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Abstract

Essay on Innovation and Finance

by

Dominik Jurek

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Gustavo Manso, Co-chair

Associate Professor Timothy McQuade, Co-chair

Do patents facilitate market entry and job creation? Using a 2014 Supreme Court decision that
limited patent eligibility and natural language processing methods to identify invalid patents, I find
that large treated firms reduce job creation and create fewer new establishments in response, with
no effect on new firm entry. Moreover, companies shift toward innovation aimed at improving
existing products consistent with the view that patents incentivize creative destruction.
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Chapter 1

Introduction

Do patents facilitate market entry of new ideas by protecting rents on novel technologies? Or
do they stifle innovation by allowing incumbents to maintain excessive legal monopolies? Influ-
ential research suggests that patents facilitate the market entry of new ideas by granting innova-
tors property rights over their inventions and incentivizing costly, risky investments in innovation
(e.g., Schumpeter 1942; Arrow 1962; Nordhaus 1969). In this way, strong patent protection can
spur start-ups and incumbents to introduce new technologies to the market, accelerating economic
growth. However, research also suggests that poorly designed patent systems that grant excessively
broad property rights can stifle innovation and new entrants (e.g., Boldrin and Levine 2013). For
example, incumbent firms can exploit such systems by acquiring patents that block new firms from
entering the market, allowing incumbents to extract rents from their existing products rather than
developing new technologies to compete with other firms. From this perspective, patents can de-
crease entry, increase markups for incumbents, and reduce business dynamism and growth (Akcigit
and Ates 2019).

In this paper, I contribute to research on how patents affect innovation by evaluating the effect
of a recent court decision that limited the patent eligibility of software patents. The 2014Alice Corp.
v. CLS Bank International Supreme Court decision1 (Alice decision) weakened the enforceability
of existing software patents and limited the patentability of new software-related innovations. I
assess the impact of the Alice decision on job creation, firm entry and exit, and innovation efforts.

Identifying patents that are affected by Alice is challenging because few patents are litigated
and software patents fit into multiple broad patent classes. Instead, I introduce a novel approach
that directly uses the patent claim language. I use texts of patent applications that were rejected due
to the Alice decision to train a binary natural language processing (NLP) classification algorithm
and identify claim language that is not eligible after Alice anymore. The advantage of this method

1573 U.S. 208 (2014)
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is that I can predict for a large set of patents whether they are invalid and identify treated firms by
measuring the share of invalid patents in patent portfolios before the Alice shock.

To measure innovation and growth-relevant outcomes, I leverage restricted-use U.S. Census
microdata on establishment entry and job creation, surveys on research and development (R&D)
expenditures, and patent data on innovation quality and direction. Using industry- and firm-level
data and my NLP method for identifying treated firms, I estimate a difference-in-differences (DiD)
model and address three sets of questions that measure the effect of patentability on innovation and
growth: First, how do entry and exit change for new ventures in treated industries? Second, how
do establishment entry, job creation and destruction, and innovation quality and direction change
for incumbents if they receive fewer patents for their inventions? Third, which types of firms are
most affected by the Alice shock to patentability?

I estimate the impact of Alice on firm entry and exit by aggregating Census and patent portfolio
data to the industry level. I find a significant decrease of 3%–4% for establishment entry by large
incumbents, but no significant change in entry or exit for small firms and new ventures. We can
interpret this result as new entrants being more interested in getting their products on the market
even without the ability to receive patents (see Boldrin and Levine 2013), while large incumbents
reduce the exploration and market entry of new technologies.

R&D surveys conducted by the Census Bureau and the National Science Foundation give fur-
ther insight into how innovation strategies have changed after Alice. I find no significant effect for
overall R&D spending, but the share of R&D spending on development increases by 0.27% per
one percent of treatment intensity, and relative spending on research decreases by 0.32%. Thus,
innovation does not stop due to Alice but rather becomes more focused on the improvement of ex-
isting products. This is consistent with the aggregate industry results showing less establishment
creation; improving existing technologies rather than entering into new ones reduces establishment
entry (see Garcia-Macia et al. 2019; Klenow and Li 2021).

Overall, industry results show that incumbents engage more in own innovation by improving
existing products rather than exploring new technologies after Alice. Based on this shift in innova-
tion direction, growth theory as in Peters (2020) predicts a decrease in establishment entry and job
creation and an increase in markups at the firm level. Consistent with this, I find negative treatment
effects of 5.5% for job creation and 3.4% for new establishment entry, but a positive treatment effect
of 2.4% for markups. The shift toward own innovation is also reflected in patenting data: while Al-
ice has a negative effect on overall issuances, patents have become more narrow, less experimental,
and focused more on internal rather than external innovation. Alice has changed which innovations
can be patented, and firms have shifted their innovation strategy toward improving technologies
they already have in place.

Depending on which incumbents shift their innovation strategy toward own innovation, the
implications for innovation and growth might be different. If large market leaders reduce creative
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destruction, the long-term effects on competition and growth are smaller than if followers limit
innovation directed at acquiring new technologies to replace leading firms. I find that the largest
firms in the 90th percentile of the patent portfolio and firm employment size distribution drive the
results: new establishment creation decreases by 9.8% while overall patent issuances decrease by
10.9%. Markups increase by 2.1%, and patent references to internal knowledge increase relative
to overall patent citations. The Alice shock reduces the patentability of innovations, and large
incumbents substitute new technology exploration with product improvements. Thus, the results
are consistent with patents incentivizing incumbents to innovate by entering into new technologies,
which in turn promotes creative destruction and growth.

My results are robust to variations in the regression specification and sample selection. I imple-
ment several alternative definitions for treated and control firms, estimate economic outcomes with
different variables, and implement various model specifications. Furthermore, my approach fulfills
all assumptions for the causal identification of treatment effects. For the difference-in-differences
setting to be valid, the key assumption is that changes in outcome variables are different for the
treated group only due to Alice. The Alice decision is the most significant change in software
patentability since 1998, and no patent regime change affected the control group in the sample pe-
riod. Thus, only the treated group experiences a consistent shock to patentability. Another concern
might be unobserved industry shock affecting the treated firms. I find that Alice-treated patents
are concentrated among large firms in computer-related service industries, but my main results are
robust to the inclusion of sector-year fixed effects and controlling for size-related covariates, limit-
ing concerns that the treatment effects are driven by other channels than Alice (Goldsmith-Pinkham
et al. 2020). Econometrically, the treatment variable is uncorrelated with covariates that are related
to changes in outcomes, and graphical analysis of event study outcomes does not reject the parallel
trend assumption. Thus, there is no economic or statistical reason why the exclusion restriction
should be violated.

This paper contributes to the literature in three ways. First, I show consistent microdata-based
evidence for Schumpeterian growth theory with heterogeneous innovations (Akcigit and Kerr 2018;
Garcia-Macia et al. 2019; Klenow and Li 2021). Large firms reduce the exploration of new tech-
nologies in favor of improving existing products after the Alice shock. This fits into the framework
introduced by Peters (2020). The core idea is that firms improve their current products to gain
market power and increase markups, but also engage in creative destruction to acquire new tech-
nologies. My results are consistent with patents reducing expansion costs for incumbents. That
is, without the ability to receive patents for their innovations, incumbent firms face higher costs of
breaking into new product markets and thus increase own innovation of their current products rela-
tive to creative destruction. I show that this is most important for large firms. As a consequence, a
simple model calibrated with my estimated treatment effects shows that the Alice shock decreases
welfare by ca. 1.3% for the most treated sectors. As in Peters (2020), the effect is small because
firms substitute innovation types rather than limit innovation efforts, leading to a relatively small
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estimate for the elasticity of growth to patentability of 0.2.
Second, I introduce a novel identification approach combining machine learning, natural lan-

guage processing, and patent data. Recent literature has used firm and patent texts to measure the
similarity of companies and technologies (Hoberg and Phillips 2016; Frésard et al. 2020; Kelly
et al. 2021) and group firms and patents based on text analysis concepts such as tone, sentiment, or
readability (Loughran and Mcdonald 2011; Ke et al. 2019; Kong et al. 2020). My approach is the
first application of NLP-based patent classification to identify causal treatment effects in response
to a patent regime change. Moreover, my method provides new insights into the importance of soft-
ware and business method patents for economic growth (see, e.g., Bessen and Hunt 2007; Webb
et al. 2018; Lerner et al. 2021). The role of software patents is best understood in the context
of why some low-citation patents have a high value for patent holders. The number of citations a
patent receives is generally considered to be a proxy for the value of the innovation (Harhoff et al.
1999; Hall et al. 2005). However, Abrams et al. (2013) find that some high-value patents receive
few citations and model low-citation patents as additional protection against infringement for other
valuable inventions. Consistent with this idea, I give direct empirical evidence that the additional
protection from low-citation patents is important for new establishment creation. Thus, software
patents, which are generally considered to be low-value patents (Hall and MacGarvie 2010), are
economically important for their value in protecting innovations.

Finally, I provide empirical support for a positive causal link between patenting and entry with
my core insight that large firms protect the market entry of new technologies with patents. This is
an important new perspective on the longstanding question of how patentability incentivizes inno-
vation: early theoretical literature provides no clear answer to whether a broad or narrow patenting
regime is optimal (see, e.g., Gilbert and Shapiro 1990; Klemperer 1990; Gallini 1992). Empirical
evidence on the question is scarce with some studies suggesting that broad patent rights increase
innovation costs and limit entry (Cockburn andMacGarvie 2011; Hall et al. 2021), while other stud-
ies find little effect of patentability on innovation and follow-on inventions (Moser 2011; Sampat
andWilliams 2019). On the other hand, studies such as Gans and Stern (2003), Aghion et al. (2014),
and Aghion et al. (2015) stress the importance of strong patent protection to incentivize innovation
investment.2 My empirical results support a more differentiated view of patents: patentability in-
centivizes innovation that is linked to new establishment entry and job creation for large firms but
has no effect on innovation by small firms. A more narrow patent regime leads large firms to fo-

2My research is closely related to Cockburn and MacGarvie (2011) who ask whether patents on relevant technolo-
gies keep firms out of software product markets. In a sample from 1990 to 2004, they find that a 10% increase in the
number of patents relevant to a market reduces the rate of entry by 3%–8%, which intensifies following expansions
to the patentability of software in the mid-1990s. I directly build and improve upon this result in two ways: First, I
capture better how large firms can change their innovation strategy to own innovation. Second, unlike previous studies
that look at expansions of what can be patented (Cockburn and MacGarvie 2009; Noel and Schankerman 2013), my
study focuses on a regime change in the opposite direction. This distinction is economically important because the
response to patenting regime changes might not be symmetric.
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cus on a different type of innovation (own innovation) rather than reduce innovation efforts. Thus,
patents are positively related to entry and job creation through the exploration of new technologies.
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Chapter 2

Methodoloy and Data

I exploit a recent Supreme Court decision that limited the patent eligibility of software patents as
a natural experiment to identify the causal link between patentability and innovation-relevant out-
comes. I develop a novel NLP-based classification method on patent texts to identify technologies
that became patent ineligible following the Supreme Court decision. I define treated industries and
firms based on their share of affected patents and estimate treatment effects with a difference-in-
differences (DiD) approach. To measure growth and innovation-relevant outcomes, I use restricted-
use U.S. Census data on establishment counts and employment at the firm level, R&D surveys, and
patent quality measures from the innovation literature.

2.1. Identification

Patent-related measures can be used as endogenous proxies for innovation outcomes. To identify
the causal impact of patentability on innovation, I need to find an exogenous shock that changed
the ability to receive patents for innovations.

Software-related patents are a good starting point to identify the causal effect of patentability:
the particular difficulty of describing software concepts in patent claims leads to tradeoffs when
defining the right scope of patent-eligible subject matters, that is which inventions can receive
patent protection. On the one hand, the incentive to innovate needs to be preserved while avoiding
on the other hand ‘patent thickets’ that stifle competition and limit innovation by other inventors
(Stroud and Kim 2017). As a consequence, Supreme Court decisions led to several regime shifts
over the decades on what is and is not patent-eligible (figure 2.1 summarized the timeline of some of
the most important decisions related to software patents). The State Street decision in 1998 allowed
for a relatively broad interpretation of what is patent eligible. In the following years, overly broad
software patents were linked to the rise of patent trolls and nonpracticing entities; a type of patent
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holder that generates income by claiming license fees and litigating against genuine innovators (see,
e.g. Appel et al. 2019, Cohen et al. 2019, Lee et al. 2019, Lemley and Feldman 2016).

Pre-Treatment Period Post-Treatment Period

ca. 1998 2010 2012 2013 June 19, 2014 2018

State Street
Bank

Mayo
Case

Myriad
Case

Bilski
Case

Decision
Alice Case

Berkheimer
memorandum

Fig. 2.1. Supreme Court decisions timeline on software and business method patents

On June 19, 2014, the U.S. Supreme Court affirmed the judgment of a lower court that the
method claims directed at a scheme/method for mitigating settlement risk were ineligible because
the claims just implemented an abstract idea (Ren and Duprez 2019). This decision, as many com-
mentators were quick to point out, increased uncertainty around the patent eligibility of software
and business method claims and limit their scope, reversing the broad patentability regime for soft-
ware innovations (see, e.g. DiNizo 2018, Tran 2015, Tran 2016, Daily 2017, Stroud and Kim 2017,
Chien 2016, Craig 2017). Recent empirical research has confirmed the impact of Alice on patent-
ing and litigation: Chien and Wu (2018), Kesan and Wang (2020), and Toole and Pairolero (2020)
all find that rejection rates and application abandonments among software and business method
application have spiked after Alice, with some rejection rate for business methods growing from
25% to 81% in the month after Alice.

Overall, the Alice decision is one of the most important recent regime shifts in the patentability
of certain types of innovations. For individual firms, this means an exogenous shock to the ability
to file for patent protection of new inventions and enforce existing software patents.

To use this regime shift to identify the causal effect of patentability, I need to classify patents
based on their exposure to the Alice decision. This is challenging since not a particular type of
patent or patent class was invalidated, rather a certain type of language describing innovations was
ruled to be patent-ineligible. Prior research uses United States Patent Classification (USPC) patent
class 705 to identify the most treated patents (see, e.g., Wagner and Cockburn 2010, Contigiani
2020). I can confirm that this class is indeed the most affected USPC class by Alice, but USPC
classes are not useful going forward since they were discontinued by the United States Patent and
Trademark Office (USPTO) in 2013. Using USPC classes thus does not allow us to validate the
empirical approach and identify treated patents after the court decision. The Cooperative Patent
Classification (CPC) groups, which replaced the USPC system, have several drawbacks; there is no
direct concordance between USPC and CPC, and CPC groups are much broader than USPC classes,
thus coveringmore technologies thanwhich became patent-ineligible afterAlice. Another approach
to identify treated patents would be to directly observe litigated patents after Alice (Galasso and



CHAPTER 2. METHODOLOY AND DATA 8

Schankerman 2015). While this certainly allows us to define which patents are not eligible under
Alice, few patents are litigated.

To allow for a consistent measure of treated patents across the entire sample, I develop and train
an NLP model to identify claim language that is invalid under Alice and classify existing patents. I
use as a sample of text formulations that are not eligible after the decision claims in applications that
were rejected due to Alice in the Office Action Research Data from Lu et al. (2017). I select issued
patents from the same filing years and patent classes as the rejected applications to obtain control
claims with eligible language. I extract the rejected independent claim texts from the application
publications and collect from PatentsView as control texts the published independent claims of
issued patents. I then train a support-vector machine on a TF-IDF matrix of the rejected and control
claim texts, which allows me to predict for a given claim text whether it would be rejected under
Alice or not. I use this NLP model to classify all independent claims of issued patents since 1990 in
PatentsView in CPC groups related to the training data. In total, this results in 3,359,812 classified
independent claims in 1,062,897 patents.1 Appendix C provides a detailed description of the NLP
methodology, analysis of the language features of Alice-affected claim texts, and validation tests
for the quality of the patent classification. Overall, all performance metrics point toward a very
good classification model with high precision (91.7%), high recall (94.1%), and more than 85%
Matthews correlation coefficient (MCC), meaning a very high correlation between the true and
predicted labels. Eventually, I can thus predict for each patent in related patent classes if it is
affected by Alice or not. I define a patent as treated if my NLP method predicts that its first claim
is affected by Alice. The first claim is generally the broadest claim of a patent and thus the most
relevant text when defining which technologies are covered by the patent (see, e.g., Kuhn and
Thompson 2019). The following analysis is robust to alternative definitions of treatment, such as
requiring at least one independent claim to be predicted as affected by Alice.

To validate my approach, figure 2.2 shows the indices of treated patent issuances defined by my
NLP method (Alice NLP treated), patents in the CPC groups closely related to Alice (Alice-related
CPC groups), and all utility patent issuances in a given year (Actual total issues). Following 2014,
there was a clear downward shock for both, the Alice-related CPC groups as well as my Alice
NLP-treated patent, while actual total issues did not move a lot. My NLP classification method
identifies treated patents better than the affected CPC groups alone, which are broad and cover
more technologies than are treated by Alice: the Alice-related CPC groups saw a decline in patent

1Note that the USPTO moved away from USPC classes in 2013 and adopted CPC classification instead. I use
the older classification to find control claims since applications around Alice were still mainly classified under USPC.
CPC classifications are also assigned to older patents, thus I can follow the CPC groups closest related to the USPC
classes from my training data set over the entire sample period. I restrict the classification to the five CPC groups most
consistent with the USPC classes from the training set, i.e., the classes with the most rejections due to Alice, which
are CPC groups A63F (video games), G07F (coin-freed or like apparatus), G06F (digital data processing), H04L
(transmission of digital information), and G06Q (data processing systems), representing around 50% of the affected
patents in the most treated USPC classes 705, 463, 434, and 702.
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Fig. 2.2. Normalized patenting index 2006 to 2020
Notes: Count of issued utility patents by year, normalized to 2006-levels. The three patent indices
are the actual count of all issued utility patents, the count of patents that are classified by the NLP
algorithm as treated under Alice, and the count of issued patents in the five CPC groups closely
related to Alice–A63F (video games), G07F (coin-freed or like apparatus), G06F (digital data pro-
cessing), H04L (transmission of digital information), and G06Q (data processing systems). Patent
issuance data are sourced from PatentsView.

issuance from 2014 to 2015 of 7.1%, while Alice NLP-treated patent issuances declined by more
than 16.3%.

Several other observations are interesting in this graphic: first, software-related patent issuances
are rising faster than other types of patents before Alice, consistent with the evidence in Lerner et al.
(2021) and Webb et al. (2018). A jump in annual issuances in 2010 is followed by a flattening of
the trend relative to total patent issuances. This is consistent with several rulings by the Supreme
Court building up to the Alice decision, starting with the Bilski case in 2010 (see also figure 2.1).
The flatter trend line after 2010 supports the parallel trend assumption before 2014 for my DiD
approach, confirming that my pre-period should be defined as the years between 2010 to 2014.
We also see an uptick in software patents after 2019, consistent with Toole and Pairolero (2020)
describing that the recent subject matter eligibility decision in Berkheim v. HP, Inc in 2018 and the
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2019 revised subject matter eligibility guidance by the USPTO reversed the trend in subject matter
eligibility rejections and decreased uncertainty. Thus, the best treatment period is the years 2015
to 2019.

2.2. Data

To answer my research question, I combine data on patents, R&D surveys, and restricted-use Cen-
sus data to identify treated firms and industries, and measure relevant growth and innovation out-
comes. All variable definitions are summarized in the appendix table A.

My main economic data set is the redesigned Longitudinal Business Database (LBD) (Chow
et al. 2021 and Jarmin and Miranda 2002). LBD is a restricted-use data set provided by the U.S.
Census Bureau covering private, non-farm business establishments with employees that operated in
the United States since 1976. One of the main goals of the LBD is to measure the entrance and exit
of businesses across industries and yearly employment changes. The data are based on the Business
Register and use among other source tax data. LBD thus gives a comprehensive picture of even
small establishments in the US. I focus on the years 2010 to 2019 in LBD; this is consistent with
the pre-period of 2010 to 2014 where the parallel trend assumptions for treated patent issuances in
figure 2.2 seems to hold well, and the post-period ending in 2019.2

To estimate the effect of Alice on new firm creation and destruction, I aggregate annual estab-
lishment entry and exit from the LBD to the industry level. I use the vintage-consistent four-digit
NAICS codes from Fort and Klimek (2018) to define industries. LBD only tracks non-farm busi-
nesses, following Kerr and Nanda (2009), I additionally exclude all establishments in agriculture,
forestry, fishing (NAICS 11), public administration (NAICS 92), private households (NAICS 814),
U.S. Postal Service (NAICS 491), restaurants and food stores (NAICS 722 and 445), hospitals
(NAICS 622), education services (NAICS 61), and social services (NAICS 624 and 813). Many fi-
nance papers also exclude observations in utilities (NAICS 22) and finance and real estate (NAICS
52 and 53), due to these industries being highly regulated (see, e.g., Gutiérrez and Philippon 2016);
for this analysis, there is no immediate reason why these sectors should be excluded when it comes
to intellectual property rights and innovation (the results remain unchanged even if utilities and
finance and real estate industries are excluded).

For the firm-level analysis, I aggregate establishment data in LBD to the firm-year level and
add revenue data from Haltiwanger et al. (2019). The revenue data are based on tax receipts in

2My analysis uses the 2019 LBD vintage, which includes two years of observations after the last Economic Census
in 2017. Substantial efforts are spent to correctly time the birth and death of establishments between Economic Census
years, this is not possible though for the last two years of my sample. However, re-timing is most relevant for smaller
incumbents. Large firms are likely to be consecutively surveyed by, e.g., the Corporate Organization Survey (COS),
and newly created firms are immediately recognized in the underlying tax data. In any case, controlling for re-timing
and re-activation of establishments after some years without employment does not change my results.
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the Standard Statistical Establishment List and the Business Register and are available for ca. 80%
of all firms up to 2018. I assign firms to the four-digit NAICS industry accounting for the largest
employment share.3

I use the novel patent assignee-firm link fromDreisigmeyer et al. (2018) to match patent data to
firms. This bridge builds on prior work byGraham et al. (2018) and uses a triangulationmethod that
combines string matching of company names to assignee names and inventor names to employee
data in restricted use Census data creating a high-quality match of patents to firms. I can use this
match to define the treatment variable as the share of Alice-treated patents relative to all issued
patents to the firm between 2000 and 2009. This ensures that the pre-treatment period with several
court cases and decisions leading up to Alice does not lead to sample selection bias through firms
selecting into treatment by filing Alice-affected patents they expect to be invalidated in the future.
Furthermore, the parallel trend assumption can be tested for the years between 2010 and 2014. The
only caveat of this definition of treatment is the limitation to incumbents patenting before 2010.

I can use the patenting statistics on the firm level to identify treatment at the industry level. First,
I select industries that had at least 20 unique firms with patent assignments between 2000 and 2009.
While the precise number of patenting firms in an industry does not change the results, having too
few patents and firms with patents in an industry poses issues when identifying treatment. If there

3It should be noted that Compustat as a data source for publicly listed firms is a poor substitute for the following
analysis: using data from Kogan et al. (2017) to identify patenting firms in Compustat, there are only 1,586 firms
with positive patent assignments between 2000 and 2009 in the cross-section in 2010. Of those firms, ca. 1,100 are in
manufacturing sectors, thus outside the industries that are mostly treated by Alice. In the cross-section of 2010, 48% of
firms with patents assigned to them over the prior 10 years in Compustat are in (2-digit NAICS) manufacturing sector
33 alone, which also accounts for 71% of total patent assignments over the prior 10 years to Compustat firms. With
another 22% of patenting firms and 12% of total patent assignments from sector 32, manufacturing sectors overall
account for more than 4 out of 5 patents assigned to Compustat firms between 2000 and 2009. Furthermore, the largest
sample of firm-year observations between 2010 and 2019 for patenting Compustat firms is 12,100 observations, far
smaller than the 197,000 observations using LBD. For the largest size bracket with more than 1000 employees and
more than 20 patents assigned between 2000 and 2009, only 4,280 observations can be found in Compustat, less than
half the sample size in LBD. Also here, the sample is heavily tilted toward manufacturing firms with 3,550 observations
in manufacturing industries. Thus, with the far smaller sample size and the heavy focus on manufacturing, Compustat
data are not equivalent to LBD, especially since innovation- and growth-relevant measures such as establishment entry
are not directly observable. Note also that the bias toward manufacturing firms is even more pronounced when just
looking at treated patents. In the 2010 cross-section in Compustat of companies that had at least one treated patent
assigned to them over the prior 10 years, we find more than twice as many firms from the manufacturing sector 33 than
from the information sector 51 (207 vs. 93) and few from sector 54 (23). We could try to weight observations based on
how important patents are for the company by, e.g., using the ratio of patent portfolio size relative to sales. However,
this would increase the bias toward manufacturing firms since the average manufacturing firm with treated patents in
sector 33 has a patent portfolio-to-sales ratio of 0.35, while firms in sectors 51 and 54 have ratios of 0.09 and 0.19,
respectively, and the median of the patent portfolio-to-sales ratio for treated firms in sector 33 is 0.174 and for firms in
sectors 51 and 54 0.035 and 0.055, respectively. Overall, Compustat is a poor alternative to LBD since the selection
of treated and patenting firms is heavily tilted toward manufacturing firms, even with reweighting of treatment this
cannot be corrected for.
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are only very few firms with patents in an industry, the definition of treatment might be driven by
outliers and measurement errors.4 The treatment variable is the share of treated patents relative to
all patents issued to firms in the four-digit industry between 2000 and 2009. While this treatment
definition is based on the patent portfolios of incumbents, it identifies industries that patented in
Alice-affected technologies and for which patents are important.

I use survey responses in the Business R&D and Innovation Survey (BRDIS) and firm-level
patent data from PatentsView to analyze how innovation efforts and direction change after Alice.
BRDIS is designed to be the ‘primary source of information on research and development per-
formed or funded by businesses within the United States’5. The results thus are supposed to reflect
broader trends and are most useful for industry analysis.

PatentsView data are already used to identify patent issuances and define treatment. I follow
prior literature to define measures for novelty, scope, and quality of innovations on the firm level.
For these measures, I focus on patent grant years rather than application years since Alice is pri-
marily an issuance shock.6 Following Balsmeier et al. (2017), I measure the number of backward
citations, i.e., the number of citations to prior patents, and self-citations, citations to prior patents of
the same firm. Backward citations proxy for the prior art and overall knowledge that inventions re-
fer to, and self-citations indicate references to internal knowledge. Patents filed in new CPC groups
to the firm and the technology proximity to prior patents filed by the firm measure the exploration
of new technology areas. The total number of claims is related to the scope of patented inventions
and the number of citations patents receive (forward citations) is a measure of innovation quality.7

I differentiate the issued patents further into four groups according to the distribution of forward
citations of patents from the same filing year and CPC group: I count the number of patents that
are in the top 1% of the forward citations distribution, that are in the 2-10% percentile, that are

4For example, if we can find only one firm with one single treated patent assigned to them, the industry-level
treatment would be 100%. Despite the high quality of the patent-firmmatch in Dreisigmeyer et al. (2018), the precision
of more than 90% is high but not perfect, thus measurement error might also distort results if there are too few distinct
firms used to identify treated industries.

5See https://www.nsf.gov/statistics/srvyberd/#sd
6The results are consistent if I use application years instead. There is a noticeable pre-trend, though, since appli-

cations filed in 2012 and later, which would have been granted in 2014 and after, gradually start to be affected by
Alice.

7PatentsView creates time-consistent unique identifiers for assignees of granted patents based on a string-matching
protocol. I use these assignee data to identify self-citations, technology proximity, and new and known CPC groups
for firms rather than the patent-firm link by Dreisigmeyer, Goldschlag, Krylova, Ouyang, and Perlman (2018) since
the coverage of PatentsView is much longer (1976 to 2021 compared to 2000 to 2019).

The overall coverage is very high between the firms identified by PatentsView and the patent-firm link in Census
data: 84% of assignees in PatentsView have a unique firm in the patent-firm link that can be assigned to them, and 81%
of firms in patent-firm link have a unique assignee-ID in PatentsView. 94% of the patents covered by the patent-firm
link have a unique assignee in PatentsView data. In total, at least 3 million patents are covered by both the patent-firm
link and PatentsView.

https://www.nsf.gov/statistics/srvyberd/##sd
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below the top decile but have received at least one forward citation, and patents that have received
no citations. According to Balsmeier, Fleming, and Manso (2017), this allows us to measure break-
through, important, incremental, and failed inventions. I further follow Lerner and Seru (2021)
and normalize forward citations by the average number of citations received by patents filed in the
same year and CPC group, giving a more continuous measure of quality.8

I build on Galasso and Schankerman (2015) and measure follow-on citation as the total forward
citations received by patents within three years after issuance. Since PatentsView data are available
until 2021, citations within three years after issuance can be measured up to 2018 and partially for
2019. I follow the empirical approach in the working paper to Akcigit and Kerr (2018) and distin-
guish follow-on citations made by the firm itself as self-follow-on citations. The overall purpose
of follow-on measures is to understand how important patented inventions are for innovations by
the firm itself (own innovation) and other innovators (creative destruction).

I measure the novelty of inventions by counting the pairwise combinations of CPC subgroups
that appear for the first time in the patent database, following Arts and Fleming (2018). I measure
the scope of patents by counting the number of words in the first claim and normalize by the average
number of words in the first claim for patents filed in the same CPC group and year, following
Kuhn and Thompson (2019). I include data from Marx and Fuegi (2019) counting the number of
citations to scientific papers (non-patent literature, NPL citations) as a measure of how focused on
basic research inventions are. I also include data from Bena et al. (2021) to measure how many
process and product innovations firms patent.

2.3. Methodology

I use a difference-in-differences setting to estimate the causal treatment effect ofAlice on innovation
and growth outcomes. I estimate a two-way fixed effects (TWFE) regression model on firm- and
industry-level LBD data for the years between 2010 and 2019, with the post period starting in
2015.9 On the firm level, the treatment variable is the share of treated patents among all patents
issued to the firm between 2000 and 2009. On the industry level, I similarly use the share of treated
patents to all patents assigned to firms in the four-digit NAICS industry between 2000 and 2009.10

The main regression model thus is:
8I use filing years to normalize the quality distribution of patents but grant years for the outcomes since I want to

know the quality of eligible innovations relative to the time of the invention rather than the time of grant.
9For the following analysis, it should be noted that LBD variables such as employment and establishment count

are measured in March for a given year, while the innovation and patenting outcomes are measured at the end of the
calendar year. Thus, the first full year for the post-period for LBD variables is 2016.

10The results remain unchanged if I define treatment instead as the share of patents in Alice-related CPC-groups
from figure 2.2 alone, without further classification using the NLPmethod. Since software-related CPC groups include
more technologies than which are affected by Alice, the treatment effects are smaller and less precisely estimated.



CHAPTER 2. METHODOLOY AND DATA 14

Yi,t = αi + λt + δAlice ∗ di ∗ Post+X ′
i,t ∗ β + ϵi,t (2.1)

where Yi,t is the outcome variable, di is the treated patent share, Post the post-period dummy, and
the coefficient δAlice measures the post-treatment effect. αi and λt are fixed effects for the firm or
four-digit NAICS industry and year. Depending on the specification, firm-level controls, X ′

i,t, are
the lagged overall employment of the company, the patent portfolio size, and the firm age, all of
which are determined at the same time as the continuous treatment (at the beginning of 2010) and
interacted with the post-dummy or year dummies (Goldsmith-Pinkham et al. 2020).

To test the necessary parallel trend assumption for identification, I run an event study model
for the years between 2010 and 2019:

Yi,t = αi + λt +
5∑

q=−4

δAlice,q ∗ di,q +X ′
i,t ∗ β + ϵi,t (2.2)

where di,q is the treatment variable interacted with a dummy for the respective year q relative to
2014. For the parallel trend assumption not to be rejected, we need to have no significant effects
for the coefficients δAlice,q in the years before 2014 and only significant effects in the post-period. I
normalize the coefficient for year 2013 to zero, the year immediately before Alice, i.e., δAlice,−1 = 0.

One challenge for DiD models like these is estimating standard errors (Bertrand, Duflo, and
Mullainathan 2004). In general, my setting fits well towhatAbadie, Athey, Imbens, andWooldridge
2017 describe as a design problem for which clustering on treatment level, i.e., along industry or
firm, is appropriate. However, we might also be worried about correlated standard errors within
industries and sectors. Thus, in specification variations for the firm-level model, I will estimate
clustered standard errors on the industry level instead of the firm level as for my main specifica-
tion.11

11We might be concerned that larger clusters might increase the bias of standard error estimates. Angrist and
Pischke (2009) suggest that even for fewer than 30 clusters, clustering on group level leads to reasonable results (see,
e.g., Bertrand, Duflo, and Mullainathan 2004, Hansen 2007).
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Chapter 3

Results

My study provides three main results: first, Alice decreases new establishment entry by incumbent
multi-unit firms but leaves new venture creation and single-unit entry unchanged. Thus, patentabil-
ity has little effect along the extensive margin of firm creation but is relevant for incumbent firm
growth. Second, companies receive fewer, more narrow patents, and citation measures show more
usage of internal knowledge. The results are consistent with innovation becoming more focused
on own innovation after Alice. Third, the largest, most innovative firms drive the results. Firms in
the top decile in terms of employment and patent portfolio size decrease new establishment and job
creation following the limited patentability of inventions and cite more internal knowledge. Over-
all, the three results are consistent with patentability incentivizing creative destruction for large
incumbents.

3.1. Industry Results

We can use the Alice shock to ask how patenting affects new firm creation and firm exit on the
industry level. I use firm-level statistics to identify the industries with the largest share of treated
patents. First, I select industries that had at least 20 distinct firms with patent assignments between
2000 and 2009, allowing for a pre-period to test the parallel trend assumption and avoiding issues
with selection due to the precursor decisions toAlice. While the precise number of patenting firms in
an industry is not relevant to the result, having too few patents and firms with patents in an industry
poses issues for identification. As with the firm level, the treatment variable can take extreme
values if the numbers of patents involved become too small, and we might include industries in the
treatment or control groups for which patenting is not important if too few firms receive patents.
The treatment variable then is the share of treated patents to all patents assigned to firms in the four-
digit NAICS industry between 2000 and 2009. While this treatment definition is based on the patent



CHAPTER 3. RESULTS 16

portfolios of incumbents, it identifies industries for which Alice is relevant and the patentability of
inventions is important.1

We can use the difference-in-differences setting from equation 2.1 to measure the effect of Alice
on industry entry and exit. The observations are on the industry-year level for four-digit NAICS
industries between 2010 and 2019. I follow Kerr and Nanda (2009) and use as outcomes the log
of the sum of entering and exiting establishments and total employment of entering and exiting
establishments. As in Kerr and Nanda (2009), I fill zero values on the left-hand side to one and add
a dummy variable to control for those cases.2 Furthermore, I can distinguish between single-unit
and multi-unit firms. Single-unit firms have only one establishment, thus single-unit entries and
exits are in most cases the same as new venture creation and small firm exit.3 Multi-unit entry and
exit, on the other hand, refers to the entry and exit of establishments of firms that are predominantly
large incumbents and have multiple other locations.

Tables 3.1 and 3.2 show the DiD results for industry-level entry and exit. Overall, establishment
entry decreases, especially weighted by employment. The treatment effect of -0.63 log points is
almost completely driven by a decrease in multi-unit entry with a treatment effect of -1.14 for multi-
unit entry and a similarly-sized effect of -0.92 for employment-weighted multi-unit entry. With an
average continuous treatment of 0.034 for treated industries, this translates to a decrease in multi-
unit entry of 3.1 to 3.8%. In no specification does single-unit entry seem to change following Alice.
This result is robust to the inclusion of sector-year fixed effects and sector-trends as controls, using
non-retimed entry, and using a binary treatment variable for industries above the median of the
treated patent share. Thus, our first important result is that Alice had no effect on small firm entry
or exit, but reduced new establishment creation by large multi-unit firms.

1For robustness, I also implement an approach that is independent of firm-level links and additional assumptions
for how to aggregate firm patent portfolios to industry level to identify treated industries: I directly use the ‘Algorithmic
Links with Probabilities’ (ALP) patent crosswalk from Goldschlag, Lybbert, and Zolas (2016) and Lybbert and Zolas
(2012). This approach is based on NLP methods and provides a direct link between CPC/USPC classes and industry
NAICS codes by matching keywords from patent abstracts to industry and product classification descriptions. This
means patent classes can be matched according to how important the described technologies are for industries. Since I
classify all patents for specific CPC groups, I can define aggregate statistics on treatment and overall patent issuances
on CPC group level. I focus on the ten years between 2000 and 2009 and the sum of all issued patents for each CPC
group and the sum of all treated patents within each of the groups that I classified. I then use the NAICS-CPC bridge
and calculate the probability-weighted total count of issued patents and the count of treated patents for each four-digit
NAICS industry. I restrict to industries above the median number of total issued patents. I define as treated industries
those with an above median share of treated patents relative to all issued patents and use the rest as control industries.
Since I first condition on the total number of assigned patents, I ensure that patents are relevant for both the treated and
control industries and that the Alice-treated share is not driven by outliers with few relevant patents overall. The main
results remain unchanged with no increase in single-unit entry and a strong decrease in multi-unit establishment entry.

2the results remain unchanged if I use instead ‘log(y + 1)’ on the LHS, as for most of the firm-level results in
section 3.2.

3Only a small share of entering and exiting firms have multiple establishments at birth or death, and most firms in
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Table 3.1. Industry entry

Entry Entry Emp. MU Entry SU Entry MU Entry Emp. SU Entry Emp.

Cont. Treatment * Post -0.300 -0.627∗ -1.135∗∗∗ 0.245 -0.924∗∗ 0.054
(0.409) (0.371) (0.391) (0.501) (0.443) (0.444)

Fixed Effects Ind. + Year Ind. + Year Ind. + Year Ind. + Year Ind. + Year Ind. + Year
S.E. Cluster Ind. Ind. Ind. Ind. Ind. Ind.
N 1,800 1,800 1,800 1,800 1,800 1,800
adj. R sq. 0.99 0.95 0.96 0.99 0.89 0.96

Notes: Difference-in-differences for industry entry. Observations are on the industry-year level. The de-
pendent variables are the total of all entering establishments, the sum of overall employment of entering
establishments, the total of all multi-unit establishment entries, the total of single-unit entries, the sum of em-
ployment of multi-unit establishment entries, and the sum of employment of single-unit entrants. Single-unit
entries are new firm formations, multi-unit entries are new facilities created by existing firms. All dependent
variables are in log terms. All regressions include a dummy for zero-values of the dependent variable; the
respective observations are replaced with one. Treatment is the share of Alice-treated patents relative to all
assigned patents between 2000 and 2009 to firms in the industry, the post-dummy is positive for years after
2014. Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

Table 3.2. Industry exit

Exit Exit Emp. MU Exit SU Exit MU Exit Emp. SU Exit Emp.

Cont. Treatment * Post -0.025 -0.136 -0.048 0.128 -0.049 0.044
(0.399) (0.480) (0.405) (0.415) (0.610) (0.373)

Fixed Effects Ind. + Year Ind. + Year Ind. + Year Ind. + Year Ind. + Year Ind. + Year
S.E. Cluster Ind. Ind. Ind. Ind. Ind. Ind.
N 1,800 1,800 1,800 1,800 1,800 1,800
adj. R sq. 0.99 0.95 0.97 0.99 0.88 0.97

Notes: Difference-in-differences for industry exit. Observations are on the industry-year level. The de-
pendent variables are the total of all exiting establishments, the sum of overall previous year employment
of exiting establishments, the total of all multi-unit establishment exits, the total of single-unit exits, the
sum of previous year employment of multi-unit establishment exits, and the sum of previous year employ-
ment of single-unit exits. Single-unit exits are firm with one location ceasing operations, multi-unit exits
are the closing of facilities by firms with other continuing locations. All regressions include a dummy for
zero-values of the dependent variable; the respective observations are replaced with one. Treatment is the
share of Alice-treated patents relative to all assigned patents between 2000 and 2009 to firms in the indus-
try, the post-dummy is positive for years after 2014. Clustered standard errors are reported in parenthesis,
∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.
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Table 3.3. Patenting by entrants

Count Issue Sum Issue Count Issue Treated Sum Issue Treated

Cont. Treatment * post-dummy -1.763∗∗∗ -0.971 -3.792∗∗∗ -5.546∗∗∗
(0.650) (1.078) (0.924) (1.421)

Fixed Effects Ind. + Year Ind. + Year Ind. + Year Ind. + Year
S.E. Cluster Ind. Ind. Ind. Ind.
N 1,800 1,800 1,800 1,800
adj. R sq. 0.87 0.78 0.81 0.84

Notes: Difference-in-differences for the patenting of entrants. Observations are on the industry-year level.
The dependent variables are the count of entering establishments with at least one patent assigned in the
year of entry, the sum of patents issued to entrants, the count of entrants with at least one Alice-treated
patents assigned in the year of entry, and the sum of Alice-treated patents assigned to entrants. All dependent
variables are in log terms. All regressions include a dummy for zero-values of the dependent variable; the
respective observations are replaced with one. Treatment is the share of Alice-treated patents relative to all
assigned patents between 2000 and 2009 to firms in the industry, the post-dummy is positive for years after
2014. Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

Using the patent assignee-firm link from Dreisigmeyer et al. (2018) and the firm identifiers in
LBD, we can observe entering establishments that received patents in the year of entry and how
many patents are assigned. I follow the same econometric approach as for the entry counts above
and use the overall count of entering establishments that received at least one patent in the year
of entry, the total number of patents received, and also the count of entrants with Alice treated
patents assigned and the sum of treated patents assigned to entering establishments. The results
change little if we instead use the patents received in the year before or after entry.4 Table 3.3
shows that for all measures except the sum of patents issued we find significant negative treatment
effects. The average treatment effect for entrants with at least one patent assigned to them of
5.98% (DiD coefficient -1.76 * 3.4% treatment variable average for treated industries) is even
larger than the effect on multi-unit entry in table 3.1. Furthermore, since the effect on the total
number of patents received by entering establishments is insignificant, firms that want to create
new establishments seem to require more patents than pre-Alice for entry. We also see that the
magnitude of the treatment effects for Alice-treated patents are much larger than for total patent
issuances. Thus, the decrease in the patentability of Alice related inventions drives the decrease
in patents received by entrants. Overall, our second important result in this section shows that the

the economy are single-unit establishments.
4The only estimate that changes is the treatment effect for the total number of patents assigned to entrants, which

becomes significantly negative.
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decrease in establishment entry is accompanied by a decrease in entrants that receive patents in the
year of entry.

Taking stock, we find that Alice led to a reduction in new establishment creation by large firms.
New ventures seem to enter with new products no matter whether they own a patent or not. Thus,
in section 3.2, I focus on how incumbent firms are changing their growth and innovation strategy
following Alice. Since I also find no significant effects on firm exit, Alicewas a shock to innovation
rather than the continuation of current products. In the following section 3.1, I look at industry-level
R&D surveys to measure how innovation strategies have changed after Alice.

R&D Results

I use R&D survey responses from BRDIS years 2010 to 2019 to gain insight into innovation efforts
on the industry level. I merge survey responses with the industry-level patenting statistics from
section 3.1 to identify treated industries. I adapt the model 2.1 and weight observations by their
respective survey weights.5 Thus, the weighted observations are representative of industry-wide
innovation efforts and estimated treatment effects measure industry-level responses to Alice.6

It should be noted that survey responses go through multiple stages of editing and adjustments
before weights are assigned.7 Also, the survey design has changed multiple times over the years,
leading to potential inconsistencies across the years. The results, thus, should be taken as evidence
for the directional effect of Alice on innovation outcomes rather than as precise estimates.

First, in tables 3.4 and 3.5, I show results for different measures of R&D expenses relative to
sales and in absolute log terms for both, worldwide and domestics R&D expenses. In no specifica-
tion, I find significant treatment effects.

5Aggregating to industry-level first would overstate the precision of observations measured with few survey re-
sponses, nevertheless we find also here no significant change in R&D spending.

6Since large innovative firms are more likely to be sampled by BRDIS, we can link certain firms directly to their
R&D responses. This is somewhat problematic since BRDIS is not longitudinal and we thus add sampling error to our
analysis. Furthermore, BRDIS samples heavily from manufacturing firms and the DiD setting only works reasonably
well with multiple pre- and post-period observations, restricting the number of observations even more. Nevertheless,
the results from tables 3.4, 3.5, and 3.6 hold up with no clear change in R&D efforts and a directional change away
from research. It should be noted that the absolute dollar amounts of R&D expenses do show a positive treatment
effect of ca. 0.5, but not the relative measures, leaving no conclusive evidence that R&D efforts change in the end.

7The results remain unchanged when using unweighted observations.
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BRDIS also asks for the type of R&D spending. In table 3.6, I show results for the four R&D
spending types measured relative to worldwide R&D expenses. I normalize with the worldwide
R&D spending to measure the direction of R&D efforts rather than their absolute size in Dollar
terms. Here, research is related to the exploration of new ideas, and BRDIS distinguished research
further into basic research as “activities aimed at acquiring new knowledge or understanding with-
out specific immediate commercial applications” and applied research “aimed at solving a specific
problem or meeting a specific commercial objective”. Development is more focused on the use
of internal knowledge and improving current products through the “systematic use of research and
practical experience to produce new or significantly improved goods, services, or processes”.8.

Development spending has a positive DiD coefficient of 0.26, while research, applied research,
and basic research spending all decrease with DiD coefficients of -0.32 to -0.15.9 The overall mag-
nitude of the effects is small, though: the mean for the treatment variable is 3.1%, thus, the average
treatment effect for the increase in development spending is 0.8% and for the decrease in research
spending ca. 1%. While the limited patentability of innovations after Alice has not changed innova-
tion efforts in affected industries, it did change the direction of innovation away from exploration-
oriented research and more directed toward internal product improvement-oriented development.10

To summarize the industry results, we found a clear decrease in new establishment creation
by large incumbent firms after Alice in the most affected industries. Firms are also less likely
to receive a patent in the year of entry, providing direct evidence that the limited patentability of
inventions is linked to the decrease in new establishment creation. R&D survey responses indicate
no decrease in R&D effort, but rather a redirection of innovation efforts toward development rather
than research. Overall, this is in line with the limited patentability of innovations incentivizing
incumbents to focus more on improving current products rather than exploring new ideas, leading
to less creative destruction in favor of more own innovation.

3.2. Firm Results

Following the insight from section 3.1 that new firm creation is not affected by Alice and multi-
unit establishment entry decreases, we can focus in this section on the effect of Alice on growth
and innovation outcomes for incumbent firms in the sample period of 2010 to 2019. I restrict to

8See: https://www.census.gov/programs-surveys/brds/about/faq.html
9Note that the changes in innovation spending types do not add up to 1 since the survey design does neither impose

a clear cut differentiation between the spending types nor that the responses have to add up to the total R&D spending.
10Less research and more development do not mean that Alice-treated patents are primarily research related. Patents

are relevant for both, research and development, and we can use patent measures in section 3.2 to analyze how the
innovation direction has changed after Alice.

https://www.census.gov/programs-surveys/brds/about/faq.html
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Table 3.6. Industry R&D spending type (relative to R&D spending)

Research Development Applied Research Basic Research

Cont. Treatment * Post -0.321∗∗∗ 0.265∗∗∗ -0.145∗ -0.174∗∗
(0.082) (0.087) (0.080) (0.077)

Fixed Effects Ind. + Year Ind. + Year Ind. + Year Ind. + Year
S.E. Cluster Ind. Ind. Ind. Ind.
N 88,500 88,500 88,500 88,500
adj. R sq. 0.15 0.15 0.10 0.11

Notes: Difference-in-differences for the weighted annual R&D survey responses for R&D spending types
relative to worldwide R&D expenses. The dependent variables are research spending relative to worldwide
R&D expenses, development spending relative to worldwide R&D expenses, applied research spending
relative to worldwide R&D expenses, and basic research spending relative to worldwide R&D expenses.
Treatment is the share of Alice-treated patents relative to all assigned patents between 2000 and 2009 to
firms in the industry, the post-dummy is positive for years after 2014. All observations are weighted by the
sample weight assigned by BRDIS, calculated as the ratio of weighted worldwide sales to adjusted worldwide
sales. Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

active firms with positive employment that received at least one patent between 2000 and 2009.11
As in section 3.1, I restrict to firms in industries with at least 20 patenting firms, that is industries
with at least 20 unique firms that received patent assignments between 2000 and 2009. The logic
is the same as above; I limit the influence of outliers and focus on industries for which patenting
is relevant. Furthermore, in section 3.2, I split the sample along the within-industry distribution of
patent portfolios in 2010. Thus, I need to have a sufficient number of firms within each industry to
define a patent portfolio size distribution.

In the following, I generally refer to the estimated difference-in-difference coefficients as treat-
ment effects. The average for the treatment variable in the full sample is 0.44 for treated firms and
for the largest patenting/firm size group in subsections 3.2 and 3.2 the average is 0.087 for treated
firms. The average treatment effect for the treated, thus, is the DiD coefficient multiplied by these
averages of the continuous treatment variable (see Callaway and Sant’Anna 2021 for more details
on the assumptions and interpretation of average treatment effects in DiD settings with continuous
treatment).

11Note that restricting to firms with at least one establishment with positive employment does not mean that firms
cannot drop out of the sample over the years due to, e.g., mergers or firm death. For robustness, I run the same
analysis as below for continuing firms that have positive employment throughout the sample period. The results
remain unchanged.
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Fig. 3.1. Patent portfolio distribution - 2010
Notes: Density-scale histogram for cross-section of log patent portfolios size in 2010, grouped by
Alice-treated patent shares. Patent portfolios are the unweighted total of all patents issued to the
same U.S. company assignee between 2000 and 2009. The three groups of portfolios are portfolios
with less than 20% of issued patents classified as Alice-treated by the NLP algorithm, portfolios
with more than 20% of the patent portfolio treated, and portfolios without treated patents. The data
are sourced from PatentsView.

Balancing analysis

Before running my main analysis, it is important to understand how the Alice treatment is dis-
tributed across firms and industries, and test whether covariates might have a confounding effect
for identification.

First, I use PatentsView data to plot the histogram of the cross-sectional patent portfolio size
distribution in 2010. Patent portfolios are the total count of patents assigned to the same company
assignees between 2000 and 2009. In figure 3.1, I distinguish between patent portfolios without
treated patents, portfolios with less than 20% treated patents, and portfolios with more than 20%
treated patents for the year 2010; at the beginning of the pre-period.
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Larger treatment shares are related to smaller patent portfolios. This makes sense since with
fewer patents the treatment shares are more like discrete steps. For example, a patent portfolio
of two patents can have a treatment share of 0%, 50%, or 100%. For larger patent portfolios, the
distribution is more continuous. Patent portfolios with small treated patent shares are overall much
large than the average non-treated portfolio.12 This seems reasonable since firms with many patents
are more likely to hold also a treated patent. Furthermore, as hinted on in figure 2.2 and described
in, e.g., Webb et al. (2018) and Forman and Goldfarb (2020), software patents have been rising
dramatically up to Alice and the concentration of these patents has increased. The identifying
parallel trend assumption for my DiD method is not violated, though, if the distribution of the
treatment variables is correlated with the level of covariates. Going forward, I can include patent
portfolio size as a covariate in my TWFE regression model in equation 2.1 and match treated and
control firms based on patent portfolio size.

I follow Goldsmith-Pinkham et al. (2020) and run in table 3.7 cross-sectional regressions of
the treatment variable in 2010 on different covariates related to size and change in outcomes.

Patent portfolio and firm size, measured in log terms, are correlated with treatment, as is firm
age. With the unconditional average of the treatment variable around 0.05 in 2010, the magnitudes
of the coefficients are overall small: for example, doubling the firm size increases the expected
treatment value by just 0.002 to 0.004, between 5 and 10% of the unconditional average. The low
R2s are also in line with the wide distribution of covariates for treated patent portfolios in figure
3.1. Importantly, none of the covariates related to changes in outcomes–employment growth, job
creation and destruction rates, establishment entry and exit rates–are significantly correlated with
treatment.

Overall, while treated firms are larger than non-treated firms, the share of treated patents is not
very closely correlated with any covariate and seems to be uncorrelated with covariates related to
changes in outcomes. Especially the latter is important for not rejecting the parallel trend assump-
tion. The correlation table for the covariates in table 3.8 confirms this: no correlation coefficient
of any covariate with the treatment variable is larger than 0.081, much smaller than the correlation
between, e.g., the patent portfolio and firm size of 0.46.

Finally, it is important to understand the distribution of treated firms across industries. In table
3.9, I show the five industries with the highest share of the treatment variable in 2010. That is
the sum of the treatment variables within each industry relative to the cross-sectional sum of the
treated variable (this is related to the Rotemberg weights from Goldsmith-Pinkham et al. 2020).
I also include the average of the treatment variables as well as the share of treated firms (firms
with at least one treated patent) and treated patents assigned between 2000 and 2009 each industry
accounts for.

12Consistent with larger firms having overall smaller treatment variables, the coefficient for the patent portfolio
size in table 3.7 for the pooled regression in the right-most column is negative.
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Table 3.7. Cross-sectional regression - continuous treatment on covariates

Log PatentPF -0.002∗∗∗ -0.006∗∗∗
(0.001) (0.001)

Log Emp - Lag 0.003∗∗∗ 0.006∗∗∗
(0.001) (0.001)

Firm Age 0.000∗∗ -0.001∗∗∗
(0.000) (0.000)

Emp. Growth 0.004 0.009
(0.003) (0.016)

Entry Rate 0.000 -0.009
(0.014) (0.018)

Exit Rate 0.003 -0.005
(0.010) (0.013)

Job Creation Rate 0.003 -0.004
(0.005) (0.017)

Job Destruction Rate -0.004 0.003
(0.004) (0.016)

Fixed Effects Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind.
S.E. Cluster Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind.
N 25,500 25,500 25,500 25,500 25,500 25,500 25,500 25,500 25,500
adj. R sq. 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Notes: Cross-sectional regression of the treatment variables on firm covariates in 2010. The dependent
variable is the share of Alice-treated patents relative to all patents issued to the firm between 2000 and 2009.
‘Log PatentPF’ is the log count of patents assigned to the firm between 2000 and 2009, ‘Log Emp - Lag’ is
the log of total firm employment in 2009, all other covariates are 2010 values; definitions are in Appendix
A. Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.
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Table 3.8. Correlation table covariates - 2010 cross-section

Treatment 1
Log PatentPF -0.043 1
Log Emp - Lag 0.017 0.456 1
Firm Age -0.081 0.197 0.520 1
Emp. Growth 0.007 -0.019 -0.088 -0.047 1
Entry Rate 0.019 0.110 0.193 0.081 0.026 1
Exit Rate 0.015 0.168 0.273 0.143 -0.115 0.199 1
JC Rate 0.018 -0.013 -0.084 -0.118 0.631 0.265 0.085 1
JD Rate 0.004 0.019 0.052 -0.027 -0.809 0.074 0.200 -0.151 1
Notes: Correlation table for the cross-sectional variables used in table 3.7.
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The most treated industries all belong to service sectors related to software innovations. This
is consistent with Alice invalidating software and business method patents. Computer Systems
Design and Related Services (5415) stands out and accounts for 22% of the total treatment and
26% of all treated patents assigned to firms. Treated firms, i.e. firms with at least treated patents
assigned between 2000 and 2009, are less concentrated than the treatment variable itself; industry
5415 only account for 15.9% of all treated firms. The second most affected industry, Software
Publishers (5112), accounts for ca. 10.4% of the total treatment, 11.7% of all treated patents, and
8.5% of treated firms, with all other sectors being in the single-digits. Thus, the firms in the two
most treated industries 5415 and 5112 alone account for ca. 1/3 of the overall treatment.

Having treatment concentrated in software-related service sectors does not invalidate the paral-
lel trend assumption, but we need to be careful and think about robustness analysis. First, exclud-
ing the most treated industry 5415 does not change the results. Including four-digit-industry-year
fixed effects as controls generally consumes most of the treatment effects due to the relatively
high concentration of the treatment variable in just two four-digit industries. However, including
higher-level sector/two-digit-industry-year fixed does not change the results. Similar to including
lower-level industry-year fixed effects, restricting the sample to service sectors does not qualita-
tively change the results but reduces the statistical significance of the DiD coefficients. Overall,
treatment is correlated with industry but the main results, especially in section 3.2, are generally
robust controlling for industry-wide trends.13

Patenting results

I start the firm-level analysis by estimating the treatment effects of Alice on patenting measures
related to innovation effort and direction for the full firm sample. In tables 3.10, 3.11, 3.13, and
3.12, I report the DiD results for measures of patenting quality, novelty, scope, and follow-on in-
novations. As a first-stage result, table 3.10 confirms that Alice decreased the ability of firms to
patent inventions in software-related technologies: the annual number of issued patents has a nega-
tive treatment effect of 9%, with the same estimate for treated patents being 13.3%. The difference
in treatment effects for forward-citation weighted patent issuances is even stronger (15.3% treat-
ment effect for all patent issuance and 35.5% for treated patents), confirming that Alice limited the
patentability of software-related innovations.

Table 3.11 adds to this result by showing that low-citation patents are most affected by Alice:
patents issuances in the top 10% of the forward citations distribution do not change for treated firms,
patent issuances receiving few or no forward citations, however, have a negative treatment effect

13It should be noted that my treatment is not directly fit to distinguish treatment intensity within industries. Besides
the measurement errors from the NLP model and the patent-firm link, treatment is more discrete with more extreme
values for smaller firms. Furthermore, a control firm in an affected industry that has not filed Alice-treated patents
before 2009 might intend to innovate in Alice-related technologies later.
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Table 3.10. Firm-level patenting - absolute measures

Total Patent Issue Treated Pat. Issue Fwd. Cites Fwd. Cites Treated

Cont. Treatment * Post -0.090∗∗∗ -0.133∗∗∗ -0.153∗∗∗ -0.355∗∗∗
(0.021) (0.016) (0.041) (0.034)

Fixed Effects Firm+Year Firm+Year Firm+Year Firm+Year
S.E. Cluster Firm Firm Firm Firm
N 197,000 197,000 197,000 197,000
adj. R sq. 0.85 0.83 0.73 0.67

Notes: Difference-in-differences for absolute patenting outcomes. Observations are on the firm-year level
for the year of patent issuance. The dependent variables are the total number of issued patents to the firm,
total forward citations to issued patents, total number of Alice-treated patents issued to the firm, and the
total forward citations to issued Alice-treated patents. Dependent variables are in log terms and include ‘+1’.
Treatment is the share of Alice-treated patents relative to all assigned patents to the firm between 2000 and
2009, the post-dummy is positive for years after 2014. Clustered standard errors are reported in parenthesis,
∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

of ca. 5%. Normalized forward citations show a negative treatment effect of 4.8%, around half the
size of the treatment effect for overall issuances in table 3.10, meaning that the patenting quality has
decreased less than the absolute number of issued patents. Software and business method patents
are generally considered to be of low value (Hall and MacGarvie 2010), thus we would expect
the Alice shock to affect lower-value patents by raising the patentability threshold of innovations
rather than breakthrough and relevant inventions. This is also consistent with the industry-level
R&D results from section 3.1, overall innovation efforts do not change, but rather the direction of
innovation.

Furthermore, my results show a direct link between low-citation patents and establishment entry
and job creation. Recent research by Abrams et al. (2019) and Abrams et al. (2013) show an
inverted U-shape for the relation between forward citations and patent value with some high-value
patents receiving few citations, arguing that low-citation patents add additional protection against
infringement for other valuable inventions. I add to this idea by showing empirically how low-
citation Alice patents strengthen the patent protection of new ideas and incentivize large companies
to explore new technologies and create new establishments.

Tables 3.13 and 3.12 show that patented innovations are becoming narrower in scope and more
focused on incremental own innovation. The number of total claims decreases sharply with a treat-
ment effect of -29.1%, while the normalized number of words in the first claim has a treatment
effect of -6.2%, which is smaller than the overall decrease in issued patents. With relatively fewer
claims and more words in the first claim, the scope of patents is decreased (Kuhn and Thompson
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Table 3.11. Firm-level patenting - quality measures

Top 1% Cited Top 2-10% Cited Cited Patents Uncited Patents Norm. Cites

Cont. Treatment * Post -0.002 -0.012 -0.050∗∗∗ -0.047∗∗∗ -0.048∗∗
(0.004) (0.010) (0.017) (0.016) (0.021)

Fixed Effects Firm+Year Firm+Year Firm+Year Firm+Year Firm+Year
S.E. Cluster Firm Firm Firm Firm Firm
N 197,000 197,000 197,000 197,000 197,000
adj. R sq. 0.67 0.80 0.81 0.79 0.79

Notes: Difference-in-differences for quality adjusted patenting outcomes. Observations are on the firm-year
level for the year of patent issuance. The dependent variables are the total number of issued patents in the top
1% of the forward citations distribution for patents in the same CPC-group and filing year, the patents which
are in the top 10% of the CPC-group-filing year forward citation distribution but not in the top 1%, the total
number of patents that are outside of the top 10% of the CPC-group-filing year forward citation distribution
but receive at least one citation, the number of patents that do not receive forward citations, and the total
sum of forward citations normalized with the average number of forward citations in the CPC-group-filing
year. Dependent variables are in log terms and include ‘+1’. Treatment is the share of Alice-treated patents
relative to all assigned patents to the firm between 2000 and 2009, the post-dummy is positive for years after
2014. Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

2019).
Alice did not lead to the exploration of novel technologies since the number of patents filed in

CPC groups the firm has not filed in before slightly decreases, as does the number of new CPC-
subgroup combinations appearing for the first time in the data and the number of product patents in
table 3.13. A decrease in novelty and exploration is also consistent with the strong negative treat-
ment effect for citations to scientific papers and basic research of 12.5%(Marx and Fuegi 2019).14

Table 3.13 shows a strong negative treatment effect for follow-on citations of 10.6%, but no sig-
nificant effect for self-follow-on citations. That is, patents receive within the first three years after
issuance fewer citations from outside inventors, but the number of citations from other inventions
by the firm does not significantly decrease. We can interpret this as a decrease in creative destruc-
tion and a relative increase in own innovation since the inventions patented by the firm are less
relevant for potential outside inventors compared to follow-on innovation by the firm itself. This

14I find also a strong negative treatment effect for technology proximity and the number of patents issued in CPC
groups known to the firm (Known CPC-Group) of -0.062 and -0.085, respectively. While the magnitude is close to
the overall treatment effect for patent issuance in table 3.10, these two results are partially mechanical since Alice is
concentrated among specific CPC groups. Treated firms by definition hold patents in Alice-affected CPC groups and
thus have to receive fewer patents in these groups following Alice. Neither effect is larger than the overall treatment
effect of issued patents, further supporting that Alice did not induce exploration of new technologies.
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Table 3.12. Firm-level patenting - scope and innovation direction measures

Claims Bwd. Cites Self-Cites New CPC Grp. Wd. Claim Norm. Wd. Claim

Cont. Treatment * Post -0.291∗∗∗ -0.246∗∗∗ 0.001 -0.014∗ -14.840∗∗∗ -0.062∗∗∗
(0.054) (0.052) (0.025) (0.008) (3.682) (0.016)

Fixed Effects Firm+Year Firm+Year Firm+Year Firm+Year Firm+Year Firm+Year
S.E. Cluster Firm Firm Firm Firm Firm Firm
N 197,000 197,000 197,000 197,000 197,000 197,000
adj. R sq. 0.73 0.72 0.80 0.63 0.44 0.44

Notes: Difference-in-differences for patenting scope and innovation direction outcomes. Observations are
on the firm-year level for the year of patent issuance. The dependent variables are the number of claims,
the total number of backward citations, the number of self-citations, the number of patents in new CPC-
groups the firm has not filed in before, the average number of words in the first claim, and the average
number of words in the first claim normalized with the average for patents in the same CPC-group-filing
year. Dependent variables are in log terms and include ‘+1’. Treatment is the share of Alice-treated patents
relative to all assigned patents to the firm between 2000 and 2009, the post-dummy is positive for years after
2014. Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

is also confirmed when looking at the prior art patents cite in table 3.12: while overall backward
citations have a strong negative treatment effect of -24.6%, self-citations show no significant effect,
meaning that less external knowledge is referenced while prior innovations by the firm itself remain
relevant. Following Akcigit and Kerr (2018), this is consistent with treated firms substituting new
product development in favor of the improvement of existing products.
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Overall, the patenting results confirm that treated firms receive fewer patents after Alice. This
is concentrated among low-citation patents. While high-value innovations still receive patents,
references to external knowledge decrease while references to inventions by the firm itself become
relatively more relevant, consistent with the marginal innovation direction shifting from creative
destruction toward own innovation.

Firm-level growth

In tables 3.14 and 3.15, I show the DiD regression results for a broad range of variables from
the LBD related to growth, employment, and establishment creation and destruction on the full
firm sample. First, establishment entry and job creation decrease for treated firms after Alice. Job
creation has a negative treatment effect of 12.5%, driven in part by the decrease in employment
from entering establishments with a negative treatment effect of 7.8%. Interesting is also that wage
share in table 3.14 has a negative treatment effect of 5.5% and job destruction a positive effect
of 7.5%, though the last result is not robust in all specifications and only significant at the 10%
level. As in Peters (2020) and Peters and Zilibotti (2021), we can interpret the decrease in the wage
share as an increase in markups.15 Taken together, the decrease in establishment entry and job
creation and increase in markups are overall consistent with incumbent firms shifting away from
the exploration and introduction of new technologies and toward improving existing products to
increase the pricing power.16

15For around 80% of the firm in the LBD data, we have data on revenue and the total wage bill. We can thus define
the wage share as the ratio of the total wage bill to revenue. Following De Loecker andWarzynski (2012), markups are
the product of the output elasticity of labor and the inverse of the wage share, assuming labor is the only input. If the
output elasticity is constant, we can measure changes in the log markups through our DiD setting using the log of the
inverse of the wage share as our outcome. In our TWFE model, the time and firm fixed effects control for the constant
output elasticity. This is also consistent with De Loecker et al. (2020) who find firm-level evidence for the direct
inverse relation between markups and wage share. Thus, our TWFE model estimates treatment effects for markups if
the LHS is the inverse of the wage share.

16The results are robust for the same specification variations as described in section 3.2.
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Table 3.14. Firm revenue, wage share, and market share

Real Rev. Wage Share Market Share (Emp.)

Cont. Treatment * Post 0.044 -0.055∗∗∗ -0.039
(0.028) (0.020) (0.032)

Fixed Effects Firm+Year Firm+Year Firm+Year
S.E. Cluster Firm Firm Firm
N 146,000 146,000 197,000
adj. R sq. 0.98 0.81 0.96

Notes: Difference-in-differences for revenue, wage share, and market share. Observations are on the firm-
year level. The dependent variables are the log of real revenue, the log of the wage share, and the log of the
employment market share within the 4-digit-industry. Treatment is the share of Alice-treated patents relative
to all assigned patents to the firm between 2000 and 2009, the post-dummy is positive for years after 2014.
Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.
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Firm-size variation

To better understand which types of firms are driving the effect in section 3.2, I split my sample
along two dimensions: the size of the patent portfolio and total firm employment at the beginning
of 2010, i.e., at the beginning of the sample period. Within each four-digit NAICS industry, I split
the sample into firms below the 50th percentile, firms in the 50th to 90th percentile, and firms in
the top 10 percent of the patent and employment size distribution, respectively. Table 3.16 show
the means of relevant variables within the different brackets. As described in section 3.2, firms are
very heterogeneous in terms of patent portfolio and employment size; while the smallest firms have
on average less than 40 employees and between one and four patents in their portfolio, companies
in the top brackets have several thousands of employees and hundreds of patents in their portfolio
on average. Particularly firms that are above the 90th percentile of the patent portfolio and also
above the 90th percentile of employment size distribution stand out, accounting for almost half of
all new establishment entries and close to 80% of all patent issuances. This might also explain why
small firm entry and exit on the industry level does not change in section 3.1: small firms with one
establishment make up a large share of entering and exiting establishments, but hardly file patents
in the first place. Patenting seems less relevant for small firms in Alice affected industries.
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We can now perform the analysis from above within each patent portfolio /employment size
bracket. This also improves sample balancing since we now explicitly control for firm employment
and patent portfolio size.17 In tables 3.17a and 3.17b, I report the treatment effects for patent
issuances and establishment entry for different patent portfolio and employment size groups. The
treatment effects for patenting are negative and significant formultiple patent portfolio/employment
size groups since Alice limited the overall patentability of software-related innovations. However,
the largest patent portfolio/employment size group, firms above the 90th percentile of the patent
portfolio as well as employment size distribution, are most affected with a negative treatment effect
of 1.256. Only this group has a significant treatment effect of -1.069 for establishment entry. This
shows how the limitation of patentability of innovations is most relevant for the largest patenting
firms and leads to a decrease in the exploration of new technologies and establishment entry.18

17Performing the same cross-sectional regression of treatment on covariates as in table 3.7, no covariates are sig-
nificant for the largest patent portfolio/employment size group.

18For robustness, I implement an alternative sample split with absolute patent portfolio and firm employment size
cutoffs. I group firms in patent portfolio brackets counting the number of patents assigned to them between 2000 and
2009: 1 to 5 patents, 6 to 19, or more than 20 patents. Independent from this, I define employment size brackets based
on the total firm employment in 2009: 1 to 99 employees, 100 to 999 employees, or more than 1000 employees. The
cutoffs are selected to allow for sufficient sample size within each bracket; the cutoffs for the top brackets are close to
the 90-95th percentile in the respective patent portfolio and employment size distribution. The results confirm that the
patenting shock is more widely distributed across the different size brackets. Also in this sample split, the treatment
effect for establishment entry is only significant for the largest patent portfolio and employment size bracket, with the
magnitude of -0.84 close to the magnitude from table 3.17b for the largest patent portfolio /employment size group.
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Fig. 3.2. Event-study - Total Patent Issue - >90th Pctl. Pat. - >90th Pctl. Emp.

Notes: Event study for total annual patent issuances for the group of firms above the within-
industry 90th percentile in the patent portfolio size distribution as well as firm employment
size distribution. The variables and sample are defined in table 3.17a, treatment effects are
estimated with the event-study model in 2.2. Dependent variables are in log terms and include
‘+1’. Coefficients for the interaction of the treatment variable with the year dummies are shown
with error collars for the 95% confidence interval. Standard errors are clustered on firm level.

To test the parallel trend assumption for themost treated group of firms above the 90th percentile
of the patent portfolio as well as employment size distribution, I use model 2.1 to plot in figures 3.2
and B.1 the event study results for patent issuances and establishment entry. For neither outcome
variable, we find a pre-trend or an inverted “Ashenfelter’s Dip” which could indicate a violation
of our identifying assumption. We also see that the treatment effect for patent issuances sets in
immediately in 2015. The effect on establishment entry gradually increases starting in 2016. This
is consistent with the reduced patentability of innovations causing establishment entry to decrease
over time. Note also that LBD data measure employment in March and the Alice decision was in
June 2014, thus, the first full year after Alice is 2016.
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Fig. 3.3. Event-study - Entry - >90th Pctl. Pat. - >90th Pctl. Emp.

Notes: Event study for establishment entry for the group of firms above the within-industry 90th
percentile in the patent portfolio size distribution as well as firm employment size distribution.
The variables and sample are defined in table 3.17b, treatment effects are estimated with the
event-study model in 2.2. Dependent variables are in log terms and include ‘+1’. Coefficients for
the interaction of the treatment variable with the year dummies are shown with error collars for
the 95% confidence interval. Standard errors are clustered on firm level.

Large patenting firms

The results in section 3.2 show that firms in above the 90th percentile of the patent portfolio and em-
ployment size distribution within industries are most affected by Alice. In this section, I implement
different variations of the DiD model for this group of firms to estimate robust treatment effects
for the most relevant outcome variables. Tables 3.18, 3.19, and 3.20 report treatment effects for
four model variants: the base specification without covariates, the base specification with standard
errors clustered on industry level, and two specifications that include log firm employment size, log
patenting portfolio size, and firm age, all measured in 2009, as covariates. The first specification
with covariates interacts the controls with the post-dummy, the second with year dummies. These
are the only significant covariates in the cross-sectional regression in table 3.9, including them
as controls might help to improve precision of the DiD coefficient estimate (Angrist and Pischke
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2009).19 In appendix B, I show the event-study results for the base specification and confirm that
there are no pre-trends, except for the follow-on citations with a marginally significant coefficient
for the year 2010. This might be related to fewer patents being issued after Alice that could cite a
given patent. Nevertheless, the treatment effects for follow-on citations are highly significant after
2015 and the magnitude remains much larger than for the self-follow-on citations.20 The average
of the treatment variable for the treated firms is 0.087, thus the average treatment effect for the
treated can be calculated by multiplying the difference-in-difference coefficients with this average
(I generally refer to the estimated difference-in-difference coefficients as treatment effects).

The results in table 3.18 show a strong shock to patent issuances following Alicewith treatment
effects between -1.40 and -1.26. We also see a clear gap in the magnitudes of the treatment effects
for total follow-on citations (-1.53 to -1.42) and self-follow-on citations (-0.83 to -0.64). The differ-
ence between the treatment effects for backward citations (-2.56 to -2.47) and self-citation (-0.97
to -0.75) is even larger than between follow-on citations and self-follow-on citations. Overall, this
is consistent with treated firms focusing more on internal knowledge relative to external knowl-
edge. Following Akcigit and Kerr (2018), we can interpret this as treated firms shifting away from
creative destruction innovation toward own innovation.

Table 3.19 shows negative treatment effects for establishment entry (-1.07 to -0.64), employ-
ment from establishment entry (-1.84 to -1.29), and job creation (-1.57 to -1.14).21 Thus, all re-
sults confirm that Alice has a negative effect on the exploration of new technologies; the limited
patentability of inventions leads treated firms to introduce fewer new technologies and thus reduces
the creation of new establishments and job creation.

Note also that we have a negative treatment effect for job destruction, which is significant at the
10%-level for the specification with standard errors clustered on the industry level. In table 3.15,
however, we have a positive treatment effect for job destruction in the full sample. Unreported
results confirm that we find for firms in the mid-tiers of the patent portfolio and employment size
distribution positive treatment effects for job destruction (which are not robust, though, to the speci-
fication variations in this section). Thus, Alice had a different effect for smaller treated firms: Alice
limited the enforceability of some of the patents in their portfolio, leading to a higher likelihood
that these firms face more competition in some of their products, which increases job destruction.

19Since the treatment is continuous and the shock nation-wide, there are few group-level controls that are useful
to include. The results are robust to excluding observations in industry 5415, winsorizing the top 1% of observations,
and restricting to firms with non-missing observations for the entire sample period of 2010 to 2019. The results remain
largely unchanged when including three-digit-industry-year fixed effects. Furthermore, I can use Coarsened Exact
Matching (CEM) on the log firm employment size, log patenting portfolio size, firm age, and sector dummies to
balance the covariate distribution of treated and control firms at the beginning of the pre-period in 2010. The results
remain largely unchanged when using the CEM-balanced sample for the analysis.

20Also event study results for the full sample show no pre-trend except for follow-on citations.
21Establishment entry-related results are robust to controlling for re-timed entry and excluding re-activated estab-

lishments that temporarily had no employees for one to seven years before entry.
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Table 3.18. Firm-level patenting variables - >90th Pctl. Pat. & >90th Pctl. Emp. - Specifica-
tion variations

Total Patent Issue
Cont. Treatment * Post -1.256∗∗∗ -1.256∗∗∗ -1.399∗∗∗ -1.401∗∗∗

(0.296) (0.266) (0.295) (0.295)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.90 0.90 0.90 0.90

Backward Citations
Cont. Treatment * Post -2.470∗∗∗ -2.470∗∗∗ -2.557∗∗∗ -2.564∗∗∗

(0.466) (0.369) (0.471) (0.471)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.81 0.81 0.81 0.81

Self-Citations
Cont. Treatment * Post -0.747∗ -0.747∗∗ -0.966∗∗ -0.970∗∗

(0.423) (0.381) (0.422) (0.422)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.86 0.86 0.86 0.86

Total Follow-on
Cont. Treatment * Post -1.417∗∗∗ -1.417∗∗∗ -1.532∗∗∗ -1.534∗∗∗

(0.323) (0.270) (0.317) (0.317)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.86 0.86 0.86 0.86

Self-Follow-on
Cont. Treatment * Post -0.638∗∗ -0.638∗∗∗ -0.823∗∗∗ -0.826∗∗∗

(0.308) (0.228) (0.303) (0.303)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.84 0.84 0.85 0.85

Fixed Effects Firm+Year Firm+Year Firm+Year Firm+Year
S.E. Cluster Firm Industry Firm Firm
Control N N Post-interaction Year-interaction

Notes: Difference-in-differences results for different model specifications - patenting outcomes. The depen-
dent variables are defined as in tables 3.10 and 3.13. Results are shown for the group of firms above the
within-industry 90th percentile in the patent portfolio size distribution as well as employment size distribu-
tion, as defined in table 3.17b. The first column shows results for the base DiD setting as used above. Column
two clusters standard errors on the industry level without additional covariates. Columns three and four in-
clude as covariates the log firm employment size, log patent portfolio size, and firm age, all measured in
2009. Column three interacts the covariates with the post-dummy, column four interacts the covariates with
year dummies. Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.
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The firms in the largest patent portfolio/employment size group, on the other hand, have on average
857 patents assigned to them between 2000 and 2009; even with a shock to the enforceability of
software-related patents, they still hold large patent portfolios of valid patents that are unlikely to
be more successfully challenged after Alice (see also Choi and Gerlach 2015). Instead, the negative
treatment effect for job destruction for this group of firms is more consistent with the transition into
a new equilibrium with less creative destruction. As shown in figures 3.2 and B.1 in section 3.2,
the decrease in patent issuances after Alice leads to a reduction in establishment entry over time. If
firms move over time into a new equilibrium with less creative destruction, we would expect also
job destruction to eventually follow. Since the treatment effect for job destruction in the largest
patent portfolio/employment size group is only marginally significant, the new equilibrium might
not have been reached yet by the end of the sample period in 2019.22

Finally, table 3.20 shows that the negative treatment effects for establishment count and total
employment only survive for the specifications without controls. The serial correlation of establish-
ment count and firm employment with the size-related covariates might explain the insignificant
estimates. The magnitude of the treatment effects for the significant estimates without covariates
is for both outcomes in line with the treatment effect for the market share (-0.64 to -0.57). The de-
crease in creative destruction following Alice eventually leads to smaller market shares for treated
firms.23 Since I find no clear positive treatment effect for the market share in any other patent
portfolio/employment size group, it seems likely that the treated firms in the largest patent portfo-
lio/employment size group lose market share to a wider range of competitors.

Note also that the treatment effect for the market share is larger than what we would expect from
a decrease in new job creation alone (considering that the job creation rate is closer to 10% of total
firm employment and the magnitude of the treatment effect for job creation is only around twice as
large as the treatment effect for the market share). One explanation could be that treated firms sell
operations related to new technology exploration through M&A activities, which is consistent with
unreported results showing that the number of establishments that move to a new owner after Alice
increases (see, e.g., Garcia-Macia et al. 2019). Overall, the relatively large decrease in market
share for treated firms is not inconsistent with the interpretation that Alice reduces the incentive to
explore new technologies.

22I do not report treatment effects for establishment exit since I cannot control for re-timed and re-activated estab-
lishment exits as for establishment entries. The coverage of the relevant re-timing flag for exiting establishments is
much lower than for entering establishments. Re-timing is overall more of a challenge for exits, as can be seen in
spikes for establishment exits around Economic Census years. Since a large part of the treatment effect is driven by
the last two sample years (after the last Economic Census in 2017), I focus on job destruction which is more directly
observable for those years. Nevertheless, I find a significant negative treatment trend for establishment exits (-0.206
per year after 2014) and employment of exiting establishments (-0.381 per year after 2014) for the largest patent port-
folio/employment size group of firms, which is consistent with a long-term decrease in creative destruction.

23Note that overall the effects are too small to change the industry-wide HHI and other concentration measures.
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Table 3.19. Firm-level growth variables - >90th Pctl. Pat. & >90th Pctl. Emp. - Specification
Variations

Entry
Cont. Treatment * Post -1.069∗∗∗ -1.069∗∗∗ -0.652∗∗ -0.640∗∗

(0.335) (0.323) (0.315) (0.314)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.59 0.59 0.60 0.60

Entry Emp
Cont. Treatment * Post -1.840∗∗∗ -1.840∗∗∗ -1.289∗∗ -1.267∗∗

(0.544) (0.496) (0.535) (0.535)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.46 0.46 0.46 0.46

Job Creation
Cont. Treatment * Post -1.571∗∗∗ -1.571∗∗∗ -1.161∗∗ -1.146∗

(0.594) (0.510) (0.591) (0.591)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.53 0.53 0.53 0.54

Job Destruction
Cont. Treatment * Post -0.710 -0.710∗ -0.342 -0.333

(0.505) (0.383) (0.508) (0.509)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.56 0.56 0.56 0.56

Fixed Effects Firm+Year Firm+Year Firm+Year Firm+Year
S.E. Cluster Firm Industry Firm Firm
Control N N Post-interaction Year-interaction

Notes: Difference-in-differences results for different model specifications - growth outcomes. The depen-
dent variables are defined as in table 3.15. Results are shown for the group of firms above the within-industry
90th percentile in the patent portfolio size distribution as well as employment size distribution, as defined
in table 3.17b. The first column shows results for the base DiD setting as used above. Column two clusters
standard errors on the industry level without additional covariates. Columns three and four include as co-
variates the log firm employment size, log patent portfolio size, and firm age, all measured in 2009. Column
three interacts the covariates with the post-dummy, column four interacts the covariates with year dummies.
Clustered standard errors are reported in parenthesis, ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.
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Table 3.20 also shows a positive treatment effect of 0.22 to 0.25 for markups. The estimate
is insignificant for one of the specifications with covariates and only significant at the 5%-level
for standard errors clustered at the industry level. It should be noted, though, that the sample size
is more than 20% smaller for markups than for the other outcomes since the last available year is
2018, and the magnitude of the estimates does not change much across variations. The increase in
markups for treated firms is consistent with the shift of innovation efforts toward own innovation.
Improving the current products in place increased the gap to the next-best competitor and increase
the pricing power of incumbent firms, thus allowing for higher markups.

3.3. Model

I use a simplified Schumpeterian growth model based on Peters (2020) to quantify the welfare
effect of the Alice decision. I calibrate changes to the innovation rates of technology exploration
and own innovation with the DiD results from section 3.2.

The economy has a representative household with log-utilities in continuous time, inelastic
labor supply of L, wage level w, and risk-neutral interest rate r. Household consumption Ct is a
fixed share of the final good Yt. Yt is produced by a unit mass of intermediate products. I assume
for simplicity that the elasticity of substitution across varieties of intermediate goods is one. y(i)
is the quantity and q(i) the quality of intermediate product i.24

U =

∫ ∞

0

e−rt lnCtdt

lnYt =

∫ 1

0

ln(qt(i)yt(i))di

J incumbent firms, which are all price takers on the labor market, only use labor as input to
produce product i such that y(i) = l(i). Nj is the set of products owned by firm j and nj = |Nj|.
There is no entry since the results in section 3.1 show that new firm creation is not affected by Alice.

Product quality q(i) is a quality ladder with proportional improvements of size λ > 1. Firm j is
the quality leader for product i and the quality gap to the second-highest quality producer is λ∆(i).
That is, firm j is∆(i) rungs above the second-highest quality producer in the quality ladder. Firms
engage in Bertrand competition, which implies that only the quality leader j is active. The markup
µ(i) that j can charge for product i depends on its quality lead:

µ(i) = λ∆(i)

24I drop in the following the time subscript if there is no ambiguity.
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Table 3.20. Firm-level size variables and markup - >90th Pctl. Pat. & >90th Pctl. Emp. -
Specification Variations

Estabs. (pos. emp.)
Cont. Treatment * Post -0.425∗ -0.425∗∗∗ -0.385 -0.383

(0.241) (0.147) (0.244) (0.244)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.95 0.95 0.95 0.95

Emp.
Cont. Treatment * Post -0.461∗∗ -0.461∗∗ -0.355 -0.353

(0.225) (0.211) (0.220) (0.220)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.92 0.92 0.92 0.92

Markup
Cont. Treatment * Post 0.246∗ 0.246∗∗ 0.219 0.221∗

(0.128) (0.111) (0.134) (0.134)

N 7,900 7,900 7,900 7,900
adj. R sq. 0.85 0.85 0.85 0.85

Market Share (Emp.)
Cont. Treatment * Post -0.637∗∗ -0.637∗∗ -0.570∗∗ -0.567∗∗

(0.270) (0.290) (0.271) (0.271)

N 10,500 10,500 10,500 10,500
adj. R sq. 0.88 0.88 0.88 0.88

Fixed Effects Firm+Year Firm+Year Firm+Year Firm+Year
S.E. Cluster Firm Industry Firm Firm
Control N N Post-interaction Year-interaction

Notes: Difference-in-differences results for different model specifications - size outcomes. The dependent
variables are defined as in tables 3.14 and 3.15; Markup is the inverse of Wage Share (in log-terms). Results
are shown for the group of firms above the within-industry 90th percentile in the patent portfolio size distribu-
tion as well as employment size distribution, as defined in table 3.17b. The first column shows results for the
base DiD setting as used above. Column two clusters standard errors on the industry level without additional
covariates. Columns three and four include as covariates the log firm employment size, log patent portfolio
size, and firm age, all measured in 2009. Column three interacts the covariates with the post-dummy, col-
umn four interacts the covariates with year dummies. Clustered standard errors are reported in parenthesis,
∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.
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The flow profits for firm j in product i are π(i) =
(
1− 1

µ(i)

)
=

(
1− 1

λ∆(i)

)
, where I use that

with elasticity of substitution of unity the household spends the same amount on each product i. I
normalize the amount spent on each product to one.25

Firm j can lose product i through creative destruction if a competitor successfully innovates
on product i and becomes the new quality leader. I model creative destruction as the flow rate τ .
Since I observe no significant effect of Alice on establishment exit or job destruction, I take τ as
exogenous.26

We can now calculate the present value (PV) V (i) of product i. The discount rate combines
the risk-neutral interest rate r and the rate of creative destruction τ . In other words, firm j takes
into account the time value of expected future profits and the probability of losing the product to a
competitor.

V (i) =

∫ ∞

0

π(i)e−(r+τ)sds =
π(i)

r + τ
=

(
1− 1

µ(i)

)
r + τ

(3.1)

Firm j can engage in two types of innovation: first, improve product quality q(i) by own inno-
vation and increase the gap to the second-highest quality producer from∆(i) to∆(i) + 1. Second,
engage in new technology exploration and expand into a new product k. If expansion innovation
is successful and the firm takes over product k, it will take the quality lead only by a single rung
above the second-highest quality producer such that µ(k) = λ and the quality gap is ∆(k) = 1.
In equilibrium, the sum of the expansion innovation efforts by firms would be equal to the overall
rate of creative destruction: τ =

∫ 1

0
x(j)dj.

Both types of innovation are random and firm j decides on the company-wide Poisson arrival
rate for own innovation Ij and expansion innovation xj . For simplicity, I formulate the own inno-
vation and expansion rates as per product rates. The cost functions for xj and Ij are quadratic and
also scale with the number of products nj: C(Ij, xj, nj) = nj

ξI
2
I2j + nj

ξx
2
x2
j , where ξI and ξx are

scale parameters.
We can use equation 3.1 to find expressions for the optimal own innovation and expansion rates

per product, I and x, by setting the expected marginal increase in V (i) equal to the marginal cost
of either innovation effort.

25Labor demand for product i then is equal to l(i) = 1
w

1
µ(i) . We can use this to define firm-level labor demand for

firm j as lj = 1
wnj

(
1
nj

∑
i∈Nj

1
µ(i)

)
= 1

wnj
1
µj
. Firm-level markup µj is the harmonic mean over the products of

firm j: µ−1
j = 1

nj

∑
i∈Nj

1
µ(i) .

26As mentioned in section 3.2, I observe toward the end of my sample period a negative treatment effect for job
destruction and establishment exit, which would be consistent with a decrease in τ and a new equilibrium over the long
run.
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(
1− 1

λ

)
r + τ

= ξxx(
1
λ∆̄ − 1

λ∆̄+1

)
r + τ

= ξII

where ∆̄ is the average quality lead of firm j across its products.
Acquiring a new product is in general more profitable than improving products since 1− 1

λ
>

1
λ∆̄ − 1

λ∆̄+1 , i.e., the flow profits π(k) from expanding into new product k are larger than the increase
in flow profits for existing product i for successful own innovation. We can assume that expansion
innovation is also more costly since firm j needs to acquire more external knowledge and faces
higher imitation risk by competitors in the new market.

My empirical results in section 3.1 show no change in overall R&D efforts for treated industries,
but rather a substitution effect toward product development. My patenting results in section 3.2
also confirm that Alice did not prevent breakthrough innovations from being patent eligible, but
rather led to less exploration and more internal product improvement. To capture the substitution
of expansion innovation with own innovation, I assume that the firms are budget constrained and
firm j substitutes the least valuable expansion projects with the next most valuable own innovation
projects. Formally, firm j optimizes the following Lagrangian:27

max
x,I

{
x

(
1− 1

λ

)
r + τ

+ I

(
1
λ∆̄ − 1

λ∆̄+1

)
r + τ

+ Λ

(
B − ξI

2
I2 − ξx

2
x2

)}

where B is the R&D budget and the constraint is binding. The solution shows that the ratio of
expected PVs from innovation is equal to the ratio of the marginal innovation costs:(

1− 1
λ

)(
1
λ∆̄ − 1

λ∆̄+1

) =
ξxx

ξII
(3.2)

What does Alice mean for the decision to invest into own innovation versus expansion inno-
vation? Decreasing patent protection means that expansion costs increase since entering a new
market requires additional efforts by the firm to protect the invention against imitation risk and li-
cense external knowledge. In equation 3.2, increasing ξx relative to ξI on the right-hand side of the
equation predicts the same shift away from expansion innovation and new technology exploration
toward own innovation as I find in my empirical results after the Alice shock.

27We can ignore the scaling by the number of products nj since investment cost, innovation rates, and the project
value scale with the product count.
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Welfare impact calibration

I can use the estimated treatment effects from section 3.2 and measure how welfare changes when
the largest treated firms shift their innovation direction away from technology exploration toward
own innovation.

Following Peters (2020), aggregate output is proportional to the quality index of products,
Q = exp

(∫ 1

0
ln q(i) di

)
.28 Growth, thus, depends only on the overall quality improvements to

the intermediate products: g =
∑

J sj(x+ I) ln(λ), where sj is the market share of firm j.29

Since Yt only grows through quality improvements at rate g and Ct ∝ Yt, i.e., consumption
is a fixed share of total output, the change in welfare following Alice is the present value of the
(permanent) change in the growth rate ∆g

r
.

Table 3.21 summarizes the parameters I use to calibrate my model. First, I set the risk-neutral
interest rate r to 3%, similar to the value used in Akcigit and Kerr (2018). Next, I need an estimate
for the innovation-step size λ. I follow Aghion et al. (2019) and use the inverse of the markups
estimated in Hall (2018) to calibrate λ.30 Since table 3.9 shows that the two most treated sectors are
5415 and 5112, I focus on the markup estimates for Professional, Scientific, and Technical Services
(NAICS 54) and Information (NAICS 51) in Hall (2018), which are 1.31 and 1.39, respectively. I
round to 1.3 to account for estimation errors.

Next, we can use the establishment entry rate as proxy for the rate of expansion innovation
x, similar to Klenow and Li (2021) and Garcia-Macia et al. (2019). I use industry-wide entry

28Aggregate labor demand L is the sum of the individual firm-level labor demand: L =
∑

J lj = Y
w

∑
J nj

1
µj
.

We can use this to find an expression for the real wage w: lnY =
∫ 1

0
ln (q(i)y(i)) di =

∫ 1

0
ln q(i)di+

∫ 1

0
ln y(i)di =

lnQ +
∫ 1

0
ln
(

Y
w

1
µ(i)

)
di = lnQ + lnY − lnw −

∫ 1

0
lnµ(i)di. Thus, the equilibrium wage w is given as w =

Q exp
(
−
∫ 1

0
lnµ(i)di

)
. We can substitute this into the expression for the aggregate labor demand and define the

misallocation measure M =
exp(−

∫ 1
0
lnµ(i)di)∑

J njµ
−1
j

, such that Y = QML . Since I am interested in changes to growth
rather than the full equilibrium, I can focus just on the change in overall quality Q and take L andM as constant.

29I define as the market share of firm j the total employment of firm j relative to total employment in the four-digit

NAICS industry. Note that lj
L =

nj
1
µj∑

J nj
1
µj

; if I assume that before Alice markups are relatively evenly distributed

across companies, this simplified to lj
L =

nj∑
J nj

.
30Directly using the inverse of the wage share from my data as an estimate for the markup would overestimate the

actual innovation step size since large incumbents with successful own innovations in the past have higher markups
than the simple inverse of the step size. The wage share for the largest patent portfolio/employment size group in the
summary statistics in table 3.16 is 0.23 and for all other size groups ca. 0.3. If I calibrate λ to 1.3, the ratio of the
inverse of the wage share for the firms in the largest patent portfolio/employment size group and the rest indicates an
average innovation lead of∆′ = 2 for the largest firms; µ′

µ = λ∆′

λ∆ =
1

0.23
1

0.3

= 1.3 = λ2−1.
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Table 3.21. Parameter calibration - welfare analysis

Parameter Name Estimate Source
r Risk-neutral interest rate 0.03 Akcigit and Kerr (2018)
λ Innovation step-size 1.3 Hall (2018)
x Expansion innovation rate 0.08 BDS Data - Establishment Entry Rate
I own innovation rate 0.05 Forward-citation calibration
g Growth rate 0.034 BLS Data - TFP Growth
sj Market share 0.26 Pre-period average for treated firms

above the 90th percentile of the patent
portfolio and employment size distribu-
tion as defined in table 3.17a

dj Continuous treatment 0.16 Pre-period average for treated firms
above the 90th percentile of the patent
portfolio and employment size distribu-
tion as defined in table 3.17a

Treatment effect expansion inno-
vation

-0.6 DiD-coefficient for establishment en-
try in table 3.19

Treatment effect own innovation +0.2 DiD-coefficient for markup in table
3.20

Notes: Parameter calibration for welfare analysis.

rates for sectors 511 and 541 from the Business Dynamics Statistics (BDS). The average annual
establishment entry rates for the pre-period (2010 to 2014) are 7.85% and 12.2%, respectively. I
approximate the expansion innovation rate with 8%, closer to the more conservative entry rate.31
Note that in equilibrium, the expansion innovation rate is equal to the rate of creative destruction.

I follow an approach similar to Akcigit and Kerr (2018) and use self-citations to proxy for the
own innovation rate I . Since backward citations refer to all prior art and might cite more than the
relevant technologies (Kuhn et al. 2020), I use follow-on citations for the calibration. I estimate
a share of ca. 40% of self-follow-on citations to total follow-on citations and thus set I equal to
0.05.32

With these calibrated parameters, I find an estimate for the total growth rate of (x + I) lnλ =
(0.08+0.05) ∗ ln 1.3 = 0.034. I compare this to the average total factor productivity (TFP) growth
rate estimates from the Bureau of Labor Statistics (BLS) for the pre-period for the two most treated

31The estimate based on the establishment entry rate lies between the employment-weighted entry rates (3.82% for
511 and 5.66% for 541) and the job creation rates (11.2% for 511 and 16.3% for 541).

32The share of self-follow-on citations is equal to I
I+x = 0.4, thus I = 2

3 ∗ x = 0.05.
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industries: 2.68% for industry 511 and 3.42% for 5415. Thus, the calibrated parameters lead to a
realistic estimate close to the observable TFP growth rate for the most treated industries.

I focus on the treatment effects from section 3.2 for large incumbent firms above the 90th
percentile of the patent portfolio and employment size distribution to estimate the welfare impact
of Alice. The market shares of these large treated firms in sectors 51 and 54 are 0.37 and 0.15,
respectively, and the average of the continuous treatment dj is 0.22 and 0.10. Thus, there is a
relatively wide distribution of market shares and treatment across industries. For this analysis, I
take the mid-points of both measures, setting the market share of treated firms to 0.26 and the
average treatment to 0.16.

I use the treatment effects estimated in tables 3.19 and 3.20 of -0.6 for establishment entry
and +0.2 for markups to measure the decrease in expansion innovation and the increase in own
innovation for treated firms after Alice.33

To calculate the effect of Alice on expansion innovation, I multiply the treatment effect for
establishment entry with the calibrated pre-period expansion innovation rate and weigh the effect
with the average continuous treatment variable and the market share of the treated firms: ∆x =
(−0.6 ∗ 0.08) ∗ (0.26 ∗ 0.16) = −0.0020. Similarly, I can estimate the increase in own innovation
using the treatment effect for markups and the pre-period own innovation rate: ∆I = (+0.2∗0.05)∗
(0.26 ∗ 0.16) = 0.0004. The net-change to overall growth then combines the two effect, multiplied
with the innovation step-size: ∆g = (∆x + ∆I) lnλ = (−0.0020 + 0.0004) ∗ ln 1.3 = −0.0004.
The total welfare loss is the present value of the decrease in consumption growth: ∆g

r
= −0.0004

0.03
=

−0.013. Thus, Alice leads to a decrease in welfare of ca. 1.3%.
Furthermore, I can use the Alice shock to estimate the elasticity of growth to patentability. For

my calibrated model, the decrease in the growth rates is equal to ∆g
g

= −0.0004
0.034

= −1.18%. Table
3.18 shows a treatment effect for total patent issuances of ca. -1.4. Since the dependent variable is in
log terms, patent issuances decrease by−1.4∗(0.26∗0.16) = −5.82%, using also the market share
of treated firms of 0.26 and the average treatment of 0.16 from above. This implies an elasticity of
−1.18/ − 5.82 = 0.2 for the relationship of growth to patentability. One percent decrease in the
patentability of innovations leads to a decrease in growth of 0.2% due to large firms shifting from
new technology exploration toward own innovation.

Overall, the decrease in welfare of ca. 1.3% after Alice is relatively moderate since large firms
change the innovation direction toward more own innovation rather than decrease overall innova-
tion efforts.

33The treatment effects for employment from establishment entry and job creation are much larger, between -1.15
and -1.27 for the specification with covariates interacted with year dummies. Thus, using the effect on the establishment
entry provides a more conservative estimate for the welfare impact of Alice.
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Chapter 4

Conclusion

Patents, market entry, and innovation are closely related: patents provide a temporary monopoly on
inventions to incentivize the exploration of new ideas. New technologies such as computer software
challenge the balance between what defines a patent-eligible innovation and what is an abstract
idea giving unfair competitive advantages if patented. The Supreme Court decision in Alice Corp.
v. CLS Bank International limited the patent eligibility of software and business method claims and
significantly changed the patenting landscape for inventors. I use this shock to identify the effects
of patentability on firm innovation and growth.

I develop a novel NLP-based approach to classify patents if they are at risk of being invalid
under Alice. I identify treated firms and industries in restricted-use U.S. Census data and use a
difference-in-differences approach to estimate the causal effect of reduced patentability on growth
and innovation outcomes. I find no significant change in the entry or exit of new ventures, but a
significant decrease in new establishment creation by incumbents. On the firm level, I find negative
treatment effects for overall patent issuances and job creation but positive effects for markups.
Patent citations to internal knowledge become more important and R&D spending shifts toward
development. Large patenting firms drive the effects and focus on improving the products they
already have in place rather than introducing new technologies after the court decision limited the
patentability of new inventions. Overall, my results show that patents incentivize incumbents to
explore new technologies, thus increasing overall growth through creative destruction.

My study opens a new perspective on how innovation, patentability, and growth are empir-
ically connected. I contribute to multiple strains of literature with my novel identification and
micro-based evidence for Schumpeterian growth with heterogeneous innovations. There are sev-
eral limitations to this analysis, though: patent applications typically take two to three years to be
granted and my sample only has five years of post-treatment observations. Thus, my analysis does
not fully capture the long-run effect of Alice. Alice is also industry specific to software-oriented
service sectors, and less than 3% of all patents are treated. Nevertheless, Alice is relevant for
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affected firms and significantly changes their innovation and growth trajectory. This raises new
questions about how patentability might affect investment, financing, and labor demand. Which
type of workers benefits from the shift toward own innovation? Are fixed assets substitutes or
complements for patent-protected inventions? Does creative destruction raise funding costs? The
purpose of this study is to set the framework for future studies to answer these questions and deepen
our understanding of patentability, innovation, and growth.
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Appendix A

Appendix: Data and Variable Definition

The following table summarized the definitions of variables on firm-level and shows a brief refer-
ence for the definition.1

Table A.1. Variable Definitions

Variable Definitions Source/Reference
Employment (Emp.) Sum of total employment of all estab-

lishments of the firm in t.
LBD

Market Share (Emp.) (Mkt.
Share)

Employment of the firm in t relative to
the total employment of all firms in t in
the same 4-digit NAICS industry.

LBD

Employment Growth Change in Employment from t-1 to t
over the average employment of the
firm in t and t-1.

LBD

Establishments Sum of all establishments of the firm in
t. ‘An establishment is a single physical
location at which business is conducted
or services or industrial operations are
performed.’2

LBD

Establishments (Pos. Emp.)
(Estabs.)

Sum of all establishments with at least
one active employee of the firm in t.

LBD

1I refer to the current year as ‘t’.
2see https://www.census.gov/programs-surveys/susb/about/glossary.html

https://www.census.gov/programs-surveys/susb/about/glossary.html
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Firm Age Difference between the observation
year and the first year the firm is ob-
served with positive employment

LBD, Chow et al.
(2021)

Firm Death Last year that the firm is observed with
positive employment

LBD, Chow et al.
(2021)

Firm Size Firm total employment in current year
for in scope establishments for BDS

LBD, Chow et al.
(2021)

Entry Sum of all establishments of firmwhere
t-1 employment is zero and current year
employment is >0

LBD, Chow et al.
(2021)

Entry Rate Sum of Entry relative to the average
number of establishments of firm in t
and t-1. The average number of estab-
lishments in t-1 is calculated by sub-
tracting from the establishment count in
t the number of entering establishments
and adding the number of exiting estab-
lishments.

LBD, Chow et al.
(2021)

Exit Sum of all establishments of firmwhere
employment in t-1 is >0 and employ-
ment in t is 0

LBD. Chow et al.
(2021)

Exit Rate Sum of Exit relative to the average num-
ber of establishments of firm in t and t-1.
The average number of establishments
in t-1 is calculated by subtracting from
the establishment count in t the number
of entering establishments and adding
the number of exiting establishments.

LBD, Chow et al.
(2021)

Entry Employment Sum of t employment of entering estab-
lishments of firm.

LBD, Chow et al.
(2021)

Exit Employment Sum of t-1 employment of exiting estab-
lishments of firm.

LBD, Chow et al.
(2021)

Job Creation (JC) Sum of positive employment change of
firm establishments from t-1 to 1.

LBD, Chow et al.
(2021)

Job Creation Rate (JC Rate) Job Creation relative to the average em-
ployment of the firm for t and t-1.

LBD, Chow et al.
(2021)
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Job Destruction (JD) Sum of negative employment change of
firm establishments from t-1 to t.

LBD, Chow et al.
(2021)

Job Destruction Rate (JD
Rate)

Job Destruction relative to the average
employment of the firm for t and t-1.

LBD, Chow et al.
(2021)

Wage Share (W/S) Ratio of total payroll to nominal rev-
enue of the firm in t.

LBD, Haltiwanger
et al. (2019)

Markup Inverse of Wage Share. LBD, Haltiwanger
et al. (2019)

Real Revenue (Real Rev.) Total revenue of firm in t adjusted for
inflation to the base year 2009.

Haltiwanger et al.
(2019)

Real Revenue Growth Change of Real Revenue from t-1 to t
relative to the average Real Revenue be-
tween t-1 and t of the firm.

Haltiwanger et al.
(2019)

Patent Portfolio (Patent PF) Sum of all issued patents to firm be-
tween 2000 and 2009.

PatentsView

Treatment Share Sum of Alice treated patents issued to
firm between 2000 and 2009 relative to
Patent Portfolio.

PatentsView

Patent Issue (Pat. Issue) Sum of all patents issued to firm in t. PatentsView
Forward Citations Sum of total citations to patents issued

to firm in t.
PatentsView,
Balsmeier et al.
(2017)

Top 1% Forward Citations
(Top 1% Cited)

Sum of all patents issued to firm in t
that are in the 99th percentile of the for-
ward citation distribution of patents in
the same filing year and CPC group.

PatentsView,
Balsmeier et al.
(2017)

Top 2% to 10% Forward Cita-
tions (Top 2-10% Cited)

Sum of all patents issued to firm in t
that are between the 90th and 99th per-
centile of the forward citation distribu-
tion of patents in the same filing year
and CPC group.

PatentsView,
Balsmeier et al.
(2017)

Cited Patents Sum of all patents issued to firm in t that
are below the 90th percentile of the for-
ward citation distribution of patents in
the same filing year and CPC group but
received at least one forward citation.

PatentsView,
Balsmeier et al.
(2017)
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Uncited Patents sum of all patents issued to firm in t that
have not received any forward citations.

PatentsView,
Balsmeier et al.
(2017)

Backward Citations (Bwd.
Cit.)

Sum of citations by patents issued to
firm in t.

PatentsView

Self-Citations (Self-Cit.) Sum of citations by patents issued to
firm in t to patent assigned to the same
firm.

PatentsView,
Balsmeier et al.
(2017)

Claims Sum of number of independent claims
in patents issued to firm in t.

PatentsView,
Balsmeier et al.
(2017)

New CPC-Group (New CPC
Grp.)

Sum of patents issue to firm in t in CPC-
groups the firms has not patented in be-
fore at time of filing.

PatentsView,
Balsmeier et al.
(2017)

Known CPC-Group Sum of patents issue to firm in t in CPC-
groups the firms has patented in before
at time of filing.

PatentsView,
Balsmeier et al.
(2017)

Technology Proximity Average cosine-similarity of issued
patents to prior patents of the firm in
t. Cosine-similarity is calculated as the
count vector of CPC-groups for a given
filing year relative to the count vector of
CPC-groups of all patents filed by the
firm in the 10 years before.

PatentsView,
Balsmeier et al.
(2017)

New CPC-subgroup Combi-
nations

Sum of total pairwise CPC-subgroup
combinations by patents issued to firm
in t that have not appeared before in the
data.

PatentsView, Arts
and Fleming (2018)

Normalized Forward Cita-
tions (Norm. Cites)

Sum of forward citations received by
patents issued to firm in t relative to av-
erage number of forward citations re-
ceived by patents in same filing year
and CPC group.

Lerner and Seru
(2021)

Process Patents Sum of patents issued to firm in t that
have all independent claims classified
as process claim.

Bena et al. (2021)
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Non-process Patents Sum of patents issued to firm in t that
have no process claims.

Bena et al. (2021)

Average Words First Claim
(Wd. Claim)

Average number of words in the first
claim in patents issued to firm in t.

PatentsView, Kuhn
and Thompson
(2019)

Normalized Average Words
First Claim (Norm. Wd.
Claim)

Average Words First Claim in patents
issued to firm in t normalized by the av-
erage for patents in the same filing year
and CPC group.

PatentsView, Kuhn
and Thompson
(2019)

Follow-on Citations (Follow-
on)

Sum of all forward citations received by
patents issued to firm in t within three
years after issuance.

PatentsView

Self-Follow-on Citations
(Self-F/O)

Sum of all forward citations received by
patents issued to firm in t within three
years after issuance by other patents is-
sued to the firm.

PatentsView
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Appendix B

Appendix: Event Study Graphics

I present in this appendix the results for event study analysis using model 2.2 for different outcomes
variables used in the main text. I summarize the results by plotting graphics for the year-treatment
coefficients with collars for the 95%-interval. The models do not contain control variables, but
their inclusion changes little for the overall results.
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Fig. B.1. Event-study - Entry Emp - >90th Pctl. Pat. - >90th Pctl. Emp.

Event study for entry employment for the group of firms above the top 90th percentile of the
patenting distribution and employment size distribution in their industry in 2009, respectively.
The setting is defined as in table 3.17a, estimated with the event-study model in 2.2. Dependent
variable is in log terms and includes ‘+1’, defined in Appendix A. Coefficients for the interaction
of the treatment variable with year dummies are shown with error collars for the 95% confidence
interval.
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Appendix C

Appendix: NLP Methodology

Since my research question deals with the impact of a Supreme Court decision on the validity of
patent claims, I need to define the intellectual property portfolio held by firms and their exposure
to the Alice decision. I first develop and train a NLP model to identify claim language that is
invalid under Alice. Second, I classify existing patents and create annual patent portfolios using
patent assignment data to firm. Finally, I use this portfolio in a difference-in-differences approach
to quantify the impact of Alice on entry-exit, market shares, and innovation decisions.

C.1. Natural language processing approach for identification

Overview

I build a natural language processing (NLP) model to identify claim language that is affected by
the Alice decision. For this, I use USPTO rejections in office actions mentioning the Alice deci-
sion as reason to find examples of claim text formulations that are not eligible. I select approved
applications from the same filing years and patent classes as the rejected claims to train my binary
classification model on the respective wording. Finally, I use this trained classification model on
issued patents to predict their exposure to potential invalidation due to Alice. Figure C.1 illustrates
the building and the classification process of patent claims to define a firm-wide Alice exposure
score.

Data and training sets

As a first step, I need to identify text examples of claims that are affected by the Alice decision. For
this, I use the office action rejection data provided by the USTPO, based on the work by Lu et al.
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Fig. C.1. Process diagram patent claim classification

(2017).1

In this paper, the authors use natural language processing tools on “office actions” to systemati-
cally extract and classify the reasons for any rejections, objections, or requirements. Office actions
are the written notifications to the applicants of the examiners’ decision on patentability. Since
these office actions include references that the applicant may find useful for responding to the ex-
aminer and deciding whether to continue prosecuting the application, Lu et al. (2017) can identify
rejections due to the Supreme Court decision in Alice Corp. v. CLS Bank International. The au-
thors restrict to published applications, thus I can use the Patent Examination Research Dataset
(PatEx)2 and published applications3 to extract the respective independent claim texts and addi-
tional application details such as filing date, patent class, and application status.4 I identify the four

1The data are sourced from the Office of the Chief Economist (OCE), URL: https://www.uspto.gov/
learning-and-resources/electronic-data-products/office-action-research-dataset-patents.

2Available from USPTO, URL: https://www.uspto.gov/learning-and-resources/
electronic-data-products/patent-examination-research-dataset-public-pair.

3Applications received since November 2000 are generally published within 18 month since the American Inven-
tors Protection Act (AIPA) (Graham et al. (2015)). XML files with weekly pre-grant publications of applications are
available under https://bulkdata.uspto.gov/.

4I can find for more than 90% of all applications with Alice rejections the respective claim publications. If ap-

https://www.uspto.gov/learning-and-resources/electronic-data-products/office-action-research-dataset-patents
https://www.uspto.gov/learning-and-resources/electronic-data-products/office-action-research-dataset-patents
https://www.uspto.gov/learning-and-resources/electronic-data-products/patent-examination-research-dataset-public-pair.
https://www.uspto.gov/learning-and-resources/electronic-data-products/patent-examination-research-dataset-public-pair.
https://bulkdata.uspto.gov/
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USPC patent classes with the most rejections due to Alice, accounting for more than 91% of all
Alice-based claim rejections in my sample.5 Treated claims are those rejected claims that had no
other issue identified in the office action and were either final rejections, were abandoned due to
failure to respond to the office action, or were abandoned after the examiner’s answer or board of
appeals decision. In total, this renders 5,125 unique treated claim texts.

For the classification algorithm to be trained, I need to have a control group of claim texts that
are valid under Alice. I select applications from the same USPC classes and the same filing years
as the treated applications. I limit to applications that were granted without office action due to
35 U.S.C. §101, that is without issues referring to subject matter eligibility that could relate to the
Alice decision.6 I restrict to utility patents issued after the Alice decision in June 2014 and use
the final claim text from PatentsView; I can be reasonably certain that this issued claim text was
deemed eligible under Alice by the patent examiner. To balance my training sets, I randomly draw
independent claims as controls, proportional to the distribution of USPC classes and filing years as
in my treated claims set.

Figures C.2a and C.2b show word clouds of the most frequent words in the treated and control
claim corpa, with more frequent words being larger. The clouds look quite similar, which is to be
expected for claims from the same patent classes and the same cohorts. The terms are weighted by
raw term frequencies without any pre-selection of terms, thus some of the most prominent terms in

plicants only file in the U.S. and don’t seek protection in other national jurisdictions, however, they can request non-
publication of an application, which might introduce selection bias into my observable treated claims. Overall, only
3.4% of all Alice treated applications do not have a pre-grant publication (making up around 36.9% of all missing
observations). Furthermore, looking at the sets of applications for which I am not able to find the published pre-grant
publication, I do not find evidence for any selection: the average time between filing and recorded pre-grant publica-
tion are for both groups very similar with on average 317 days for the publications I found versus 284 days for the
missing application, likewise the likelihood of being ultimately granted are 57% and 50%, respectively. For the ulti-
mately granted applications, the average time between filing and patent issue is statistically not different between the
groups, with on average 1,519 days for the found applications and 1,474 days for the missing observations. This rejects
the notion that applicants systematically defer publication of Alice-affected claims if the issues are more likely to be
resolved. Overall, the applications to which I cannot link claim texts are very similar to the applications with treated
claims in terms of USPC classes and filing years, suggesting that the missing claim publications are due to issues like
typos and errors in the underlying XML files.

5Those classes are: 705 (Data processing: financial, business practice, management, or cost/price determination),
463 (Amusement devices: games), 702 (Data processing: measuring, calibrating, or testing), 434 (Education and
demonstration); with the 705 class making up 82.4% of all rejected claims, followed by 9.9% for class 463, 4.6% for
class 702, and 3.1% for class 434, each containing at least 100 claims.

6The paragraph reads: ’Whoever invents or discovers any new and useful process, machine, manufacture, or com-
position of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions
and requirements of this title.’ The Alice decision significantly broadened the scope of ineligible subject matters by
holding that the financial settlement system in the disputed patent is ineligible as mere computer-based implementation
of an abstract ideas.
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(a) Word frequency Alice-affected claims

(b) Word frequency control claims

Fig. C.2. Word clouds for raw word frequencies

both groups are terms with little individual meaning such as ‘plurality’, ‘least’, ‘wherein’, reflecting
the legal nature of the claim formulations.

Figures C.3a and C.3b show word clouds by weighting based on the relative frequency differ-
ences of terms, i.e. how more frequent is a word in one class compared to the other class. Words
like ‘amount’, ‘financial’, ‘risk’, and ‘account’ are more prominent for Alice-affected claims, since
the invalidated patents in the case were about an electronic escrow service for facilitating finan-
cial transactions. While the eligible claims contain more diverse words including specifications of
physical implementations like ‘device’, ‘server’, ‘display’, Alice-affected claims prominently fea-
ture abstract descriptions about business processes such as ‘computer’, ‘determining’, ‘method’,
and ‘program’. This is in line with the Supreme Court ruling stating that abstract claims are not
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(a) Relative word frequency Alice-affected claims

(b) Relative word frequency control claims

Fig. C.3. Word clouds with differential frequency weighting

eligible just by introducing a computer into the claim.7 The wording of the treated and control
claims thus have distinct characteristics which are not merely explained by patent class or filing
cohort.

7See the Syllabus to Alice Corporation v. CLS Bank International, Supreme Court, No. 13–298.: ’“Simply ap-
pending conventional steps, specified at a high level of generality,” to a method already “well known in the art” is
not “enough” to supply the “ ‘inventive concept’ ” needed to make this transformation [from an abstract idea into a
patent-eligible invention]. [...] . The introduction of a computer into the claims does not alter the analysis. Neither
stating an abstract idea “while adding the words ‘apply it,’ ”’
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Model building and evaluation

I need to construct a binary classification mechanism and train it on the rejected claims with the
eligible claims as control set to classify patent claims based on their exposure to the Alice decision.
This is a typical natural language processing application in machine learning.8

Since most classification algorithms require numerical features as input, I need to vectorize
claim texts into arrays. I split the text of the claims into separate words (tokens), remove all num-
bers, special characters, HTML tags, punctuation, and words shorter than three characters. I also
remove stop words, i.e., common words that occur with high frequency but carry little substantive
information like ‘the’, ‘and’, ‘like’. Finally, I convert the resulting strings to lowercase and apply
the Porter stemming algorithm, e.g., the words ‘playing’, ‘played’, and ‘play’ all have the same
stem ‘plai’.9

To turn the resulting arrays of tokens into a numeric vector representation, I count the occur-
rences of each token found in the corpus for each document. The collection of claims thus can be
represented by a matrix with one row per claim and one column per token (e.g. ‘word’) or n-gram
(i.e. a sequence of n tokens) occurring in the corpus. I use here uni- and bigrams, i.e., sequences
of up to two tokens as features. A single claim thus is represented as a matrix row with the num-
ber of occurrences of a token / n-gram, i.e., the term-frequency, as the cell entry in the respective
column. Since tokens that are very common among claims have little value in classifying them,
I weight the term-frequency with the inverse document-frequency. This means the frequency of
occurrences of a token / n-gram is multiplied by a factor decreasing with the frequency of the term
in the overall corpus.10 The text of treated and control claims thus is represented as numeric vec-
tors, underweighting common terms, in a TF-IDF matrix, a Term Frequency–Inverse Document
Frequency matrix.

Having a vector space representation of the treated and control claims in the TF-IDF matrix, I
use a support vector machine to construct a hyper-plane to separate eligible from ineligible claims.
I use a support vector machine with quadratic kernel to solve for non-linear classifications.11 The
full model thus takes as input the full-text of a claim and gives a predicted probability between 0
and 1 of whether this claim was affected by the Alice decision. I use 85% of the training claim data

8All calculations and executions were performed in Python 3.7.8 on a GNU/Linux operating system, release 3.10.0-
1062.18.1.el7.x86_64

9All these pre-processing steps are performed using the ’gensim’ library in Python 3 with the function ’prepro-
cess_string’.

10The specific weighting term is idf(t) = ln 1+n
1+df(t) +1 with n being the total number of claims in the training set

and df(t) the number of claims in the corpus containing the term t. The resulting vectors are also normalized to unit
length.

11Using a linear or rbf kernel doesn’t change the results. I use here the implementation for the TF-IDF matrix and
the support vector classification (SVC) in sklearn.
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for model fitting and the rest for evaluating the fit quality. Table C.1 reports the performance of my
classification model for this test dataset, figures C.4c, C.4a, and C.4b give a graphical interpreta-
tion with the confusion matrix, precision-recall curve, and receiver operating characteristic (ROC)
curve.

The confusion matrix plots for the test sample the relative share of correctly predicted labels
in the diagonal from the upper left to the bottom right corner. Thus, the relative number of true
negatives and true positives (since I define Alice rejections as treated) are in the diagonals. Related
measures of these are precision, defined as the number of true positives over the number of true
positives plus the number of false positives, and recall, defined as the number of true positives over
the number of true positives plus the number of false negatives. I want to achieve a high precision,
i.e., my model correctly classifies claims as affected, and a high recall, i.e., my model finds most
instances of Alice-affected claims.

precision recall f1-score support

Valid Claims 0.940 0.915 0.927 696
Invalid Claims 0.917 0.941 0.929 696
macro avg 0.928 0.928 0.928 1392
weighted avg 0.928 0.928 0.928 1392

Precision Score 0.917
Recall Score 0.941
Accuracy Score 0.928
F1 Score 0.929
MCC 0.857

Table C.1. Classification report of prediction model

There is a trade-off between these two measures, since higher thresholds for being classified
as affected return fewer results, but most of the predicted labels are correct when compared to the
training labels, i.e., a high precision. On the other hand, if the threshold is very low, the model
returns many results, i.e., has a high recall, but most of its predicted labels are incorrect. The
precision-recall curve plots this trade-off for different threshold levels, with a larger area under the
curve indicating a better classification. The receiver operating characteristic (ROC) curve similarly
plots the fraction of true positives out of the invalid claims against the fraction of false positives out
of the valid claims at various threshold settings. The 45 degree line in this ROC curve plot would
represent a random guessing model, while a good model would be in the upper left corner with a
high true positive rate and a low false positive rate.



APPENDIX C. APPENDIX: NLP METHODOLOGY 81

All the relevant performance measures for each class are shown in the classification report in
table C.1. Macro and weighted averages of precision and recall are identical since I use a balanced
training and test set. In the lower panel of the classification report, I also report the overall precision
and recall scores, as well as the accuracy score, which is the average of correctly classified labels. A
common measure combining precision and recall is the F1-score, defined as F1 = 2 precision∗recall

precision+recall
.

Furthermore, the Matthews correlation coefficient (MCC) is frequently used to measure the quality
of binary classification models.

Overall, all measures show a very good classificationmodel with high precision, high recall, and
more than 85% MCC correlation, meaning a very high correlation between the true and predicted
labels.

To further validatemymodel choice, I use different performancemetrics in table C.2 to compare
popular classification models on my training and test data. All models were used in their default
features, nevertheless my approach using a support vector machines proves to be best among the
listed classifiers.

Model Name Precision Score Recall Score F1 Score Accuracy Score MCC

Logistic Regression 0.813 0.829 0.821 0.819 0.638
Naive Bayes 0.802 0.819 0.810 0.808 0.617
Support Vector Machine 0.893 0.935 0.914 0.912 0.824
Decision Tree 0.746 0.777 0.761 0.756 0.513
Random Forest 0.876 0.905 0.890 0.889 0.778
K-nearest Neighbors 0.769 0.773 0.771 0.770 0.540
Stochastic Gradient Descent 0.852 0.869 0.861 0.859 0.719
AdaBoost 0.724 0.739 0.731 0.728 0.457
Gradient Boosting 0.767 0.792 0.779 0.776 0.552

Table C.2. Comparison of different classification models

C.2. Patent claim classification

Using my trained classification model, I calculate the predicted probability of being affected by Al-
ice for independent patent claims in the treated USPC classes. I do this for all patents issued since
1990 using the claims data from PatentsView.12 This renders a total 393,100 classified claims
in 115,630 unique patents. Since the USPTO moved to CPC classification in 2013, I repeat the

12URL: https://www.patentsview.org/download/claims.html.

https://www.patentsview.org/download/claims.html


APPENDIX C. APPENDIX: NLP METHODOLOGY 82

(a) Precision-recall curve (b) ROC curve

(c) Confusion matrix

Fig. C.4. Model performance graphics

classification process for the five CPC groups most consistent with my USPC classes.13 Classify-
ing patent claims based on CPC groups gives 3,236,420 classified independent claims in 983,229
patents. This is notably more than using the USPC classification, which can be mainly led back
to the USPC classification at issue ending in 2015 in the PatentsView data and the affected CPC

13There is no direct mapping from the USPC classes into CPC, however the groups A63F (video games), G07F
(coin-freed or like apparatus), G06F (digital data processing), H04L (transmission of digital information), and G06Q
(data processing systems) represent around 50% of the affected patents in the USPC classes 705, 463, 434, and 702.
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groups being much broader than the USPC classes.14 This broader definition of treated patents
classes under CPC can also be seen in figures C.5a, C.5b, C.5c, and C.5d where I generate word
clouds from the claim texts that are predicted to be treated and untreated under Alice for the CPC
and USPC classes: the CPC group clouds are in general more diverse, though the overall image
is similar with words like ‘computer’, ‘means’, ‘value’, ‘device’, ‘signal’, and ‘display’ showing
prominently in both class groups.15

(a) Relative word frequency of predicted Alice
treated patents in main CPC groups

(b) Relative word frequency of predictedAlice
treated patents in main USPC classes

(c) Relative word frequency of predicted un-
treated patents in main CPC groups

(d) Relative word frequency of predicted un-
treated patents in main USPC classes

Fig. C.5. Word clouds for classified patent claims

To understand better which words are most important for the classification decision, I use a
Local Interpretable Model-agnostic Explanations (LIME) algorithm on 1000 randomly selected
patent claims. The basic idea behind the LIME algorithm is to perturb the underlying text by
leaving out words and measuring how much and in which direction this changes the classification.
Doing this gives for each test text a list of words with the highest positive or negative impact on
the classification. In table C.3, I show the 20 most frequent words associated with a classification
as eligible and ineligible. The general picture from the word clouds of figures C.3a and C.3b is

14The four treated USPC classes account for a total of around 1.1% of class assignments, while the five correspond-
ing CPC groups make up around 9.2% of all CPC assignments.

15I restrict to a sample of 1 million claims from the CPC groups to limit memory issues in the execution.
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confirmed: more precise wording with references to the actual implementation of claims improves
the eligibility. More abstract and general formulations of methods and processes render claims
ineligible. This is consistent with the findings of Dugan (2018) and the literature stating that more
specific formulations in claims are eligible under Alice compared to abstract ideas and processes
(DiNizo (2018), Tran and Benevento (2019), Craig (2017)). Notably, the differences between the
respective CPC andUSPC classes are small, giving confidence in ability of the prediction algorithm
to correctly predict Alice-affected patents in the larger CPC groups.

The most frequent word with impact on the classification are ‘said’ for ineligible texts and ‘sec-
ond’ for eligible language. These words also show up in the respective word clouds in figures C.3a,
C.3b, C.5b, C.5a, C.5d, and C.5c. ‘Said’ and ‘second’ are examples of sentence structures in eligi-
ble and ineligible claims that cannot be captures by, e.g., key word search: while ‘said’ frequently
refers back to a broader subject at the beginning of a claim, ‘second’ is common in sentences about
how several components of an invention are interacting, thus giving a more concrete description of
the operations.

Since more patent granted since 2013 have a CPC classification rather than a USPC classifica-
tion, I focus on the CPC based patent classification in the following. Finally, I define a patent as
being treated if its first claim is predicted to be invalid under Alice. The first claim is the broadest
claim of a patent and thus sets the scope for the technology protected by the patent (see, e.g., Kuhn
and Thompson 2019). Alternative specifications of treatment are as follows: a patent is treated if
the majority of its independent claims are predicted to be Alice-treated, the average (continuous)
predicted treatment probability for all independent claims is above 50%, or at least one independent
claim is predicted to be Alice-treated. The different treatment definitions on patent-level are highly
correlated with correlation coefficient between 71.1% and 88.0%.16 The only effective difference is
in how many patents are predicted to be treated: of the 1,062,883 classified patents, 18.5% are pre-
dicted to be treated using the first claim. Using the average predicted treatment probability leads to
the fewest patents being Alice-treated (14.4% of classified patents) and minimum one claim treated
to the most treated patents (24.9% of classified patents), in any case the number of treated patents
is large with more than 150,000. In practice, these variation in the definition of treated patents have
little effect on the economic analysis.

Patent Litigation - Validation Analysis

I use the Stanford NPE Litigation Dataset, based on Miller et al. (2018), to assess if my classifi-
cation mechanism can predict real world patent challenges. The Stanford NPE Litigation Dataset
is the ‘first ever publicly available database to track comprehensively how practicing entities, non-
practicing entities, and patent assertion entities (PAEs) claim patent ownership rights in litigation.

16The main definition of the first claim treated has a correlation coefficient of 82.6% with the minimum one claim
treated definition and 88.0% with most claims treated, thus the first claim is very predictive for the rest of the patent.
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USPC classification CPC classification
Ineligible words Eligible words Ineligible words Eligible words
said second said second
means device method device
method data means data
value signal value signal
steps plurality program control
program display memory plurality
player game comprising network
function control steps user
processor signals file information
step user group display
processing sensor module request
condition information processing signals
module position processor application
transaction server code content
comprising image level server
reference time sequence image
level network bit circuit
number electronic bits node
selected application input address
test circuit logic virtual

Table C.3. LIME important words for classification in 1000 claims sample

[...] [R]esearchers are tracking every lawsuit filed in U.S. district courts from 2000 to the present
and identifying each patent plaintiff as either a practicing entity or as one of eleven types of NPEs.’17
Since confounding legal changes around 2014/2015 have limited the ability for NPEs to file law-
suits (Appel, Farre-Mensa, and Simintzi 2019), I focus on lawsuits with product companies as
plaintiff. Product companies manufacture products, sell products, or deliver services generally,
or are IP enforcement subsidiaries of practicing entities. This category account for around 52.4%
of all patent litigation cases in the database. Lawsuits by product companies are also less likely
to be ‘opportunistic’ (Cohen, Gurun, and Kominers 2019) and the patents defended are related to
actual products and used technologies. Thus, if I find that patents predicted to be treated by the
NLP method are less likely to be litigated by product companies after 2014, I can confirm that my
algorithm identifies patents that are less enforceable after Alice.

17URL: https://law.stanford.edu/projects/stanford-npe-litigation-database/

https://law.stanford.edu/projects/stanford-npe-litigation-database/
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Fig. C.6. Share of treated and non-treated patents in product company litigation

In figure C.6, I plot year dummy regression coefficients with 95% confidence intervals for the
share of treated patents among all litigated patents in the filing years and the share of patents that are
in the CPC-groups that are classified but predicted to be not treated. The regression is restricted to
lawsuits filed by product companies between 2000 and 2019 and the dependent variable is scaled
to zero mean and unit variance. Coefficients are re-leveled with respect to 2013, immediately
before Alice. While the share of non-treated patents in product company lawsuits remains largely
unchanged, we see a clear downward shift after 2014 for the share of treated patents (there is one
outlier for non-treated patent shares in 2012, which is not part of trend though). The magnitude
of the shock is large; the share of treated patents before Alice was 4.82%, this falls by 2.33%, a
drop of more than 48%. The share of non-treated patents was 16.9% and falls by 2.91%, a much
smaller decrease of just 17.2%. Thus, my method can predict the enforceability of patents after
Alice, even for patents filed within the same CPC-groups. The prediction method is not perfect,
though, thus I still expect a negative treatment effect for patents that are predicted to be non-treated.
However, the differences in magnitudes is large and my method more reliably predicts treatment
than CPC-groups alone.18

18A more detailed investigation of whether my model can predict invalidation of patents in infringement cases is
beyond the scope of this paper. To do this, for each patent, PACER data would need to be searched and analyzed for
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Overall, my NLP algorithm is a reliable method for predicting the exposure of patents to Alice.

references to the Alice decision. It also could be that a higher exposure to Alice decreases the likelihood of suing for
patent infringement, since the court could strike down the patent as ineligible.
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