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Misbehavior in a Neural Network Model

José E. Burgos
CEIC, University of Guadalajara, Mexico

This paper describes a neural  network account of misbehavior with an extant neural network model of
conditioning.  The model makes no distinction between learning (weight-change mechanisms) in operant
and Pavlovian conditioning, but preserves the standard behavioral distinctions between types of stimuli,
responses,  and  contingencies,  with  connectionist  interpretations  of  some  possible  neuroanatomical
substrates.   Misbehavior  has  been  traditionally  conceived  as  a  species-specific  response  R* that  is
unnecessary for a biologically significant reward S* but interferes with another response R that is necessary
for  S*.  Misbehavior thus conceived has been explained as interfering Pavlovian conditioned responding.
Three four-layer  feedforward neural  networks  were designed to differ only in  their  output  layers,  as a
connectionist  interpretation  of  three  hypothetical  operant-Pavlovian  relations  in  misbehavior,  namely,
interference  (Pavlovian output  to  operant  output  lateral  inhibitory  connection),  compatibility  (Pavlovian
output to operant output lateral excitatory connection),  and independence (no lateral connection in the
output  layer).   These  relations  are  proposed  as  neural-network  interpretations  of  neuroanatomical
substrates of conditioning with three biologically significant stimuli, namely, food, water, and sexual mate,
respectively.  Each network first received pairings of contextual cues with its respective  S*, to simulate
pretraining with such stimuli.  Then, networks received operant contingencies where S* was paired with the
same contextual cues, as well as cues from a token dependently on R responding, defined as a minimal R
activation of 0.5.  Networks showed substantial misbehavior (qua conditioned R* responding) that interfered
with R to different extents, food causing the most, sexual mate the least interference.  Limitations, future
directions, and implications for biological constraints and the generality of learning are discussed.

This study presents a computer simulation of the learning phenomenon known as
misbehavior using an extant neural network model.  The study is intensely theoretical
and conjectural.  The model is described in the first section (its mathematical part is
described  in  the  appendix).   The  simulation  is  described  in  the  second  section.
Implications and limitations are discussed in the last section.  For this introduction, I
summarize previous research on misbehavior and specify the elements that will be the
focus of the study.

The  term  misbehavior was  first  applied  to  learning  by  Breland  and  Breland
(1961).  They trained animals of different species (e.g., chickens, raccoons, pigs) in non-
experimental (but still unnatural) situations to respond in some relatively arbitrary way
R (e.g.,  picking  up  some discrete  object  like  a  wooden coin  and depositing  it  in  a
container) for food as a primary reinforcer (S*) in operant contingencies.  The animals
learned  R.   However,  they also performed certain other responses  R* (e.g.,  rooting,
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rubbing  a  token)  that  were  not  required  for  S*  but  interfered  with  R and  thus
significantly delayed S*; hence the term misbehavior to refer to R*.

Such  misbehaving  was  consistently  observed  across  species,  for  which  the
authors concluded that  it  showed “breakdowns of operant conditioned behavior” (p.
681).  R*, in fact, was reminiscent of species-specific behaviors towards food. For this
reason, the authors also interpreted  R*  biologically as  instinctive drift,  to mean that
“learned behavior drifts toward instinctive behavior” (p. 684).

Misbehavior was thus viewed as a case of biological constraints on learning (e.g.,
Bitterman, 1975; Domjan & Galef, 1983; Seligman, 1970), the notion that the laws of
learning  depend  on  the specific  stimuli,  responses,  and  reinforcers  used,  and  vary
systematically  across species.   In  the case of  misbehavior,  this  idea challenged the
generality of the law of operant (instrumental) conditioning, or “Law of Conditioning of
Type R,” as formulated by Skinner (1938): “If the occurrence of an operant is followed
by a presentation of a reinforcing stimulus, the strength is increased” (p. 21).  Thus
formulated,  this  law does not predict  misbehavior  (and other phenomena that  have
been  taken  as  indicative  of  biological  constraints  on  learning,  such  as  cue-to-
consequence effects  and autoshaping).   The law’s  generality,  then,  is  limited.   This
limitation has been argued to be due to the exclusion of biological factors pertaining to
the adaptive value and evolutionary history of food-related behavior.

Indeed, but this proposal, as valid as it is, does not explain how learned behavior
“drifts toward instinctive behavior.”  The Brelands viewed misbehavior as  instinctive,
meaning that it is innate, not learned or acquired. And yet, it is directed towards objects
other than, and in the prolonged absence of, food, its supposedly biologically specific
stimulus.  Misbehavior thus must involve some learning.  But what kind of learning does
it involve?  And how does it interfere with operant responding?  Neither the notion of
biological  constraints  on  learning  nor  the  Brelands’  interpretation,  answer  these
questions. 

The reason is that these are questions about mechanisms as proximate causes of
behavior in current species.  Biological constraints and the Brelands’ interpretation refer
to evolutionary adaptation and history, which are distal causes.  Although mechanisms
can  profitably,  and  perhaps  correctly,  be  hypothesized  as  evolutionary  adaptations,
they  still  need to  be characterized.   Evolutionary  considerations  are  necessary,  but
insufficient  for  such characterization.   My focus  in  this  paper  is  on mechanisms as
proximate causes, in abstraction of evolutionary distal causes, which I take as given,
unanalyzed initial conditions, for the sake of theoretical abstraction.

Possible answers to those questions have been proposed in experimental studies
of misbehavior with rats.  Boakes, Poli, Lockwood, and Goodall (1978) trained rats to
deliver ball-bearings (made of steel or nylon) into a hole (R) for food or water (S*).  The
results confirmed those reported by Breland and Breland (1961) with other species: The
rats  tended  to  perform  other  activities  (R*)  that  were  unnecessary  for  but  still
biologically related to  S* (e.g., chewing), and tended to interfere with  R, lengthening
ball-delivery times and hence causing reinforcement delays.

To explain their results, the authors hypothesized misbehavior to be S*-related R*
responding  that  is  conditioned  through  Pavlovian  (S-S*,  stimulus-reinforcer)
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contingencies that accompany operant (R-S*, response-reinforcer) contingencies, where
S included sensory  stimulation from the balls.   The authors  also hypothesized such
responding to interfere with the response R that is required in R-S* contingencies.  The
authors took this explanation to be consistent with a stimulus-substitution interpretation
of Pavlovian (classical, respondent) conditioning, but warned that such interpretation
did not fit other observations (e.g., longer ball-delivery times with nylon balls).

The authors also reported that using water as a reward resulted in moderately
shorter  ball-delivery  times  (and,  hence,  reinforcement  delays)  than  food.   This
observation is  consistent  with the Pavlovian-interference hypothesis,  but  makes it  a
matter of degree, being greater with food than water.  Still, the authors claimed that a
stimulus-substitution interpretation predicts  a  more pronounced difference than was
observed. 
In a different experimental series, Timberlake, Wahl, and King (1982, Experiments 4 and
5) also trained rats to make contact with a ball bearing for food.  The rats also behaved
in ways that resembled the species’ typical response patterns towards food, such as
gnawing, pawing, carrying, and nosing.  These activities also tended to interfere with
operant responding, causing reinforcement delays.

The authors also observed that explicitly pairing the ball with food in Pavlovian
contingencies (Experiment 1) resulted in comparable food-related activities towards the
ball, without the need of explicit operant contingencies.  This result supports Boakes et
al.’s  (1978)  hypothesis  that  sensory  stimulation  from  the  ball  could  function  as  a
conditioned stimulus (CS) for misbehavior.

Timberlake et al. (1982) thus agreed with Boakes et al. (1978) in hypothesizing
that  misbehavior  was  conditioned Pavlovian  responding,  but  also  warned about  the
pitfalls of the stimulus-substitution hypothesis. Timberlake et al. (1982) also agreed in
hypothesizing  that  misbehavior,  qua  food-related  conditioned  Pavlovian  responding,
interfered with operant responding in operant contingencies.  But they were somewhat
more  precise  about  the  kind  of  mechanism  that  could  underlie  such  interference,
namely, inhibition.

They also argued that misbehavior needed not be interfering, hypothesizing two
other possible relations, in addition to interference: Compatibility and independence.  In
compatibility,  the  authors  hypothesized  that  misbehavior  should  facilitate  operant
conditioning.  In independence, they hypothesized that misbehavior should not affect
operant  conditioning.   They  predicted  that  both  relations  should  result  in  less
interference of operant responding by misbehavior.  They also implied that misbehavior
that  is  compatible  with  R  should  be  less  interfering  than  misbehavior  that  is
independent of R.

These relations can help explain Boakes et al.’s (1978) observation that using
water  as  S* in  operant  contingencies results  in  less  interfering misbehavior:  Water-
related  responding  in  rats  could  be  more  compatible  with  R than  food-related
responding.   Or  perhaps  water-related responding  is  independent  of  R.   Either  one
would explain the observation.  Unfortunately, there is no evidence to decide which one
is  the  right  explanation.   A  new  experiment  would  be  needed  to  make  this
determination, but I will not do this here, at least not with animals.
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These studies contain all the elements, evidential and interpretive, that will be
the focus of the present study.  Roughly, misbehavior is a form of responding R* (e.g.,
chewing) that resembles unconditioned responding to a biologically significant stimulus
S* (e.g., food, water) and is conditioned through Pavlovian,  S-S* contingencies.  R*  is
directed  towards  a  biologically  neutral  token  (e.g.,  a  wooden  coin,  a  ball-bearing),
contact  with  which  is  required  as  a  response  R to  obtain  S*  in  operant  (R-S*)
contingencies.   Misbehavior  thus  conceived  interferes  with  R to  different  degrees,
depending on the type of S* and how compatible R* is with R.  Next, I interpret these
elements in terms of the model.

The Model

The  model  was  first  proposed  by  Donahoe,  Burgos,  and  Palmer  (1993)  as  a
unified connectionist interpretation of Pavlovian and operant conditioning.  Pavlovian
conditioning  phenomena  previously  simulated  with  the  model  include  acquisition,
extinction, and reacquisition “savings” (Donahoe, Burgos, & Palmer, 1993); ISI functions
(Burgos,  1997);  latent  inhibition  (Burgos,  2003);  C/T  ratio  effects  (Burgos,  2005);
context-shift  effects  (Burgos  &  Murillo-Rodriguez,  2007);  simultaneous  conditioning
(Burgos, Flores, García, Díaz, & Cruz, 2008); second-order conditioning and resistance to
extinction (Sánchez,  Galeazzi,  & Burgos,  2010);  blocking and overshadowing (Burns,
Burgos, & Donahoe, 2011).

Simulations  of  operant  conditioning  have  been  less  extensive.   They  include
acquisition, extinction, faster reacquisition, generalization, and discrimination (Donahoe,
Burgos, & Palmer, 1993); timing in fixed-interval schedules (Burgos & Donahoe, 2000;
Donahoe & Burgos, 1999); and reinforcement revaluation (Donahoe & Burgos, 2000).  It
remains to be seen whether the model can also simulate other operant conditioning
phenomena (e.g.,  behavioral  contrast,  negative  reinforcement,  positive  punishment,
fixed-ratio performance, matching law, matching to sample, etc.).

At  the  intersection  of  operant  with  Pavlovian  conditioning,  the  model  also
simulates  autoshaping,  automaintenance  (Burgos,  2007),  and  autoshaped  choice
(Burgos  &  García-Leal,  2015).   These  phenomena  exemplify  acquisition  and
maintenance of emitted responding through Pavlovian contingencies, without explicit
operant  contingencies.   Hence,  explicit  operant  contingencies are  not  necessary  for
such acquisition and maintenance.  The model’s ability to simulate this will be central to
the present study.  But first, I layout the model’s basic assumptions.

Connectionist Assumption

As  other  neural  network  models,  the  present  one  adopts  the  general
connectionist  assumption  that  cognition  (broadly  conceived  to  include  learning  and
behavior  in  nonhuman  animals)  is  better  explained  in  terms  of  the  functioning  of
artificial  neural  networks,  parallel  distributed  processing  systems  that  consist  of
interconnected  neuron-like  units,  if  one  is  to  take  into  account  brain  structure  and
function.  The model extends this assumption to animal conditioning, Pavlovian and
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operant.  The assumption has the following methodological aspects that are familiar to
modelers, but may not be apparent to non-modelers.

Neural  network models are strongly mathematical,  for  the sake of  clarity and
precision.  Explanations in terms of these models take the form of computer simulations
that help determine whether a model has numerical solutions that are consistent with
evidence about some phenomenon of interest.  Computers are used for expediency, to
achieve this task reliably and efficiently.  This reason, however, does not imply that the
phenomena being simulated are computational in nature (cf. Gallistel, 1990).

Very  rarely,  if  ever,  simulations  perfectly  emulate  phenomena,  especially
complex ones, like animal learning and behavior.  Rather, simulations are very rough,
interpretive approximations often assessed through  ordinal comparisons, my strategy
here (quantitative fits of the data are also pursued, but I will not do it here).  The reason
is that models used in simulations are highly abstract and simplified in that they focus
on a few aspects, purposely excluding the rest.  This simplification allows using models
effectively for explanation and prediction.  More realistic models are more complex and
hence more difficult to use.

A model, then, can hardly be rejected for excluding, as exclusion is essential to
modeling.  To reject a model for this reason, then, is to reject all models, which is too
drastic, given the centrality of models in science (see Bailer-Jones, 2009).  The present
model  is  no  exception  to  this  exclusionary  character  of  models.   As  will  become
apparent  next,  in  the  model’s  neuroscientific  and  psychological  assumptions,  it
excludes most details to focus on a few ones, to see how they work on their own, in
isolation of  others.   There is  no universally agreed-upon criterion to determine how
much exclusion is too much.  Therefore, no model can be meaningfully said to exclude
too much, or too little, for that matter.  Whether a model excludes too much or too little,
then, very much like beauty, is in the eye of the beholder.  Still, the model is somewhat
more strongly inspired by neuroscience than others.

Neuroscientific Assumptions

The  model  assumes  Pavlovian  and  operant  conditioning  to  depend  on
neuroanatomical features.  Only a few neuroanatomical features have been chosen, for
the  sake  of  theoretical  abstraction.   Following  Grossberg’s  (e.g.,  1974)  method  of
“minimal  anatomies,”  networks  in  this  model  are  intended  as  minimal  theoretical
structures  that  realize  the  assumptions  and  simulate  the  phenomena  of  interest1.
Networks  are  to  be  made  more  realistic  only  as  dictated  by  the  assumptions  and
phenomena.

Networks  in  this  model  are  not  intended  to  simulate  any  specific  local  brain
circuit either, but rather global circuits that involve several brain areas and nuclei.  More
precisely,  networks  are  designed  after  a  few basic,  general,  well-established gross-
neuroanatomical  principles of  organization of  vertebrate brains.   According to these
principles (see Mesulam, 1998), all vertebrate brains have a basic anatomical structure

1Construction of the present model, however, did not follow another feature of this method: Inference of 
neuroscientific from psychological assumptions.  Rather, neuroscientific assumptions were derived directly 
from neuroscience, and the psychological assumptions were derived from the neuroscientific assumptions.
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where  primary-sensory  areas  (S';  e.g.,  primary-visual,  primary-auditory)  project  to
polysensory  (sensory-association,  or  S")  areas.   These,  in  turn,  project  to  the
hippocampal  system  (which  projects  back  to  S")  and  motor-association  (motor-
association, or M") areas.  M" areas project to dopaminergic systems (D, which project
back to motor-association areas) and primary-motor (M') areas.

This  basic  S'-S"-H-S"-M"-D-M"-M' organization  is  common  to  a  wide  range  of
stimuli, reinforcers, responses, and species.  It thus provides a neuroanatomical sense
in which learning and behavior can be said to be fairly general.  However, the model
also  allows  for  considerable  variation  in  this  basic  organization  across  particular
networks.  Thus, indefinitely many particular neural networks are possible that differ in
the number of units, layers, units per layer, and how they are connected.  That is to say,
the  model  allows network  architecture  to  be  an  independent  variable in  simulation
experiments (e.g., Burgos & Donahoe, 2000). 

At the synaptic level, the model assumes that Pavlovian and operant conditioning
also depend on synaptic plasticity modulated by dopaminergic (D) and hippocampal (H)
systems.  The role of dopaminergic systems in both types of conditioning has been well
documented (see Schultz, 2010).  The evidence indicates that such role is to provide a
discrepancy (temporal-difference)  diffuse signal  that  modulates  changes  in  synaptic
efficacies in motor areas (associative as well as primary).  The model also hypothesizes
that this role is also played in the sensory-motor interface.

Hippocampal  systems  too,  influenced  by  dopaminergic  systems,  have  been
shown to play a role in both types of conditioning (see Everitt & Robbins, 2005).  The
role of hippocampal systems has not been as precisely asserted as that of dopaminergic
systems,  but  the  model  generalizes  from the  latter  role:  Hippocampal  systems too
provide a discrepancy diffuse signal that modulates synaptic plasticity, but in  sensory
association areas.

Both modulations work in the model as follows: The larger the discrepancy, the
more the weight gained by a connection, everything else being equal.  This process is
intended to simulate increases in sensory and motor synaptic efficacies by hippocampal
and dopaminergic  activity.   The  model  assumes  that  these  increases  underlie  both
types of conditioning, which is not to say that the two types of conditioning do not differ
in anything, whether anatomically, behaviorally (the model makes both distinctions), or
genetically (e.g., Brembs & Plendl, 2008).  Nor does it mean that they have no other
commonalities.

Psychological Assumptions

Psychologically, the model was proposed as a connectionist interpretation of the
unified behavioral  principle of  reinforcement for Pavlovian and operant  conditioning,
proposed by Donahoe, Crowley, Millard, and Stickney (1982).  This principle states that
all cues that are contiguous with a biologically significant stimulus S* come to control all
responses occurring in that moment.  The model adds assumptions about some possible
neural  mechanisms and structures  underlying  this  principle  (e.g.,  dopaminergic  and
hippocampal functioning).

There  is  considerable  overlap  between  the  psychological  and  neuroscientific
assumptions.  To begin with, the model defines learning neurobiologically, in terms of
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synaptic plasticity, as changes in the efficacies of certain synapses.  Synaptic efficacies
are modeled as connection weights.  These changes are thus modeled as changes in
connection weights, according to the learning rule (see Appendix, Eq. 2).  The model
uses the same rule to  change weights for all  connections,  independently of  stimuli,
responses, contingencies, and networks.  This commonality is another sense in which
the model assumes that learning is general.   I  will  argue in the discussion that this
assumption does not preclude biological constraints on learning.

Performance is interpreted as effector (muscle, gland) functioning dependent on
brain functioning.  The model does not simulate effector functioning.  The closest the
model  gets  to  performance  is  the  simulation  of  primary-motor  (M')  precursors  of
performance.  Still, the model allows for the definition of  response rules that convert
continuous output activations into discrete (e.g., binary) responses.

The  model  also  maintains  the  traditional  behavioral  distinctions  between  two
types  of  stimuli,  responding,  and  contingencies.   The  first  distinction  is  between
exteroceptive  sensory  stimuli  typically  used  as  antecedent  controlling  cues  (CSs  in
Pavlovian  contingencies,  discriminative  stimuli  in  operant  contingencies),  and
biologically significant stimuli typically used as unconditioned stimuli or USs in Pavlovian
conditioning and primary reinforcers in operant conditioning, such as food and water.
This distinction is  interpreted as one between activations of different types of  input
units  (S for  cues,  S* for  primary-reinforcers).  Such  activations  are  interpreted  as
primary-sensory (S' in the basic neuroanatomical organization described above) effects
of stimulation.

The  second  distinction  is  between  responding  R that  is  emitted  (not
unconditionally elicited by S*) and responding R* that is unconditionally elicited by S*.
Both can come to be controlled by S.  This distinction is neuroscientifically interpreted
as  one  between  different  types  of  output  activations.   These  activations  are  not
intended to simulate responses per se, but primary-motor (M') precursors of responses.
The  third  distinction  is  between  Pavlovian  (response-independent)  and  operant
(response-dependent)  contingencies.   This  distinction is  interpreted as one between
independence and dependence of S* activations on R activations.

Associations are interpreted as connections, associative strengths as weights. S-
S* and  S-R* associations in Pavlovian conditioning, and  R-S* associations in operant
conditioning, are interpreted somewhat differently from the ways they sometimes are
depicted  in  the  literature.   Some  authors  (e.g.,  Holland,  1990,  Figure  1)  depict
associations as elementary direct links that would be depicted in the model as direct
input S-S*, S-R*, or R-S* connections.

However, there are no such direct connections in this model.  Instead, the model
follows  depictions  where  separate  paths  for  CS  and US  converge  somewhere  (e.g.,
Wagner, 2008, Figure 3).  In this spirit, different types of associations are interpreted in
connectionist  fashion,  as  distributed  throughout  pathways  that  consist  of  multiple
connections in a network. S-S* associations are thus interpreted as pathways consisting
of S-S", S"-M", M"-D, M"-R*, S*-R*, and S*-D connections, where S and S* converge on R*
and D. S-R* associations are interpreted as pathways consisting of S-S", S"-M", and M"-
R*  connections,  where  S can evoke  R* indirectly through  S" and  M",  after learning.
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These  S-R* connections are a proper subset of the  S-S* connections. The model thus
hypothesizes Pavlovian conditioning to involve both, S-S* and S-S*associations.

It is unclear whether and how the model allows for connections that could be
interpreted as R-S* associations in operant conditioning, but I will not discuss this here.
However,  most  networks  used  in  this  study,  which  I  describe  next,  include  R*-R
connections that can be interpreted as  response-response associations.  Others (e.g.,
Dragoi, 1997) have postulated such associations for operant conditioning, but here I
postulate  them  for  operant-Pavlovian  relations.   The  model  also  allows  for  R-R
connections in operant conditioning, but they will not be part of this study.

Neural Network Examples

In order to illustrate in more detail how these assumptions work out in the
interpretation of misbehavior with the model, Figure 1 shows the three networks that
were used in the simulation.  They are labeled as INT for interference (top), COM for
compatibility (bottom left), and IND for independence (bottom right).  I intend them as
neural network interpretations of the three possible relations between Pavlovian (R*)
and operant (R) responding that Timberlake et al. (1982) hypothesized in their account
of misbehavior as Pavlovian conditioned responding.

Like other networks in previous simulation research with the model, these have
the same basic S'-S"-H-S"-M"-D-M"-M' organization outlined before, with a few additional
details.  The networks are intended as connectionist interpretations of neural circuits
underlying  conditioning  with  three  biologically  significant  stimuli,  namely,  food  (F),
water (W), and sexual mate (A) that elicit three types of unconditioned responses R*F,
R*W, and R*A, respectively, in the same individual animal (e.g., a particular rat).  Thus,
R*F denotes food-related (e.g., chewing), R*W water-related (e.g., licking), and R*A mate-
related (e.g., copulating) responding.  Emitted responding (R) is assumed to have the
same form (e.g., making contact with a token) across all networks.

In INT,  S*F activations are intended to simulate primary-sensory effects of food
that unconditionally elicits food-related responding (R*F,  e.g., chewing).  In COM,  S*W

activations  are  intended  to  simulate  primary-sensory  effects  of  water  that
unconditionally  elicits  water-related  responding  (R*W,  e.g.,  licking).   In  IND,  S*A

activations  are  intended  to  simulate  primary-sensory  effects  of  a  mate  that
unconditionally  elicits  mate-related  responding  (R*A,  e.g.,  copulating).   These
interpretations  are  closely  tied to  the differences  in  the  M' layers  across  the three
networks.

Units  are  organized  according  to  a  feedforward  architecture  into  one  input
(labeled as S', consisting of two squares labeled as S and a hexagon labeled as S*F, S*W,
or S*A), two hidden (labeled as S" for “polysensory” or “sensory-association”, and M" for
“motor-association”),  and  one  output  layer  labeled  as  M' (for  “primary-motor”).   In
agreement with well-established, basic gross-neuroanatomical principles (see Mesulam,
1998), S' units connect to S" units, S" units connect to M" units, and M" units connect to
M' units. 
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I propose the differences in the M' layers as neural-network interpretations of the
operant-Pavlovian relations hypothesized by Timberlake et al. (1982).  More precisely,
for certain biologically significant stimuli (viz., food and water), I hypothesize projections
from  primary-motor  precursors  of  Pavlovian  responding  (M'R*)  to  primary-motor
precursors  of  emitted,  operant  responding (M'R).   These projections  are depicted as
lateral  connections  in  the  M'  layers  of  INT  and  COM.  The  model  allows  for  other
interpretations, but I will focus on this one.

In INT, such lateral connections involve an inhibitory unit (open diamond labeled
as I) that receives a lateral excitatory connection from M'R* and sends a lateral inhibitory
connection (thin line ending with a closed diamond) to M'R.  My working hypothesis here
is that interference of  R by misbehavior qua conditioned R* is due, at least in part, to
lateral inhibition from primary-motor precursors of R* to primary-motor precursors of R.
For the simulation, then,  M'R* activations in INT are expected to significantly lower M'R
activations.   On  this  basis,  INT  should  simulate  misbehavior  qua  conditioned  R*
responding that significantly interferes with R and hence reduces success in obtaining
S* in operant contingencies.  My interpretation of  R* in this network as food-related
follows observations that misbehavior interferes with operant responding when food is
used as a reward in operant contingencies.

Figure 1. Neural network architectures used in the simulations, labeled as INT for “interference” (top), COM
for “compatibility” (bottom left), and IND for “independence” (bottom right).  The networks differ only in 
their output (M' for “primary-motor”) layer. INT’s M' layer has an inhibitory unit (diamond labeled as I) that 
receives a lateral excitatory connection from M'R* (output unit for R* responding, unconditionally elicited by 
a primary reinforcer, or conditionally evoked by a cue) and sends a lateral inhibitory connection to M'R 
(output unit for R, emitted responding).  COM’s M' layer has a direct lateral excitatory connection from M'R* 
to M'R. IND’s M' layer has no lateral connections.  CTX: Constellation of contextual cues. TOKEN: Cues from a
discrete object (e.g., ball-bearing, wooden coin), a response R to which (e.g., contact) is required for an 
operant contingency.  TOKEN is present (i.e., this S unit was activated) only when an R response occurs, 
defined as an M'R activation of 0.5 or more.  S': Primary-sensory or input layer. S' units are activated 
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according to a training protocol that simulates a conditioning procedure, and are meant to simulate 
primary-sensory effects of external environmental stimuli.  Squares labeled as S: Input units whose 
activations are intended to simulate primary-sensory effects of CTX and TOKEN.  Hexagons labeled as S*F, 
S*W, and S*A: Input units whose activations are intended to simulate primary-sensory effects of biologically 
significant stimuli (e.g., food, water, and mate, respectively) that unconditionally elicit three different 
response forms R*F (e.g., chewing) R*W (e.g., licking), and R*A (e.g., copulating), respectively.  These 
responses can also be conditionally evoked by CTX and TOKEN, if the relevant connections have gained 
sufficient weight.  Dashed arrows to inputs: Stimulus-to-S' transduction (not modeled).  Circles: 
Neurocomputational units activated according to the activation rule (see Appendix, Eq. 1).  Thin lines 
ending with buttons: Variable, initially weak connections whose weights change according to the learning 
rule (see Appendix, Eq. 2).  Thick lines arising from hexagons: Fixed, initially strong connections.  S'': 
Sensory-association or polysensory layer, consisting of two units.  H: Units intended to simulate a 
hippocampal area (e.g., CA1), as a source of dH,t (signal that modulates changes in the S-S" and S"-H 
connections).  D: Unit intended to simulate some dopaminergic nucleus (e.g., ventral-tegmental area), 
unconditionally activated by S*, and source of dD,t, the discrepancy signal that modulates changes in S"-M", 
M"-D, and M"-M' connections, according to the learning rule.  Shaded rectangles: Diffuse discrepancy 
signals (dH,t and dD,t) that modulate weight changes.  Curved arrows: Amplifications of dH,t by dD,t. M'': Motor-
association layer, consisting of two units (M'R, M'R*). M': Primary-motor (output) layer. M' activations are 
intended to simulate primary-motor precursors of R (M'R) and R* (M'R*) responding.  Dashed arrows from 
outputs: Primary-motor-to-effector transduction (not modeled).

To simulate Boakes et al.’s  (1978) observation of  less interfering misbehavior
when R is rewarded with water, I hypothesize that R*W is more compatible with R than
R*F.  My rationale for this hypothesis is that water is far more biologically significant
than food, as dehydration usually causes death much faster than starvation.  On this
basis, I speculate that  R*W is sufficiently faster than  R*F as to make  R*W at least less
interfering with R.  Moreover, to simulate Timberlake et al.’s (1982) interpretation of
operant-Pavlovian compatibility as being facilitating, I speculate that R-R*W compatibility
could  be  excitatory  in  nature  (but  see  below).   The  clearest  way  to  translate  this
hypothesis into the model is by placing an excitatory connection from  M'R* to  M'R, as
shown in COM.  This network should thus simulate misbehavior that interferes less with
R than in INT.

Lastly,  IND’s  M' layer has no lateral connections, which I  intend to simulate a
primary-motor  independence  between  R and  R* responding,  as  a  neural  network
interpretation  of  Timberlake  et  al’s  (1982)  hypothesized  independence  between
misbehavior  qua  conditioned  Pavlovian  responding  and  operant  responding.   A
behavioral interpretation of this network is less forthcoming, but I venture to postulate
mate-related responding (R*A) as a possible candidate, although a good rationale for
this  hypothesis  is  elusive.   The  best  rationale  I  can  offer  is  that  R*A is  sufficiently
different from R, R*F, and R*W as to be neurally more independent of R than R*F and R*W.
IND should thus simulate misbehavior that is less interfering with R.

From my hypothesis that compatibility is excitatory, COM might be expected to
simulate less interfering misbehavior than IND.  However, this implication might not
obtain.   The reason is  that the learning rule includes a factor  where units  that  are
connected to the same unit compete for a limited amount of weight available on this
unit (this competition occurs only between units of the same type, either excitatory or
inhibitory, not between different types).  As connections gain weight, then, there is less
weight to be gained by other connections on the same unit.  Such is the case of COM,
where the  M'R* and  M" units compete for the weight  available on  M'R.   As a result,
activations of  M'R by either the  M'R* or  M" units might be weaker.  There is no such
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competition or inhibition in IND’s  M' layer.  IND should thus simulate less interfering
misbehavior than COM and INT.

The three networks are otherwise identical.  The S' layer has three units (squares
labeled as  S  and hexagon labeled as  S*F, S*W,  or S*A).  These units are intended to
simulate primary-sensory neuronal groups and are activated according to a predesigned
training protocol that simulates a conditioning procedure of interest.  Activations of the
S units are intended to simulate primary-sensory effects of CSs, discriminative stimuli,
and contextual cues.  For this study, I assume that  S in Pavlovian  S-S* contingencies
(through which misbehavior is supposedly acquired and maintained) not only denotes
sensory cues from a discrete object (TOKEN, contact with which is required for  S* in
operant, R-S* contingencies), but also contextual cues (CTX).

S*F,  S*W, and S*F activations are intended to simulate primary-sensory effects of
three biologically significant stimuli (e.g., food, water, and mate, respectively) used as
response-independent USs in Pavlovian contingencies, or response-dependent primary
rewards in operant contingencies.  The dashed arrows to the  S'  units depict sensory
transduction processes, not simulated in the model.

Both S units connect to, and hence can activate, both S" units in the first hidden
layer. These connections constitute only part of the S'-S" segment of the basic S'-S"-H-
S"-M"-D-M"-M' architecture  described  above.  The  hexagons,  albeit  S' units,  do  not
project to the S" layer, so they are not part of the S'-S" segment. Hence, this segment is
more precisely symbolized as S-S".

Each S" unit, in turn, connects to, and hence can activate its own H unit.  These
connections constitute the S"-H segment of the basic architecture.  Both S'' units also
connect to, and hence can activate the two M" units in the second hidden layer.  These
connections constitute the S"-M" segment of the basic architecture, and are intended to
simulate  a  sensory-motor  interface.   Both  M'' units,  in  turn,  connect  to  the  D unit
(comprising the M"-D segment), and both M' (primary-motor, output) units (comprising
the M"-M' segment).  These networks, then, are fully connected from layer to layer (cf.
Sánchez et al., 2010).  Because connections are initially weak, they must gain sufficient
weight for units to activate their targets (e.g., an S unit to activate its target S" units).
Two H and one D unit were used based on a previous study (Sánchez et al., 2010).

Changes  in  connection  weights  are  modulated  by  diffuse  discrepancy  signals
(shaded rectangles arising from H and D units).  The signal that arises from the H units
(dH,t) modulates changes in the weights of the  S-S" and  S"-H connections.  The signal
that arises from D (dD,t) modulates changes in the weights of the S"-M", M"-D, and M"-M'
connections and amplifies dH,t (curved arrow).  These signals are assumed to be carried
by connections that simulate axo-axonic, modulatory synapses that feed back into the
feedforward synapses, and are assumed to be fixed and maximally strong.

The key to how such signals increase weights is the unconditional activation of D
by S*, which is intended to simulate unconditional activations of dopaminergic neurons
by primary reinforcers.  If the S* unit is maximally activated (with level of 1.0) at t, then
the D unit will also be activated at t with the same level as S*.  In a naïve network, initial
weights are too low to allow S units to strongly activate D units via the S" and M" units.
Hence,  D’s  activation  at  t–1  will  be  close  to  0.0  (lower  than  a  pre-established
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discrepancy threshold of 0.05, which puts the learning rule in weight-gain mode).  When
D is  unconditionally  and  strongly  activated  by  S* at  t,  the  difference  between  this
activation and the one at  t–1 will be large.  This difference will make all connections
gain weight at t (which makes it a diffuse signal).  After  several  iterations  of  this
process,  weights  become  sufficiently  large  for  the  S units  to  start  conditionally
activating the D units, which also results in relatively large discrepancies (not as large
as in unconditional activations of D by S*).  These discrepancies act as a kind of internal
conditioned reinforcement mechanism that allows for further weight gain in the absence
of S*.  In this way, learning can keep going for sometime without primary reinforcement.

M'R and M'R* activations are intended to simulate primary-motor precursors of two
response forms R (emitted) and R* (elicited), respectively.  These units are not intended
to simulate effectors (muscles, glands), nor are their activations intended to simulate
responses.  The model only assumes that certain appropriate effectors are in place and
functioning properly, such that there is a sufficiently high correlation between primary-
motor  activations  and  responses.   Therefore,  the  model  does  not  simulate  any
manipulations  that  are  designed  to  disrupt  effector  functioning  directly  without
disrupting primary-motor areas.  The only way the model can simulate such disruption
is by simulating disruptions of primary-motor areas.

M'R can be activated only by the S via the S" and M" units, if the corresponding
connections (S-S", S"-M", and M"-M'R) gain sufficient weight. M'R cannot be activated by
an S* unit.  M'R activations are thus intended to simulate primary-motor precursors of a
response R that is emitted in that it is not unconditionally elicited by S*.  Still, M'R must
be activated by the S units. R thus simulates responding that is controlled by S, even if
not  unconditionally  elicited  by  S*.   All  emitted  responding  in  this  model  is  thus
hypothesized to have some antecedent controlling (but not eliciting) stimulation.

M'R*, in contrast, can be activated either unconditionally by S* or conditionally by
the S units via the S" and M" units (which requires sufficient weight gain by the S-S", S"-
M",  and  M"-M'R*).   An  unconditional  activation  occurs  whenever  an  S*  activation  is
greater than 0.0, which simulates the occurrence of a biologically significant stimulus,
such as food, water, or a mate.  In this case,  M'R*’s activation will be equal to the  S*
activation  (see  Appendix,  Eq.  1),  which  would  simulate  an  unconditionally  elicited
response.   Unconditional  activations  are  carried  by  a  fixed  and  maximally  strong
connection (thick line) from S* to M'R*. D too receives a direct connection from S*.  The
S*-M'R* and S*-D connections should thus be added to the basic architecture.

These  fixed connections  are  intended  to  simulate  hardwired,  innate,  species-
specific  dendritic/somatic  synaptic  clusters  that  mediate  automatic  activations  of
dopaminergic  systems  (activation  of  D by  S*)  and  primary-motor  precursors  of
responding that is unconditionally and specifically elicited by  S* (activation of  M'R* by
S*).   M'R* activations  by  S* are  thus  intended  to  simulate  neural  substrates  of  an
unconditioned reflex S*-R*.

Conditional activations of  M'R* are like those of  D and M'R.  They can be caused
only  by  the  S  via  the  S" and  M" units  (only  if  the  S* unit  activation  is  0.0,  which
simulates the absence of S*, and the S-S", S"-M", and M"-M'R* connections have gained
sufficient weight).  The S units can thus activate the S" units, the S" units can activate
the H and M" units, the M" units can activate the D and M' units.  In sum, R and R* are

12



intended to simulate two different response systems, one emitted (R), the other elicited
(R*), both controlled by certain environmental stimuli (S in the case of R, S or S* in the
case of R*).

R  simulates another feature of emitted responding, namely, directedness (see
Burgos 2007).  This feature was simulated by making activations of the TOKEN S input
unit  depend on  R responses  during  operant  contingencies.   These  activations  were
intended  to  simulate  physical  contact  with  a  token.   Such  contact,  in  turn,  was
hypothesized  to  provide  sensory  (visual,  tactile,  etc.)  feedback  from  the  token’s
features.   These  features  are  thus  hypothesize  to  come  to  function  as  antecedent
controlling stimulation of R and R*, as a result of learning.

Some Comparisons with Other Models

Detailed and exhaustive formal comparisons would take too long.  Instead, I will
only make some general informal comparisons.  One important similarity is the use of a
temporal difference or “error” in successive activations of D to modulate learning (see
Appendix, Eq. 2).  Many models of conditioning (e.g., Rescorla & Wagner, 1972) use this
magnitude, and the present one is no exception.  The model also makes a learning-
performance  distinction  that  favors  a  definition  of  learning  in  terms  of  underlying
mechanisms, not performance.  And like some other models (e.g., Schmajuk, Lam, &
Gray,  1996),  the  present  one  is  explicitly  connectionist.   As  mentioned before,  the
model can also simulate many phenomena that other models simulate, and a few that
they cannot, such as autoshaping and automaintenance.

I have pointed out some differences above.  The model, in contrast to others,
postulates a common learning mechanism for Pavlovian and operant conditioning, while
making  standard  behavioral  and  neuroanatomical  distinctions.   Other  models  of
Pavlovian  conditioning  (e.g.,  Gibbon  &  Balsam,  1981;  Rescorla  &  Wagner,  1972;
Schmajuk et al., 1996; Stout & Miller, 2007; Sutton & Barto, 1981; Wagner, 1981) do not
predict operant conditioning, as they do not include emitted responding.  Other models
of operant conditioning (e.g., Dragoi & Staddon, 1999; Grossberg, 1974; Killeen, 1994,
2011; Machado, 1997; Staddon & Zhang, 1991) include emitted responding but do not
simulate Pavlovian conditioning.  In contrast to the present model, they also assume
that acquisition and maintenance of emitted responding requires operant contingencies.
Also, the model is more inspired by neuroscience than most others.  At least, they do
not make the kinds of neuroscientific assumptions laid out above.

To finish this section, a previous computational study of misbehavior (Dayan, Niv,
Seymour, & Daw, 2006) deserves mention.  The model in that study, like the present
one,  uses  a  temporal  difference  to  modulate  learning.   However,  the  authors’
interpretation of misbehavior is quite different.  They view failures to obtain reinforcers
in misbehavior as a kind of omission training.  This interpretation is valid, but not the
only possible one. Mine is more akin to other studies of misbehavior (Boakes et al.,
1978; Timberlake et al.,  1982).  It  also makes behavioral  (e.g.,  CS-US, and emitted-
elicited distinctions) and neuroscientific (e.g., roles of dopaminergic and hippocampal
systems in conditioning) assumptions that are not made in that model.  Not only do

13



such assumptions make the present study somewhat closer to previous behavioral work
and known neural substrates of conditioning, but also allow for novel predictions.

A Simulation

The purpose is to simulate misbehavior toward a token in operant contingencies
only,  where contact  with the token is  necessary for reinforcement,  using the model
described above.  The three networks depicted in Figure 1 were naïve in that the initial
weights of all their variable connections were relatively low, set to 0.1 (the minimum
weight is 0.0, the maximum weight is 1.0).

All networks first received 100 CTX-S* Pavlovian conditioning pairings.  CTX was
defined as a maximal (1.0) activation of the top  S  unit throughout the entire phase.
This activation was intended to simulate primary-sensory effects of contextual  cues,
permanently present throughout training.  S* was defined as the maximal activation of
the S*F, S*W, and S*A units every 5 moments.  This training protocol thus simulated a 5-
moment fixed-time schedule in a context. The other S (TOKEN) unit was never activated
during this phase.

This pretraining is necessary in these networks to promote sufficient weight gains
to facilitate activations throughout the network and thus increase the likelihood that the
response  criterion  during  operant  reinforcement  is  met.   Such  learning  provides  a
Pavlovian kick-start that yields some preparatory stimulus control of  R.  In the case of
food and water, this pretraining could be plausibly interpreted as simulating training
with a food or water dispenser, pretraining that has been used in misbehavior studies.
There still  have not been systematic studies of sexual misbehavior.  However, some
studies of  sexual  instrumental  conditioning (e.g.,  Everitt,  Fray,  Kostarczyk,  Taylor,  &
Stacey, 1987) with rats have included some pretraining with sexual mates (e.g., visual
exposure), before operant conditioning.

Then,  in  a  second  phase,  the  three  networks  were  scheduled  to  receive  20
operant contingencies where the S* units were maximally activated every five moments
only if M'R’s activation at the last moment was 0.5 or more.  This threshold can also be
used to define a response rule for misbehavior, applied to M'R* activations.  This protocol
thus simulated a five-moment fixed-interval schedule with contextual cues.  Also during
this phase, the TOKEN  S  unit (second square from top to bottom in the networks in
Figure 1) was maximally activated whenever an R response thus defined occurred.  This
activation  was  intended to  simulate  physical  contact  with  a  token,  a  contact  that  I
hypothesize  to  provide  sensory  feedback  from the  object  that  can  also  function  as
antecedent controlling stimulation (Burgos, 2007), in addition to contextual cues.

For simplicity, all S activations (CTX and TOKEN) were simulated as discrete trials.
No  explicit  intertrial  intervals  were  simulated.   Instead,  they  were  assumed  to  be
sufficiently long for all activations to decrease to near-zero values at the beginning of
each trial.  All activation and learning free parameters were the same as in previous
simulation research with this model (see Appendix), for all units.
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The  results  of  the  first  phase  are  not  shown,  as  output  activations  did  not
increase  to  response  levels  until  about  90  to  100  trials.   Pavlovian  contextual
conditioning thus took this long to occur, with INT showing only R* responding, and COM
and IND also showing some  R responding.  The results of the second phase (operant
conditioning) are given in Figure 2.

The figure depicts the activations of  M'R (dashed curve, representing a primary-
motor precursor of operant responding) and  M'R* (solid curve, representing a primary-
motor precursor of Pavlovianly conditioned misbehavior) at the moment immediately
before a scheduled operant contingency (t = 4) for all 20 scheduled contingencies and
the three networks (INT: top panel, COM: bottom left panel, IND: bottom right panel).
The percentage of  reinforcers  obtained (in parentheses)  was used as a measure of
success in obtaining reinforcers during this phase.

These results are from a single simulation run (i.e., they simulate a study with
three different individual subjects of the same species; e.g.,  Rattus norvegicus).  The
simulation was repeated 100 times, to determine reliability.  Differences were observed
across runs (due to stochastic  noise in the model;  see Appendix),  but casual  visual
inspection  suggested  that  the  results  shown  here  are  reasonably  representative.
Quantitative  analyses  remain  to  be  done  to  assess  the  statistical  properties  of  the
model’s  simulation  of  the  phenomenon.   I  did  not  do  such  analyses  for  this  study
because they would have complicated it well beyond what I intended.  My aim was first
to  test  the  model  with  individual  networks,  a  common  practice  in  connectionist
modeling.
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Figure 2. Activations of M'R (dashed curve) and M'R* (solid curve) at the moment immediately before a 
scheduled operant contingency, across all scheduled contingencies, during operant conditioning, after a 
pretraining in Pavlovian contextual conditioning during feeder/magazine training, for the three networks 
used, INT (top), COM (bottom left), and IND (bottom right).  The horizontal line at 0.5 indicates the output 
activation criterion for responses. Percentages of reinforcers obtained during the phase are shown in 
parentheses.

The networks showed different levels of M'R and (conditioned) M'R* activations, to
different degrees of stability.  Except for a few occasions, all M'R* activations in the three
networks were above the activation criterion for responses (indicated by the horizontal
line at 0.5), and from the beginning of the phase.  This result means that all networks
simulated  misbehavior  qua  conditioned  R* responding  most  of  the  time  (assuming
properly functioning effectors) and from the outset.  Such early onset of misbehavior is
not surprising, as, again, the networks had received in the previous phase 100 CTX-S*
trials, which promoted strong Pavlovian contextual control of R*.

These results thus simulate the acquisition of misbehavior qua conditioned  R*
responding acquired through Pavlovian contextual conditioning during pretraining with
food, water, or a sexual mate.  Still, R* occurred to different degrees of stability across
the three networks, with IND being the most stable (all of IND’s  M'R* activations were
well  above  the  0.5  criterion).   INT  and  COM  simulated  comparably  less  stable
misbehavior.  The reason for these differences has to do with the M'R activations, which I
describe next.

The  most  pronounced  differences  across  the  networks  were  in  their  M'R
activations,  intended  to  simulate  primary-motor  precursors  of  R responding.   As
expected, INT showed the fewest M'R activations above the 0.5 response criterion (only
three  towards  the  end  of  the  phase).   INT  thus  simulated  the  weakest  operant
responding.  This result was due to  M'R’s inhibition by  M'R* in INT’s output layer.  This
inhibition can be appreciated in the opposite tendencies often observed between INT’s
M'R and M'R* activations, although their Spearman rank order correlation () was below
0.3 and statistically non-significant.

Relevant final weights of this phase for INT were about 0.39 for each M"-M'R, 0.85
for the I-M'R, and 0.53 for the M'R*-I connection.  Thus, inhibition of M'R by M'R* was quite
strong,  which  is  a  way  to  simulate  the  interference  that  Boakes  et  al.  (1978)  and
Timberlake  at  al.  (1982)  have  hypothesized,  according  to  which  food-related
misbehavior  exerts  on  operant  responding.   In  sum,  INT  simulated  considerable
interference  of  operant  responding  by  misbehavior  resulting in  the most  failures  to
obtain  reinforcers  (only  a  success  of  15%),  in  ordinal  agreement  with  evidence  of
misbehavior where food has been used as a reward.

COM  simulated  comparable  levels  of  misbehavior,  but  noticeably  more  R
responding and, hence, less interfering misbehavior than INT, dramatically increasing
COM’s success to obtain reinforcers (60% vs. INT’s 15%).  Such success was due to
M'R*’s excitatory connection to  M'R, which allowed  M'R* activations to contribute to  M'R
activations.  The two were much more highly correlated (  0.86, p  .0001).  Relevant
final relevant weights of this phase for COM were about 0.07 for each M"-M'R and 0.38
for  the  M'R*-M'R connection.   This  difference  means  that  the  R*-R association  was
stronger than the S-R associations, due to a competition between M'R* and the M" for the
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weight available on M'R.  M'R* had competitive advantage, due to its stronger activation
by S* at the moment of reinforcement.  Still, the R*-R connection did not gain sufficient
weight  for  M'R* to  activate  M'R more  stably.   COM’s  simulation  thus  simulates  less
interference of operant responding by misbehavior than INT, but perhaps less than what
Timberlake et al. (1982) appeared to have predicted for compatibility.  This result is also
ordinally comparable to  Boakes et al.’s  (1978) result  of  less interfering misbehavior
when water is used as a reward, although quantitatively the present results simulate a
more pronounced difference.

The relative instability of misbehavior in INT and COM was due to the instability of
R responding, which, in turn, reduced the frequency of S* in the operant contingencies.
The source of such instability was different for each network. In INT, the source was the
inhibition of M'R by M'R*.  In COM, the source was the competition between the M'R* and
M" units for the weight available on M'R.  Both caused a reduction in the S* frequency,
which  resulted  in  occasional  weight  losses  in  the  CTX-R* paths,  which  occasionally
decreased R* control by CTX.  On other occasions, M'R activations increased sufficiently
to cause S* and weight regain.  The net effect of this was instability in the M'R and M'R*

activations in INT and COM.

As  expected,  IND  showed  the  highest,  most  stable  misbehavior  and  operant
responding, and hence, the most successes in obtaining reinforcers (100%), with an R-
R* correlation comparable to COM’s (  0.87, p  .0001).  Relevant final weights of this
phase for IND were about 0.4 for each  M"-M'R connection, indicating a much stronger
control of  R by S than in COM.  These weights were comparable to the corresponding
ones in INT.  However, IND’s M'R activation was not damped by any inhibition, nor was
there the sort of competition that interfered with COM’s R responding.  All this helped
IND’s  R responding to be more strongly controlled by the  S (CTX and TOKEN).  This
result is a novel prediction, so there is no evidence with which to compare it. It remains
to be seen whether it is confirmed in future research with animals.

General Discussion

In terms of my proposed interpretation of the three networks as stimulations of
neural  circuits  underlying different  reinforcement and response systems,  the results
predict an order of interference of operant responding by misbehavior that relates to
different  biologically  significant  stimuli  that  unconditionally  elicited  their  different
responses.  From the most to the least interfering, the predicted order is food, water,
and mate.  This order is predicted to depend on certain neuroanatomical features of
those  circuits,  in  particular,  connectivity  among  primary-motor  precursors  of
misbehavior and operant responding.  It remains to be seen whether other models that
have been used to simulate misbehavior (e.g., Dayan et al.,  2006) also make these
predictions.

The  first  and  second tiers  of  this  ordering,  corresponding  to  food  and water,
respectively,  are  ordinally  comparable  to  Boakes  et  al.’s  (1978)  observation  of  less
interfering misbehavior with water than food.  However, the differences between food-
and water-related misbehavior were quantitatively more pronounced in the simulation.
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As for the third tier, corresponding to mate-related misbehavior, there is no evidence to
assess the simulation’s prediction.  Studies on sexual instrumental conditioning (e.g.,
Beck, 1971; Everitt et al., 1987; Gilbertson, 1975; Michael & Keverne, 1968; Sevenster,
1973)  have  not  yet  investigated  misbehavior  systematically.   More  experimental
research is thus needed for a more detailed behavioral characterization of mate-related
misbehavior  in  sexual  instrumental  conditioning,  and  how  much  it  interferes  with
operant responding, compared to misbehavior with food and water.

The simulation also predicts the occurrence of misbehavior qua conditioned  R*
responding  for  all  the  networks  from the  very  first  scheduled  operant  contingency.
However, once again, this effect resulted after about 100 trials of Pavlovian pretraining
(not shown), which promoted Pavlovian contextual conditioning of R* responding in all
the networks.  Unfortunately, there is little evidence to which this result can be directly
compared,  as  no  systematic  data  on  Pavlovian  contextual  conditioning  during
pretraining  have  yet  been  reported.   The  closest  is  Timberlake  et  al.’s  (1982,
Experiment 1, Figure 1, upper left panel) results for acquisition speed of misbehavior
through Pavlovian contingencies using a token as a CS.   Their  results  indicate  that
acquisition of misbehavior through Pavlovian contingencies is relatively fast (about five
trials).  The present results depart considerably from this particular evidence.

A possible reason is that the initial connection weights in the networks were too
low.  Perhaps, faster acquisition of misbehavior could be simulated with larger initial
weights.   In  any  case,  the  present  results  are  consistent  with  a  key  implication  of
Timberlake et  al.’s  (1982)  study:  Contrary  to  the conventional  wisdom at  the time,
operant contingencies are not necessary for the acquisition of misbehavior.

Other limitations stem from the great deal of abstraction involved in the model
and simulation.  To begin with, misbehavior was simulated in a very simplified way as
consisting  of  just  one  behavior  form  R* (cf.  Timberlake  et  al.,  1982,  Table  1).
Misbehavior in animals is far more complex than this, involving many R* behavior forms
that  can  vary  and  relate  in  many  different  ways.   Also,  the  networks  used  were
exceedingly simple (far simpler than the simplest known natural brain circuit).  Natural
brain circuits that underlie misbehavior, whatever they are, are likely to be far more
complex than this. 

Another limitation was the necessity of a Pavlovian training previous to operant
conditioning for these networks to simulate some R responding that could be used in
operant contingencies.  For INT and COM, I interpreted such training as corresponding
to pretraining with food and water dispensers.  There are no studies of misbehavior with
sexual  mates,  but  this  interpretation  can  be  applied  to  IND  as  well.   The  relevant
prediction here is that some sort  of non-operant training with biologically significant
stimuli, prior to operant training, is necessary for misbehavior to occur.  It remains to be
seen whether this prediction is empirically confirmed.

Also, contextual cues are tonic, continuous signals, but were simulated here as
discrete CSs.  This simplification has been convenient for theoretical simplification, but
it ultimately is too simple.  The present model allows for a somewhat more realistic
simulation of contextual cues (e.g., Burgos & Murillo-Rodríguez, 2007) where they have
a less discrete, more continuous character.  It remains to be seen whether and how this
way to simulate contextual cues affects the present results.
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No individual or species differences were simulated either.  Only differences in
response and reinforcement systems within  the same individual  were simulated.   It
remains to be seen whether and how the model predicts species-specific differences in
misbehavior,  although  such  differences  have  not  been  experimentally  investigated
either.   In  principle,  the  model  at  least  allows  for  manipulations  of  neural  network
architectures  that  could  simulate  species-specific  neuroanatomical  differences
underlying species-specific learning differences.  Because such differences obtain at the
neuroanatomical and behavioral levels, they are compatible with a general mechanism
of changes in synaptic  efficacies that  obtains at  the synaptic  level.   Generality and
specificity thus become compatible by obtaining at different levels of organization.

In a related simplification, the networks were handcrafted ad hoc to simulate the
phenomenon of interest.  I intended this abstraction only as a conjecture about possible
neuroanatomical  substrates  of  misbehavior,  also  to  be tested empirically.   Still,  the
abstraction refers only to proximate causes of behavior.  The study of misbehavior and
other  biological  constraints  on  learning  has  been  squarely  framed  within  a  strong
evolutionary, adaptive thinking that also seeks for distal, ancestral causes of behavior.
Aside from the assumption that unconditioned  D  and  M'R* activations by  S*  simulate
primary-motor precursors of innate, species-specific responding, no other evolutionary
considerations were made here.  However, this does not mean that they are impossible
or unimportant.

Neuroanatomical  architecture,  in  particular,  is  as  much  a  phenotypic  trait  as
height, skin color, and behavior.  The networks used here can thus be hypothesized to
simulate phenotypic traits that are proximate effects of genetically and environmentally
driven  developmental  processes.   They  can  also  be  hypothesized  to  be  adaptive
adaptations as distal effects of phylogenetic processes.  More comparatively, they could
be hypothesized as homologies among present vertebrate species.  Species similarities
are as important as species differences.  A previous study with the model (e.g., see
Burgos,  1997)  shows  none  of  this  is  beyond the  grasp  of  computational  modeling,
despite its generalist character.

Finally, the study illustrates how computational modeling can make the idea of
biological constraints congruent with a general view of learning.  This congruency is
made  possible  by  theorizing  at  different  levels  of  organization  of  brains,  namely,
synaptic, neuroanatomical, and behavioral.  Learning is hypothesized to be general at
the  synaptic  level  by  using  the  same  learning  rule  to  change  weights  across  all
connections, stimuli,  reinforcers, responses, contingencies, and network.  Learning is
also  hypothesized  to  be  biologically  specific  at  the  neuroanatomical  and  behavioral
levels, by using different network architectures that are intended to simulate not only
differences within the same individual, but also across individuals and even species.
Hence, no conflict need obtain between biological constraints and a generalist view of
learning.
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Appendix
Computationally,  the model  consists  of  an  activation  rule  (or  function)  and a

learning rule.  The activation rule is used to compute the level of activation of every
neurocomputational  unit  (circles  in  Figure  1)  at  every  moment  of  every  trial.   The
learning rule is used to change weights of variable connections (thin lines ending with
buttons in Figure 1).  All activations and weights are numbers between 0.0 and 1.0.  For
both rules, time is conceived as consisting of discrete moments, occasions, epochs, or
timesteps of indefinite but relatively short duration (no particular duration is used for
computational purposes).  Each rule is described in turn.  Their neuroscientific rationale
has been described in detail in earlier papers, so it will only be briefly described here.

Activation Rule

This  rule  (see Eq.  1)  has two modes:  unconditional  (automatic,  “innate”)  and
conditional  (“acquired,”  “learned”).   Unconditional  activation  does  not  require  any
learning (weight change) and obtains when the activation of a certain input unit (S*
units in Figure 1) at t is larger than 0.0, and the unit whose activation is being computed
(j) is a D (dopaminergic unit) or R* (Pavlovian output unit; M'R* in Figure 1).  Otherwise,
conditional activation obtains.  Conditional activation requires learning (weight change,
usually  gain)  and  has  two  modes:  reactivation  and  decay.   These  modes  relate
mathematically according to Eq. 1:
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(Eq. 1),

where t is a moment in time and                         

is  the  logistic  function  with  constant  mean   =  0.5  and  standard  deviation   (a
spontaneous activation free parameter).  In this function,

for excj,t, and

for inhj,t, where m denotes the total number of excitatory units connected to j and n the
total number of inhibitory units connected to j.  In INT in Figure 1, there was only one
inhibitory unit (open diamond labeled as I) connected to only one output unit (M'R).   =
0.1 for all units.

Figure  3  shows  a  generic  neurocomputational  unit  (zoom-in  on  any  circle  in
Figure 1)  for conditional  activation,  intended to simulate  a relatively small  neuronal
group.  The unit receives a finite number of afferent excitatory (a1,t

+, …, ai,t
+, …, am,t

+)
and/or  inhibitory activations  (a1,t

,  …,  ai,t
,  …,  an,t

)  from one or  more (up to  m or  n,
respectively) excitatory () or inhibitory () afferents.

Figure 3. A generic neurocomputational unit, labeled as j.  Unit j receives connections from afferent units 
that can be excitatory () or inhibitory (), and influence j separately at t. ai,t

:  Activation of excitatory 
afferent i at t. ai,t

−: Activation of inhibitory afferent i at t. wi,j,t
:  Weight of a connection from excitatory 

afferent i to j at t. wi,j,t
−: Weight of a connection from inhibitory afferent i to j at t.  a: Afferent activation 

vector.  w: Weight vector.  aw: Dot product of activation and weight vectors. excj,t: amount of excitation 
on j at t. inhj,t: amount of inhibition on j at t. L: Logistic function. j,t: Gaussian threshold on L(excj,t) (L(inhj,t) 
is another threshold). aj,t: Activation of j at t. All activations and weights are numbers between 0.0 and 1.0.
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Each afferent  unit  i sends to  j (the post-connection unit)  a connection with a
variable excitatory (e.g., wi,j,t

) or inhibitory (e.g., wi,j,t
) weight.  The post-connection unit

j  computes a product of activation and connection vectors  a j,t and  wj,t, respectively,
separately for excitatory and inhibitory activations and weights.  This product is the net
amount of excitation (excj,t) or inhibition (inhj,t) on j and t, passed as an argument x to a
logistic function (L).

Whether the rule is in reactivation or decay mode at  t  depends on a Gaussian
threshold (j,t), a random number generated according to a Gaussian distribution with a
mean of 0.2 and standard deviation of 0.15. j,t is dynamical, as it is generated at every
moment  for  every  computational  unit.   Two  other  activation  free  parameters  are
temporal summation (j) and decay ( j). For all units, j = 0.1 and j = 0.1.

Learning Rule

This rule is used to change the weight w of every connection from unit i (afferent)
to unit  j (target) at  t (wi,j,t) at every moment, separately for excitatory and inhibitory
afferent units.  A connection is intended to simulate a relatively small synaptic group,
and a weight to simulate the efficacy of that group to mediate the activation of a post-
by  an  afferent  neuronal  group.   A  weight  can  be  interpreted  as  the  proportion  of
transmitter receptors on  j  that are controlled by  i.  The rule to change weights is as
follows:

(Eq. 2),

where  (rate of weight increment) and  (the rate of weight decrement) denote the two
free parameters of the rule (  0.5 and   0.1 for all connections).  The other terms of
the rule are:

ai,t: activation of afferent unit (i), either excitatory or inhibitory;
 aj,t: activation of target unit (j);
dt  dH,t  aH,t  aH,t1  dD,t1  dH,t1), if j is an S'' or H unit;
dt  dD,t  aD,t  aD,t1, if j is an M'', D, or M' unit (see Fig. 1);
                                                              

depending on whether i is excitatory or inhibitory, respectively;

The key factor is dt, a signal that modulates changes of all weights, inspired by
the roles of hippocampal (e.g., CA1) and dopaminergic (e.g., ventral-tegmental) areas in
conditioning.  In this sense, dt is a diffuse signal.  It also is a discrepancy signal in that it
is defined as a temporal difference between the activations of certain units (H,  D; see
Fig. 1) in successive pairs of moments.  In early simulations, the dt threshold was 0, but
was increased to 0.001 to simulate latent inhibition (see Burgos, 2003). After this, it was
further increased to 0.05 to simulate other phenomena.
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The  pi,t and  rj,t factors  introduce  a  “rich  get  richer,  poor  get  poorer”  sort  of
competition among connections for a limited amount of weight on a common target
unit.  In  the  network  architectures  used  for  the  simulation  (e.g.,  Figure  1),  this
competition took place on units that received two connections, as was the case for all
units, except for the H units, which received only one connection.  The  pi,t factor, like
some other models, includes a Hebbian component where connection weights partly
depend on the activations of the connected (afferent and target) units.

In  general,  connections  tend  to  gain  weight  (to  a  greater  or  lesser  degree,
depending on how much weight they have gained) when S* (see Figure 1) is activated,
and lose weight when S* is not activated. Successive timesteps with a zero S* activation
thus promote weight loss.  The same learning rule is used to modify connection weights
across all times, connections, networks, units (whether they simulate emitted or elicited
responding),  and  training  protocols  (whether  they  simulate  operant  or  Pavlovian
contingencies).

All  activations  and  weights  are  updated  at  each  moment  t  according  to  an
asynchronous random procedure.  In this procedure, a randomly-ordered list of all units
(or connections) is generated at  t, and new activations (or weights) are computed in
that order (according to Equation 1 for activations,  or Equation 2 for weights).   The
activations (or weights) from t1 are immediately replaced by the new activations at t.
Hence, by chance, the activation of a unit at t could depend on activations at t1.
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