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Abstract In this paper I discuss nonlinear parabolic systems that are generalizations of
scalar diffusion equations. More precisely, I consider systems of the form

ut −� [∇�(u)] = 0,

where�(z) is a strictly convex function. I show that when� is a function only of the norm of
u, then bounded weak solutions of these parabolic systems are everywhere Hölder continuous
and thus everywhere smooth. I also show that the method used to prove this result can be
easily adopted to simplify the proof of the result due to Wiegner (Math Ann 292(4):711–727,
1992) on everywhere regularity of bounded weak solutions of strongly coupled parabolic
systems.

Mathematics Subject Classification (2000) 35K40 · 35K55 · 35B65 · 35B35 · 35D10

1 Introduction

The theory of regularity of nonlinear scalar elliptic and parabolic equations is by now
classical. It goes back to the ground breaking work on equations in divergence form by
De Giorgi, Moser and Nash in the late fifties. Since then, Hölder estimates for general non-
linear elliptic and parabolic equations were derived by Krylov and Safonov. However, it
became clear quite early on, after discovery of counter examples, that nonlinear elliptic and
parabolic systems do not, in general, possess everywhere regularity. Instead, only partial
regularity results are available [8].

Despite the lack of everywhere Hölder continuity of weak solutions of general elliptic
and parabolic systems, there are several nontrivial examples that do possess everywhere reg-
ularity due to their special structure. One of the earliest such examples of a fully nonlinear
elliptic system whose weak solutions are everywhere Hölder continuous is due to Uhlenbeck
[12]. She considered elliptic systems of the form
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408 M. Trokhimtchouk

−(g(|∇u|2)ui
xα )xα = 0 for i ∈ {1 . . . N } ,

with some additional ellipticity and grows conditions on g. Uhlenbeck’s proof of Hölder
continuity of weak solutions of these systems relies crucially on the existence of an auxiliary
function which is subharmonic. This auxiliary function (entropy) is tied to |∇2u|2 by an
inequality, and this allows local control on the second derivatives of u.

The parabolic examples of fully nonlinear systems possessing everywhere regularity fol-
lowed somewhat later. DiBenedetto and Friedman first showed continuity [4] and then Hölder
continuity [5] for the gradient of solution to the parabolic equation

ut − ∇ (|∇u|p−2∇u
) = 0,

where max {1, 2N/(N + 2)} < p < ∞. Wiegner in [13] provided another example of para-
bolic system with everywhere regularity. He showed everywhere Hölder continuity of weak
solutions of strongly coupled systems

ui
t − (aαβui

xβ + ci
αβHxβ )xα = 0, (1)

with H := H(u) a strictly convex function of u and strict ellipticity conditions on the coeffi-
cients. His work has been followed by several others, including Dung [6], on strongly coupled
system, and Bae and Choe [1] on a parabolic analog of the example of Uhlenbeck. Unlike
Uhlenbeck’s work, however, none of the proofs of everywhere regularity for aforementioned
parabolic examples rely explicitly on the existence of entropy.

In this paper I provide new examples of parabolic systems whose weak solutions are
everywhere Hölder continuous. These systems are a type of nonlinear diffusion systems,
and are of the form

ut −�(∇�(u)) = 0 (2)

where�(z) is a strictly convex function. These systems are interesting since they generalize
scalar nonlinear diffusion equations of the form

ut −�(γ (u)) = 0,

where γ is strictly increasing. I will show that if �(z) depends only on the norm of z, then,
together with some smoothness and grows conditions on �, weak solutions of diffusion
systems (2) are everywhere Hölder continuous. I will do this by exhibiting an entropy, and
showing that existence of entropy together with properties of general parabolic systems suf-
fices to prove everywhere regularity. In the conclusion, I will show that regularity of bounded
weak solutions to the strongly coupled systems (1) can also be obtained with the help of an
entropy.

Let me introduce notation that I will use throughout this paper. I consider parabolic space
to consist of space and time with space being of n dimensions and time of one dimension. In
this paper I will deal with cylindrical domains for simplicity. By elliptic domain � ⊂ R

n
x I

will mean space domain. Cylindrical parabolic domain�× (0, T ) ⊂ R
n
x ×Rt , where T > 0,

will be denoted by �T . The time interval of the cylindrical domain �T , that is the interval
(0, T ) in the case of �T = �× (0, T ), will be denoted by I (�T ). By Br (x) I will mean an
n dimensional ball as a subset of R

n
x with center at x and of radius r . Q(x, t, r) will denote

the cylinder

Q(x, t, r) := Br (x)× (t − r2, t).

I will write Br or B instead of Br (x) when x or r are clear from the context. Similarly,
sometimes I will write Qr or Q instead of Q(x, t, r). For a Lebesgue measurable set S
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Everywhere regularity of certain nonlinear diffusion systems 409

by |S| I will mean Lebesgue measure of S. Finally V (�T ; R
n) will denote the closure of

C1(�T ; R
n) functions under the norm

‖v‖2
V (�T )

= sup
t∈I (�T )

∫

�

|v(x, t)|2 dx +
∫∫

�T

|∇v(x, t)|2 dx dt.

2 Partial regularity of nonlinear systems

In this section we recall partial regularity results for weak solutions of quasi-linear parabolic
systems of the form

ui
t − (Aαβi j (x,u)u j

xβ )xα = 0 ∀i ∈ {1 . . . N } , (3)

where coefficients Aαβi j satisfy the following condition of strong ellipticity:

Aαβi j ξ
i
αξ

j
β ≥ λ|ξ |2 for all ξ ∈ R

nN , for some λ > 0. (4)

By a weak solution in this case I mean a function u ∈ V (�T ; R
N ) that satisfies

∫∫

�T

−uivi
t + Aαβi j u j

xβ v
i
xα dxdt = 0, for all v ∈ H1

0(�T ; R
N ).

It is well known that weak solutions of systems of this type possess partial regularity under
some appropriate continuity conditions on Aαβi j . The important result in this area is the fol-
lowing local regularity result due to Giaquinta and Struwe [10].

Theorem 1 (Local regularity condition) Suppose coefficients Aαβi j satisfy condition (4),
are continuous and bounded. Also suppose u ∈ V (�T ) is a weak solution of (3). Then, if
for some (x0, t0) ∈ �T

lim inf
R→0

1

Rn

∫∫

Q(x0,t0,R)

|∇u|2dxdt = 0, (5)

then u is Hölder continuous in the neighborhood of (x0, t0).

Condition (5) is the basis for the proofs of everywhere regularity that we will discuss in the
rest of this paper. We will, however, need one more result due to Giaquinta and Struwe [10].

Lemma 1 (Lp estimate) Let u be a weak solution of the system (3). Then there exists an
exponent p > 2 such that |∇u| ∈ Lp

loc(�T ); moreover for all Q R ⊂ Q4R ⊂ �T we have

⎛

⎜
⎝−

∫∫

Q R

−|∇u|pdxdt

⎞

⎟
⎠

1/p

≤ C

⎛

⎜
⎝ −

∫∫

Q4R

−|∇u|2dxdt

⎞

⎟
⎠

1/2

. (6)

Please refer also to the work of Duzaar and Mingione [7], which provides a characterization
of regular points for the spacial gradient and for more general non-linear parabolic systems.
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410 M. Trokhimtchouk

3 Generalized diffusion equations

In this section I discuss the type of parabolic systems I will refer to as diffusion system. Let
� : R

N → R be a strictly convex, twice continuously differentiable function with

λ|ξ |2 ≤ �zi z j ξ
iξ j ≤ 	|ξ |2. (7)

Then we say that u is a weak solution of

ut −� [∇�(u)] = 0 (8)

if u ∈ V (�T ; R
N ) and for all w ∈ H1

0(�T ; R
N )

∫∫

�T

−uiwi
t + (�zi (u))xαw

i
xα dxdt = 0. (9)

This is a standard quasi-linear elliptic system of the type in (3), since we can rewrite it as

ui
t +

(
�zi z j (u)u

j
xα

)

xα
= 0 for all i ∈ {1 . . . N } . (10)

If in addition u is bounded I say u is bounded weak solution.
As I have mentioned before this equation is a generalization of scalar nonlinear diffusion

equation. It has several nice properties. First, its flow is a contraction in H−1(�) and its solu-
tions are unique. Second, weak solutions of (8) are in H1

loc(0, T ; L2
loc(�)), that is their weak

derivatives in time are in L2
loc(�T ). Furthermore, if the solution is bounded, the gradient in

x is actually in L4
loc(�T ).

First I show that flow is a contraction in H−1(�).

Theorem 2 (Uniqueness) Let u0, u1 ∈ V (�T ; R
N ) be two weak solutions of (8) with the

same boundary conditions, that is u0(·, t) ≡ u1(·, t) on ∂� for almost all t ∈ [0, T ]. Denote
by i : L2(�) → H−1(�) the natural embedding of square integrable functions in H−1

defined by

i( f )(φ) :=
∫

�

f φdx .

Then we have for T ≥ t1 ≥ t0 ≥ 0

‖i(u0(t1)− u1(t1))‖H−1(�) ≤ eλ(t1−t0) ‖i(u0(t0)− u1(t0))‖H−1(�) , (11)

where λ as in (7).

Proof Let us denote by fh the Steklov average of f defined as

fh(x, t) := 1

h

t+h∫

t

f (x, s) ds.

Also for simplicity we will write vk for ∇�(uk) with k = 0, 1. It is not very hard to show
that (uk)h and (vk)h weakly satisfy

((uk)h)t −�((vk)h) = 0. (12)

Let us denote the solution of

�w = f, w ≡ 0 on �
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Everywhere regularity of certain nonlinear diffusion systems 411

by �−1 f . Then the H−1(�) norm of i( f ) is given by

‖i( f )‖2
H−1(�)

=
∫

�

|∇(�−1 f )|2 dx .

For simplicity for an f ∈ L2(�) let us write ‖ f ‖H−1 instead of ‖i( f )‖H−1(�). Now fix h.
For t0, t1 ∈ (h, T − h) we compute

(
e2λt ‖(u1)h − (u0)h‖2

H−1

) ∣
∣
∣
t1

t0
= I1 + I2, (13)

where

I1 =
t1∫

t0

2λe2λt ‖(u1)h − (u0)h‖2
H−1

∣
∣
∣
t
dt,

and

I2 =
t1∫

t0

∫

�

2e2λt∇�−1((u1)h − (u0)h) · ∇�−1((u1)h − (u0)h)t dxdt.

Using the equation and the fact that u0 and u1 have the same trace, for I2 we obtain

I2 = −
t1∫

t0

∫

�

2e2λt ((u1)h − (u0)h) · ((v1)h − (v0)h) dxdt

Taking the limit of both sides of the Eq. (13) as h → 0 we get

(
e2λt ‖(u1 − u0‖2

H−1

) ∣∣∣
t1

t0
= I3 + I4, (14)

where

I3 =
t1∫

t0

2λe2λt ‖u1 − u0‖2
H−1

∣∣∣
t
dt,

and

I4 = −
t1∫

t0

∫

�

2e2λt (u1 − u0) · (v1 − v0) dxdt

≤ −
t1∫

t0

∫

�

2λe2λt |u1 − u0|2 dxdt

≤ −
t1∫

t0

2λe2λt ‖u1 − u0‖2
H−1

∣∣∣
t
dt,

where the second line follows from strict convexity (7) of �. Indeed,

(u1 − u0) · (v1 − u0) = (u1 − u0) · (∇�(u1)− ∇�(u0)) ≥ λ|u1 − u0|2.
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412 M. Trokhimtchouk

Thus we see that I3 + I4 ≤ 0 and we establish the result for T > t1 ≥ t0 > 0. We establish
the Theorem by taking the limit as t0 → 0 and t1 → T . ��
Remark 1 Observe that bound (7) implies that ∇� is a Lipschitz map. In particular if we let
v := ∇�(u), then vi

xα = �zi z j u
j
xα , and

|vxα | ≤ C |uxα | for all α ∈ {1, . . . , n} ,
and hence

|∇v| ≤ C |∇u|
for some constant C > 0, because coefficients of the matrix ∇2� are uniformly bounded.
Furthermore, estimate (7) implies that inverse of ∇2� is also uniformly bounded, hence we
also have

|∇u| ≤ C |∇v|.
Let us now derive the H2 estimates for the solutions of (8). In general, quasi-linear para-

bolic systems do not have H2 estimates and the fact that solutions of generalized diffusion
equations do have them is the consequence of the special structure that Eq. (8) possesses.

Theorem 3 (H2 estimates) Let u ∈ V (�T ; R
N ) be a weak solution of (8). Then ut ∈

L2
loc(�T ) and for Q(x, t, r) � Q(x, t, R) ⊂ �T we have the following estimates

∫∫

Q(x,t,r)

|ut |2dxdt ≤ C

(R − r)2

∫∫

Q(x,t,R)

|∇u|2dxdt, (15)

∫∫

Q(x,t,r)

|∇2(∇z�(u))|2dxdt ≤ C

(R − r)2

∫∫

Q(x,t,R)

|∇u|2dxdt. (16)

Proof As before we will write v for ∇�(u) and fh for Steklov average of f . Denote by
ξ ∈ C∞

0 (�) a smooth bump function supported in BR(x) ⊂ �, which is identically one on
Br (x) ⊂ � with ‖∇ξ‖∞ ≤ C/(R − r). Also denote by η ∈ C∞

0 ((t − R2, t]) a function that
is identically one on [t − r2, t] and supported in [t − R2, t] with |η′| ≤ C/(R2 − r2). Then
multiplying equation

(uh)t −�(vh) = 0

by (vh)tξ
2η we obtain

t∫

t−R2

∫

�

(uh)t (vh)tξ
2η + ∇(vh)∇(vh)tξ

2η + ∇(vh)(vh)t 2ξ∇ξη dxdt = 0.

Using strict convexity on the first term, integrating the second term in time by parts and using
Hölder inequality we obtain

t∫

t−R2

∫

�

λ|(uh)t |2ξ2η dxdt +
∫

�

|∇(vh)|2ξ2η

∣∣∣
t
dx + ∇(vh)(vh)t 2ξ∇ξη dxdt

≤ C
∥∥η′∥∥∞

t∫

t−R2

∫

�

|∇(vh)|2ξ2 dx .
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Everywhere regularity of certain nonlinear diffusion systems 413

Finally using Hölder inequality on the third term and canceling part of the first term we
compute

t∫

t−R2

∫

�

λ

2
|(uh)t |2ξ2η dxdt +

∫

�

|∇(vh)|2ξ2η

∣
∣
∣
t
dx

≤ C(
∥
∥η′∥∥∞ + ‖∇ξ‖2∞)

t∫

t−R2

∫

�

|∇(vh)|2ξ2 dx .

Thus taking a limit as h → 0 we deduce that ut ∈ L2
loc(�) and derive estimate (15) as

claimed. To prove (16), we use H2 estimates for the Laplacian to get the following for a
fixed t :

∫

Br (x)×{t}
|∇2v|2 dx ≤ C

(R − r)2

∫

BR(x)×{t}
|∇v|2 dx +

∫

BR(x)×{t}
|ut |2 dx .

Integrating in time and using estimate (15) we get
∫∫

Q(x,t,r)

|∇2v|2 dxdt ≤ C

(R − r)2

∫∫

Q(x,t,R)

|∇v|2 dxdt.

��

In addition to H2 estimates for weak solutions, bounded weak solutions of Eq. (8) are
actually in L4

loc. This is rather unusual since most quasi-linear equations do not have L4 esti-
mates. The estimate is a formal consequence of H2 estimate and the assumption of boundness.
Similar interpolation estimates have been used several times in the literature, see for instance
paper by Choe [2].

Theorem 4 (L4 estimate for bounded solutions) Let u be a weak bounded solution of
the Eq. (8). Then ∇u is locally in L4 and for Q(x, t, r) � Q(x, t, R) ⊂ �T we have the
following estimate:

∫∫

Q(x,t,r)

|∇u|4dxdt ≤ C ‖u‖2∞
(R − r)2

∫∫

Q(x,t,R)

|∇u|2dxdt. (17)

Proof Let us again denote ∇�(u) by v and let τ : R → R be a smooth increasing func-
tion that is linear on (−∞, 1] and constant on [2,∞). For some large enough constant
C1, C1τ(z) ≥ z(τ ′(z))2. Define τε as τε(x) := τ(εx)/ε. Notice that

∥∥τ ′
ε

∥∥∞ ≤ C0 and
C1τε(z) ≥ z(τ ′

ε(z))
2 with constants independent of ε. Letting ξ be a smooth bump function

as in the proof of Theorem above, multiply the Eq. (8) by vτε(|∇v|2)ξ2 and integrate by
parts to obtain

∫∫

Q(x,t,R)

ui
tv

iτε(|∇v|2)ξ2 + |∇v|2τε(|∇v|2)ξ2

+2vivi
xα v

j
xβ τ

′
ε(|∇v|2)v j

xαxβ ξ
2 + 2vivi

xα τε(|∇v|2)ξξxα dxdt = 0.
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414 M. Trokhimtchouk

Hence we compute

∫∫

Q(x,t,R)

|∇v|2τε(|∇v|2)ξ2 dxdt ≤
∫∫

Q(x,t,R)

C2 ‖v‖2∞ |ut |2ξ2 + 1

2
τ 2
ε (|∇v|2)ξ2

+C3 ‖∇ξ‖2∞ ‖v‖2∞ |∇v|2 + C1 ‖v‖2∞ |∇2v|2ξ2 + 1

4C1
|∇v|4τ ′

ε(|∇v|2)2ξ2 dxdt.

Simplifying and using estimates (15), (16) and C1τε(z) ≥ z(τ ′
ε(z))

2 we deduce

∫∫

Q(x,t,r)

|∇v|2τε(|∇v|2) dxdt ≤ C ‖u‖2∞
(R − r)2

∫∫

Q(x,t,R)

|∇u|2 dxdt.

Taking a limit as ε → 0 we deduce by monotone convergence theorem that ∇u is locally in
L4 and the estimate as claimed in the statement of the Theorem. ��

Let us briefly review the concept of parabolic Hausdorff measure.

Definition 1 Let Hk : 2R
n
x ×Rt → R ∪ {∞} be a set function defined as follows

Hk[X ] := lim inf
ε→0+

{
∑

i

r k(Qi )

∣∣∣ X ⊇
⋃

Qi , r(Qi ) ≤ ε

}

,

where r(Qi ) denotes the radius of the face of the ith cylinder. We call such a function a
k-dimensional parabolic Hausdorff measure. The parabolic Hausdorff dimension of a set X
is defined as

dim p(X) := inf
{

k ≥ 0 | Hk[X ] = 0
}
.

It is a theorem to show that Hk is actually a measure. I refer you to the paper by Giaquinta
and Giusti [9] for the discussion of parabolic Hausdorff measure, as well as the proof the
following theorem:

Theorem 5 Let f ∈ L1
loc(�T ), and for 0 < k < n + 2, let

S =

⎧
⎪⎨

⎪⎩
(x, t) ∈ �T | lim sup

r→0
r−k

∫∫

Q(x,t,r)

| f |dxdt > 0

⎫
⎪⎬

⎪⎭
.

Then we have Hk[S] = 0.

Remark 2 The fact that the gradient is actually locally in L4 implies that the singular set of a
bounded solution has parabolic Hausdorff dimension smaller than n − 2. As you may recall
from Theorem 1 the singular set is contained in the set

⎧
⎪⎨

⎪⎩
(x, t) ∈ �T

∣∣∣ lim inf
R→0

1

Rn

∫∫

Q(x,t,R)

|∇u|2 dxdt > 0

⎫
⎪⎬

⎪⎭
.
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Everywhere regularity of certain nonlinear diffusion systems 415

Now using the Hölder inequality and the fact that ∇u is locally in L4 we compute

1

Rn

∫∫

Q(x,t,R)

|∇u|2 dxdt ≤ 1

Rn

⎛

⎜
⎝

∫∫

Q(x,t,R)

|∇u|4 dxdt

⎞

⎟
⎠

1/2

|Q(x, t, R)|1/2

≤ C R
2−n

2

⎛

⎜
⎝

∫∫

Q(x,t,R)

|∇u|4 dxdt

⎞

⎟
⎠

1/2

≤ C

⎛

⎜
⎝R2−n

∫∫

Q(x,t,R)

|∇u|4 dxdt

⎞

⎟
⎠

1/2

.

Hence the singular set must be contained in the set
⎧
⎪⎨

⎪⎩
(x, t) ∈ �T

∣
∣
∣ lim inf

R→0

1

Rn−2

∫∫

Q(x,t,R)

|∇u|4 dxdt > 0

⎫
⎪⎬

⎪⎭
,

which has n − 2 parabolic Hausdorff measure zero.

4 The key Lemma

In this section I discuss the parabolic version of the lemma that seems to be key in the proof
of everywhere regularity of some elliptic systems. Not surprisingly, it will turn out that the
parabolic lemma is crucial to proving everywhere regularity of solutions to some types of
parabolic systems. The elliptic lemma, to which I refer, is well known and the proof of it can
be found in [8] in Chapter 7 as part of Theorem 1.1.

Before we proceed with the discussion of this elliptic lemma let us recall that coefficients
aαβ are called strictly elliptic if there exists λ > 0 such that

aαβξ
αξβ ≥ λ|ξ |2 for all ξ ∈ R

n .

Lemma 2 Suppose coefficients aαβ(x) are strictly elliptic, bounded and measurable. Let
u ∈ H1(�), f ∈ L1(�) be nonnegative functions satisfying

− (aαβuxβ )xα + f ≤ 0 (18)

on �. For any x0 ∈ � for which BR0(x0) ⊂ � for some R0, we have the following:

lim inf
R→0

1

Rn−2

∫

BR(x0)

f dx = 0. (19)

The proof of this lemma is rather simple and follows easily from the elliptic Harnack
inequality. Because of the peculiar geometry of the parabolic Harnack inequality, the elliptic
proof does not translate directly into the parabolic case. Instead, by adopting proof of elliptic
lemma to parabolic equations, one is able to control f on the cylinders whose top centers are
slightly shifted back in time. In fact it is not true that f can be controlled on the cylinders
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416 M. Trokhimtchouk

whose top centers are not fixed, without additional assumptions on f . It turns out, however,
that the assumption that one needs to impose to prove the parabolic version of the lemma
is satisfied in applications to everywhere regularity of parabolic systems. What we need to
assume is that for some α > 1 the Lα norm of f on a cylinder is controlled by the L1 norm
of f , perhaps on a larger cylinder.

Lemma 3 (Key Lemma) Suppose coefficients aαβ(x, t) are strictly elliptic, bounded and
measurable. Let u ∈ V (�T ), f ∈ L1(�T ) be nonnegative functions weakly satisfying

ut − (aαβuxβ )xα + f ≤ 0 (20)

on �T . Further suppose that for some α > 1 our f satisfies the following:
⎛

⎜
⎝ −

∫∫

Q R

− f αdxdt

⎞

⎟
⎠

1/α

≤ C −
∫∫

Q4R

− f dxdt, (21)

for all Q R ⊂ Q4R ⊂ �T . Then for any (x0, t0) ∈ �T for which

BR0(x0)× (t0 − R2
0, t0 + R2

0) ⊂ �T , for some R0,

we have the following:

lim inf
R→0

1

Rn

∫∫

Q(x0,t0,R)

f dxdt = 0. (22)

Proof First of all notice that u is a priori locally bounded due to supremum estimates for
subsolutions of parabolic equations (see Theorem 6.17 in [11]). Fix 0 < σ ≤ 1/4. Set

Ri := σ i R0, Qi := Q(x0, t0, Ri ), Mi := sup
Qi

u

and

Q′
i := Q(x0, t0 − 4σ 2 R2

i , (1 − 8σ 2)1/2 Ri ),

Q′′
i := Q(x0, t0 − 2σ 2 R2

i , (1 − 4σ 2)1/2 Ri ).

We divide the proof in three steps. In the first step we show that for any σ ∈ (0, 1/4] we have

lim
i→∞

1

Rn
i

∫∫

Q′
i

f dxdt = 0.

Once we have done that, we show that we can control f on Qi\Q′
i with the help of the

assumption on f . Finally we will put it all together to conclude the lemma.
Step 1. Fix i , and set z := Mi − u. We see that z ≥ 0 on Qi and z satisfies

zt − (aαβ zxβ )xα ≥ f. (23)

In particular, due to parabolic Harnack inequality (see Theorem 6.24 in [11])

−
∫∫

Q′′
i

−z dxdt ≤ C inf
Qi+1

z. (24)
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Let w solve backward time parabolic equation

− wt − (aαβwxα )xβ = 1

R2
i

χQ′′
i

(25)

on Qi with w ≡ 0 on the backward time parabolic boundary, that is

w ≡ 0 on (∂BRi (x0)× [t0 − R2
i , t0]) ∪ (BRi (x0)× {t0}).

At this point if zw were actually differentiable in time, we would multiply Eq. (25) by zw
and integrate by parts to obtain

∫∫

Qi

−z

(
w2

2

)

t
+ aαβ zβ

(
w2

2

)

xα

+ aαβwxαwxβ z dxdt = 1

R2
i

∫∫

Q′′
i

zw dxdt,

and since z satisfies Eq. (23) we would conclude that

1

Rn
i

∫∫

Q′
i

f

(
w2

2

)
dxdt ≤ 1

Rn+2
i

∫∫

Q′′
i

zw dxdt. (26)

In general we cannot expect zw to be differentiable in time. To obtain Eq. (26) rigorously
one would need to use Steklov average

(zw)h(x, t) := 1

h

t∫

t−h

z(x, τ )w(x, τ ) dτ

as a test function in (25). However, we will not do this here, instead I refer the reader to
Lemma 6.1 in [11], where similar computation has been carried out.

Now, sincew solves (25), by strong maximal principlew ≥ θ > 0 on Q′
i and alsow ≤ C

on Qi , with bounds independent of i (one can see this by scaling for example). Therefore,
combining this observation with inequality (24), we obtain

1

Rn
i

∫∫

Q′
i

f dxdt ≤ C −
∫∫

Q′′
i

−z dxdt ≤ C inf
Qi+1

z = C(Mi − Mi+1).

However, since

∞∑

i=0

Mi − Mi+1 ≤ sup
Q0

u,

we conclude that

1

Rn
i

∫∫

Q′
i

f dxdt → 0 as i → ∞.

Step 2. Let A be some measurable set. We will show that for all Q R ⊂ Q8R ⊂ Q R0 and for
all ε, there exists δ such that if |A ∩ Q R | ≤ δ|Q R |, then

1

Rn

∫∫

A∩Q R

f dxdt ≤ ε.
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First, we can easily deduce by the argument similar to the one in part 1, that

1

(4R)n

∫∫

Q4R

f dxdt ≤ C, (27)

where constant is independent of R.
We now use (21) to conclude that

∫∫

A∩Q R

f dxdt ≤
⎛

⎜
⎝

1

|Q R |
∫∫

A∩Q R

f α dxdt

⎞

⎟
⎠

1/α

|Q R |1/α|A ∩ Q R |1−1/α

= C |Q R |1/α|A ∩ Q R |1−1/α −
∫∫

Q4R

− f dxdt

= C

( |A ∩ Q R |
|Q R |

)1−1/α ∫∫

Q4R

f dxdt ≤ C1 Rnδ1−1/α.

Above, the last inequality follows by (27).
Step 3. Finally we put everything together. Fix ε > 0. First notice that by choosing σ small
enough we can make

|Qi\Q′
i | ≤ δ|Qi |,

where C1δ
1−1/α < ε/2. Then by first step we can find i > 2 such that

1

Rn
i

∫∫

Q′
i

f dxdt ≤ ε/2.

Finally, the above together with conclusion of second step gives us

1

Rn
i

∫∫

Qi

f dxdt = 1

Rn
i

∫∫

Q′
i

f dxdt + 1

Rn
i

∫∫

Qi \Q′
i

f dxdt < ε.

��
Now we are in position to apply our key Lemma to deduce crucial importance of entropy

in questions of everywhere regularity for parabolic systems.

Theorem 6 (Entropy condition) Let u be weak solution of (3). Suppose there exists φ ∈
V (�T ) that together with u weakly satisfy the following inequality:

φt − (aαβφxβ )xα + λ|∇u|2 ≤ 0,

where aαβ are bounded and strictly elliptic. Then u is everywhere Hölder continuous on the
interior of �T .

Proof Since u satisfies condition (6), we see immediately that conditions of the key Lemma
3 are satisfied. Therefore, we conclude that

lim inf
R→0

1

Rn

∫∫

Q(X0,R)

|∇u|2 dxdt = 0.

However, this is precisely the condition (5) of Theorem 1. Hence we conclude that u is
everywhere Hölder continuous on the interior of �T . ��
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5 Everywhere regularity of certain diffusion systems

In this section we come back to the discussion of weak solutions of the diffusion system (8),
imposing additional requirement that�(z) is a function of only the norm of z. As we will see
this allows us to conclude much more about solutions of this equation. In particular solutions
are bounded if they are bounded initially and at the boundary. More importantly, solutions
are actually everywhere Hölder continuous and thus smooth if � is.

First I will show that in the case when � is a functions of only the norm, weak solutions
of Eq. (8) that are bounded initially and bounded at the boundary will remain bounded for all
time.

Theorem 7 (Boundedness) Let u be a weak solution of the generalized diffusion Eq. (8).
Also suppose that ‖u(·, 0)‖L∞(�) < ∞ and ‖u(·, t)‖L∞(∂�) < ∞ for all t ∈ [0, T ]. Then
‖u‖L∞(�) < ∞ and we have

‖u(·, t)‖L∞(�) ≤ max

{

‖u(·, 0)‖L∞(�) , sup
s∈[0,t]

‖u(·, s)‖L∞(∂�)

}

. (28)

Proof Set B to

B = max

{

‖u(·, 0)‖L∞(�) , sup
s∈[0,t]

‖u(·, s)‖L∞(∂�)

}

.

Fix ε > 0 that is less than one. Let γ : R+ → R be a smooth convex function which is
identically zero on [0, B + ε], positive and increasing otherwise, and linear on [B + 1,∞).
Also set �(z) to γ (|z|). Then we compute

d

dt

∫

�

�(u(x, t)) dx =
∫

�

�zi u
i
t dx

=
∫

�

(
�zi�zi z j u

j
xα

)

xα
− �zi zk�zk z j u

i
xαu j

xα dx

≤
∫

∂�

�zi�zi z j u
j
xα να dS

= 0.

The inequality is true because Hessians of two functions of only the norm commute and both
� and� are convex. The last equality is true because γ is identically zero on [0, B + ε] and
|u| is less than or equal to B on the boundary. Since �(u) is positive and initially zero we
conclude that � is zero up to time t and thus ‖u(·, t)‖∞ ≤ B + ε. Since the inequality is true
for all ε > 0 the Theorem follows. ��

The next lemma will show that if we suppose that �(z) is a function only of the norm of
z, then there exists an entropy that satisfies conditions of Theorem 6.

Lemma 4 Let u be a weak bounded solution of (8) and suppose � is of the form

�(u) = φ(|u|).
Then there is a continuously differentiable, strictly increasing function γ : R → R such that
φ = φ(|u|) weakly satisfies the following inequality:
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φt −�(γ (φ))+ λ2|∇u|2 ≤ 0. (29)

Proof First of all, without loss of generality we can suppose that �(0) = 0. Notice that φ
satisfies the following equation weakly:

φt − (�zi�zi z j u
j
xα )xα + |∇x (∇�(u))|2 = 0.

Looking at the quantity inside the divergence term we see that it is equal to

�zi�zi z j u
j
xα =

(
1

2
|∇�(u)|2

)

xα

.

Since �(z) = φ(|z|), we observe that

1

2
|∇�(u)|2 = 1

2
φ′(|u|)2.

Let ψ be the continuous inverse of φ. Set

γ (z) =
z∫

0

φ′′(ψ(t)) dt.

Then multiplying γ ′(φ(z)) by φ′(z) and integrating, we see that γ and φ satisfy

γ (φ(z)) = 1

2
φ′(z)2.

This γ is continuously differentiable and strictly increasing, since φ is strictly convex. There-
fore we conclude that φ satisfies

φt −�(γ (φ))+ |∇x (∇�(u))|2 = 0,

and due to strict convexity the last term on the left hand side is greater or equal to λ2|∇u|2.
��

Now we are in position to use the above Lemma 4 together with Theorem 6 to deduce

Theorem 8 Weak solutions of Eq.8 are Hölder continuous in �T .

Proof Lemma 4 tells us, that for u a weak bounded solution of (8), there exists φ satisfying

φt − (aφxα )xα + λ2|∇u|2 ≤ 0,

where a(x, t) := γ ′(φ(x, t)). However, this is precisely the condition of Theorem 6. There-
fore, we conclude the proof. ��

6 Strongly coupled parabolic systems

One of the earliest nontrivial examples of quasi-linear parabolic systems whose solutions
have interior everywhere regularity was due to Wiegner [13]. These are the so-called strongly
coupled parabolic systems of the following form:

ui
t − (aαβui

xβ + ci
αβHxβ )xα = 0, (30)
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where

1. H = H(u) is a function of u;
2. Ai j

αβ := aαβδi j + ci
αβHz j and aαβ are strictly elliptic in the sense that

λ|ξ |2 ≤ Ai j
αβξ

i
αξ

j
β , and λ|ζ |2 ≤ aαβζ

iζ j , for all ξ ∈ R
nN , ζ ∈ R

n;

3. H(z) is twice continuously differentiable and λ|ζ |2 ≤ Hzi z j ζ
iζ j ;

4. aαβ and ci
αβ are bounded.

After Wiegner, Dung [6] also worked on these types of system. However, neither
Wiegner’s nor Dung’s proofs of everywhere regularity for solutions of strongly coupled
parabolic systems reduce to something analogous to the key Lemma 3. It is instructive to
prove everywhere regularity of weak solutions to (30) using the key Lemma to illustrate an
underlying similarity between strongly coupled parabolic systems and generalized diffusion
Eqs. (8). It appears that for both systems discussed in this paper the existence of an entropy
is crucial for everywhere regularity of their solutions.

Remark 3 When � only depends on the norm of the gradient, diffusion system (8) actually
has the form of a strongly coupled system, except with possibly non-convex H . Indeed, if
�(z) = φ(|z|), then

�zi z j (z) = φ′(|z|)
|z| δi j + zi

|z|
(
φ′′(|z|)− φ′(|z|)

|z|
)

z j

|z| ,

therefore, with

aαβ = φ′(|u|)
|u| δαβ, ci

αβ = ui

|u|δαβ,

and

H(z) = φ′(|z|)−
|z|∫

0

φ′(s)
s

ds,

system (8) has the form (30).

We can prove an interior everywhere regularity result for strongly coupled parabolic sys-
tems rather easily using Theorem 6. As in the previous section I will show existence of an
entropy.

Lemma 5 Let u ∈ V (�T ; R
N ) be a weak bounded solution of (30), then for some large

enough s there is a positive constant c such that v := es H is a subsolution of the following
equation:

vt − (Aαβvxβ )xα + c|∇u|2 ≤ 0. (31)

Proof We compute

(es H )t = ses H Hzi (aαβui
xβ + ci

αβHxβ )xα

= (Aαβ(e
s H )xβ )xα − (ses H Hzi )xα (aαβui

xβ + ci
αβHxβ ).
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The last term on the right becomes

(ses H Hzi )xα (aαβui
xβ + ci

αβHxβ ) = s2es H AαβHxα Hxβ

+ses H Hzi z j aαβui
xαu j

xβ + ses H Hzi z j c
i
αβHxβui

xα

≥ ses H (
λs|∇ H |2 + λ|∇u|2 − C(ε)|∇ H |2 − ε|∇u|2) ≥ λ

2
ses H |∇u|2.

The last inequality follows by first making ε small and then s large. Since u is bounded, we
have H is bounded from below. Therefore, for some c, v satisfies Eq. (31) as claimed. ��
At this point we immediately conclude that conditions of Theorem 6 are satisfied. Therefore
we have established.

Theorem 9 Bounded weak solutions of (30) are Hölder continuous in �T .
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