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STEM EBIC Mapping of the Metal-Insulator Transition in Thin-film NbO2 
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A metal-to-insulator transition (MIT) occurs in NbO2 near 1100 K, coincident with a subtle change in its 

crystal structure [1, 2]. Because this transition, or a possibly related one, can be induced by applying a 

local bias, NbO2 could potentially serve as a selector material that reduces the “sneak current” problem in 

resistive memory arrays. In a previous study [3] we attempted to image the bias-induced transition in 

Pt/NbO2/Pt devices with scanning transmission electron microscopy (STEM) while switching in situ. The 

transition-driven structural changes proved to be too subtle to map the transitioned area effectively. Here 

we report STEM electron beam-induced current (STEM EBIC) imaging of a thermally-induced MIT in 

thin-film NbO2 devices. 

 

We fabricated a Ti/Pt (5/25 nm) heater on an electron-transparent Si3N4 membrane and coated the device 

with a 20 nm conformal layer of Al2O3 using atomic layer deposition (ALD). We then patterned Ti/Pt 

probe electrodes on the Al2O3 and coated these with 30 nm of NbO2 via pulsed laser deposition using a 

previously reported recipe [2, 3]. We suspect that, because of air exposure, a thin layer of insulating Nb2O5 

coats the NbO2. Figure 1 shows four STEM images (top row) and a schematic (lower left) of the resultant 

heating/biasing NbO2 device. A current amplifier is attached to the probes, which are electrically 

connected to the NbO2. Thus, to the extent that the NbO2 conducts, the current amplifier is connected to 

the entire NbO2 layer. In contrast, the current amplifier is nominally isolated from the heater by the 

insulating Al2O3.  

 

With this heating/biasing device architecture, we measured the resistance between the probes (i.e. through 

the NbO2) and acquired STEM images for a series of heater powers. As the heater power was increased, 

the resistance between the probes (plotted in green in the lower-right of Figure 1) dropped sharply at first, 

and then leveled off after ~500 µW.  As the heater power was changed, the first three, standard STEM 

images showed only minor changes, which we attribute to small, thermally-induced grain rotations.  In 

contrast, the STEM EBIC image developed a large, obvious dark patch (representing a negative EBIC) 

centered on the region expected to see the largest heating.   

 

The plot in the lower center of Figure 1 shows the raw, average current measured by the current amplifier 

when the STEM electron beam is in the regions in blue (near the heater) and red (far from the heater) 

indicated on the EBIC image. These curves are dominated by a beam-position-independent current that is 

present even when the beam is blanked. This current contribution we attribute to leakage between the Pt 

heater and NbO2 film and is, by definition, not an EBIC.  The true EBIC signal is taken to be the difference 

between the two raw signals, and is shown in black in the lower-right plot.  This signal is always negative, 



indicating that the NbO2 layer is collecting electrons, regardless of whether the heater bias is positive or 

negative. The origin of these electrons is not yet well understood.  
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Figure 1.  (top row) Three standard STEM images, and one STEM EBIC image, simultaneously acquired 

with 706 µW applied to the heater. A perspective schematic of the experiment (lower left) shows the EBIC 

amplifier attached to the probes on the right and a voltage source driving the heater on the left. The inset 

in the lower-center plot shows a cross-sectional schematic of the device. This plot shows average current 

measured for a region inside (blue) and outside (red) the heater, as indicated on the EBIC image. The 

difference between the red and blue plots, or the true EBIC signal, is shown in black in the lower-right 

plot, along with the resistance measured between the probes in green. 




