrich-
ment. The SPOKE knowledge graph for the CAP proteins is shown in
the right panel of Fig. 6.

Discussion
We evaluated multivariate analyses of blood serum biomarkers from
three independent cohorts and identified twenty proteins that were
strongly associated with increased clinical and radiographic activity of
MS. To quantify MS activity, we focused principally on the presence of
Gd+ lesions compared with patients lacking such lesions. We also
examined the following two clinical measures of MS relapse activity:
clinician assessment of relapse state at or near the time of blood draw,
and the ARRs in the time leading up to the draw.

Protein feature-selection processes can inherently introduce bias.
To minimize bias, we deliberately attempted to balance weight and
normalization strategies. For example, we weighted each feature
importance by the AUROC of the model in which it appeared. When
AUROC is calculated on the samedata onwhich themodelwas trained,
it tends to bias the result in favor of proteins that performwell in large
models. Larger models are more prone to overfitting noise in the
training data, which will lead to systematically higher AUROC values.
Also, normalizing the vector of feature importance values for each
model to 1 tends to favor proteins that perform better in models with
only a few features. Since the total importance score for models with
fewer features is split among fewer proteins compared with ones with
larger feature sets, the values themselves will be numerically higher.

There are two points that strongly favor multivariate modeling
over univariate NfL regarding the Gd endpoint. First, the optimized
multivariate model significantly outperformed univariate NfL in every
framingof the problemof using serumprotein chemistry topredict Gd
lesion activity. Second,wefind statistically significant performance in a
multivariate modeling even when the model ignores NfL concentra-
tions. Both statements hold for an endpoint that should be most
advantageous to the performance of univariate NfL (Gd lesions), and
the difference was even larger for the clinical relapse endpoints. Fur-
thermore, univariate NfL lacks specificity, asNfL levels are known to be
elevated for neurodegenerative conditions other than MS30.

NfL showed the strongest univariate correlation with the radio-
graphic and clinical measures of DA examined in this study. Further-
more, multivariate techniques showed increased performance
compared with NfL alone for all analyses of all endpoints. Similarly,
multivariate models without NfL were still significantly more perfor-
mant than chance for all endpoints, suggesting biological signal from
the other CAP proteins as well. The inclusion of additional inflamma-
tory and neurodegenerative protein biomarkers can provide deeper
insights and reveal stronger correlations to clinical and radiographic
DA than NfL individually. Cytokines, chemokines, and other immune-
related molecules have consistently been associated with DA in
patients with MS and they constitute an attractive target for inter-
rogation in biological samples frompatients at different stages of their
disease course. Additionally, measuring protein concentration has
several advantages over transcriptional profiling, including higher
stability and more straightforward biological interpretation of the
results. A biological pathway-centered approach using a subset of
those shown in the left panel of Fig. 6 is likely to be a successful
strategy for planning future investigation.

In addition to overall efficacy of the models used to examine the
endpoints in this study, information from a broader panel of serum
biomarkers allowed for insights into the pathophysiology of new Gd
lesions and clinical relapse. This includes the identification of che-
mokines that are significantly altered by DAmediated by inflammation
or immune response. A multi-protein panel like the one developed in
this study has the capability to capture the state of a patient’s MS from
multiple angles, allowing for a fuller picture of their pathophysiology.

This study leveraged three large, well-characterized cohorts of
patients with MS, and evaluated well over 1000 protein biomarkers
using highly sensitive assays and applied network modeling to the
findings to provide insights into MS. We used a systems biology

Table 3 | Demographic and clinical breakdown of all three patient cohorts

Clinical status Age [y] (mean ± SD) MS dis. dur. [y]
(mean ± SD)

Female [%] Subtype [%]
(RR,SP,PP,CIS)

DMT Type [%] (DF,G,I,Na,No,Ot,S1) Samples

CLIMB

Gd+ 38.1 ± 9.4 7.1 ± 6.1 74 93.9, 5.7, 0.4, 0.0 3, 22, 16, 4, 40, 12, 2 228

Gd− 40.5 ± 8.0 8.5 ± 6.4 74 93.9, 6.1, 0.0, 0.0 2, 33, 9, 2, 37, 15, 2 98

Low ARR 39.7 ± 9.6 8.7 ± 7.1 73 96.6, 3.4, 0.0, 0.0 3, 28, 8, 3, 41, 13, 2 148

High ARR 31.8 ± 7.5 2.0 ± 1.2 65 76.9, 23.1, 0.0, 0.0 0, 8, 31, 8, 31, 15, 8 13

All 38.8 ± 9.1 7.7 ± 6.2 73 93.9, 5.8, 0.3, 0.0 3, 25, 14, 3, 39, 13, 2 326

EPIC

Gd+ 40.3 ± 9.1 9.4 ± 8.9 74 75.6, 22.2, 1.5, 0.7 0, 12, 27, 0, 43, 17, 0 135

Gd‒ 43.9 ± 10.4 11.6 ± 8.8 71 77.8, 20.0, 0.0, 2.2 0, 7, 20, 0, 22, 51, 0 45

All 41.2 ± 9.5 9.9 ± 8.9 73 76.1, 21.7, 1.1, 1.1 0, 11, 25, 0, 38, 26, 0 180

ACP

Clin. Act. 38.7 ± 10.1 1.2 ± 2.3 77 All RRMS Not Available 60

Clin. Inact. 35.5 ± 9.3 3.8 ± 2.1 73 All RRMS Not Available 64

All 38.8 ± 9.6 2.5 ± 2.5 75 All RRMS Not Available 124

ACP Accelerated Cure Project, ARR Annualized relapse rate, CLIMB Comprehensive Longitudinal Investigation of MS at Brigham and Women’s Hospital, EPIC Expression, Proteomics, Imaging,
Clinical at UCSF,GdGadolinium, high ARR ≥ 1.0 relapses per year, low ARR ≤0.2 relapses per year,MSmultiple sclerosis,RRRelapsing/Remitting, SPSecondary Progressive, PP Primary Progressive,
CIS Clinically Isolated Syndrome, DF Dimethyl Fumarate, G Glatiramer, I Interferon, Na Natalizumab, No None, Ot Other, S1 S1P.
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Fig. 6 | CAP proteins sorted into biological processes and grouped into 10 MS
hallmarks (a) and SPOKE graph visualization of biological neighborhood of
CAP proteins (b). a CAP proteins sorted into 10 MS hallmarks, categorically
grouped by color, representing associated biological processes using each
protein’s correlation to spatial, functional, and gene expression data. b SPOKE
graph visualization of biological neighborhood of CAP proteins. Using

proteins as inputs (light blue circles with purple borders) results in a fully
connected module including encoding genes (dark blue circles), directly
interacting proteins (teal circles), their domains (sky blue circles), biological
processes (orange circles) and a short list of related diseases (red circles). CAP
custom assay panel, MS multiple sclerosis, SPOKE Scalable Precision Medicine
Open Knowledge Engine.
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framework to contextualize the mechanism-of-action of selected
serum protein biomarkers with respect to MS DA. Through a com-
plementary integration of machine learning and functional network
analysis, we were able to shed light on the heterogeneous pathophy-
siological underpinnings of MS and unveil the orchestrated crosstalk
between the various molecular facets of the disease. The analysis
presented here was, however, purely cross-sectional. Large-scale
longitudinal studies will be necessary to better understand MS and
its evolutionover time to unlock the potential of personalizedMScare.

The end goal of the research program, the beginning of which is
presented in this article, is a MS DA test that is fully validated in a
clinical trial. Such a test would have tremendous clinical utility for
many issues in MS care, including identification of active relapse,
prediction of impending relapse, confirmation of NEDA status,
assessment of patient-specific longitudinal changes relative to pre-
vious tests, and response to disease-modifying therapies (DMT). MS
relapses can be quite subtle, especially early in the disease course, and
can be easily confused with recurrences of symptoms in the setting of
stressors (pseudo-flares) or conditions other thanMS. This can lead to
either themisattribution of an unrelated symptom to anMS relapse or
to an early relapse beingmisattributed to some other clinical event. An
inexpensive, clinically simple, precise, repeatable test for MS relapses
would goa longway toward reducingboth types of errors.Response to
relapses often includes an escalation in DMT or steroid doses, both of
which can have side effects. A test like the onewedescribe here has the
potential to also serve as a leading indicator of impending relapses
ahead of clinical presentation. This capability would need to be tested
and validated clinically to quantify the scale of such a lead time. NEDA
is the clinical gold standard for MS care. A NEDA designation indicates
the patient’s clinical and radiographic activity are held in check. A test
like this one could alert a patient’s MS care team to otherwise sub-
clinical (or sub-radiographic) DA. An underlying truth beneath many
scientific discoveries is that differential measurements tend to be
simpler and more accurate than absolute ones. This is likely true of
quantitative DA measurements as well. Some absolute level of DA
scorewould be instructive to both patient and clinician, but deviations
from baseline levels for an individual patient would be more so.

The ability to quantify the level of DA with a test like the one
proposed could serve as an endpoint for clinical trials of DMT drugs
and help clinicians to evaluate the efficacy of a DMT for a particular
patient in less time than it would take for clinical or radiographic evi-
dence to present. This would greatly enhance the quality of life and
increase the health span of patients with MS and offer insight into
patient adherence to their treatment plan.

Analytical validation of this DA panel will be followed by clinical
validation studies to verify association with DA endpoints (primarily
Gd lesions) in multiple independent cohorts31. Expansion of the test’s
clinical utility will be investigated with future studies to evaluate bio-
marker correlations with endpoints associated with MS DP, therapy
selection, and differential diagnosis.

Methods
Ethics statement
The study protocol and study procedures were approved by institu-
tional reviewboards and independent ethics committees at each study
site. The University of California San Francisco Institutional Review
Board granted ethical approval for the Expression, Proteomics, Ima-
ging, Clinical at UCSF (EPIC) cohort. Mass General Brigham Human
Research Committee granted ethical approval for the Comprehensive
Longitudinal Investigation of MS at Brigham and Women’s Hospital
(CLIMB) cohort. Western Institutional Review Board, Copernicus
Group IRB, Sheperd Center Research Review Committee, Institutional
Review Board for HumanResearch at St. Joseph’s Hospital andMedical
Center,University ofMassachusettsMedical School Committee for the
Protection of Human Subjects in Research, Ohio State University

Biomedical Institutional Review Board, Beth Israel Deaconess Medical
Center Committee on Clinical Investigations, Johns Hopkins Medicine
Office ofHumanSubjects Research Institutional ReviewBoard, and the
Southwestern Medical Center Institutional Review Board all granted
ethical approval for the Accelerated Cure Project (ACP) cohort.

Materials
Serum samples were obtained from a subset of three deeply pheno-
typed cohorts were analyzed for protein levels and associated with
clinical and radiographic endpoints and a subset of the associated
clinicalmanifest to select features for inclusion in a customassaypanel
and used in a subsequent cross-sectional analysis. The three endpoints
in this study were: presence of Gd lesions for samples (defined as
samples for which the blood draw was performed within 30 days of a
contrast-enhancingmagnetic resonance imaging, with the count of Gd
lesions determined by a neuroradiologist), clinically active MS versus
clinically inactive MS samples (defined as samples for which the blood
draw was performed during a state of active relapse or inactive
remission as defined by a clinician), and high versus low ARR samples
(defined as those for which the blood draw was performed, and cor-
responding ARR-derived binary labels were determined (high: ≥ 1.0
and low: ≤0.2 relapses per year).

These three endpoints were taken from three different cohorts of
patients and samples. All three cohorts are much larger than the sub-
sets analyzed in this cross-sectional study. Samples were chosen to
balance occupancy across the Gd lesion and CRS endpoints (ARR
represented more of an opportunistic endpoint). The three cohorts
contributing samples to this study were CLIMB (CLIMB endpoints:
radiographically defined relapse status usingGd lesions [primary], ARR
[secondary]), EPIC (EPIC endpoint: radiographically defined relapse
status using Gd lesions), ACP (ACP endpoint: clinically defined relapse
status - active versus inactive).

A total of 506 samples fromCLIMB and EPIC were included in the
Gd lesion analysis. One hundred and twenty-four samples from ACP
contributed to the CRS endpoint. A subset of 161 of the CLIMB sam-
ples, for which ARR was available, were used for that analysis. A
detailed summary of the salient demographic and clinical features
from each cohort is presented in Table 3.

Application of selected proteins to study endpoints
After selecting the top 20 performing proteins (20, not 21 because one
spot in the panel was saved for a desired protein being added to the
Olink platform–see Results for further discussion), we next evaluated
their performance in the clinically relevant endpoints in an indepen-
dent statistical analysis. The Gd lesion endpoint was investigated using
both a classification and a regression approach. Specifically, a logistic
regression model was trained to classify each serum sample as being
associated with some positive number of Gd lesions or not, and a
Poisson regression model was trained to estimate the number of Gd
lesions associated with each sample. Investigation of the CRS involved
the analysis of blood serum taken from patients during a clinically
active relapse (exacerbation) or during a period of clinical stability, or
inactive status (quiescence), following an approach similar to that
taken for lesion presence classification. Finally, we addressed the ARR
endpoint by considering the question of whether each sample had
ARR <0.2 relapses per year (low) or >1.0 relapse per year (high).
Recognizing that themodest sample size and lowpositivity rate of ARR
(6.9%, or 13 out of 188 samples) impact the power of this analysis, the
same overall strategy as the two previous binary endpoints was used.

Due to thefinite timescale onwhichbrain lesionswill be enhanced
under Gd contrast, we precleaned our Gd lesion data by discarding all
serum samples drawn more than 30 days from (before or after) the
magnetic resonance imaging from which the lesion count was
extracted. We accounted for batch-to-batch variability in relative
quantitation by measuring bridge normalization samples across all
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assays. Intra- and inter-assay percent coefficients of variation are
reported in Table 4.

Theunivariate analysis of all three endpointswas performedusing
the bridge-normalized NPX values described above. The multivariate
analysis for each endpoint used those same NPX values after correc-
tion for the following clinical variables: age, sex, and MS disease
duration. An ordinary least squares linear regression model was fitted
to the batch-normalized NPX values of the Gd-negative samples for
each protein using the clinical variables as features. This estimate was
then subtracted from all sample NPX values tomake the demographic/
clinical correction. The residual from this correction process was used
as features in multivariate modeling.

Throughout each stage of the multivariate modeling process, an
ensemble of bootstrap simulations was generated to control for
overfitting. The data for each endpoint was randomly split into train
(two-thirds) and test (one-third) subsets 1000 times. A differentmodel
of the same configuration was then trained on each bootstrap split,
andmodel performancewas taken to be themean across the ensemble
(with uncertainty parameterized by the square root of the variance).
We chose bootstrap simulations instead of k-fold cross validation
because the particular random split in the cross validation could have
small effects on the outcome of some of the modeling efforts. The
large number of random splits generated in the bootstrap process
smoothed contributions from the small number of outlier samples in
our data.

Both the regressionand classification analyseswereperformedon
an optimized subset of the entire panel chosen using GFS of protein
features, with R2 and AUROC, respectively, as the target metric and
average over the ensemble of bootstrap splits. GFS starts with the top-
performing univariate protein then checks each of the remaining fea-
tures to construct the most performant two-protein model. With that
in hand, each of the remaining proteins is checked in turn to see which
combination provides the best three-protein performance. The pro-
cess continues until all available proteins are included in the model.
Optimal model size is then determined as the feature set size where
performance is no longer significantly improved by adding an addi-
tional protein feature. In general, this function reaches a plateau value

of optimal performance and then turns over as extra features are
added that contribute only noise to the model. This is often a global
maximum value of all possible combinations of features but was taken
for the purposes of our study as the optimal model size and
performance.

Statistics and reproducibility
Analytical methods. For the purposes of the screening studies, up to
1411 proteins were measured using two separate immunoassay plat-
forms. The first panel of 1196 proteins were analyzed using Proximity
Extension Assay technology on the Olink™ Platform32. Protein con-
centrations were reported as NPX values (normalized protein expres-
sion), which provide expression levels relative to the other samples
included on the plate and within the batch. An additional panel of 215
proteins were analyzed using xMAP® technology immunoassays at
Myriad RBM, Inc. (RBM). Absolute protein concentrations from the
RBM platform were determined using calibrated standard curves.

Exploratory data analysis was conducted to filter noise, reduce
dimensionality, and avoid collinearity. Univariate significance was
combined with multivariate importance from models generated with
randomly selected combinations of different numbers of proteins to
select features for inclusion into the custom assay panel. Biomarkers
selected as features in the panel were investigated for relevance and
interactions using biological network models. A 21-plex custom assay
panel was then manufactured and analytically validated33 to establish
the following specifications and parameters: accuracy, precision, sen-
sitivity, specificity, reference ranges, stability (reagents and samples),
diurnal variation, drug interference, and assay robustness. The custom
assay panel has been manufactured to include calibrators to report
results in absolute concentration and a fit-for-purpose analytical vali-
dation has been performed. All samples previously run in the bio-
marker screening studies were reanalyzed using the custom
assay panel.

Biostatistical methods. The program outlined in this report can be
organized into the following two phases: the feature selection of the
final 21 protein analytes and the studies that use those proteins as
features to examine the three study endpoints. The former balanced
information about all three endpoints to select a final ensemble of
proteins for use as features in a more detailed cross-sectional analysis
of all three endpoints in the latter phase. All analyses were performed
in the python34 programming language (version 3.11.7), making use of
the SciPy35 (version 1.11.4) and Scikit-Learn36 (version 1.2.2) packages
for statistical tests and machine learning models respectively.

Protein feature selection. The protein feature selection phase of this
analysis preceded and was completely independent of the work
reported in the Results section of this article. That analysis used only
the 20 proteins chosen in the protein feature selection exercise
described in this section. We followed two parallel tracks to identify
the proteins most strongly associated with the three study endpoints.

First, we looked at the univariate correlation between each of 1411
proteins (1196 on the Olink platform and 215 from RBM). Gd lesions
were treated as a binary variable used to classify samples based on
their presence or absence (i.e., zero lesions vs. one or more). This
allowedus to treat this endpoint consistentlywith the other two,which
are inherently binary in nature. We computed the AUROC for separ-
ating the positive from negative samples for all three endpoints for all
1411 proteins and ranked them in decreasing order for each, paying
special attention to analytes that showed a strong association with
more than one endpoint.

To avoid biasing our multivariate feature selection process
toward proteins that performed well in one but not another model
architecture (e.g., tree-based vs. linear models), we investigated each
of the following model types: logistic regression, support vector

Table 4 | Intra- and inter-assay percent coefficients of varia-
tion (%CV)

Biomarker Intra-assay %CV Inter-assay %CV

APLP1-Olink METABOLISM 17 28

CCL20-Olink INFLAMMATION 11 16

CD6-Olink INFLAMMATION 10 12

CDCP1-Olink INFLAMMATION 11 11

COL4A1-Olink CELL REGULATION 18 16

CNTN2-Olink ORGAN DAMAGE 16 16

CXCL13-Olink ONCOLOGY II 11 16

CXCL9-Olink INFLAMMATION 9 11

FLRT2-Olink NEUROLOGY 12 20

GH-Olink CARDIOVASCULAR II 15 23

IL-12B-Olink INFLAMMATION 10 10

MOG-Olink CELL REGULATION 16 14

NEFL-Olink NEURO EXPLORATORY 8 17

OPG-Olink INFLAMMATION 9 11

OPN-Olink CARDIOVASCULAR III 17 22

PRTG-Olink NEUROLOGY 8 11

SERPINA9-Olink ORGAN DAMAGE 11 13

TNFRSF10A-Olink CARDIOVASCULAR II 11 10

TNFSF13B-Olink CARDIOVASCULAR III 14 18

VCAN-Olink METABOLISM 18 18
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classifiers, and random forest classifiers. Furthermore, we did not have
an a priori estimate of the optimal number of features in each model,
so we testedmodels with 3–21 proteins in steps of three. Because of its
strong univariate performance in our data and its well-established
associationwithmany aspects ofMS pathophysiology in the published
literature, we usedNfL (NfL is referred to by its gene nameNEFL on the
Olink platform, so we used the two names interchangeably in the
analysis of these data) as the seed for multivariate feature selection
analyses. We then randomly selected proteins in addition to NfL to fill
out the set number of features (3–21, by threes) and used them to
construct models of all three architecture types. This was repeated
100,000 times for each combination of model size and architecture.
Allmodelswere trainedon the entire dataset and evaluated for efficacy
against the endpoint under consideration by calculating AUROC. After
generating this ensemble of models, we extracted feature importance
values from each one and tracked the feature importance for each
protein over all the models in which it appeared.

In logistic regression models, feature importance was taken to be
the variance-normalized absolute value of each feature coefficient.
Protein concentration was expressed in NPX for this study, which is
analogous to the log of the absolute concentration of each protein.
The variance across all samples therefore did not numerically vary as
widely across protein as it would if we were using linear concentration
values. In support vector classifiers, we took feature importance to be
the feature coefficient absolute value. We used a linear kernel for our
support vector classifier models so that feature coefficients were well
defined. In random forest classifier models, we simply used the Gini
coefficients attached to the model.

Feature importance vectors were all normalized to unit sum for
each model. When averaging the feature importance value for each
protein across all models in which it appeared, we weighted each
importance by the AUROC of its model so that proteins appearing in
highly efficacious models would be favored over ones in models with
poor performance. We then ranked each protein by its average
AUROC-weighted feature importance so that we could quantify the
multivariate performance of each protein separately from its uni-
variate performance. We selected the top performers integrated
across each endpoint’s univariate andmultivariate lists. The univariate
and multivariate feature importance was then weighed along with
more operational/analytical constraints (e.g., analyte precision and
stability, confounding temporal or behavioral dependencies, associa-
tion with biologically interesting physiological pathways) in the choice
of the 20 proteins included in the assay. The final list of selected
proteins is compiled in Table 1 of this report.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are openly available
in GitHub at https://github.com/vmgehman/infl-neurodeg-bmkr-ms.
Source data are provided with this paper.

Code availability
The code that supports the findings of this study is openly available in
GitHub at https://github.com/vmgehman/infl-neurodeg-bmkr-ms.
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