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Abstract

Accurately segmenting teeth and identifying the corresponding anatomical landmarks on dental 

mesh models are essential in computer-aided orthodontic treatment. Manually performing these 

two tasks is time-consuming, tedious, and, more importantly, highly dependent on orthodontists’ 

experiences due to the abnormality and large-scale variance of patients’ teeth. Some machine 

learning-based methods have been designed and applied in the orthodontic field to automatically 

segment dental meshes (e.g., intraoral scans). In contrast, the number of studies on tooth landmark 

localization is still limited. This paper proposes a two-stage framework based on mesh deep 

learning (called TS-MDL) for joint tooth labeling and landmark identification on raw intraoral 

scans. Our TS-MDL first adopts an end-to-end iMeshSegNet method (i.e., a variant of the 

existing MeshSegNet with both improved accuracy and efficiency) to label each tooth on the 

downsampled scan. Guided by the segmentation outputs, our TS-MDL further selects each 

tooth’s region of interest (ROI) on the original mesh to construct a light-weight variant of the 

pioneering PointNet (i.e., PointNet-Reg) for regressing the corresponding landmark heatmaps. 

Our TS-MDL was evaluated on a real-clinical dataset, showing promising segmentation and 

localization performance. Specifically, iMeshSegNet in the first stage of TS-MDL reached an 

averaged Dice similarity coefficient (DSC) at 0.964 ± 0.054, significantly outperforming the 

original MeshSegNet. In the second stage, PointNet-Reg achieved a mean absolute error (MAE) of 

0.597 ± 0.761 mm in distances between the prediction and ground truth for 66 landmarks, which 

is superior compared with other networks for landmark detection. All these results suggest the 

potential usage of our TS-MDL in orthodontics.

Keywords

Tooth Segmentation; Anatomical Landmark Detection; Orthodontic Treatment Planning; 3D Deep 
Learning; Intraoral Scan

I. INTRODUCTION

Digital 3D dental models have been widely used in orthodontics due to their efficiency and 

safety. To create a patient-specific treatment plan (e.g., for the fabrication of clear aligners), 

orthodontists need to segment teeth and annotate the corresponding anatomical landmarks 

on 3D dental models to analyze and rearrange tooth positions. Manually performing these 

two tasks is time-consuming, tedious, and expertise-dependent, even with the assistance 

provided by most commercial software (integrating semi-automatic algorithms). Although 

there is a clinical need to develop fully automatic methods instead of manual operations, 

it is practically challenging, especially for tooth landmark localization, mainly due to (1) 

large-scale shape variance of different teeth, (2) abnormal, disarranged, and/or missing teeth 
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for some patients, and (3) incomplete dental models (e.g., the second/third molars) captured 

by intraoral scanners.

Almost 15 year ago, Zhao et al. used curvature values of mesh cells to generate feature 

contours for tooth segmentation in a semi-automatic manner, indicating the importance 

of segmentation on dental mesh models in modern dentistry [1]. Recently, some deep 

learning approaches [2]–[8] have been proposed for end-to-end dental surface labeling. 

Although these deep networks show superior segmentation accuracy than conventional 

(semi-)automatic methods, mainly due to task-oriented extraction and fusion of local 

details and semantic information, very few of them address the critical task of landmark 

localization. Compared with tooth segmentation, localizing anatomical landmarks is 

typically more sensitive to varying shape appearance of patients’ teeth, as each tooth’s 

landmarks are just small points encoding local geometric details, and the number of 

landmarks changes across positions.

Considering the natural correlations between the two tasks (e.g., each tooth’s landmarks 

depend primarily on its local geometry), a two-stage framework leveraging mesh deep 

learning (called TS-MDL) is proposed in this paper for joint tooth segmentation and 

landmark localization. The schematic diagram of our TS-MDL is shown in Fig. 1.

In Stage 1, we propose an end-to-end deep neural network, called iMeshSegNet, to perform 

tooth segmentation on 3D intraoral scans. iMeshSegNet improves the implementation of 

the multi-scale graph-constrained learning module in its forerunner MeshSegNet [9], [10], 

a neural network for automatic tooth segmentation. In Stage 2, we extract cells that belong 

to individual teeth based on the segmentation results generated by Stage 1. By doing this, 

we narrow the entire intraoral scan down to several ROIs (i.e., individual teeth) since a 

tooth landmark is always on and only associated with its corresponding tooth. Inspired by 

the use of heatmaps to successfully detect anatomical landmarks on 2D and 3D medical 

images [11], we design a modified PointNet [12], called PointNet-Reg, to learn the heatmaps 

encoding landmark locations. The experimental results on real clinical data indicate that 

iMeshSegNet improves tooth segmentation in terms of both accuracy and efficiency, and 

the straightforward two-stage strategy leads to promising accuracy in anatomical landmark 

localization.

The rest of the paper is organized as follows. We briefly review the most related work in 

Section II, including deep learning on 3D dental models for automated tooth segmentation 

and heatmap regression for anatomical landmark localization in medical images. Section 

III describes the studied data and our TS-MDL method. The experimental results and the 

comparisons between our method and other strategies/approaches are presented in Section 

IV. We further discuss the effectiveness of some critical methodological designs and our 

current method’s potential limitations in Section V. Finally, the work is concluded in Section 

VI.
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II. RELATED WORK

A. Deep Learning-based 3D Dental Mesh Labeling

Several deep learning-based methods, leveraging convolutional neural networks (CNNs) or 

graph neural networks (GNNs), have been proposed for automated tooth segmentation on 

3D dental meshes. For the CNN-based method, Xu et al. [2] extracted cell-level hand-crafted 

features to form 2D image-like inputs of a CNN, which predicts the respective semantic 

label of each cell. Tian et al. [3] converted the dental mesh to a sparse voxel octree model 

and used 3D CNNs to segment and identify individual teeth. Zhang et al. [6] mapped a 3D 

tooth model isomorphically to a 2D ”image” encoding harmonic attributes. A CNN model 

was further learned to predict the segmentation mask, which was then transferred back to 

the original 3D space. These CNN-based methods cannot work directly on the raw dental 

surfaces, and they typically need to convert 3D meshes (or point clouds) to regular ”images” 

(of hand-crafted features), inevitably losing fine-grained geometric information of teeth.

Inspired by the pioneering PointNet [12] working directly on the 3D shapes for shape-level 

or point/cell-level classifications, an increasing number of studies proposed to design GNN-

based methods for mesh or point cloud segmentation in an end-to-end fashion. For example, 

Zanjani et al. [4] combined PointCNN [13] with a discriminator in an adversarial setting to 

automatically assign tooth labels to each point from intraoral scans. Sun et al. [5] proposed 

to label teeth on digital dental casts by using FeaStNet [14], which was further extended 

in their more recent work [15] for coupled tooth segmentation and landmark localization. 

Clinically, the number of teeth can vary between patients, which increases the difficulty of 

the segmentation task. In order to address this issue, Zanjani et al. proposed Mask-MCNet, 

which is analogous to Mask-RCNN [16], to conduct instance segmentation on intra-oral 

scans [7]. In addition, Cui et al. proposed TSegNet, which detects all the teeth using 

a distance-aware tooth centroid voting scheme, followed by a confidence-aware cascade 

segmentation module to outperform state-of-the-art approaches [8].

Our previous work, MeshSegNet [9], [10], is also based on GNN, which integrates a 

series of graph-constrained learning modules to hierarchically extract and integrate multi-

scale local contextual features for tooth labeling on raw intraoral scans. Although it has 

achieved state-of-the-art segmentation accuracy, MeshSegNet has a key limitation – the 

heavy computational requirements due to the large-scale matrix computations of the large 

adjacent matrices.

B. Learning-based Landmark Localization

Landmark localization is a crucial task in both computer vision and medical imaging 

analysis. In 2012, Kumer et al. presented a set of specific methods to automatically identify 

several dental-specific features (e.g., cusps, marginal ridges, grooves, etc.) on digital dental 

meshes [17]. However, each method is specific to identify the corresponding feature only, 

which means this system cannot detect landmarks outside their well-defined domain. In deep 

learning, a straightforward strategy for landmark localization is to regress the coordinates 

directly from high-dimensional inputs (e.g., images), but learning such highly nonlinear 

mappings is technically challenging [18]. To deal with this challenge, various studies in 
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the computer vision community (e.g., Pfister et al. [18]) proposed to encode the location 

information of landmarks into Gaussian heatmaps, by which the point localization task 

is transferred as an easier image-to-image/heatmap regression task. The task of landmark 

localization is still a very active topic in computer vision, and several novel studies 

recently emerged with a focus on self-supervised methods. For example, Suwajanakorn et 

al. presented an end-to-end geometric reasoning framework to learn a latent set of category-

specific 2D keypoints with depth information, optimized by multi-view consistency and 

relative pose estimation [19]. Reddy et al. also presented a graph-based framework, called 

Occlusion-Net, with a largely self-supervised scheme to predict the 2D and 3D locations of 

occluded keypoints [20].

In medical imaging analysis, the landmarking task has been widely used in diseases 

diagnosis, treatment planning, and surgical simulation [21]–[24]. The heatmap regression-

based landmark localization has also been successfully applied in the medical imaging 

domain. For example, by leveraging the end-to-end image-to-image learning ability of 

fully convolutional networks (FCNs), Payer et al. proposed SpatialConfiguration-Net that 

incorporates spatial configuration of anatomical landmarks with local appearance to improve 

the robustness of heatmap regression even with a limited amount of training data [11], 

[25]. In addition, due to the association between segmentation and landmarking, Zhang et 

al. [26] aimed to solve the two tasks jointly and adopted heatmap regression for landmark 

digitization in their approach. In general, these existing studies only focus on detecting 

landmarks in 2D/3D medical images, without attention to more complicated data structures 

such as irregular dental meshes.

Recently, some studies have started working on landmark identification for point cloud 

data. For instance, Fernandez-Labrador et al. proposed an unsupervised learning method for 

category-specific keypoint identification on 3D point clouds of objects [27]. Maron et al. 

proposed a method to transfer the surface mesh to a flat torus (i.e., a 2D image) so that the 

traditional CNN would be able to apply to the corresponding flat torus [28]. However, the 

number of studies regarding landmark detection on dental mesh models, particularly directly 

working on 3D data with graph neural networks, is still limited.

III. MATERIALS AND METHOD

A. Dataset

The dataset used in this study consists of 136 patients’ raw upper intraoral scans (mesh 

surfaces), acquired by iTero Element®, a 3D dental intraoral scanner (IOS). The Institutional 

Review Boards (IRBs) used in this study are IRB# 13-0924 (University of North Carolina 

at Chapel Hill) and 2020H0459 (The Ohio State University). With the exception of a few 

cases with missing teeth, each scan has 14 teeth and 66 landmarks. These 66 landmarks 

are commonly recognized in the orthodontic field and are useful in superimposition as well 

as calculating tooth movement between pre- and post-treatment scans. The full name for 

each landmark acronym is given in Table I. Each scan was manually annotated and checked 

by two experienced orthodontists, serving as the ground truth for the segmentation and 

localization tasks, respectively. A typical example is shown in Fig. 2, with the names of teeth 

and corresponding landmarks listed in Table I.
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B. TS-MDL

In this paper, we propose a two-stage method for automated identification of anatomical 

landmarks on 3D intraoral scans. The workflow of this method is shown in Fig. 1, where 

the two stages correspond to tooth segmentation and heatmap regression, respectively. The 

idea of this two-stage method is first to segment individual teeth using iMeshSegNet, an 

improvement of our MeshSegNet [9], [10]. After that, the cells belonging to each tooth (i.e., 

partial mesh) are cropped as an ROI for the localization of the corresponding landmarks. 

That is, each ROI is fed into an individual PointNet-Reg, a variant of PointNet, to regress 

the heatmaps that encode the anatomical landmarks on the corresponding tooth. By doing 

this, we narrow the possible locations of landmarks from the entire intraoral scan down to 

the specific ROIs, which significantly improves localization efficiency and accuracy.

1) iMeshSegNet for Tooth Segmentation: The purpose of Stage 1 is to perform 

automatic tooth segmentation on raw intraoral scans. This stage includes three steps: pre-

processing, inference, and post-processing.

In the pre-processing step, the raw intraoral scans are first downsampled from approximately 

100,000 mesh cells (based on iTero Element®) to 10,000 cells. The downsampled mesh 

further forms an N × 15 vector F0, which is the input of iMeshSegNet, where N is the 

number of cells. The 15 dimensions correspond to coordinates of the three vertices of each 

cell (9 units), the normal vector of each cell (3 units), and the relative position of each 

cell with respect to the whole surface (3 units), respectively. The N × 15 matrix is z-score 

normalized.

iMeshSegNet inherits its forerunner, MeshSegNet [9], [10], and its architecture is shown in 

Fig. 3. The major difference between MeshSegNet and iMeshSegNet is the implementation 

of the graph-constrained learning module (GLM) that has been proven effective for 

segmentation [9], [10]. MeshSegNet utilizes symmetric average pooling (SAP) and two 

adjacency matrices (AS and AL in Refs. [9], [10]) to extract local geometric contexts. 

However, the two N × N adjacency matrices and the matrix multiplication cause high 

computational complexity and substantial memory usage when N is large. In order to 

overcome this drawback, iMeshSegNet adopts the EdgeConv operation [29] to replace SAP 

for local context modeling.

In the inference step, iMeshSegNet first consumes the input F0 (N × 15) with a multi-layer 

perceptron module (MLP-1 in Fig. 3) to obtain an N × 64 feature vector F1. A feature-

transformer module (FTM) then predicts a 64 × 64 transformation matrix T based on the 

features learned by MLP-1, which maps the F1 into a canonical feature space by performing 

a matrix (tensor) multiplication F1 = F1T.

The first graph-constrained learning module (i.e., GLM-1) applies EdgeConv [29] to 

propagate the contextual information provided by neighboring cells on each centroid cell, 

resulting in a cell-wise feature matrix FE1 = f1
E1, f2

E1, …, fN
E1  that encodes local geometric 

contexts, as expressed as
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fi
E1 = max

j ∈ N(i)
ℎΘ xi − xj, xi , (1)

where j and N(i) denote a single adjacent cell and all adjacent cells of cell i, computed 

by k-nearest neighbor (k-NN) graph; and hΘ denotes a shared-weight MLP or a 1D Conv 

layer. Note that the k-NN graph is computed based on the initial graph including self-loop, 

which is unlike the dynamic graph update in [29], and we adopt k = 6 for the k-NN graph 

in GLM-1. The EdgeConv not only bypasses the expansive matrix multiplication but also 

has the permutation invariance and partial translation invariance properties [29], leading to 

better performance in terms of both efficiency and accuracy, as verified by our experiments 

presented in Section IV.

The feature matrix FE1 then goes through the second MLP module (i.e., MLP-2), constituted 

by three shared-weight 1D Convs with 64, 128, 512 channels, respectively, becoming an 

N × 512 feature matrix F2 and passing through GLM-2. Compared to GLM-1, GLM-2 

further enlarges the receptive field to learn multi-scale contextual features. Specifically, F2 is 

processed by two parallel EdgeConvs defined on two different k-NN graphs (k = 6 and k = 

12), resulting in two feature matrices FE2 and FE2′. They are then concatenated and fused by 

a 1D Conv with 512 channels.

A global max pooling (GMP) is applied on the output of GLM-2 to produce the translation-

invariant holistic features that encode the semantic information of the whole dental mesh. 

Then, a dense fusion strategy is used to densely concatenate the local-to-global features from 

FTM, GLM-1, GLM-2, and upsampled GMP, followed by the third MLP module (MLP-3) 

to yield an N × 128 feature matrix. Finally, a 1D Conv layer with softmax activation is used 

to predict an N ×(C + 1) probability matrix where C = 14 (i.e., 14 teeth). The effectiveness 

of the GLM and dense fusion of local-to-global features have been examined systematically 

[9]. All 1D Convs in iMeshSegNet are followed by batch normalization (BN) and ReLU 

activation except the final 1D Conv.

In the post-processing step, we first refine the segmentation results predicted by deep neural 

networks, as they may still contain isolated false predictions or non-smooth boundaries. 

Similar to [2], [9], we refine the network outputs by using the multi-label graph-cut method 

[30] that optimizes

argmin
L

∑
i = 1

N
− log pi li + ϵ + λ ∑

i = 1

N
∑

j ∈ Ni

V pi, pj, li, lj , (2)

where the first and second terms are the data-fitting and local-smoothness terms, 

respectively; cell i is labeled by the deep network with label li under the probability of 

pi; ϵ is a small scalar (i.e., 1×10−4) to ensure numerical stability; λ is a non-negative tuning 

parameter; j and Ni denote a single nearest-neighboring cell and all nearest-neighboring 

cells of cell i, respectively. The local smoothness term (the second term in Eq. 2) is 

expressed as
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V pi, pj, li, lj =

0, li = lj

−log(θij

π )ϕij, li ≠ lj, θij is concave,

−βijlog(θij

π )ϕij, li ≠ lj, θij is convex

(3)

where θij is the dihedral angle between cell i and j; ϕij = |ci − cj| and β = 1 + n i ⋅ n j ; c and n
denote the barycenter and normal vector of a cell, respectively. The term β (β = 30 in this 

study) enforces the optimization to favor concave regions as the boundaries among teeth and 

gingiva are usually concave [2].

Finally, we project the segmentation result from the downsampled mesh (approximately 

10,000 cells) back to the original intraoral scan (approximately 100,000 cells). To this end, 

we train a support vector machine (SVM), with the radial basis function (RBF) kernel, using 

downsampled cells’ coordinates and corresponding labels (i.e., predicted segmentations) as 

training data. Then, we consider all cells in the original high-resolution intraoral scan as 

test data and predict their labels. By doing this, the prediction from the SVM model is the 

segmentation result under the original intraoral scan.

2) Point-Reg for Landmark Localization: A tooth anatomical landmark locates on 

and is determined by the shape of its related tooth. For example, both the mesial and distal 

contact points (i.e., MCP and DCP in Table I) defined in this study refer to the center of 

contact areas which are usually located in the upper one third of the crown on the mesial and 

distal sides of most teeth. Therefore, it is reasonable and more efficient to locate a landmark 

only using the mesh of the corresponding tooth, instead of the entire dental arch model.

Then, we modify the original PointNet [12] for cell-wise regression, called PointNet-Reg, 

which learns the non-linear mapping from a tooth ROI to the corresponding heatmaps that 

encode landmark locations. As shown in Fig. 4, we replace the softmax activation function 

to the sigmoid function in the final 1D Conv to output an N′ × NL Gaussian heatmap matrix 

that encodes the location of the landmarks, where N′ and NL represent the number of cells 

in the ROI and the number of anatomical landmarks, respectively. After the inference by 

PointNet-Reg, we choose the centroid cells having the maximum heatmap values as the 

predicted landmark coordinates, which naturally locate on the original intraoral scan.

C. Implementation

1) Data Augmentation: Due to the symmetry of the dental arch, all 136 samples with 

their annotated labels as well as 66 landmarks are flipped to double the sample size. Then, 

we follow the same strategy proposed in [9], [10] to augment these original and flipped 

data, by combining the operations of 1) random translation, 2) random rotation, and 3) 

random rescaling. Specifically, along each axis in the 3D space, an intraoral scan has 50% 

probability to be translated between [−10, 10], rotated between [−π, π], and scaled between 

[0.8, 1.2], respectively. The combination of these random operations generates 20 ”new” 

cases from each original and flipped scan in this study.
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2) Heatmap Generation: The ground-truth heatmaps in PointNet-Reg are defined by a 

Gaussian function, expressed as

ℎk xi = Hexp(− xi − xk
L 2

2σH
2 ), (4)

where xi and xk
L are the coordinates of centroid cell i and landmark k, respectively; hk and H 

are the Gaussian height for landmark k and the maximum Gaussian height (H = 1.0); and σH 

is the Gaussian root mean square (RMS) width (σH = 5.0 mm).

3) Training Procedure: The model was trained by minimizing the generalized Dice loss 

[31] in Stage 1 (i.e., iMeshSegNet for tooth segmentation) and mean square error (MSE) 

in Stage 2 (i.e., PointNet-Reg for landmark regression), respectively, using the AMS-Grad 

variant of the Adam optimizer [32]. In the training step, we randomly selected 9,000 and 

3,000 cells from the downsampled scan (approximate 10,000 cells) and ROI in the original 

resolution (approximate 3,050 cells) to form the inputs of iMeshSegNet (i.e., N = 9, 000) in 

Stage 1 and PointNet-Reg (i.e., N′ = 3, 000) in Stage 2, respectively.

4) Inference Procedure: The proposed TS-MDL can process the intraoral scans of 

varying sizes. We downsample the unseen intraoral scan before applying the trained 

iMeshSegNet model on it, which is due to the limited GPU memory (e.g., 11GB for 

NIVIDIA RTX 2080 Ti). At the end of Stage 1, we transfer the downsampled segmentation 

result predicted by iMeshSegNet back to its original resolution. Then, 14 ROIs are generated 

in Stage 2, and each ROI is fed into the corresponding PointNet-Reg under the original 

resolution. In total, 66 heatmaps are predicted from 14 different PointNet-Reg models 

and converted to the corresponding landmark coordinates. In this study, we conducted 

experiments to localize 66 landmarks on 14 teeth from the upper dental model, but our 

TS-MDL method could be straightforwardly extended to include more landmarks and teeth 

as well as lower dental models (with in-house tests and data not shown) if needed.

IV. EXPERIMENTS

A. Experimental Setup

We split the 136 samples into training, validation, and test sets with a ratio of 65:15:20. 

Both training and validation sets were augmented using the method described in Sec. 

III-C1. Using the manual annotations as the ground truth, the segmentation performance in 

Stage 1 was quantitatively evaluated by Dice similarity coefficient (DSC), sensitiviy (SEN), 

postive predictive value (PPV), and Hausdorff distance (HD), and the landmark localization 

performance in Stage 2 was evaluated by the mean absolute error (MAE), which is defined 

as

MAE xk
P, xk

L = 1
NL ∑

k = 1

NL

xk
P − xk

L , (5)
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where xk
P and xk

L denote the predicted and ground-truth coordinates of landmark k, 

respectively; NL represents the number of anatomical landmarks.

B. Competing Methods

In the task of tooth segmentation, we compare iMeshSegNet with its forerunner 

MeshSegNet. Note that in our previous work [9], [10], MeshSegNet has already been 

compared with other state-of-the-art methods, showing superior performance.

In the task of landmark identification, our iMeshSegNet+PointNet-Reg is compared with 

another two-stage method (i.e., iMeshSegNet+MeshSegNet-Reg), where PointNet-Reg is 

replaced by MeshSegNet-Reg (a variant of MeshSegNet) to regress landmark heatmaps 

for each tooth based on its segmentation produced by iMeshSegNet. In addition, to verify 

if tooth segmentation can boost landmark localization, these two-stage methods are also 

compared with two single-stage methods (i.e., PointNet-Reg and iMeshSegNet-Reg), 

which regress landmark heatmaps in an end-to-end fashion from the input 3D dental model.

C. Results

1) Tooth Segmentation Results: The quantitative segmentation results obtained by 

MeshSegNet and iMeshSegNet, both without post-processing, are compared in Table II, 

which show that iMeshSegNet significantly outperformed the original MeshSegNet in 

terms of all four metrics (i.e., DSC, SEN, PPV, and HD). Fig. 5 further summarizes the 

segmentation result (in terms of DSC and HD) for each tooth, from which we can see that, 

being consistent with the average segmentation accuracy in Table II, iMeshSegNet also led 

to better accuracy in segmenting each tooth. The iMeshSegNet segmentation results refined 

by the multi-label graph cut are DSC of 0.964±0.054, SEN of 0.970 ± 0.061, PPV of 0.960 ± 

0.054, and HD of 0.995 ± 0.722 mm, respectively.

A qualitative comparison among iMeshSegNet, MeshSegNet, and the ground truth is 

visualized in Fig. 6. Each row presents the segmentations of a representative example 

produced by the two automatic methods (with post-processing refinement) and the ground 

truth, respectively. We can see that iMeshSegNet outperformed its forerunner MeshSegNet 

in the challenging areas (e.g., those highlighted by the yellow dotted circles).

Besides the segmentation accuracy, we further compared the computational efficiency 

between MeshSegNet and iMeshSegNet. The training and inference time of these two 

methods, using the same implementation strategy and computational environment, are 

shown in Table III. From Table III, we can observe that the average training time 

of iMeshSegNet is 253.6 sec per epoch for 30 samples, roughly 20 times faster than 

MeshSegNet. In addition, iMeshSegNet only needs roughly 0.62 sec to conduct the 

segmentation of an unseen input, which is approximately 8.6 times faster than MeshSegNet.

The above results show that iMeshSegNet significantly outperformed the original 

MeshSegNet in both accuracy and efficiency, which implies the efficacy of the substitution 

of SAP and adjacency matrices by EdgeConv.
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2) Landmark Localization Results: The results of the four competing methods in 

terms of MAE are summarized in Table IV, which lead to three observations. First, the 

two-stage methods (i.e, iMeshSegNet+PointNet-Reg and iMeshSegNet+iMeshSegNet-Reg) 

consistently outperformed the single-stage methods, demonstrating the efficacy of the use 

of ROI. Second, the single-stage iMeshSegNet-Reg shows a better MAE of 1.566 ± 3.711 

mm compared to PointNet-Reg. This finding matches our expectations since iMeshSegNet 

incorporates a series of GLMs and a dense fusion strategy to learn higher-level features 

from the raw intraoral scans. Third, iMeshSegNet+PointNet-Reg obtained better results 

than iMeshSegNet+iMeshSegNet-Reg. Two possible explanations for this controversial 

finding might be that 1) the ROI implicitly provides the localized information (i.e., the 

learning difficulty has been significantly reduced) so the advantage of iMeshSegNet-Reg 

on extracting localized information (i.e., knowing where it is in the whole scan) is not 

as important as in the single-stage, and 2) due to the reduced learning difficulty in the 

two-stage manner and our small dataset, iMeshSegNet-Reg might slightly overfit and its 

generalization ability is worse on the test set, compared to PointNet-Reg.

Fig. 7 displays the MAE of landmarks on each tooth predicted by the four competing 

methods. The results from each tooth have similar trends as the overall evaluation reported 

in Table IV. Although there is no public dataset of intraoral scans and benchmark of mesh 

segmentation for fair comparison, it is worth noting that our results achieve comparable 

accuracies, even slightly better, compared to Ref. [15]. The MAEs for the incisor, canine, 

premolar, and molar are 0.51 mm, 0.72 mm, 0.51 mm, and 0.70 mm, respectively, from our 

iMeshSegNet+PointNet-Reg, whereas the MAEs for the same categories are 0.65 mm, 0.71 

mm, 0.86 mm, and 0.96 mm, respectively, in Ref. [15]. Moreover, higher errors of landmark 

localization are observed on the first molar (i.e., UR6 and UL6), which is similar to the trend 

in the segmentation task that prediction accuracy of the molar (UR/L6, UR/L7) is lower 

than the other teeth. One possible reason is that uncompleted capture often occurs on the 

molars due to the difficulty in scanning the posterior areas, resulting in the lack of complete 

information on molars.

Furthermore, Fig. 8 illustrates the qualitative comparisons among the four competing 

methods and the ground truth for different teeth. The green and purple circles represent 

landmarks in anterior teeth (i.e., incisor and canine) and posterior teeth (i.e., premolar 

and molar), respectively. The qualitative observation reveals that iMeshSegNet+PointNet-

Reg (the fourth column) has the best prediction, which is consistent with the quantitative 

measurement given in Fig. 7.

V. DISCUSSION

A. Static Adjacency vs. Dynamic Adjacency

Wang et al. [29] suggest using dynamic adjacency matrices defined in high-dimensional 

feature spaces to model the non-local dependencies between points (or cells) along the 

forward path of the network. However, due to the specific geometric distribution and 

arrangement of human teeth, we think it is more reasonable to use the static adjacency 

(defined in the input Euclidean space) when extracting contextual features even in deeper 

layers. To justify this claim, we compared the tooth segmentation results obtained by the 
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aformentioned strategies, as shown in Table V. From Table V, we can see that the model 

using static adjacency surpassed the one using dynamic adjacency in terms of DSC, SEN, 

and PPV in our specific task of tooth segmentation on 3D intraoral scans.

B. Clinically Acceptable Errors

According to Tanikawa et. al. [33], several methods were used to evaluate the clinically 

acceptable range in orthodontics. The simplest computational method is to determine 

whether the predicted landmarks are located in a circle within a 2 mm radius. In addition, 

the American Board of Orthodontics (ABO) objective grading system considers deviations 

of 0.5 mm as an awareness distinction [34], implying 0.5 mm is a high-standard criterion. 

The deviations over 0.5 mm and 1 mm will be penalized 1 point and 2 points, respectively, 

for the alignment and marginal ridge categories. Based on these definitions, we can see 

that the results predicted from our TS-MDL in Fig. 7 meet the criterion reported in Ref. 

[33] and approximate the marginal ridge and alignment criteria for the ABO. However, a 

“passing“ case usually has an ABO score of 27 points or less, indicating that errors greater 

than 0.5 mm can still achieve clinically acceptable results.

C. Ceiling Analysis

We performed a ceiling analysis, where the ground truth of segmentation was used as input 

in Stage 1. The analysis is given in Table VI. Perfect segmentation resulted in 0.087 mm 
improvement in overall accuracy in terms of MAE in the proposed TS-MDL. Based on 

the ceiling analysis, it appears that refining the work of landmark regression in the future 

will yield the best overall improvement in the similar multi-stage manner, particularly if we 

consider 0.5 mm as the requirement in terms of accuracy.

D. Limitations and Future Work

Although our TS-MDL leverages the ROI to achieve state-of-the-art performance, it still 

has some limitations. First, the dataset only contains 136 samples, which is relatively 

small. In the future, we will keep collecting intraoral scans used in dental clinics. Second, 

intraoral scans only have surface information. In the heatmap regression-based method, we 

can only predict those landmarks on the dental mesh surface. However, due to areas of 

malocclusion, some teeth are overlapped with adjacent teeth, resulting in an incomplete 

mesh. If a landmark happens to be located on the overlapped area, then the heatmap 

regression-based method is unable to accurately predict its location. To solve this issue, one 

of our future works is to introduce 3D dental mesh repairing at the end of Stage 1 in order to 

reconstruct the incomplete areas from intraoral scans.

VI. CONCLUSION

This study has a two-fold contribution. First, we proposed an end-to-end graph-based neural 

network, iMeshSegNet, for automated tooth segmentation on dental intraoral scans, which 

improves upon our previous work in terms of the implementation of graph-constrained 

learning modules. iMeshSegNet shows significantly better accuracy in terms of DSC, SEN, 

PPV, and HD and dramatically reduces computational time in both training and prediction. 

Second, we proposed the TS-MDL to automatically localize tooth landmarks on intraoral 
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scans. In TS-MDL, we first predict the segmentation masks using iMeshSegNet with graph-

cut refinement. We consider the segmentation masks as independent ROIs and then feed 

them into a series of regression network PointNet-Reg to predict the heatmaps that encode 

the coordinates of tooth landmarks. Our method can achieve an averaged MAE of 0.597 ± 

0.761 mm for localizing 66 landmarks, showing that it has the potential to be utilized in 

orthodontic applications.
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Fig. 1: 
The workflow of our two-stage method for automated tooth segmentation and dental 

landmark localization.
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Fig. 2: 
The learning targets in this study are the 14 teeth and 66 anatomical landmarks on 14 teeth. 

The top and bottom graphics are occlusal and frontal views, respectively.
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Fig. 3: 
The network structure of iMeshSegNet for tooth segmentation in Stage 1.
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Fig. 4: 
The network structure of PointNet-Reg for landmark regression in Stage 2.
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Fig. 5: 
The results of (a) Dice similarity coefficient (DSC) and (b) Hausdorff distance (HD) of each 

tooth from MeshSegNet and iMeshSegNet.
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Fig. 6: 
The qualitative comparison among iMeshSegNet, MeshSegNet, and ground truth. Each row 

contains the automated segmentation results of a sample labeled by different methods (with 

post-processing refinement). The yellow dotted circles highlight the areas that iMeshSegNet 

outperformed its forerunner MeshSegNet, compared to the ground turth.
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Fig. 7: 
The mean absolute error (MAE) of landmarks on each tooth predicted by the four 

competing methods. The numbers showing on the green bars are the MAE predicted by 

iMeshSegNet+PointNet-Reg for each tooth.
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Fig. 8: 
The qualitative comparison among the four competing methods and ground truth for 

different teeth. The green and purple circles represent landmarks in anterior teeth (i.e., 

incisor and canine) and posterior teeth (i.e., premolar and molar), respectively. The tooth 

color also indicates its segmentation result. Due to the limited GPU memory, both one-stage 

strategies (the first and second columns) predict results under downsampled meshes.
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TABLE I:

The names of landmarks, numbers of landmarks, and their corresponding teeth.

Tooth name Landmark name No. of landmarks

upper right/left central incisor (UR1, UL1) DCP, MCP, PGP, LGP 4

upper right/left lateral incisor (UR2, UL2) DCP, MCP, PGP, LGP 4

upper right/left canine (UR3, UL3) DCP, MCP, CCT 3

upper right/left first premolar (UR4, UL4) MLA, DLA, PGP, MCP, DCP 5

upper right/left second premolar (UR5, UL5) MLA, DLA, PGP, MCP, DCP 5

upper right/left first molar (UR6, UL6) MLA, DLA, MBC, DBC, MCP, DCP 6

upper right/left second molar (UR7, UL7) MLA, DLA, MBC, DBC, MCP, DCP 6

MCP (mesial contact point); DCP (distal contact point);

PGP (palatal gingival point); LGP (labial gingival point);

CCT (canine cusp tip);

MLA (mesial line angle); DLA (distal line angle);

MBC (mesiobuccal cusp); DBC (distobuccal cusp)
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TABLE II:

The comparison of segmentation results without multi-label graph cut refinement between MeshSegNet and 

iMeshSegNet in terms of Dice similarity coefficient (DSC), sensitivity (SEN), positive predictive value (PPV), 

and Hausdorff distance (HD). Bold font indicates the best result.

Metric MeshSegNet [9], [10] iMeshSegNet

DSC 0.943 ± 0.044
p=0.0006 0.953 ± 0.056

SEN 0.946 ± 0.054
p=0.0183 0.955 ± 0.064

PPV 0.943 ± 0.051
p=0.0014 0.953 ± 0.058

HD 2.420 ± 3.140 mm
p=0.0209 1.696 ± 1.087mm
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TABLE III:

The comparison of computing time between MeshSegnet and iMeshSegNet. Bold font indicates the best 

result.

Metric MeshSegNet [9], [10] iMeshSegNet

Training (sec/epoch) 5114.4 253.6

Prediction (sec/scan) 5.33 0.62
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TABLE IV:

The results of the four competing methods (two single-stage and two two-stage strategies) in terms of mean 

absolute error (MAE) for the landmark localization. Bold font indicates the best result.

Method MAE (mm)

1-stage: PointNet-Reg 1.807 ± 1.558

1-stage: iMeshSegNet-Reg 1.250 ± 1.021

2-stage: iMeshSegNet+PointNet-Reg 0.597 ± 0.761

2-stage: iMeshSegNet+iMeshSegNet-Reg 0.773 ± 0.832
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TABLE V:

The comparison of segmentation results based on static adjacency and dynamic adjacency. Bold font indicates 

the best result.

Metric Dynamic adjacency Static adjacency

DSC 0.858 ± 0.169
p<0.0001 0.953 ± 0.056

SEN 0.900 ± 0.175
p=0.0027 0.955 ± 0.064

PPV 0.834 ± 0.165
p<0.0001 0.953 ± 0.058
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TABLE VI:

Ceiling analysis of our TS-MDL.

Stage Accuracy (MAE, mm) Improvement (mm)

Overall 0.597 ± 0.761 N/A

Stage 1 0.510 ± 0.477 0.087
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