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Finding matched rms envelopes in rf linacs: A Hamiltonian approach

Robert D. Ryne

MS H817, Accelerator Operations and Technology

Los Alamos National Laboratory

Los Alamos, NM 87545

(February 11, 1995)

We present a new method for obtaining matched solutions of the rms envelope equations. In this

approach, the envelope equations are �rst expressed in Hamiltonian form. The Hamiltonian de�nes

a nonlinear mapping, M, and for periodic transport systems the �xed points of the one-period map

are the matched envelopes. Expanding the Hamiltonian around a �ducial trajectory, one obtains a

linear map, M , that describes trajectories (rms envelopes) near the �ducial trajectory. Using M

and M we construct a contraction mapping that can be used to obtain the matched envelopes. The

algorithm is quadratically convergent. Using the zero-current matched parameters as starting values,

the contraction mapping typically converges in a few to several iterations. Since our approach uses

numerical integration to obtain all the mappings, it includes the e�ects of nonidealized, z-dependent

transverse and longitudinal focusing �elds. We present numerical examples including �nding a

matched beam in a quadrupole channel with rf bunchers.

INTRODUCTION

In 1959 Kapchinskij and Vladimirskij published the �rst envelope equations governing two dimensional beams with

space charge [1]. Although they assumed an unusual phase space distribution (a �-function whose argument was a

linear function of the Courant-Snyder invariants) their result was important because it described, in terms of a set of

ordinary di�erential equations, the self-consistent transport of �nite emittance beams in strong focusing systems. More

than 10 years later Sacherer and Lapostolle separately showed that, for beams with elliptical symmetry, one could

derive rms envelope equations that were satis�ed by beams in general and not just KV beams [2,3]. They showed

that for linear external �elds (but no such restriction on the beam self-�elds) one could obtain a set of equations

that involved only second moments, but to achieve this they had to allow the beam emittance to appear in the rms

equations as an unknown function of time. Sacherer also showed that one could derive envelope equations for three

dimensional beams (i.e. a six dimensional phase space) assuming ellipsoidal symmetry; unlike the two dimensional

case, the equations depend on the precise form of the distribution through a parameter called �

3

, but that dependence

turns out to be very weak. Through the years activity has continued in the area of envelope equations. Motivated by a

desire to analyze the transport of intense electron beams in gas, Lee and Cooper derived rms equations for cylindrically

symmetric beams including scattering; additionally, their formulation included nonzero canonical angular momentum

and acceleration [4]. In order to model beam transport systems and rf linacs, Crandall developed the now widely

used codes TRACE and TRACE3D [5]. More recently, Struckmeier derived envelope equations starting from the

Fokker-Planck equation [6]. He used the formalism to estimate emittance growth due to intra-beam scattering in

storage rings.

In this paper we will emphasize the application of envelope equations to quadrupole channels and rf linacs. Envelope

equations have turned out to be extremely useful in the early stages of the design of these systems. Our approach

allows a very accurate treatment of the beamline elements, since it takes into account z-dependent longitudinal and

transverse �elds of rf gaps and focusing magnets. The �elds can be in the form of measured �eld data or analytic

functions that approximate �eld data.

Often one is interested not only in numerically integrating the rms equations but also in �nding initial conditions that

result in periodic solutions when the beam transport system is itself periodic. In this paper we will present an e�cient

method for �nding these matched solutions. Our method rests on the fact that the rms equations can be represented

as a Hamiltonian system. While this system's nonlinear behavior can be found through numerical integration of the

rms equations, its linear behavior can be obtained using standard techniques in accelerator physics for computing

linear maps. Together, the linear and nonlinear maps can be used to construct a quadratically convergent iterative

procedure for �nding matched rms envelopes. Typically, we have found the procedure to converge in a few to several

iterations, even under conditions of extreme space charge depression.
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I. TWO DIMENSIONAL SYSTEMS

A. Overview

Consider a particle beam propagating in a quadrupole channel. Suppose that the beam is long compared with its

transverse dimensions, and that we can neglect any longitudinal variation when calculating the beam self-�elds. We

will neglect image charge e�ects, and we will suppose that the beam is launched along the axis of a perfectly aligned

transport system. We will use the longitudinal coordinate, z, as the independent variable. The canonical coordinates

and momenta for the transverse phase space are denoted (x; p

x

; y; p

y

). Let the vector potential associated with the

quadrupoles be given by

A

x

= A

y

= 0; (1)

A

z

=

1

2

g(z)(y

2

� x

2

); (2)

where g(z) denotes the magnetic quadrupole gradient. Let 	

self

denote the scalar potential associated with the

self-�elds and, neglecting transverse currents, suppose that the associated vector potential is given by

A

x

= A

y

= 0; (3)

A

z

=

�

o

c

	

self

; (4)

where �

o

c is the velocity on the design trajectory. Rather than working with the variables (x; p

x

; y; p

y

) it is convenient

to de�ne dimensionless variables (�x; �p

x

; �y; �p

y

) according to

�x = x=l; �p

x

= p

x

=p

o

; (5)

�y = y=l; �p

y

= p

y

=p

o

; (6)

where p

o

denotes the momentum on the design trajectory (i.e. p

o

= 

o

�

o

mc) and where l is a scale length [7]. The

Hamiltonian (in MKSA units) governing these variables is given approximately by

H(�x; �p

x

; �y; �p

y

; z) =

1

2l

(�p

2

x

+ �p

2

y

)

+

lk(z)

2

(�x

2

� �y

2

) +

K=2

l

^

	(l�x; l�y; z); (7)

where

k(z) = (q=p

o

)g(z); (8)

and where K is the generalized perveance,

K =

qI

2��

o

p

o

v

2

o



2

o

: (9)

Also,

^

	 is related to 	

self

according to

	

self

=

�

4��

o

^

	; (10)

where � is the charge per unit length measured in the lab frame, � = I=v

o

. Note that we have expanded the relativistic

Hamiltonian to second order in the phase space variables, with the exception of the scalar potential, as is the standard

procedure for deriving rms envelope equations. For the remainder of the discussion of two dimensional systems we

will set l = 1 m.

Following the usual procedure one can obtain equations for the rms envelopes, X and Y [2,3]. The envelope

equations are given by

d

2

X

dz

2

+ kX �

K=2

X + Y

�

E

2

x

X

3

= 0;

d

2

Y

dz

2

� kY �

K=2

X + Y

�

E

2

y

Y

3

= 0; (11)
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where E

x

and E

y

denote unnormalized rms emittances. Since these are rms equations the factor in the space charge

term is K=2, whereas it would be 2K for the KV equations. The envelope equations are derivable from a Hamiltonian,

H

env

, where

H

env

(X;P

x

; Y; P

y

) =

1

2

(P

2

x

+

E

2

x

X

2

) +

1

2

(P

2

y

+

E

2

y

Y

2

) +

k

2

(X

2

� Y

2

) � (K=2) log(X + Y ): (12)

Lastly, one can use the envelope Hamiltonian to de�ne depressed phase advances, �

x

and �

y

, of a particle in an

equivalent KV beam. Referring to the envelope Hamiltonian, we regard the phase advances as coordinates and the

emittances as a canonically conjugate momenta [8]. (Since the phase advance appears nowhere in the Hamiltonian,

the emittance is constant, as expected). Taking this view, we obtain

�

x

= E

x

Z

dz

X

2

;

�

y

= E

y

Z

dz

Y

2

: (13)

For a KV distribution, these formulas apply to all the particles in the beam (since the forces are linear). For other

distributions they apply to the equivalent KV beam (i.e. a KV beam with the same rms values). The phase advance

equations can be integrated along with the envelope equations.

B. Constructing the contraction map

Consider a periodic transport system with period L. Let � = (X;P

x

; Y; P

y

). As shown above the envelope equations

are derivable from a Hamiltonian; hence they de�ne a symplectic nonlinear mappingM that maps initial state vectors

into �nal state vectors:

�

�n

=M�

in

: (14)

If we consider transport through one period of the transport system, then a matched envelope is simply a �xed point

of M:

M� = �: (15)

Techniques for �nding �xed points of symplectic maps are widely used in accelerator physics [9]. For example, they

are used to �nd the o�-momentum closed orbits of particles in circular machines. In our case, however, we will use

the techniques to �nd the �xed points of an envelope map, not a particle map. The approach is based on the fact that

the machinery exists to compute the action of the nonlinear mapM as well as its linear part, M . This makes it easy

to construct a contraction map based on a Newton search procedure to �nd the �xed point. As a result, the method

is quadratically convergent. As an illustration, consider the problem of �nding solutions of the equation g(x) = x,

or equivalently, of �nding roots of the function f(x) = g(x) � x. The Newton search algorithm de�nes a contraction

mapping C that, for su�ciently close starting values, converges to a root [10]. If x

n

is the value of x on the nth

iteration, then applying the contraction map C to x

n

produces a value at the next iteration:

x

n+1

= Cx

n

= x

n

�

f(x

n

)

f

0

(x

n

)

= x

n

�

x

n

� g(x

n

)

1� g

0

(x

n

)

: (16)

It is easily shown that if x

n

is within � of a root then Cx

n

deviates by an amount proportional to �

2

.

For a multidimensional system, the contraction map is given by [9]

�

n+1

= C�

n

= �

n

� (I �M )

�1

(�

n

�M�

n

); (17)

where I is the identity matrix and M is the matrix associated with linear part of M. To obtain M , we �rst need

to linearize H

env

about a \given" �ducial trajectory, �

g

. Let

^

� = � � �

g

. The quadratic part of the Hamiltonian

governing these deviation variables, which we will denote H

2

, is given by

H

2

=

1

2

(

^

P

2

x

+

^

P

2

y

) +

^

X

2

2

[k +

3E

2

x

X

4

g

+

(K=2)

(X

g

+ Y

g

)

2

] +

^

Y

2

2

[�k +

3E

2

y

Y

4

g

+

(K=2)

(X

g

+ Y

g

)

2

] +

(K=2)

^

X

^

Y

(X

g

+ Y

g

)

2

: (18)
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The equation of motion for M is well known [11]:

dM

dz

= JSM; (19)

where the symmetric matrix S is related to H

2

by

H

2

(

^

�; t) =

1

2

4

X

a;b=1

S

ab

^

�

a

^

�

b

; (20)

and where the matrix J is the fundamental symplectic two-form (i.e. the nonzero elements of J are given by

J

12

= J

34

= 1, J

21

= J

43

= �1). Comparing Eq. (18) and Eq. (20) (with

^

� = (

^

X;

^

P

x

;

^

Y ;

^

P

y

)) one can immediately

identify the matrix elements of S. That is, S

11

is the coe�cient of

1

2

^

X

2

, S

22

is the coe�cient of

1

2

^

P

2

x

, S

13

= S

31

is

the coe�cient of

^

X

^

Y , etc.

Summarizing, Eq. (17) de�nes a contraction map for �nding matched rms envelopes. In order to evaluate the right

hand side of the equation, one must use numerical integration to compute the following: (1)M�, which is just the

numerical solution of Hamilton's equations with the Hamiltonian of Eq. (12); and (2)the matrixM , which is obtained

by numerically integrating Eq. (19). These quantities are computed at every iteration until the di�erence between C�

and � is su�ciently small. In the calculations below we consider the map to have converged when j��C�j=j�j < 10

�8

.

We use the zero current matched values as starting values. For systems where these cannot be found analytically, we

begin by integrating the envelope equations with zero current and zero emittance; this is equivalent to computing the

beta functions, from which we obtain the zero current matched envelopes.

C. Example: matching in a quadrupole channel

As a numerical example, consider a beam in a magnetic quadrupole channel of the \FODO" type. The quadrupoles

in this example are idealized as having a constant gradient over their length, though since numerical integration

is used anyway, it would be little or no extra work to use analytic models or numerical values for the quadrupole

gradients. The period length L = 24 cm and each quadrupole is 6 cm long. The channel is designed to transport a

beam of 10 MeV protons having rms emittances E

x

= E

y

= 1�10

�6

m-rad. The zero current phase shift per cell is 60

degrees, which requires g = 78 T=m. At zero current, the matched rms beam sizes are given by X = 0:6310 mm and

Y = 0:3796 mm. With these as starting values the contraction map converges in 5 iterations when the beam current

is I = 8:4 amp, as is shown in the following computer output listing:

Enter current, x-emittance, y-emittance:

8.4 1.e-6 1.e-6

Zero current matched rms values:

X=6.3103d-04, P_x=-2.0322d-19

Y=3.7961d-04, P_y=-3.3781d-19

Zero current phase shifts per cell:

sigma0_x=59.971, sigma0_y=59.971

Starting contraction mapping...

iteration 1: delta= 3.326906d-00

iteration 2: delta= 8.062686d-01

iteration 3: delta= 3.867283d-03

iteration 4: delta= 1.059674d-04

iteration 5: delta= 7.206193d-10

search converged

Matched rms values:

X=1.9492d-03, P_x=1.45795d-10

Y=1.2217d-03, P_y=2.42433d-10

Phase shifts per cell:

sigma_x=6.011, sigma_y=6.011

Note that the convergence is very rapid even though the depressed phase advance is only 6 degrees per cell.
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II. THREE DIMENSIONAL SYSTEMS

A. Overview

Consider a particle beam propagating in a beamline consisting of quadrupole magnets and cylindrically symmetric

rf cavities. These elements make it possible to approximately model structures such as drift tube linacs and coupled

cavity linacs. The potentials associated with the quadrupole magnets and the beam self-�elds are the same is in the

two dimensional case (but we will use the notation g

m

instead of g to denote the magnetic quadrupole gradient).

Additionally, the vector potential associated with an rf cavity is of the form

A

x

=

e

0

(z)

2!

�

x sin(!

�

t+ �)

A

y

=

e

0

(z)

2!

�

y sin(!

�

t+ �)

A

z

= �

1

!

�

fe(z) �

r

2

4

[e

00

(z) +

!

2

�

c

2

e(z)]g sin(!

�

t+ �);

(21)

where the electric �eld at r = 0 is given by

E

z

(r = 0) = e(z) cos(!

�

t+ �); (22)

and where a prime denotes d=dz.

As before, we use the longitudinal coordinate z as the independent variable. Now there are six canonical coordinates

and momenta, denoted (x; p

x

; y; p

y

; t; p

t

), where t denotes a particle's arrival time at the location z and where its

canonically conjugate momentum p

t

is the negative of its total energy. As above, we will de�ne variables that are

dimensionless deviations from the design trajectory. First, let (t

o

; p

to

) denote the design trajectory (along with

x = p

x

= y = p

y

= 0). Using the above potentials, it follows that the equations of motion for the design trajectory

are given by

t

0

o

=

�p

to

=c

p

p

2

to

�m

2

c

4

; (23)

p

0

to

= �qe(z) cos(!

�

t + �): (24)

Note that, in the two dimensional case, the momentum on the design orbit was a constant, and it was natural to scale

the transverse momenta by this quantity. But in the three dimensional case, the rf �elds can accelerate the beam.

Thus, we will scale the transverse momenta by a parameter � which is unrelated to the design momentum. (In fact,

later it will be convenient to set � = mc). The transverse coordinates are scaled by a parameter l. Lastly, the time t

will be scaled by a quantity !, so that the times are really phases. Often one would choose ! = !

�

, but due to the

frequency changes typical of proton or ion linacs, there are instances where one would choose n! = !

�

, where n is an

integer. In summary, the dimensionless deviation variables are given by

�x = x=l; �p

x

= p

x

=� (25)

�y = y=l; �p

y

= p

y

=� (26)

�

t = !(t� t

o

); �p

t

= (p

t

� p

to

)=(!l�) (27)

The single particle Hamiltonian,H(�x; �p

x

; �y; �p

y

;

�

t; �p

t

; z), paraxial in the external �elds, is given by

H =

�

2lp

o

(�p

2

x

+ �p

2

y

) +

qlg

m

2�

(�x

2

� �y

2

) +

l

2�

�

1

p

o

�

q

2!

�

e

0

sin�

s

�

2

�

q

2!

�

�

e

00

+

!

2

�

c

2

e

�

sin�

s

�

(�x

2

+ �y

2

)

�

qe

0

sin�

s

2p

o

!

�

(�x�p

x

+ �y�p

y

) +

m

2

!

2

l�

2p

3

o

�p

2

t

�

!

�

qe sin�

s

2!

2

l�

�

t

2

+

p

o

l�

(

�

K=2)

^

	(l�x; l�y;

�

t=! + t

o

; z); (28)

where the synchronous phase, �

s

, is given by

�

s

= !

�

t

o

(z) + �: (29)

5



In the above Hamiltonian,

^

	 is obtained from Eq. (10) with � =

�

I=v

o

, and

�

K is the perveance obtained from Eq. (9)

using the average current

�

I . Note that if the scaling parameter ! is chosen to be the frequency of the bunches, then

the charge per bunch Q is related to

�

I according to Q = (2�=!)

�

I . In what follows, it will be convenient to de�ne a

quantity u

o

, where

u

o

=



o

�

o

!l=c

: (30)

Following Sacherer [2], one can obtain equations for the rms envelopes, X;Y and T :

X

00

+

p

0

o

p

o

X

0

+

qg

m

p

o

X �

qg

rf

p

o

X �

�

Ku

o

��

3

l

2

XG

311

(X;Y; u

o

T )�

�

�

lp

o

�

2

E

2

n;x

X

3

= 0;

Y

00

+

p

0

o

p

o

Y

0

�

qg

m

p

o

Y �

qg

rf

p

o

Y �

�

Ku

o

��

3

l

2

Y G

131

(X;Y; u

o

T )�

�

�

lp

o

�

2

E

2

n;y

Y

3

= 0;

T

00

+ 3

p

0

o

p

o

T

0

�

q!

�

=c

2



2

o

�

2

o

p

o

e sin�

s

T �

�

Ku

o

��

3

l

2

TG

113

(X;Y; u

o

T )�

�

�

lp

o

u

2

o

�

2

E

2

n;t

T

3

= 0; (31)

where

g

rf

=

1

2

[

!

�

c

2

e sin�

s

�

(!=!

�

)

2

v

o

e

0

cos�

s

]: (32)

In the above equations, E

n;x

, E

n;y

and E

n;t

denote normalized rms emittances. The quantity �

3

is a geometrical factor

that depends on the details of the charge distribution within the bunch, but as Sacherer pointed out it is not very

sensitive to the details and has a value approximately equal to 1=(5

p

5) for a wide variety of distributions. Lastly,

the quantity G is a space charge term de�ned by

G

mnp

(x; y; z) =

3

2

Z

1

0

ds

(x

2

+ s)

m=2

(y

2

+ s)

n=2

(z

2

+ s)

p=2

: (33)

Note that these rms equations are not expected to accurately model the bunching process. The reason for this is

twofold: (1)By our paraxial expansion of the single particle Hamiltonian, we assume that the external rf �elds vary

linearly across a bunch; (2)The space charge terms are based on the �elds of an isolated bunch of charge, not a train

of bunches.

Lastly, the rms equations are derivable from the following envelope Hamiltonian:

H

env

(X;P

x

; Y; P

y

; T; P

t

) =

�

2lp

o

(P

2

x

+

E

2

n;x

X

2

) +

�

2lp

o

(P

2

y

+

E

2

n;y

Y

2

) +

�

2lp

o

u

2

o

(P

2

t

+

E

2

n;t

T

2

)

+

qlg

m

2p

o

(X

2

� Y

2

)�

qlg

rf

2�

(X

2

+ Y

2

)�

q!

�

e sin�

s

2!

2

l�

T

2

+

�

Ku

2

o

��

3

l

G

111

(X;Y; u

o

T ): (34)

B. Constructing the contraction map

As in the two dimensional case, we need to compute the matrixM that describes the linear behavior of the system

governed by H

env

. This in turn requires that we know the matrix S, which appears in Eqs. (19) and (20). Linearizing

H

env

around a given �ducial trajectory �

g

we obtain the following nonzero matrix elements of S:

S

22

= S

44

=

�

lp

o

; S

66

=

�

lp

o

u

2

o

; (35)

S

11

=

ql

�

(g

m

� g

rf

) +

�

lp

o

3E

2

n;x

X

4

g

+

�

Ku

2

o

��

3

l

(3X

2

g

G

511

� G

311

); (36)

S

33

=

ql

�

(�g

m

� g

rf

) +

�

lp

o

3E

2

n;y

Y

4

g

+

�

Ku

2

o

��

3

l

(3Y

2

g

G

151

�G

131

); (37)
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S

55

= �

q!

�

e sin�

s

!

2

l�

+

�

lp

o

3E

2

n;t

u

2

o

T

4

g

+

�

Ku

4

o

��

3

l

(3u

2

o

T

2

g

G

115

�G

113

); (38)

S

13

= S

31

=

�

Ku

2

o

��

3

l

X

g

Y

g

G

331

; (39)

S

15

= S

51

=

�

Ku

4

o

��

3

l

X

g

T

g

G

313

; (40)

S

35

= S

53

=

�

Ku

4

o

��

3

l

Y

g

T

g

G

133

: (41)

Note that we have used the notation G

mnp

to denote G

mnp

(X;Y; u

o

T ) in the above equations.

The following section contains a numerical example of �nding matched beams in a three dimensional system. But

before continuing we need to specify our choice of scaling parameters:

n! = !

�

; (42)

� = mc; (43)

l = c=!: (44)

In the above equations, ! is simply the frequency of the bunches, normally a harmonic of the rf frequency. If every

rf bucket is �lled, n = 1; if every other bucket is �lled, n = 2; and so on. By choosing !l=c = 1, it means that X and

Y need to be multiplied by the inverse wavenumber, k

�1

= c=!, to convert them to dimensional quantities. Lastly,

note that with this choice of parameters the phase advances are given by

�

x

=

E

n;x

l

Z

dz



o

�

o

X

2

;

�

y

=

E

n;y

l

Z

dz



o

�

o

Y

2

;

�

t

=

E

n;t

l

Z

dz



3

o

�

3

o

T

2

: (45)

C. Example: matching in a quadrupole channel with bunchers

We will consider the same FODO channel as described previously, but in addition rf gaps will be inserted between

each quadrupole. This is shown schematically in Fig. 1. Though we could use numerical �eld data or analytic

functions that approximate �eld data, for the sake of illustration we have assumed that e(z) is a sum of two identical,

longitudinally separated Gaussians:

e(z) = E

max

(e

(z�z

1

)

2

=2�

2

+ e

(z�z

2

)

2

=2�

2

); (46)

with z

1

= 6 cm, z

2

= 18 cm, � = 5 mm and E

max

= 20 MV=m. Each cavity is assumed to have the same frequency

and phase (see Eqs. (21)): f

�

= !

�

=2� = 361:75 MHz, � = 90:06 degrees. With these choices of frequency, phase, and

cavity separation, a synchronous particle crosses the gaps with a phase of roughly �90 degrees, the net result being

no acceleration or deceleration. Fig. 2 shows the synchronous particle's energy as a function of z.

The transverse emittances are chosen to be the same as in the two dimensional example. Since we now need

dimensionless normalized values, we have to take the numbers from the two dimensional example and multiply them

by a factor (

o

�

o

=l). This factor equals 1.11, and so the resulting dimensionless normalized rms emittances are given

by E

n;x

= E

n;y

= 1:11 � 10

�6

. For simplicity this is also the value we choose for E

n;t

. As before, the channel is

designed to transport a beam of 10 MeV protons. At zero current, the matched rms beam sizes are X = 4:968�10

�3

,

Y = 3:009 � 10

�3

and T = 3:416 � 10

�2

rad. (In physical units, the transverse values are X = 0:6553 mm and

Y = 0:3969 mm, since l = 0:1319 m). At zero current, the rf defocusing e�ect of the gaps depresses the transverse

phase advances from 60 degrees to around 55 degrees per period; the temporal (i.e. longitudinal) phase advance is

slightly more than 30 degrees per period. At a beam current of 150 ma, the contraction map converges in 6 iterations:
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freq,curr,x-emit,y-emit,t-emit (normalized):

361.75e6 0.150 1.11e-6 1.11e-6 1.11e-6

Zero current matched rms values:

X=4.9679d-03, P_x=-2.0090d-10

Y=3.0094d-03, P_y=6.1963d-12

T=3.4158d-02, P_t=-2.7831d-12

Zero current phase shifts per cell:

sig0_x=55.377,sig0_y=55.376,sig0_t=31.434

Starting contraction mapping...

iteration 1: delta= 9.460663d-01

iteration 2: delta= 4.247934d-01

iteration 3: delta= 3.944055d-02

iteration 4: delta= 5.912194d-04

iteration 5: delta= 1.848957d-06

iteration 6: delta= 4.322956d-09

search converged

Matched rms values:

X=8.5011d-03, P_x=1.1776d-09

Y=5.3076d-03, P_y=2.4236d-09

T=9.9245d-02, P_t=1.9463d-12

Phase shifts per cell:

sig_x=18.301,sig_y=18.300,sig_t=3.724

Fig. 3 shows the matched rms envelopes in the transverse directions, and Fig. 4 shows the matched temporal envelope.

SUMMARY

The purpose of this paper has been to present a method for �nding matched rms envelopes in beamlines consisting of

quadrupole magnets and cylindrically symmetric rf gaps. We did this by casting the envelope equations in Hamiltonian

form and constructing a contraction map based on a Newton search procedure. Our numerical examples show that

the map converges very rapidly even under conditions of signi�cant space charge depression.
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FIG. 1. One cell of a quadrupole channel with rf bunchers, showing quadrupole gradient (solid line) and longitudinal electric

�eld (dashed line).
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FIG. 2. Energy versus z for a synchronous particle propagating in one cell of the quadrupole channel with bunchers.
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FIG. 4. Matched temporal (i.e. longitudinal) envelope T for the quadrupole channel with bunchers.
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