
The Other Software

 Chandler B. McWilliams

University of California Los Angeles
Department of Design | Media Arts

chandler@brysonian.com

ABSTRACT
This paper considers the absence of the human actor, specifically

the programmer, from Friedrich Kittler’s analysis of software in

his essay There is no Software. By focusing too intently on the

machine and its specific, material existence, Kittler removes the

human user / operator / writer from his analysis of software. Thus,

he has no choice but to interpret the layers of language, assembler,

opcode and WordPerfect, DOS, BIOS—both chains ending in an

essentializing reduction to voltages—as an attempt to obfuscate

the material operations of the machine in the name of intellectual

property.

By both reasserting the presence of the programmer within

Kittler’s structure, and attacking the conception of code-as-text,

this essay offers an alternate description of the being of software,

one which emphasizes not just the execution of code on the

machine, but also the programmer’s role as reader and writer of

code.

Keywords
Software studies, media studies, critical code studies.

1. INTRODUCTION
Friedrich Kittler’s essay There is no Software argues for a

narrowly defined, materialist conception of authentic uses of

circuit-based computational machines. To this end, he dismisses

software and high-level code languages, along with architectural

abstractions inherent in the design of most computer systems, as

unnecessary obfuscations which hide the nature of the machine

itself. Furthermore, he deploys a conception of code-as-text the

writing of which can be understood in terms familiar to the

writing of natural language. These two ideas together necessarily

leave little room for the programmer in the creation of

computational artifacts.

2. NOT EXACTLY WRITING
Programming language, writing code; it seems clear that we are

talking about language in the everyday sense, about texts that are

written. Software is of course written in a language, so why not

bring to bear the mature theories of text on the world of software?

There is no Software, like many texts in the nascent field of

software studies, talks frequently of writing. But the word writing

offers up an irresistible temptation to talk about text. Writing code

is writing like writing music is writing. This is not to say that

music theory is the place to find insights into software, but to

emphasize the multiple flexible meanings of the word writing.

Music can be written sitting at a piano, with clicks on the screen,

or with symbols on paper. Text may or may not be involved.

Writing music is about manipulating sound. Few would argue that

theories of text are relevant to understanding music, we should be

similarly wary of over-identifing code with written text. Just as

writing music is about manipulating sound, not symbols, writing

software is about manipulating procedures, not language.

The flip side of understanding code-as-text is a conception of

reading that places the machine at the center of the act of

programming. Reading becomes reading-by-the-machine. Source

code is compiled and turned into assembly, then translated into

opcodes, which eventually become voltages, the final, true

language of the machine. It is voltages, after all, that integrated

circuits traffic in. “All code operations, despite such metaphoric

faculties as call or return, come down to absolutely local string

manipulations, that is, I am afraid, to signifiers of voltage

differences.” [4]

Even the binary codes we're told so much about are an abstraction

on top of these voltages, 1 is just a name for five volts, and 0 is a

name for ground.
1
 Combined with literary theory’s concern for

what our writing does (a concern shared by Kittler), reading-by-

the-machine offers a clear answer for software: writing code

produces a synchronized choreography of voltages in integrated

circuits.

It is all too easy to collapse the entire process and thus to do away

with software. If code is always and only concerned with the

eventual manipulation of voltages, then in a sense, what does it

matter? Why this long process? We know what our writing does,

it (eventually) affects voltage differentials in a silicon chip.

Wouldn’t it be simpler to slough off these abstractions and get as

close to the machine as possible?

We are rightly struck by the mystery of the written word. The

magic of not being able to map phrases in natural language
2
 to

specific behaviors or states in the mind of the reader is enticing.

The wonderful ambiguity of language.

Writing, in Western culture, automatically dictates that we

place ourselves in the virtual space of self-representation and

reduplication; since writing refers not to a thing, but to

1
 These values aren’t perfect; there is often a tolerance built in

such that, for example, zero to two volts represent a binary 0,

and anything higher represents a binary 1.

2
 Florian Cramer takes issue with the use of the term “natural

language” as opposed to “formal” or “programming” language.

I take “natural” in this context to refer more to the development

and etymology of spoken languages vis-à-vis programming

languages rather than a claim about ontological status. [2]

© Digital Arts and Culture, 2009.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission from the author.
Digital Arts and Culture, December 12–15, 2009, Irvine, California, USA.

speech, a work of language only advances more deeply into

the intangible density of the mirror, calls forth the double of

this already doubled writing, discovers in this way a possible

and impossible infinity, ceaselessly strives after speech,

maintains it beyond the death which condemns it, and frees a

murmuring stream. This presence of repeated speech in

writing undeniably gives to what we call a work of language

an ontological status unknown in those cultures where the act

of writing designates the thing itself, in its proper and visible

body, stubbornly inaccessible to time. [3]

Is this then the status of writing software? Writing which

designates the thing (voltages) in itself? Continuing this line of

thought, the ambiguity of natural language is lost on the machine;

there is only source code to assembly to opcodes to voltages. Read

as a one-to-one mapping; the meaning and action is understood,

explained, fixed. If this is the reading to compliment the writing

of software, then the writer of code is no more than an operator

manipulating a machine to produce a specific predetermined

result. Like a switchboard operator, meticulously and uncreatively

plugging circuits.

3. NOT EXACTLY VOLTAGES
When code is understood as literature, and so the techniques and

questions of literary theory are asked of it, the machine will

always emerge as the final answer. Missing from these

discussions are the writer, the coder, the programmer. Rejecting

the notion that code operates as a literary text allows us to reassert

the presence of the coder in the code.

But if not text, then what? To avoid the temptations of the terms

text, writing, and literature, let us say that code is an artifact.

Specifically an artifact for describing and designing procedures

and systems.
3
 Code comes in many languages. Unlike the babel of

human languages, programming languages tend to differ

depending on how quickly the software can be coded, how easily

the code is to write (there is a tacit relationship between the

difficulty of writing the code and the speed with which the code

will run), or on what hardware the the software needs to run. The

key differentiating factors however are the assumptions inherent

in each language about how the coder thinks. This last and most

important feature of a programming language is perhaps the

primary reason for the development of new languages,

methodologies, and cognitive styles. A consequence of this

computational babel effect is that there is not one ideal language

for writing a given piece of software. The choice of language is

far more influenced by the skillset and needs of the coder than

properties of the software being coded. There is rarely if ever one

clear, best choice. What’s more, it is not always possible to

identify which requirements of the software will play a central

determining role in making a choice of language until the coding

has already begun. Thus the practice of prototyping and sketching

solutions in a familiar environment to gain a better understanding

of the problem itself. Here is one similarity with the writing of a

text; the process of coding itself is often the only way to gain an

understanding of what is to be coded.

An over-emphasis on the voltages in the silicon cannot account

for the multiplicity of programming languages. The same piece of

3
 Noah Wardrup-Fruin explores this idea and the expressive

potential of software in his book Expressive Processing [6]

software, if written in a different language, will become a different

set of voltages when compiled and executed. And since there are

no clear machine-centric metrics by which to judge one set of

opcodes as superior to another—judgements about speed, memory

efficiency, etc. are all relative to the purposes of the human user—

then how can these voltages serve as the ultimate measure of what

it is that our (software) writing does? It cannot, and it fails to do

so because writing code is not about manipulating voltages any

more than writing music is about manipulating vibrations.

Processes and systems are the core concern of code. Writing

software is writing processes and procedures; defining rules and

bounds for action, creating the possibility for behavior, form, and

interaction. From the simplest utility script to the most realistic

physics simulator, the common thread is the code which describes

a particular process for achieving a task. There are of course,

varying degrees of open-endedness and complexity between these

two examples. A script that converts file names to lower case will,

if written well, perform reliably and always produce the expected

outcome. A simulation like those in video games is less

straightforward. The outcome is not always predictable, this

allows for a unique and rewarding gaming experience when

played repeatedly, but also opens the door for simulation as a tool

to model and eventually predict the outcome of the interaction of

massive numbers of variables and processes. This can perhaps be

most clearly stated in terms of how code operates in the arts. Here

generative and parametric processes create the possibility of form;

code creates a world of possibility within constraints rather than a

particular form.

Though the vast majority of code is text-based, meaning it is

written using the characters and symbols common to the ASCII

specification, code can also be visual, in which the processes of

“writing” entails connecting graphical elements called patches

much like programming a modular analog synthesizer or

connecting an electronic circuit
4
. Given Kittler’s revulsion at the

graphical user interface (“[O]n an intentionally superficial level,

perfect graphic user interfaces, since they dispense with writing

itself, hide a whole machine from its users.”) it is fair to assume

that visual programming languages would meet with equal scorn.

This criticism rests, however, on the conception of code-as-text,

one which we are in the process of letting go of in favor of

understanding code as the articulation of processes.

4. WHERE IS CODE EXECUTED?
A piece of software could always have been written in a different

language yet perform the same task; often performing that task in

a different way, with different voltages in the machine, and

different mental models in the coder. Loosening the relationship

between code and the machine lets us ask the question: Where is

code executed? By Kittler’s account, only in the machine after its

eventual conversion to voltages; the programmer is only an

operator tasked with controlling the machine. But if programming

languages often perform the same task differently, offering

important differences only to the programmer, then what do these

differences tell us about programming? The keys ways in which

languages differ is in terms of the mental models they offer and

4
 The most well know patch-based environment is MAX/MSP,

but newer patching systems include VVVV, Quartz Composer,

and Grasshopper.

the assumptions they make about how code should be written. The

multiplicity of ways of thinking about software indicates that code

must to some extent be run in the mind of the programmer. Run

with far less speed, complexity, and precision, but executed

nevertheless. How else would programming be possible? The

extent to which we can recognize that a programmer knows what

effect a line of code will have is precisely the extent to which we

can recognize that she has already run a simulation of that code in

her head. The only other option is that coding is just smashing

together symbols which are then sent to the machine with fingers

crossed. So software must have an effect on how the programmer

conceptualizes a problem—in the form of mental models and

cognitive styles—and also exists as a description of a procedure

interpretable by other coders without the intervention of the

machine, without ever becoming voltages. To speak of software

only in terms of voltages is no more interesting that to discuss a

painting only in terms of the electro-chemical activity in the brain

of the painter.

5. OBFUSCATION / ABSTRACTION
Kittler takes pains to describe the layers operating behind

software. High-level programming languages are turned into

assembly which then becomes opcodes and eventually voltages in

the circuitry of the machine. This parallels another layering, an

application (WordPerfect in his example) running over an

operating system, which is in turn running on top of BIOS. He

characterizes this as obfuscation, a complicated series of frauds

perpetrated in the name of preserving (creating) intellectual

property. However this layering is not so simple. Take the

example of a driver and car. The car has pedals and a wheel which

hide the underlying details of how it moves. The driver rarely

needs to know if the car is powered using gas or electricity, he just

needs to know that pushing the long vertical pedal makes it go. In

programming terms we might say that the interface of the car

(pedals and wheel) hides the implementation (engine,

transmission, etc). Much like the abstractions of software, these

abstractions are often useful, but can effectively put the user at the

mercy of the designers of the system in question. Just as it is

increasingly difficult to repair a new car in a home garage, the

unavailability of the source code for popular software packages

make them nearly impossible to alter.

However, there are other purposes for these abstractions and

seeming obfuscations. For one, higher-level programming

languages are “higher” in that their syntax and organization does

not directly parallel the opcodes required by the machine. This

makes them easier to learn and to think with. One can imagine a

continuum between machine language and human language.

Along this line, “higher” simply means a few steps closer to the

human and away from the machine. Without these abstractions,

programming would likely still be something of a dark art

performed by self-appointed wizards at well-funded universities.

But as it is we have visual languages, scripting languages,

languages for artists, and languages for children. To write code for

the machine always requires a change in our thought; points on

this continuum never fully reach the human. It is always a meeting

somewhere in-between: a becoming-machine of the programmer.

This becoming cannot be summarized with phrases like “think

like a machine.” It is instead a thinking-along-with the machine. A

direct engagement with the structures and potentials of a

particular machine running a particular piece of code. It is here

that code differs from other process-oriented languages, the most

pervasive of which are legal codes. The law turns on

interpretation of language and precedent; the meaning and

application of legal documents evolve over time. Software codes

on the other hand do not afford such ambiguity. The play and

flexibility in software operates at the level of the processes being

written, not at the level of language. Insofar as one uses a

standardized language ANSI C, Java, etc, there is the assumption

of standard execution, something unique to computation, and

something which obscures the the obverse side of procedural

thought.

Quoting The Waite Group’s Macroassembler Bible, Kittler tells

us that “BIOS services hide the details of controlling the

underlying hardware from your program.” [4] This hiding is not

necessarily malicious. Because programming requires concurrent

reading and executing of code in the mind of the programmer,

increases in complexity of the software necessarily bring increases

in the difficulty of the mental execution. Rather than always-

already indicative of a patronizing concealment, this “hiding” is

often a useful tool to allow a complex system to be modularized

and thus thought-through. There is only so much one can hold in

one’s head at one time. This process of encapsulation thus allows

the coder to trust that a certain element will behave as advertised

until she needs to change the behavior or the element does

something unexpected. The heart needn’t worry how the liver

works as long as it keeps working.

6. HARDWARE ESSENTIALISM
Integrated circuits, the hardware at the core of all digital

computers, require strictly defined paths for electrons to travel

through on the chip. Without these controls, the chip would, more

often than not, do nothing; similar to randomly connecting cables

between your TV and DVD player (a common strategy no doubt)

which, more often than not, fails to produce a picture on the

screen. Otherwise a chip’s behavior cannot be predicted and thus

it cannot be programmed.
5
 Michael Conrad has argued, in a paper

heavily drawn upon by Kittler, that this situation creates a

necessary trade-off between connectivity and programability.

“The amount of information processing carried out by a physical

system freed from the constraints necessary to support

programmability is thus potentially much greater than the

potential information processing performed by a system not so

constrained.” [1] Taking this to its extreme conclusion, Kittler

argues that only by removing the restrictions necessitated by

programability is it possible to “enter into that body of real

numbers originally known as chaos.” [4]

Kittler radicalizes Conrad’s argument and describes non-

programmable machines as “badly needed” in that they “work

essentially on a material substrate whose connectivity would

allow for cellular reconfigurations” and so, “Software in the usual

sense of an ever-feasible abstraction would not exist any longer.”

Kittler’s brash materialism again shines through. Only when

procedures are moved in a non-symbolic way to the real of the

material, when the matter of the chip always and only executes the

same operation as a matter of material necessity, have we finally

created an authentic computing machine.

5
 More accurately this type of chip may be programmable, but to

do so would require techniques specific to each individual chip.

Despite being non-programmable, the machines described by

Conrad are still usable for human tasks. However, these machines

would rely on evolutionary techniques to find solutions to a

problem. The programmer then becomes a breeder, combining

elements from the best individuals to create a new generation,

designing environmental fitness conditions and running genetic

operations in an iterative process of searching the terrain of

possible solutions. Adrian Thompson created just this type of

system by working with field-programmable gate arrays

(FPGA)—a type of integrated circuit that is physically

reconfigurable. He developed an evolutionary system to evolve a

configuration of an FPGA chip capable of discriminating between

two audible tones. Eventually a successful configuration emerged.

But unlike a solution expected from a programmable system, the

evolved configuration took advantage of unique material

properties of the chip on which it evolved, using quantum

tunneling and exploiting irregularities in the physical material of

the chip. As Thompson puts it, “a robust asynchronous design was

found that could not have resulted from normal design principles.”

[5]

An evolutionary system using non-programmable chips does have

far fewer layers of abstraction and obfuscation between the

programmer and the machine. But if, unlike Kittler, we resist the

temptation to confuse matter with medium, then we are not

compelled to interpret this as a necessarily more authentic

engagement with computation. It is simply another way for

humans to think through and use computational systems.

Thompson’s work, though unlike other acts of programming,

nevertheless involved the articulation of a process–or perhaps a

meta-process–in the form of an evolutionary system working to

create a FPGA configuration capable of a specific task. In other

words, the medium of the programmer is process in the form of

code, not always (or only) the hardware on which her software is

executed.

7. DOING / BEING
It is nearly impossible to talk about coding without talking about

what the coder is trying to accomplish. The discussion is always

already shot through with mentions of goals, tasks, problems,

intentions, and action. Even the evolutionary techniques as

applied to so-called non-programmable hardware require a

specific formulation of human goals. We are still asking the

machine to perform an operation, just in a different way and using

a different vocabulary. Even in the most software-free variation,

the trail of the human serpent runs over the voltages in the

machine. In software there are always many moments of doing.

The back-and-forth between machine and coder as software is

written, the compiling of that source code into opcodes for the

machine, the effect of running the code on the machine.

Eventually all running software must rub up against the needs and

goals of the user, though these needs may have been prefigured in

advance by the assumptions of the coder. Of course many times

this loop is closed as the programmer herself becomes a user of

her own creations. To identify one moment in this chain as the

essential moment—in Kittler’s case, when the opcodes finally

control voltages—is to attempt to replace doing with being. And

to do so in the most brutally materialist way; if software does not

exist, there is nothing to be said about the effect software has on

politics or thought, either the thought of the coder or of the end-

user. A virus that destroys a nation’s economy, a protein folding

simulation that finds the cure for a disease, and a copy of

Minesweeper all do the same thing; they create voltages in silicon

chips. Had they not been written in code, we could not talk about

them in terms of politics, social change, or ethical import. They

would simply be or not.

8. REFERENCES
[1] KITTLER, F. 1997. There is No Software. in Literature,

Media, Information Systems, J. JOHNSTON, Ed. Routledge,

New York, NY, 147-155.

[2] CRAMER, F. 2008. Language. in Software Studies. M.

FULLER, Ed. MIT Press. Cambridge, MA, 168-174.

[3] FOUCAULT, M. 2008. 1980. Language to Infinity. in

Language, Counter-Memory, Practice. D. BOUCHARD Ed.

Cornell University Press, Ithaca, NY, 53-67.

[4] WARDRIP-FRUIN, N. 2009 Expressive Processing. MIT

Press, Cambridge, MA.

[5] CONRAD, M. 1995. The Price of Programability. in The

Universal Turing Machine. R. HERKEN, Ed. Springer-

Verlag, New York, NY, 261-282

[6] THOMPSON, A. 2002. Notes on Design Through Artificial

Evolution: Opportunities and Algorithms. ACDM 2002.

