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We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit 
anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, 
non-perfect groups generically suffer from anomalies. We present two different ways that allow one to 
understand these statements.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

It is well known that discrete symmetries may be anoma-
lous [1]. If this is the case, this can have important consequences 
for phenomenology. It implies that the symmetry is violated 
(at least) at the non-perturbative level. Originally, anomaly con-
straints for Abelian finite groups have been derived by considering 
U(1) symmetries that get spontaneously broken to ZN [2–4]. An 
arguably more direct derivation is based on the path integral 
approach [5,6], which can also be applied to discrete symme-
tries [7,8]. In this approach, a given symmetry operation is said 
to be anomalous if it implies a non-trivial transformation of the 
path integral measure. From this it is straightforward to see that 
there are no cubic anomalies for global symmetries. We can hence 
limit our discussion to anomalies of the type D–G–G , where D de-
notes the discrete symmetry and G the continuous gauge group of 
the setting, respectively.

An alternative approach to ensure anomaly freedom is to start 
with an anomaly-free continuous symmetry and breaking it to a 
discrete subgroup [9,10]. One then obtains embedding constraints, 
which guarantee anomaly-freedom but generally are more restric-
tive than the true anomaly constrains. In this work, we use the 
path integral approach to discuss anomalies of discrete symmetries 
and focus on the true anomaly constraints.
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As noted already in [11], the D–G–G anomaly coefficient van-
ishes if D is a so-called perfect group because then the genera-
tors of D are traceless, in close analogy to the Lie group case. 
In this study, we present a more thorough discussion of the ar-
gument. We then present an alternative argument, based on the 
observation that the path integral measure transforms in a one-
dimensional representation of the discrete group D . Besides of-
fering an alternative but completely equivalent proof that perfect 
groups are anomaly-free, this allows us to conclude that all non-
perfect groups generically have anomalies. Nevertheless, there exist 
particular non-perfect discrete groups D such that for G = SO(N)

or any of the exceptional groups the D–G–G anomaly vanishes in-
dependently of the field content, and we will give a criterion when 
this is the case.

Examples for perfect and thus anomaly-safe groups are all non-
Abelian finite simple groups. This includes, for example, the alter-
nating groups An for n ≥ 5, the projective special linear groups 
PSL(n, k) for n > 1 and finite fields k with more than three ele-
ments, and also the sporadic groups. An example for groups which 
are not simple yet perfect and anomaly-safe are the special lin-
ear groups SL(n, k) with n > 1 and k > 3 [12]. Furthermore, the 
(semi-)direct product of two perfect groups is again a perfect 
group (as proven in Appendix A).

On the other hand, all non-perfect groups generically can suf-
fer from anomalies. For example, this includes A4, T′ , T7, Sn , Dn , 
which have been utilized frequently in model building, and in gen-
eral all groups that have at least one non-trivial one-dimensional 
representation (cf. [13] for an extensive list of discrete groups).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Dynkin indices of the fundamental representations F for the simple compact Lie 
groups.

G SU(N) Sp(N) SO(N) G2 F4 E6 E7 E8

�(F ) 1/2 1/2 1 1 3 3 6 30

As we shall also discuss, anomalies of finite groups can al-
ways be cancelled by a discrete version of the Green–Schwarz (GS) 
mechanism [14]. However, in this case the symmetry is not exact, 
i.e. there exist certain terms that violate it.

2. Anomalies of discrete groups

Let us start by discussing a quantum field theory with a finite 
discrete symmetry D . For definiteness, we consider the case that 
there is also a non-Abelian gauge symmetry G , noting that our 
arguments also hold for Abelian gauge factors and gravity.

Furthermore, we assume that there is a set of Dirac fermions �
charged under D and transforming in a representation R under G . 
Given an element u ∈ D let Ur(u) be the unitary representation 
matrix of u in the unitary representation r. For finite groups, there 
always exists an integer Mu such that uMu = e. This allows us to 
write

Ur(u) = e2π i λr(u) / Mu , (2.1)

with a matrix λr(u) that has integer eigenvalues. Let us now inves-
tigate a discrete chiral transformation under which the left-handed 
fermion fields �L := PL � transform as

�L → Ur(u)�L = e2π i λr(u) / Mu �L , (2.2)

where PL is the left-chiral projector and r is the representation 
of �L under D .

The transformation of fermion fields induces, in general, a trans-
formation of the path integral measure

D� D� → J−2
� D� D� (2.3)

with possibly non-trivial Jacobian J� . For the set of fields � the 
Jacobian under the transformation u is given by

J−2
� = exp

{
i

2π

Mu
tr[λr(u)] · �(R) ·

∫
d4x

1

16π2
F a,μν F̃ a

μν

}
.

(2.4)

Here, Fμν := F a
μνTa denotes the field strength tensor of the gauge 

group G with generators Ta , and F̃ μν := 1
2 εμνρσ Fρσ its dual. 

Our conventions are such that Fμν := i 
[

Dμ, Dν

]
for the covariant 

derivative Dμ := ∂μ − iAμ .
The Dynkin index of the corresponding gauge group represen-

tation �(R) is defined as usual,

δab �(R) := tr [Ta(R)Tb(R)] . (2.5)

We fix the Dynkin index following the conventions of [15].1 For 
the simple compact Lie groups, the resulting Dynkin index �(F )

of the fundamental representation F , which is always taken to be 
(one of) the smallest dimensional representation(s), is shown in 
Table 1.

We define

p :=
∫

d4x
1

32π2
F a,μν F̃ a

μν (2.6)

1 This amounts to normalizing the length of the longest root to unity. The Dynkin 
index of the adjoint representation is then the same as the dual Coxeter number of 
the group.
which in our convention is an integer [15,16] in order to simplify 
equation (2.4) to

J−2
� = exp

{
i

2π

Mu
p · tr[λr(u)] · 2�(R)

}
. (2.7)

When performing the gauge-field path integral, i.e. integrating over 
all gauge-field configurations, p assumes all integer values. There-
fore, we have to discuss the anomaly independently of the exact 
value of p and can take advantage only of the fact that it is inte-
ger.

In case there are multiple fermions in the theory, their con-
tribution to the path integral measure is the product of their re-
spective Jacobians. This amounts to summing up the individual 
contributions in the exponential. Thus, the overall effect on the 
path integral measure due to a transformation u, which generates 
a cyclic group ZMu , can be summarized by defining the anomaly 
coefficient

AG−G−ZMu
:=

∑
f

tr[λr( f ) (u)] · 2�(R( f )) . (2.8)

Here, the sum runs over all chiral fermions f transforming in rep-
resentations r( f ) under D and in representations R( f ) under G . 
Note that by the inversion of equation (2.1) one obtains

tr[λr(u)] = Mu

2π i
ln det Ur(u) . (2.9)

Since the trace of λr(u) is only fixed modulo Mu due to the multi-
valued logarithm and because 2 �(R) is integer, AG−G−ZMu

is only 
defined modulo Mu .

In general it is possible that

AG−G−ZMu
�= 0 mod Mu , (2.10)

implying that the overall Jacobian J is different from one and the 
group generated by u is anomalous.

Perfect groups are anomaly-safe Let us now consider the particular 
case that the group D is a perfect group. A perfect group, by def-
inition, equals its commutator subgroup, see also Appendix A. As 
such, all generating elements d ∈ D of the group (but, in general, 
not all elements) can be written as the (group-theoretical) com-
mutator

d = [v,w] :=
(

v w v−1 w−1
)

, (2.11)

of some group elements v,w ∈ D . This implies that any group ele-
ment u ∈ D can be written as a product of commutators

u =
∏

i

[vi,wi] , (2.12)

where vi, wi ∈ D . Irrespective of the particular representation, any 
representation matrix can thus be written as

Ur(u) =
∏

i

(
Ur(vi) Ur(wi) Ur(vi)

−1 Ur(wi)
−1

)
. (2.13)

This shows that det Ur(u) = 1, implying that the generator matrix 
λr(u) in equation (2.9) is traceless for all representations r of the 
perfect group D . Therefore, no element of a perfect group can give 
rise to a non-trivial anomaly coefficient. From this we conclude 
that for perfect groups all anomalies vanish [11].

The Jacobian as a one-dimensional representation of D Let us now 
discuss a possibly more intuitive way to arrive at the same conclu-
sion. Using equation (2.9), the Jacobian (2.7) can be written as

J−2 = det (Ur(u))2 �(R) · p , (2.14)
�
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which might be more useful than (2.7) for finite groups since it 
does not refer to the generators but directly uses the representa-
tion matrices to express the anomaly. Thus, a transformation u is 
anomaly-free if and only if∏

f

det
(
Ur( f ) (u)

)2 �(R( f )) = 1 . (2.15)

Note that the determinant of any representation is a well-
defined one-dimensional representation because

det (Ur(u v)) = det (Ur(u) Ur(v))

= det (Ur(u)) det (Ur(v)) , (2.16)

and, furthermore, any integer power of a one-dimensional repre-
sentation is again a one-dimensional representation.

Since the exponent in (2.14) is integer, we conclude that J−2
�

transforms in a one-dimensional representation of D . In case there 
are multiple fermions, the transformation of the total path integral 
measure J−2 is obtained as the direct product of the single one-
dimensional representations of the individual Jacobians, which is 
again a well-defined one-dimensional representation of D .

The statement that perfect groups are free of anomalies can 
now be understood in a different but completely equivalent way. 
One can show (for a proof see Appendix A) that the following 
statements are equivalent:

(i) a finite group D is perfect.
(ii) D has exactly a single one-dimensional representation, namely 

the trivial one.

Furthermore, by the arguments laid out above, the path integral 
measure always transforms in a one-dimensional representation. 
Thus, for settings based on perfect groups, the path integral mea-
sure can only transform in the trivial representation, i.e. it does 
not transform at all and perfect groups are anomaly-safe.

Let us remark that the absence of non-trivial one-dimensional 
representations for perfect groups implies that they cannot be 
used as non-Abelian discrete R symmetries with N = 1 super-
symmetry [11]. Moreover, model building (e.g. for flavor physics) 
with perfect groups is generally more restrictive because poten-
tials with only multi-dimensional representations tend to be more 
constrained.

Non-perfect groups and anomalies Consider now the case of a dis-
crete group D which is not perfect. It follows from the above 
equivalence that non-perfect groups always have at least one 
non-trivial one-dimensional representation. Consequently, theories 
based on non-perfect groups can be anomalous depending on the 
specific field content, i.e. non-perfect groups are, in general, not 
safe from anomalies.

However, for some non-perfect discrete groups combined with 
SO(N) or exceptional gauge groups, anomaly freedom is automatic, 
independently of the field content. That is, there are some discrete 
groups D for which the mixed D–G–G anomalies always cancel 
if G is an SO(N) or exceptional group but not if G = SU(N). Let 
us discuss a general criterion when this is the case. For SO(N) or 
exceptional gauge groups, the Dynkin index �(F ) is not 1/2 but 
some integer, cf. Table 1. Therefore, a generic setting based on such 
a gauge group and a non-perfect finite group is anomaly-free as 
(2.15) is satisfied, provided that the finite group exclusively has 
non-trivial one-dimensional representations 1nt which obey

(1nt)
2 �(F ) = 10 , (2.17)
where 10 is the trivial one-dimensional representation. An example 
is provided by the symmetric groups Sn , which have only one non-
trivial one-dimensional representation with some elements repre-
sented as −1. Hence, for symmetric groups the Sn–G–G anomaly 
vanishes for G not being SU(N) or Sp(N) independently of the field 
content.

More generally, equation (2.17) is certainly fulfilled for any 
combination of discrete group D and gauge group G for which

2�(F )

|D/[D, D]| ∈ Z . (2.18)

That is, it is fulfilled if the order of the Abelianization of D divides 
twice the smallest Dynkin index of G . This criterion can be fur-
ther refined. To see this, note that, using the fundamental theorem 
of finite Abelian groups (cf. e.g. [17]), the Abelianization D/[D, D]
can always be written in standard form as a direct product of Zp

νi
i

factors where each order pνi
i is some power νi of a prime num-

ber pi . Thus, the maximal order of elements of D/[D, D] is the 
least common multiple of the pνi

i (cf. e.g. [17]). Hence, the group 
is anomaly-free with respect to G independently of the field con-
tent if and only if the least common multiple of the pνi

i divides 
2 �(F ).

However, we see that in general non-perfect groups are not safe 
from anomalies. As usual, anomaly freedom amounts to imposing 
constraints on the spectrum and the continuous gauge symme-
try G .

Further comments Let us explain the relevance of our statements 
for finite simple groups. It is well known that non-Abelian fi-
nite simple groups are perfect, cf. e.g. [18, p. 27] and Appendix A. 
As such, non-Abelian finite simple groups are always safe from 
anomalies. Abelian finite simple groups, on the contrary, are non-
perfect and therefore generically suffer from anomalies.

Finally, let us also comment on infinite (i.e. non-compact) dis-
crete groups. By definition, |D/[D, D]| = 1 also holds for infinite 
perfect groups. Thus, we expect that also infinite perfect groups 
are anomaly-safe. Non-perfect infinite groups, on the other hand, 
have at least one non-trivial one-dimensional representation such 
that settings involving such groups may be anomalous in general. 
An example for a non-perfect infinite group is SL(2, Z). This group 
appears as T -duality symmetry in superstring theories. It is known 
that it may exhibit anomalies [19,20], which actually allow one to 
draw interesting conclusions on the properties of the underlying 
model.

3. Green–Schwarz cancellation of discrete anomalies

In the remainder of this study we wish to discuss settings 
in which the anomaly coefficient (2.8) is non-vanishing. Yet the 
anomaly, i.e. the transformation of the path integral measure, may 
be compensated by a corresponding transformation of an ‘axion’. 
This is the Green–Schwarz (GS) mechanism [14] for discrete sym-
metries [21,22]. For it to work, the ‘axion’ field a needs to couple 
to the corresponding field strength via

Laxion ⊃ − a

fa

(
Fμν F̃ μν

)
(3.1)

with fa denoting its decay constant. Further, the axion a has to 
transform with a shift a → a + �u under the anomalous transfor-
mation u. Here, �u needs to be such that it precisely cancels the 
factor in front of Fμν F̃ μν in (2.4). Whereas one can always define 
such a shift for a single Abelian symmetry, the shifts for differ-
ent Abelian subgroups of a non-Abelian group have to be mutually 
consistent to cancel the anomaly of the whole group [11]. The fact 
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that the path integral measure J−2 transforms in a well-defined 
one-dimensional representation of D nicely explains why such a 
cancellation is always possible.

One may think of the axion a as the complex phase of a field, 
 = r ei a , which transforms in the complex conjugate representa-
tion of J−2. Therefore, there is the possibility of having allowed 
operators of the form ei β a O with some constant β . Here O de-
notes an operator that transforms under D with a phase, i.e. O
is in a non-trivial one-dimensional representation. Without the 
axion-dependent prefactor, O is hence prohibited by the sym-
metry. Upon the axion acquiring its VEV, the terms of the form 
ei β a O appear to violate the discrete symmetry D (similar to the 
case of a pseudo-anomalous U(1), see e.g. [23]). That is, unlike 
for the case of anomaly-free discrete symmetries, in the case of 
pseudo-anomalous discrete symmetries there will be terms that 
may considerably alter the phenomenology of models.

To conclude, there are just two possibilities for the consider-
ation of anomalies in finite groups: either the group is perfect 
and the anomalies vanish automatically, or the group is not per-
fect. In the second case, there may be anomalies depending on 
the field content; yet one can always consistently use a Green–
Schwarz mechanism to cancel the anomaly. However, as men-
tioned earlier, the symmetry is then broken by certain (e.g. non-
perturbative) terms. Hence, statements concerning phenomenolog-
ical consequences of models based on such pseudo-anomalous 
symmetries need to be taken with some care. In particular, one 
may be concerned whether or not such symmetry breaking effects 
are properly included.

4. Conclusion

We have shown that non-Abelian finite simple groups, and 
more generally all perfect groups, are anomaly-free. Our argu-
ment is based on the fact that the generators of perfect groups 
are traceless. This argument may also be rephrased as follows. 
Due to the fact that the path integral measure corresponding to 
a D–G–G anomaly transforms in a one-dimensional representation 
of D , groups D without non-trivial one-dimensional representa-
tions, i.e. perfect groups, cannot have anomalies.

Non-perfect groups, on the contrary, always have at least one 
non-trivial one-dimensional representation and therefore are not 
safe from anomalies in generic settings. Whether a certain model 
is anomaly free then depends, as usual, on the field content. How-
ever, as we have seen, under certain circumstances one can make 
statements independently of the field content. Specifically, there 
are combinations of certain non-perfect groups and SO(N) or ex-
ceptional gauge groups which are anomaly-free irrespective of the 
field content. We have given a criterion when this is the case.

In the case of a non-vanishing D–G–G anomaly, one can infer 
the representation that a Green–Schwarz axion needs to furnish 
in order to cancel the anomaly directly from the non-trivial rep-
resentation of the measure. This also shows that Green–Schwarz 
anomaly cancellation is always possible for finite groups.

Note that our argument is somewhat analogous to the case 
of non-Abelian continuous groups. In the case of a global Lie 
group L, it is well known that L–G–G anomalies cancel because 
all generators of L are traceless, exactly like in the case of per-
fect groups. One may also attribute this to the fact that Lie groups 
do not have non-trivial one-dimensional representations. However, 
gauged Lie groups are different in that one also has to consider 
the L–L–L anomalies. The latter are not proportional to the trace 
of a single generator and thus may not be described by a lin-
ear one-dimensional group representation. As is well known, the 
corresponding cubic anomaly coefficients do not vanish in general. 
However, they always vanish for real representations and, in par-
ticular, for the so-called ‘safe’ groups [24].
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Appendix A. Some basic facts about finite groups

In this appendix, we collect some basic facts in connection to 
perfect and simple groups. Further details can be found e.g. in [18].

The commutator subgroup [D, D] (also called derived sub-
group) of a group D is the group which is generated by all com-
mutator elements of D , that is

[D, D] := 〈
u : u ∈ D and u = v w v−1 w−1 for some v, w ∈ D

〉
.

(A.1)

The commutator subgroup is a normal subgroup of D , see for ex-
ample [18, p. 27]. A perfect group is a group which equals its 
own commutator subgroup D ≡ [D, D], or equivalently, for which 
|D/[D, D]| = 1.

In what follows, we show that a group is perfect if and only if 
it has exactly a single one-dimensional representation, namely the 
trivial one. For this, note that there is a one-to-one correspondence 
between the representations of a quotient group D/N , where N is 
a normal subgroup of D , and certain representations of the parent 
group D . In fact, each representation r of D for which all elements 
n ∈ N are represented by the identity, i.e.

Ur(n) = 1 ∀n ∈ N , (A.2)

is also a representation of the quotient group D/N . The converse 
is also true: each representation of the quotient group D/N corre-
sponds to a representation r of D with Ur(n) = 1 for n ∈ N (cf. e.g. 
[25, p. 41]).

A particular Abelian quotient group is D/[D, D], the so-called 
Abelianization of D . Now, consider a one-dimensional represen-
tation 1x of D . Then, U1x ([D, D]) = 1, since complex numbers 
commute, and equation (A.2) is satisfied. Hence, using the one-
to-one correspondence discussed above, the one-dimensional rep-
resentation 1x of D is also a one-dimensional representation of 
the Abelian quotient group D/[D, D]. Furthermore, note that for 
an Abelian finite group the number of one-dimensional represen-
tations equals the order of the group.

Consequently, D and D/[D, D] have exactly the same num-
ber of one-dimensional representations, which in turn is equal to 
|D/[D, D]|,
# of one-dimensional representations of D

= # of one-dimensional representations of D/[D, D]
= |D/[D, D]| . (A.3)

http://www.universe-cluster.de
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This shows that a discrete group D is perfect, i.e. [D, D] = D , if 
and only if it has exactly a single one-dimensional representation, 
namely the trivial one.

A simple group is a group whose only normal subgroups are 
the group itself and the trivial subgroup. Since the commutator 
subgroup [D, D] is a normal subgroup of D , there are just two 
possibilities for the commutator subgroup of a simple group D: 
either it equals the group, [D, D] = D , or it is the trivial group, 
[D, D] = {e}. The first case corresponds to non-Abelian finite sim-
ple groups, which are thereby shown to be perfect, and the sec-
ond case corresponds to Abelian finite simple groups, which are 
thereby not perfect.

A (semi-)direct product of perfect groups is again a perfect 
group. To show this, take D = N � S with two perfect groups 
N and S . Then every element d ∈ D can uniquely be written as 
d = n · s for some n ∈ N and s ∈ S . Since N and S are perfect 
groups, each of their elements can be written as a product of 
commutator elements. Therefore, also every element in D can be 
written as a product of commutator elements. Hence, D equals its 
commutator subgroup, and we conclude that D is perfect.
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