
UC Davis
UC Davis Previously Published Works

Title
On Nonregularized Estimation of Psychological Networks

Permalink
https://escholarship.org/uc/item/3vh2d91b

Journal
Multivariate Behavioral Research, 54(5)

ISSN
0027-3171

Authors
Williams, Donald R
Rhemtulla, Mijke
Wysocki, Anna C
et al.

Publication Date
2019-09-03

DOI
10.1080/00273171.2019.1575716
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vh2d91b
https://escholarship.org/uc/item/3vh2d91b#author
https://escholarship.org
http://www.cdlib.org/


On Non-Regularized Estimation of Psychological Networks

Donald R. Williams, Mijke Rhemtulla, Anna C. Wysocki, Philippe Rast

University of California, Davis

Abstract

An important goal for psychological science is developing methods to characterize relationships 

between variables. Customary approaches use structural equation models to connect latent factors 

to a number of observed measurements, or test causal hypotheses between observed variables. 

More recently, regularized partial correlation networks have been proposed as an alternative 

approach for characterizing relationships among variables through covariances in the precision 

matrix. While the graphical lasso (glasso) has emerged as the default network estimation method, 

it was optimized in fields outside of psychology with very different needs, such as high 

dimensional data where the number of variables (p) exceeds the number of observations (n). In this 

paper, we describe the glasso method in the context of the fields where it was developed, and then 

we demonstrate that the advantages of regularization diminish in settings where psychological 

networks are often fitted (p ≪ n). We first show that improved properties of the precision matrix, 

such as eigenvalue estimation, and predictive accuracy with cross-validation are not always 

appreciable. We then introduce non-regularized methods based on multiple regression and a non-

parametric bootstrap strategy, after which we characterize performance with extensive simulations. 

Our results demonstrate that the non-regularized methods can be used to reduce the false positive 

rate, compared to glasso, and they appear to provide consistent performance across sparsity levels, 

sample composition (p/n), and partial correlation size. We end by reviewing recent findings in the 

statistics literature that suggest alternative methods often have superior performance than glasso, 

as well as suggesting areas for future research in psychology. The non-regularized methods have 

been implemented in the R package GGMnonreg.
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Introduction

An important goal for psychological science is to characterize the structure of associations 

among variables that relate to psychological constructs. A common approach is to use latent 

variable analysis (e.g., confirmatory factor analysis, latent class analysis, item response 

theory) to relate a set of observed variables to a shared underlying latent variable. More 

recently, proponents of a “network approach” to psychological constructs have argued that 

the latent variable framework ignores direct causal or functional associations among 

observed variables (Borsboom & Cramer, 2013). For example, a latent variable model of 

depression cannot account for the fact that lack of sleep leads directly to fatigue (Cramer & 

Borsboom, 2015), and a latent variable model of quality of life cannot account for the 

necessary link between being unable to walk up one flight of stairs and being unable to walk 

up several flights of stairs (Kossakowski et al., 2016). In response to these criticisms, 

researchers are increasingly employing network models in an attempt to capture these direct 

associations among observed variables (Epskamp & Fried, 2016). The goal of network 

modeling of psychological constructs is to understand constructs as a system of direct 

interactions among observable variables, instead of as underlying, unobservable variables.

Network models are a general class of models that can estimate any sort of association 

among variables (e.g., marginal or conditional associations) on many different sorts of data 

assuming the cases are independent (e.g., cross-sectional data, single-person longitudinal 

data, or a mix). Here, our focus is on the most popular type of network that has been 

employed in psychology, namely partial-correlation networks estimated on cross-sectional 

data. These models seek to estimate a sparse network of conditional relations (i.e., direct 

effects) among a set of observed variables measured at a single time point in a sample of 

people. This is accomplished by identifying non-zero off-diagonal elements of the inverse-

covariance matrix of the data (i.e., the precision matrix; Dempster, 1972). When the 

precision matrix is standardized and the sign reversed, elements of the matrix are partial 

correlations that imply pairwise dependencies in which the effects of all other observed 

variables have been controlled for (Peng, Wang, Zhou, & Zhu, 2009). That is, a non-zero 

network “edge” represents a direct association between a pair of observed variables that 

cannot be explained by any other variables in the model. Since direct effects are often sought 

after in psychology, there has been an explosion of interest in network models in both 

methodological and applied contexts. Network models have been used to provide an 

alternative perspective on a wide range of constructs, including political attitudes (Dalege, 

Borsboom, van Harreveld, & van der Maas, 2017), psychosis (Isvoranu et al., 2017; van 

Rooijen et al., 2017), post-traumatic stress disorder (Armour, Fried, Deserno, Tsai, & 

Pietrzak, 2017; McNally et al., 2015), substance abuse (Rhemtulla et al., 2016), and well-

being (Deserno, Borsboom, Begeer, & Geurts, 2017).

A wide range of methods have been proposed to estimate network model parameters 

(Kuismin & Sillanpää, 2017). These methods generally use some form of regularization (i.e., 

shrinkage) to estimate the precision matrix (Θ). In high-dimensional settings, where the 

number of variables (p) approaches or exceeds the number of observations (n), 

regularization makes estimation of an under-identified model possible. The most common 

type of regularization applied to network models is ℓ1-regularization (a.k.a., “least absolute 
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shrinkage and selection operator”, or “lasso”), which adds a penalty to the estimation 

function that is based on the sum of the absolute values of the edges. The effect of this 

penalty is to push smaller estimates to exactly zero. Though psychological data are rarely 

high-dimensional, by pushing small edges to zero, ℓ1-regularization confers the additional 

benefit of producing a sparse network. From the theoretical network perspective, a system of 

direct effects among observed variables would not allow for determining the conditional 

independence structure of psychological constructs if it were fully connected (i.e., if every 

node were connected to every other node); thus, identifying zeros is an important theoretical 

goal of network modeling. Compared to customary methods (e.g., ordinary least squares) 

regularization procedures involve additional steps for estimation, in which developing 

methods that are both accurate and computationally efficient is an active area of research 

(Kuismin & Sillanpää, 2017). However, in psychology, the dominant estimation procedure is 

the graphical lasso (Friedman, Hastie, & Tibshirani, 2008), described below (Section: 

Precision Matrix Estimation), in which the tuning parameter (λ) is selected according to the 

extended Bayesian Information Criterion (EBIC; Chen & Chen, 2008). We refer to the 

combination of graphical lasso and EBIC-based tuning parameter selection as glassoEBIC 

(Foygel & Drton, 2010).

Despite the popularity of glassoEBIC in psychology, there has not been any work comparing 

it to alternative methods for estimating networks of psychological variables. This is 

problematic for two reasons. First, outside of psychology, there are several methods that 

have been shown to outperform glasso (Ha & Sun, 2014; Peng et al., 2009; Van Wieringen 

& Peeters, 2016). Compared to three alternative methods, for example, Williams, Piironen, 

Vehtari, and Rast (2018) recently showed that glassoEBIC rarely had the best performance 

with respect to identifying true non-zero covariances. Further, even with alternative methods 

for selecting λ (e.g., cross-validation rather than EBIC), the performance of glasso does not 

necessarily warrant being the default approach in psychological applications (Kuismin & 

Sillanpää, 2016; Mohammadi & Wit, 2015a). Second, and importantly, statistical methods to 

estimate network models were developed to overcome the very specific challenge of high 

dimensionality (Kuismin & Sillanpää, 2017). Under these conditions, the maximum 

likelihood estimator becomes unstable or cannot be computed altogether, thus requiring 

some form of regularization. Although these kinds of data structures are common in fields 

such as genomics (Y. R. Wang & Huang, 2014), they are the exception in psychology. 

Indeed, the majority of network models fitted in psychology are in low-dimensional settings 

(p ≪ n) (McNally et al., 2015; Rhemtulla et al., 2016; Spiller et al., 2017).

Compared to other model selection procedures, glasso may carry some distinct 

disadvantages. First, as a fully automated procedure, inferences about specific edges are 

non-trivial and require additional steps after model selection (K. Liu, Markovic, & 

Tibshirani, 2017; Wasserman & Roeder, 2009). This general critique applies to all 

automated procedures (e.g., backwards elimination), but there are additional challenges for 

glasso that often require debiasing–unregularizing–the estimates (Javanmard & Montanari, 

2015). Second, regularization approaches are also not common in psychology (McNeish, 

2015), and applied researchers may not be familiar with how inference based on such 

approaches differs from those of non-regularized approaches, or of the speed with which the 

regularization literature is evolving (Avagyan, Alonso, & Nogales, 2017; Tibshirani, 2011; 
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Zou & Hastie, 2005). The novelty of regularization methods in psychology may give the 

false impression that they are necessarily superior to more common approaches for 

automated variable selection such as stepwise regression approaches (Henderson & Denison, 

1989). In fact, in the context of network estimation, method performance is often evaluated 

in situations that are uncommon in psychology. For example, in Bühlmann and Van De Geer 

(2011), it was shown ℓ1-regularization was consistent for model selection when the number 

of variables (p) grew exponentially. In psychology, a more realistic situation would fix the 

number of variables, for example the number of items in a questionnaire, and then allow the 

sample size (n) to increase. Here more common approaches such as best subset selection 

with the standard Bayesian information criterion (BIC) are generally consistent for selecting 

the true model (Casella, Girón, Martinez, & Moreno, 2009; P. Zhao & Yu, 2006). Given that 

network models were popularized and estimation techniques optimized in fields outside of 

psychology with very different needs, it is important to investigate the quality of estimation 

methods for situations that are most common in psychological research.

The aim of the present work is to investigate the properties of the glassoEBIC procedure 

compared to non-regularized methods that can be used in low-dimensional settings (p < n). 

We thus determine whether regularization offers distinct advantages compared to model 

selection methods more familiar to psychologists. In the next sections, we first discuss 

precision matrix estimation in the context of high-dimensional settings, which are common 

in areas such as functional neuroimaging (Das et al., 2017), but rare in personality or clinical 

fields. We then introduce two non-regularized approaches, that include multiple regression 

and a non-parametric bootstrap strategy, for estimating networks. These approaches are 

novel in the context of estimating network models. In this section, we also describe the 

relationship between multiple regression and the precision matrix. Then, in two simulation 

studies, we characterize the performance of each method under conditions that are common 

in psychological data. We end with recommendations for both applied and methodologically 

oriented researchers.

Precision Matrix Estimation

The covariance matrix (Σ) plays an essential role in parametric analyses, particularly in 

multivariate settings such as structural equation and network modeling. In particular, 

network models require the inverse of the covariance matrix, called the precision matrix (Θ), 

to obtain partial correlations ρij as

ρi j =
−θi j
θiiθ j j

, i ≠ j, (1)

which corresponds to the following elements within the precision matrix
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Θ =

θ11

⋮ ⋱
⋯ θpp

= ∑−1
(2)

In words, the partial correlations are computed by standardizing the off-diagonal elements of 

precision matrix and reversing the sign (±). This is analogous to obtaining bi-variate 

correlations from Σ, but with the additional step of sign reversal. Although this appears 

straightforward, Equation 2 indicates that estimating partial correlations requires inverting 

the sample covariance matrix Σ. Typically, Σ is estimated via maximum likelihood (ML) but 

this approach yields reliable estimates only under ideal conditions (Ledoit & Wolf, 2004b; 

Won, Lim, & Kim, 2009). For example, Kuismin and Sillanpää (2016) demonstrated that 

ML-estimator of the eigenvalues can be non-optimal, which then magnifies the estimation 

error when the covariance matrix is inverted (Ledoit & Wolf, 2004b). This can be seen in 

Equation 17, where the eigenvalues (i.e., D) play a critical role in inverting Σ. In particular, 

when the ratio of variables p to observations n (p/n) approaches one (Wong, Carter, & Kohn, 

2003), it becomes difficult to reliably estimate the covariances. Furthermore, in high 

dimensional (n < p) settings, the ML-estimate cannot be computed due to singularity: det(Σ) 

= 0. That is, since the determinant equals the product of the eigenvalues and the maximum 

number of non-zero eigenvalues is min(n, p) (Kuismin & Sillanpää, 2017), inverting the 

covariance matrix is not possible (Hartlap, Simon, & Schneider, 2007). This is known as the 

“large p and small n” problem (Kuismin, Kemppainen, & Sillanpää, 2017) and remains a 

central challenge in the field of statistics (Kuismin & Sillanpää, 2016).

ℓ1-Regularization

To overcome the “large p and small n” problem, several regularization approaches have been 

developed to make estimation possible when Σ is non-invertible. In the familiar context of 

multiple regression, regularized estimation approaches estimate the ordinary least squares 

solution, but do so with an added penalty. Different types of regularization use different 

penalties: lasso uses the ℓ1-norm to find coefficients that minimize

i = 1

n
yi −

j = 1

p
xi jβ j

2
+ λ

j = 1

p
β j . (3)

In this equation, λ is the “tuning parameter”, which determines the extent to which the 

penalty affects the estimates. When λ = 0, no penalty is imposed and the resulting estimates 

are equal to the ordinary least squares estimates. When a very high value of lambda is 

chosen, all the estimates will be pushed to zero (H. Liu, Roeder, & Wasserman, 2010). Thus, 

some criterion is needed to choose the value of λ such as predictive accuracy determined 

with cross-validation or an information criteria (e.g., BIC; Chand, 2012). Other 

regularization options are to minimize the ℓ2-norm (a.k.a., “ridge” regularization, which 

penalizes the sum of squared estimates, resulting in smaller estimates but typically none that 
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are exactly zero) or to minimize a combination of the ℓ1 and ℓ2 norms (a.k.a., “elastic-net”; 

(Zou & Hastie, 2005). Assuming the residuals are normally distributed,, minimizing the 

ordinary least squares estimate is equivalent to maximizing the likelihood, or in this case the 

penalized maximum likelihood. Importantly, by reducing coefficients to exactly zero, lasso 

regularization has built-in model and variable selection. For this reason, the lasso method 

has become popular for both regression and for estimating network models.

Extended to multivariate settings, the penalized likelihood for the precision matrix is defined 

as

l Θ = log detΘ − tr ∑Θ − λp
i ≠ j

Θi, j , (4)

where Σ is the sample covariance matrix and λp a penalty function (Gao, Pu, Wu, & Xu, 

2009). The glasso method applies a penalty on the sum of absolute covariance values λp(|

Θi,j|) (Friedman et al., 2008). The performance of the glasso method is strongly influenced 

by the choice of λ, which can be made in at least four ways: (1) choose λ that minimizes the 

EBIC (Foygel & Drton, 2010); (2) choose λ that minimizes the Rotation Information 

Criterion (RIC) (T. Zhao, Liu, Roeder, Lafferty, & Wasserman, 2012); (3) choose λ that 

maximizes the stability of the solution across subsamples of the data (i.e., Stability 

Approach to Regularization Selection; StARS) (H. Liu et al., 2010); and (4) k-fold cross-

validation (Bien & Tibshirani, 2011). Interestingly, these methods can produce vastly 

different networks (Kuismin & Sillanpää, 2017). While a method would ideally be selected 

with a particular goal in mind, or based on performance in simulations that are 

representative of the particular field, the default method in psychology is currently EBIC

EBIC = −2l Θ + Elog n + 4γElog p , (5)

where l(Θ) is defined in Equation 4, E is the size of the edge set (i.e., the number of non-zero 

elements of Θ), and γ ∈ [0, 1] is the EBIC hyperparameter that puts an extra penalty on the 

size of the model space. As described in Chen and Chen (2008), there is a Bayesian 

justification for γ that corresponds to a prior distribution on the model space, thus providing 

the reason it is bounded between 0 and 1. Notably, EBIC reduces to the Bayesian 

Information Criterion (BIC) when γ = 0, where each model size has been assigned an equal 

prior probability. The selected network then minimizes EBIC with respect to λ. This is 

typically accomplished by assessing a large number (e.g., 100) of values of λ and selecting 

the one for which EBIC is smallest. There is no automatic selection procedure for the EBIC 

hyperparameter, but 0.5 was recommended in Foygel and Drton (2010) and Epskamp and 

Fried (2016). The latter further suggested that researchers who prefer to err on the side of 

discovery (i.e., those who prefer to find more edges, including possibly false ones) choose a 

γ value closer to 0, and those who prefer a more conservative approach choose a value 

closer to 0.5 (Epskamp & Fried, 2016).
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Extensions to Psychology

Psychological applications of network modeling have widely adopted ℓ1-regularization as the 

default statistical approach for estimation.. However, outside of neuroscience related 

inquiries, there are typically far more observations (n) than variables (p) in psychological 

networks. In other words, the “large p and small n” (Section: ℓ1-Regularization) is not often 

encountered. As such, regularization is not usually necessary to produce an estimate of Θ. 

Further, findings from simulation studies (e.g. Mohammadi & Wit, 2015a) indicate that RIC 

and StARS show superior performance in terms of F1-scores1 across a number of conditions 

in low dimensional settings. Second, while psychological inferences are typically aimed 

towards explanation rather than prediction (Yarkoni & Westfall, 2017), ℓ1-regularization is 

known for reduced prediction error rather than accuracy of parameter estimates. Further, 

inference regarding the non-zero (or zero) estimates is not straightforward, as valid standard 

errors are not easily obtained (Hastie, Tibshirani, & Friedman, 2008). Making inference 

entails corrections for model selection bias (Efron, 2014; Hastie, Tibshirani, & Wainwright, 

2015; Leeb, Pötscher, & Ewald, 2015), and non-traditional bootstrap schemes are often 

needed to achieve nominal frequentist properties (Bühlmann, Kalisch, & Meier, 2014; 

Chatterjee & Lahiri, 2011). In the context of network models in particular (Janková & van 

de Geer, 2017), statistical inference for Θ is an emerging area of research that often requires 

desparsifying the regularized estimates to compute confidence intervals (Janková & van de 

Geer, 2015; Ren, Sun, Zhang, & Zhou, 2015) and p-values (W. Liu, 2013; T. Wang et al., 

2016).

Motivating Examples

In this section, we provide two motivating examples for this work that focus exclusively on 

precision matrix estimation. Most of the statistical literature has focused on high-

dimensional settings, or situation where p approaches n, which stands in contrast to the most 

common psychological applications. We conducted two brief simulations to examine the 

performance of glassoEBIC compared to maximum likelihood estimation (MLE) in low-

dimensional settings. The first motivating example assessed eigenvalue recovery, that is 

directly related to the accuracy with which Θ has been estimated. In particular, a “well-

conditioned” covariance matrix is such that the range of eigenvalues is not too large (Schäfer 

& Strimmer, 2005b). Further, when the eigenvalues show large variability, this can increase 

estimation accuracy when Σ is inverted to obtain the precision matrix Θ (Ledoit & Wolf, 

2004a, 2004b). Indeed, there are methods for estimating Θ that specifically target the 

eigenvalues in the literature (Kuismin & Sillanpää, 2016), which can also be seen in this 

work (Equation: 17). An additional advantage of ℓ1-regularization that is frequently reported 

is reduced prediction error (Dalalyan, Hebiri, & Lederer, 2017). For the second motivating 

example, we thus computed out-of-sample predictive accuracy with the cross-validated log-

likelihood.

1F − 1 score = 2TP
2TP + FP + FN . TP and FP denote the number of true and false positives, whereas FN is the number of false 

negatives.
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We simulated networks in which the edges connecting pairs of variables were drawn from a 

Bernoulli distribution. The corresponding precision matrix Θ ∼ WG d f = 3, I p  was then 

obtained from a G-Wishart distribution with 3 degrees of freedom and scale matrix Ip 

(Mohammadi & Wit, 2015b). The precision matrices were all positive definite, the graphical 

structure was random, and 90 % of the partial correlations were between ±0.45, with the 

distribution approximately normally distributed around zero. The number of variables p was 

fixed at 20 and the sample sizes varied: n ∈ {50, 100, 250, 500, 1,000, and 2500}. For each 

simulation trial, of which there were 500, we computed two estimates for Θ. The first was 

computed with glassoEBIC, with the hyperparameter (γ) set equal to 0.5 (Equation: 5). The 

second was computed using maximum likelihood estimation, defined as

Θ = ∑−1 = 1
n i = 1

n
xi − x xi − x

T −1

, x = 1
n i = 1

n
xi . (6)

Eigenvalue Recovery.—The results for eigenvalue recovery are presented in Figure 1 

(panel A). The y-axis is the quotient, where the maximum eigenvalue has been divided by 

the minimum eigenvalue, with the x-axis including the sample sizes that gradually increase 

from 50 to 2,500. Here the largest value for p/n was 0.40 (i.e., 20/50), where it was revealed 

that the MLE showed large variability in the eigenvalues. In particular, the largest eigenvalue 

was estimated to be approximately 100 times greater than the smallest eigenvalue, thereby 

indicating Θ was not “well-conditioned”, as defined by Schäfer and Strimmer (2005b). In 

contrast, glassoEBIC not only shrunk the eigenvalues when p approached n, but noticeably 

underestimated them when compared to the true value (i.e., the grey line). Further, it was 

also revealed that as n increased, which approaches the most common dimensions of 

psychological networks, the MLE quickly converged on the true eigenvalues. Said another 

way, the advantage of glassoEBIC gradually diminished as the sample size approached those 

that are more common to psychology (p ≪ n).

Cross-Validation.—We assessed predictive accuracy with k-fold (K = 5) cross-validation, 

where the estimate of Θ was used to compute the cross-validated log-likelihood. We used the 

same simulation procedure as above, including the true covariance matrix and sample sizes. 

The data were first partitioned into 5 non-overlapping subsets Xk, k ∈ {1, …, 5}. We denote 

the training data as X−k and the test data as Xk. The prediction error, herein referred to as the 

cross-validated log-likelihood LCV, was then obtained as

ℒCV ∑−k , ∑k = 1
k i = 1

k
−logdet∑−k − tr ∑k ∑−k

−1 . (7)

Here ∑−k
−1 is the inverse covariance matrix Θ estimated from the training data X−k, and ∑k is 

the covariance matrix obtained from the test data Xk. For one simulation trial, as indicated by 

the summation, ℒCV was averaged across the k-folds. The final estimate, for each 
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simulation condition, was then averaged across 500 simulation trials which accounted for 

variability in the partitions. Further details about this procedure can be found in Gao et al. 

(2009) and Bien and Tibshirani (2011).

These results are presented in Figure 1 (panel B). Of course, since this measure is based on 

the log-likelihood, larger values indicate a more accurate estimate (i.e., maximizing the 

likelihood). The y-axis denotes the estimate for ℒCV, whereas the x-axis includes the sample 

sizes n. These results reveal a similar patter as for eigenvalue estimation, in that the largest 

p/n value showed a clear advantage for glassoEBIC. That is, when there were 20 variables (p) 

and only 50 observations (n). However, as the sample size increased, this advantage 

dissipated quickly. For example, even with n = 100, ℒCV (the mean) indicated that the MLE 

was already more accurate than glassoEBIC. The estimates were ultimately very similar, with 

increasing sample sizes, thus indicating that ℓ1-regularization converges to the MLE in these 

situations (Kuismin & Sillanpää, 2016).

Summary.—These two motivating examples suggest that glassoEBIC is advantageous in 

situations approaching high-dimensions (p → n). However, when the sample size became 

similar to those commonly used to estimate psychological networks, the maximum 

likelihood estimate (Equation: 6) often out-performed glassoEBIC. In particular, even without 

selecting variables (i.e., the MLE is fully saturated), the data was not overfit according to the 

cross-validated log-likelihood. Although these results suggest that certain benefits of ℓ1-

regularization–improved eigenvalue estimation and predictive performance–may not be 

realized in the most common psychological settings, these examples did not consider the 

additional benefit of identifying zero-valued partial correlations. In the next section, we 

propose two alternative methods for identifying zero-valued edges, each of which does not 

make use of regularization (i.e., non-regularized). The first approach, based on multiple 

regression, builds upon the work of Meinshausen and Bühlmann (2006), where a brief 

example showed that non-regularized regression was comparable to ℓ1-regularization for 

estimating network models in low-dimensional settings. The second approach uses a non-

parametric bootstrap strategy to estimate the precision matrix directly. Both of these 

methods, and specifically the decision rules for identifying non-zero effects, are novel 

contributions to the psychological network literature.

Network Models

Thus far, we have focused exclusively on network models in the context of precision matrix 

estimation. While the covariances within Θ correspond to conditional relationships between 

variables in a network model, we now introduce terminology that is specific to network 

models. Depending on the field, undirected graphical models can refer to Gaussian graphical 

models, covariance selection models, or random Markov fields. Here we adopted network 

model, because it is common in the psychological literature (Epskamp & Fried, 2016). Let X 
represent a p-dimensional random variable

X = X1, …, Xp
┬ ∼ 𝒩 μ, ∑ , (8)
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where, without loss of generality, we assume all variables have been standardized to have 

mean zero and variance one

0 = μ1, …, μp
┬, and diag ∑ = I p, (9)

where Ip denotes the (p, p) dimensional unit matrix. Following common notation, the graph 

(i.e., network) is then denoted by 𝒢 = (V, E) and consists of nodes V = {1, …, p}, as well as 

the edge set (conditional relationships) E. The maximum number of edges is then p p − 1
2 , 

which corresponds to the unique elements in the off-diagonal of Θ. When two variables 

share a conditional relation, as indicated by a non-zero partial correlation (i.e., edge), it is 

included in E. The aim of the present paper is to, for the first time, compare the commonly 

used glassoEBIC method (Epskamp, 2016; Epskamp & Fried, 2016) to a set of non-

regularized methods that use multiple regression and a non-parametric bootstrap scheme for 

estimating these conditional relationships.

Neighborhood Selection

We first describe a regression based approach for estimating psychological networks. The 

regression strategy for estimating conditional relationships is called neighborhood selection 

(Li & Zhang, 2017; Meinshausen & Bühlmann, 2006; Yang, Etesami, & Kiyavash, 2015), 

which takes advantage of the correspondence between Θ and node-wise multiple regression. 

The technique can be described with traditional regression notation, in which p multiple 

regression models are fitted. First let each node Vp be defined as y that is the scores of the n 
subjects on the jth variable/node.. Each node is regressed on the remaining p − 1 variables, 

which estimates the “neighborhood” for each variable

y = Xβ j + ε, (10)

where ε is an n-dimensional vector, with the mean as a vector of zeroes, and the covariance 

matrix as σ2In. Here X is a n × (p − 1) design matrix and β is (p − 1) × 1 vector. The 

intercept is excluded, due to standardizing the data, so β j  contains p − 1 regression 

coefficients. To be clear, β j  denotes the vector of coefficients for the jth regression model, 

where the individual elements are defined as βi j. The residuals are assumed to follow 

ε ∼ 𝒩 0, σ j
2 , where σ j

2 is the residual variance for the jth node.

These estimated regression coefficients and error variances have a direct correspondence to 

Θ, for example,

θi j =
−βi j

σ j
2 and θ j j = 1

σ j
2 , (11)
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where θi j denotes the covariance corresponding to ith row and jth column of Θ. The diagonal 

of Θ is then denoted θi j. This relationship is exact, with proofs in Stephens (1998) and 

further information provided in Kwan (2014). From each regression model, the coefficients 

and zero-entries are placed into a p × p matrix; that is, the soon to be partial correlation 

matrix P in which each row corresponds to the neighborhood of conditional relationships for 

V p. Because the off-diagonal elements, corresponding to the lower and upper triangles of the 

matrix will be different when using the regression approach (i.e., proportional to σ j
2), the 

partial correlations are commonly computed as

ρi j = sign βi j βi jβ ji, i ≠ j . (12)

In low-dimensional settings (p < n), these estimates are typically equivalent to standardizing 

the elements of Θ and reversing the sign (Equation: 2; Krämer, Schäfer, & Boulesteix, 

2009). For a pair of nodes, there are two approaches to determine whether an edge is non-

zero: The “and-rule” requires both βij and βji to be determined as non-zero. On the other 

hand, the “or-rule” requires only one of these to be non-zero. Here, for the methods 

described below, when only one coefficient is non-zero we assume this is the value for the 

partial correlation. Thus, from the p regression models, a p × p matrix is obtained that 

corresponds to the underlying structure of 𝒢. Of course, to estimate the neighborhood of 

conditional relationships, a decision rule is required for determining non-zero estimates. We 

propose two decision rules in the following section, each of which is novel in the context of 

estimating networks models.

Forward Search

We adopt two decision rules for determining non-zero coefficients, each of which uses a 

forward search strategy through the model space ℳ (Forward search strategy). Assume, 

without loss of generality, both the outcome Vp = y and design matrix X (defined in 

Equation: 10) have been standardized to have mean zero and variance one. This notation 

departs from above, slightly, but is used to be consistent with customary notation for 

describing information criterion. By using a forward search strategy, with the model Mi ⊂ 
ℳ, the objective is to select one predictor variable from V−p (denoting the pth node has been 

removed) that minimizes some criterion. This automated procedure is repeated until no 

variable within V−p can further reduce the criterion compared to the previous step. We then 

assume the selected variables are non-zero, thus providing the neighborhood for the 

predicted variable Vp.

Algorithm Forward search strategy

1: Start with an empty model for each node Vp = y.

2: Search to find one node ∈ V−p that minimizes AIC (Equation: 13).2

2The same procedure applies to BIC.
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3: Place the selected node into the design matrix X until the search is complete.

4: Repeat steps 2 and 3 until AIC cannot be futher minimized.

5: Set the regression coefficients for the excluded nodes to zero βi j = 0 .

6: Place the non-zero and zero coefficients into the jth row of a p × p matrix P (i ≠ 

j).

7: After the last node-wise regression compute the partial correlation matrix (P; 

Equation: 12).

Akaike Information Criterion.—The first decision rule for determining E uses the 

Akaike Information Criterion (AIC). There are at least two justifications for AIC based 

model selection, or in this case neighborhood selection: 1) expected out-of-sample 

prediction, since AIC and leave-one-out cross validation are asymptotically equivalent 

(Zhang & Yang, 2015); and 2) minimizing Kullback–Leibler (KL) divergence from the 

target and approximating data generating model (Burnham & Anderson, 2004). Due to 

strong theoretical justification, based on information theory (McElreath, 2016), we frame the 

neighborhood selection problem in terms of minimizing KL-divergence (Kullback & 

Leibler, 1951). In other words, at each forward step, we seek one variable that minimizes the 

following equation

min AIC = − 2logp y X, θ MLE + 2k , (13)

where p y X, θ MLE  is the log predictive density and k is the number of parameters (i.e., the 

number of non-zero edges) in Mi. For the rest of the forward search, each selected variable is 

included in X. The decision rule for β ≠ 0 is inclusion in the final model when AIC cannot 

be further reduced.

Bayesian Information Criterion.—The Bayesian information criterion also has two 

justifications: (1) expected out-of-sample prediction, since minimizing BIC is equivalent to 

leave-v-out cross-validation, where v = n[1 − 1/(log(n) − 1)] (Shao, 1997); and (2) 

minimizing BIC approximates selecting the most probable model, assuming the true model 

is in the candidate set (Raferty, 1995). Due to the connection to Bayesian methods, which 

similarly provides strong theoretical justification (Wagenmakers, 2007), we frame 

neighborhood selection in terms of posterior model probabilities. The posterior probability 

of Mi ⊂ ℳ follows

P Mi y ∝ P y Mi, θi P θi d θi , (14)

where P (y|Mi, θi) is the likelihood, θi is the vector of parameters for the ith model, and P 
(θi) the prior distributions for θi. With a forward search strategy (Algorithm: Forward search 
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strategy), we select one variable from V−p that maximizes P (Mi|y). Said another way, at 

each forward step, we select a variable that minimizes

min BIC = − 2logp y X, θMLE + log n k . (15)

The decision rule for β ≠ 0 is inclusion in the final model when BIC cannot be further 

reduced.

Non-Parametric Bootstrap

We now describe an approach to estimate Θ directly. This is the same method as in the 

Motivating Examples, but with the addition of a decision rule to set covariances to zero. We 

also provide further details about the chosen inversion method that uses the singular value 

decomposition (Schäfer & Strimmer, 2005a). The maximum likelihood based covariance 

matrix, obtained with Equation 6, can be decomposed as

∑ = UDU┬, (16)

where U and V are p × p matrices containing the eigenvectors computed from Σ, and D is 

diagonal matrix of p eigenvalues. It is then straightforward to invert the covariance matrix, 

with the generalized inverse procedure (Schäfer & Strimmer, 2005a), that follows

Θ = UD−1U┬ . (17)

Of course, this only provides a point estimate for each element of Θ which then requires a 

decision rule for determining E. We propose using a non-parametric bootstrapping 

procedure, with replacement, where percentile based confidence intervals (i.e., α levels) are 

used to determine the conditional relationships (Efron & Tibshirani, 1994). Although 

thresholding with p-values is possible with the R package qgraph, the present procedure 

readily provides a measure of uncertainty that allows for extending inference beyond 

determining significant effects–e.g., comparing edges within or between networks. For each 

bootstrap sample, b ∈ {1, …, B}, the estimated graph is obtained with the following steps:

1. Randomly sample, with replacement, n rows from the data matrix of dimensions 

n × p.

2. Compute the maximum likelihood estimate for Σb (Equation: 6).

3. Decompose of Σb (Equation: 16).

4. Compute the generalized inverse of the covariance matrix (Equation: 17), 

resulting in the precision matrix Θb.

5. Convert Θb to corresponding partial correlation matrix Pb.

Williams et al. Page 13

Multivariate Behav Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With the B bootstrap samples in hand, it is then possible to compute the mean of a given 

partial correlation as 1
B b = 1

B
ρi j

b , whereas determining E requires obtaining a confidence 

interval. We use the percentile based method, with the intention of categorizing each partial 

correlation as 0 or 1. That is, the adjacency matrix A is constructed as

Ai j = 0,
1,

ρα/2
∗ < 0 < ρ1 − α/2

∗

otherwise ∈ E
, (18)

where ρα/2
∗  denotes the lower percentile of the bootstrap samples. In words, when 0 is within 

the bounds of the 100(1 - α) interval, it is not included in E. To our knowledge, there is no 

theoretical justification for using this approach to automatically perform variable selection 

(Lysen, 2009), but it would still be possible to control error rates in practice (Drton & 

Perlman, 2004). Acknowledging this limitation, we include this method as a point of 

reference and without a correction for multiple comparisons.

Simulation Studies

In the psychological network literature, opposing network estimation methods are not 

commonly compared (to our knowledge), rather a single technique (i.e., ℓ1-regularization) 

has been examined across many simulation conditions (Epskamp, 2016; Van Borkulo et al., 

2014). The exception is Epskamp, Kruis, and Marsman (2017), where a non-regularized 

method and a low-rank approximation, was used to estimate fully connected Ising models 

(i.e., the edge set was not determined). We thus followed common simulation procedures in 

psychology (Epskamp, 2016; Epskamp & Fried, 2016), but also compared performance 

between competing methods. We performed two different simulations, each of which was 

meant to answer distinct questions about the performance of the methods under 

consideration. The first used empirical partial correlations estimated from an actual data set 

(Section: Empirical Partial Correlations), whereas the second used simulated data to 

specifically evaluate performance across varying degrees of sparsity (i.e., the proportion of 

total edges that are connected; Section: Synthetic Partial Correlations).

Performance Measures

We considered two measures to capture the accuracy of the estimated partial correlations. 

The first was the correlation between the true partial correlations and the estimated partial 

correlations. In addition, we computed the sum of squared errors ∑i ≠ j ρi j − ρi j
2
 for each 

trial and then mean squared error was obtained by averaging across simualtion trials 

(Schäfer & Strimmer, 2005a). Lower values indicated less discrepancy from the true values 

such that the best method was closest to zero. For edge set identification, we considered 

three measures of binary classification performance that are computed from the number of 

true and false positives (TP and FP) and true and false negatives (TN and FN). The first two 

measures are sensitivity (SN), the true positive rate, and specificity (SPC) which is the true 

negative rate. Sensitivity is analogous to “power”, where a score of 0.50 would indicate only 
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half of the true edges were detected. Importantly, SPC corresponds to 1 - the false positive 

rate, so we will often refer to both when describing the results. (1 − SPC = the false positive 

rate)

SN = TP
TP + FN and SPC = TN

TN+FP . (19)

We also wanted to include a measure that considers all aspects of binary classification. To 

our knowledge, Matthews correlation coefficient (MCC) is the only measure that meets this 

criteria. The MCC is defined as

MCC = TP × TN − FP × FN
TP + FP TP + FN TN + FP TN + FN . (20)

MCC can range between −1 and 1 (Powers, 2011). Its value is equivalent to the phi 

coefficient that assesses the association between two binary variables, but for the special 

case of binary classification accuracy. These measures were averaged across simulation 

trials.

Computation and Software

All computations were done in R version 3.4.2 (R Core Team, 2016). We performed 1,000 

simulation trials for each of the conditions, and recorded the elapsed time to fit each 

estimation procedure. The glasso method was fitted with the R package qgraph version 1.5 

(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012), where we used the default 

settings. The non-regularized methods were fitted with a custom function that used the 

package bestglm for the forward search (Mcleod & Xu, 2017), whereas the non-parametric 

bootstrap did not make use of any R packages. All of the non-regularized methods have been 

implemented in the R package GGMnonreg. The simulation code is publicly available 

online (Code: Open Science Framework).

Empirical Partial Correlations

For this simulation study, we estimated the sample partial correlation matrix from a well-

known area of research in clinical networks; that is, post-traumatic stress disorder symptoms 

(PTSD). These data are on a 5 value ordinal scale, including 221 observations (n) and 20 

variables (p). It should be noted that we estimated Pearson correlations (as opposed to 

polychoric correlations), which are known to be attenuated in the case of ordinal data. This 

decision was made for two reasons: (1) it is common to assume normality for ordinal data 

(Rhemtulla, Brosseau-Liard, & Savalei, 2012); (2) when preparing the simulations, we noted 

that the glasso method struggles with larger values, so computing Pearson correlations was 

more favorable to the current default approach in psychology. We then followed the 

approach described in Schäfer and Strimmer (2005b) and Krämer et al. (2009), where new 

graphical structures were generated at each simulation trial. The network structure 

(connections between variables) was therefore random. So while the partial correlations 

values were assumed to be representative of a specific clinical application (Figure: 2), our 
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results are not conditional on a specific network structure. These steps were followed for 

each simulation trial:

1. Randomly sample one p × p matrix p ∈ {10, …, 20} from the partial correlation 

matrix estimated from the PTSD data set, and then set absolute values less than 

0.05 to zero (Epskamp, 2016).

2. Convert the sampled partial correlation matrix to a correlations matrix, and 

assume this is the covariance structure for the p variables.

3. Generate data (continuous and 5-level ordinal) with samples of size n ∈ {100, 

250, 500, 1000, and 2, 500}.

4. Estimate the networks with the following three methods:

• glassoEBIC (γ = 0.5)

• Node-wise regression models were fitted with the previously described 

decision rules (i.e., AIC and BIC). For these models, we included both 

the “and-rule” and “or-rule” that was described above (Section: 

Neighborhood Selection). For the “or-rule”, we assumed the partial 

correlation was equal to the one non-zero coefficient. We report the “or-

rule” in the body of the text, while the “and-rule” is presented in the 

Appendix. We also plotted the “or-rule” and “and-rule” together, which 

allows for comparing their performance (also provided in the 

Appendix).

• Non-parametric bootstrap to directly estimate the precision matrix. The 

confidence level was set to 99 % (i.e., α = 0.01) and 1,000 bootstrap 

samples were generated.

5. Compute performance measures.

For the ordinal data, generated with the package bootnet version 1.0.1 (Epskamp, 

Borsboom, & Fried, 2018), we assumed normality for the non-regularized regression 

approaches. For glassoEBIC, we followed the default settings and estimated polychoric 

correlations. This served as a valuable comparison, because it allowed for characterizing one 

important limitation of the regression based approaches that cannot estimate polychoric 

correlations. The non-parametric boostrap approach also estimated Pearson correlations, 

although it would be possible to estimate polychoric correlations.

Results.—Before discussing the results, we reiterate the primary goal of this work. Our 

objective is not to suggest non-regularized methods are “significantly” better than 

glassoEBIC. Rather, while methods optimized for high-dimensional settings were readily 

adopted as the default approach, it remains unclear whether they have advantages compared 

to traditional statistical methods. For example, the properties of non-regularized model 

selection with BIC are well known in the social-behavioral sciences (p < n), but the 

extension to regularized estimation with EBIC was primarily made to address situations that 

are uncommon in the network literature (i.e., n < p or p → n).

Williams et al. Page 16

Multivariate Behav Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We first discuss the timing results that are displayed in Figure 3. The introduced methods are 

computationally intensive, which could limit their use in practical applications. Indeed, for 

most of the simulation conditions glassoEBIC was the fastest approach. However, the 

differences between glassoEBIC and regression were often small. Each of these methods 

typically took less than one second, with the exception being glassoEBIC for ordinal data (p 
= 20). Here the default in the qgraph package is to estimate polychoric correlations, which 

is apparently computationally intensive, whereas normality was assumed for the non-

regularized methods (Rhemtulla et al., 2012). On the other hand, the non-parametric 

bootstrap strategy was the slowest method, with the elapsed time being influenced by the 

sample size. Of course, this is the only method to provide a measure of uncertainty for the 

edges, and it was recently shown that bootstrapping glassoEBIC (B = 2,000) took almost 20 

minutes (Williams, 2018). This should be noted when interpreting these results.

We now discuss the results for accurate estimation of the partial correlations, as measured by 

correlations and mean squared error (true vs. estimated). For the body of the text, the results 

have been simplified to improve clarity and highlight specific findings. Here we primarily 

focus on p = 20, the number of variables in the PTSD data set, with the remaining results 

provided in the Appendix. For the continuous data (Figure: 4; the left panel), the regression 

methods (AIC and BIC) had similar performance compared to glassoEBIC for the largest 

samples sizes. For MSE in particular, glassoEBIC had superior performance for the smaller 

sample sizes. This was also the case for the ordinal data. Note that, for samples larger than 

250, the correlations were similar between methods. The exception was for the smallest 

sample size (n = 100), where glassoEBIC had the lowest correlations. This was likely due to 

estimating empty networks for some of the simulation trials. Of note, while the differences 

were not large, AIC based model selection consistently had the highest correlation and 

lowest MSE among the non-regularized methods. In fact, these results make it clear that 

directly estimating Θ does not necessarily result in more accurate estimates. The regularized 

method did offer some advantages, in that the MSE was often the lowest. This was 

especially the case for ordinal data, where polychoric correlations were estimated. However, 

this was not the case for the smaller networks (Figure: A1; p = 10). Here the opposite pattern 

emerged, in that glassoEBIC rarely had the best (referring to the average across simulation 

trials) performance scores.

Accurate estimation is important, but an arguably more important goal is identifying the 

edge set. We thus spend more time describing these results, which are displayed in Figure 5. 

We begin with the top row, that includes the results for specificity, and then work our way 

down to the MCC scores. Before interpreting the results, we again note that 1 − the false 

positive rate is equivalent to specificity (SPC). The results immediately point towards a 

potential issue with glassoEBIC, in that SPC consistently decreased with larger sample sizes. 

In other words, with increasing information, the regularized method made increasingly more 

false positives. For continuous data, the false positive rate was around 0.10 (n = 100), 

whereas it was greater than 0.30 for the largest sample size (n = 2, 500). It is possible to 

infer the number of false positives, assuming the average sparsity was ≈ 0.45, in relation to 

the number of covariances p p − 1
2 = 190. That is, for n = 2, 500, the number of false 

positives was roughly 190 × 0.45 × [1 − 0.67] ≈ 28. On the other hand, the boostrap method 
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with 99 % confidence intervals had the nominal error rate for the same condition (α = 0.01), 

resulting in approximately 1 false positive for a given simulation trial (190 × 0.45 × [1 

− 0.988] ≈ 1). Further, the regression approach using BIC showed the opposite pattern as 

glassoEBIC, where more information resulted in improved edge identification. That is, for 

each increase in n, SPC consistently improved to be 0.991 for the largest sample size (n = 

2,500). As a reminder, for the same condition, SPC was less than 0.70 for glassoEBIC. A 

similar pattern was observed for the ordinal data, although each method showed a slight 

decrease in SPC compared to continuous data. However, the non-regularized methods 

clearly had the lowest false positive rate (n > 100), thereby indicating that the assumption of 

normality did not present issues for identifying the edge set.

The results for sensitivity are displayed in the middle row (Figure: 5). By definition 

(Equation: 19), sensitivity (SN) is the proportion of true positives that were detected. For p = 

20, it is similarly possible to infer the number of detected edges as 190 × 0.55 × SN, where 

0.55 is 1 - the sparsity level. Interestingly, while glassoEBIC showed the lowest specificity 

among the methods, SN was not always the highest for continuous data. Here regression 

with AIC had comparable ability to detect edges, but had higher SPC that did not diminish 

with more information (i.e., larger sample size). This is important in practical applications, 

when considering the false discovery rate (FDR)3. For n = 2500, the FDR was 

approximately 0.21 for glassoEBIC. That is, approximately 1 out of 5 edges detected by 

glassoEBIC was a false discovery. On the other hand, it was less than 1 % for BIC based 

model selection with ordinary least squares. Of note, the non-regularized methods did have 

lower SN for ordinal than continuous data, indicating one limitation of assuming normality.

We end this section discussing Matthews correlation coefficient (Figure: 5; bottom row). As 

previously motioned, the MCC incorporates all aspects of binary classification, and is a 

correlation between binary variables. Here glassoEBIC had the highest score once 

(i.e.,ordinal data and n = 250), although the difference from AIC was very small. When 

considering p = 10, resulting in 20 conditions in total, regularized estimation only had the 

best score that one time. On the other hand, the regression approach with AIC consistently 

had the highest MCC scores. The exception was for the largest sample size (n = 2, 500), 

although the score was still higher than glassoEBIC.

Synthetic Partial Correlations

For this simulation study, we investigated method performance in relation to network 

sparsity. This serves two purposes. First, accurate model selection for ℓ1-regularization 

depends on strong assumptions, most notably of which is that few very effects are non-zero. 

This can refer to coordinate (in regression) or row sparsity (in the case of the glasso; 

Janková & van de Geer, 2017), but for our purposes it suffices to state common simulation 

scenarios in the statistics literature to demonstrate model selection consistency. It is common 

to assume less than 5 % of the effects are non-zero (Waldorp, Marsman, & Maris, 2018), or 

in some instances not even 1 % (Bühlmann & Van De Geer, 2011). Further, when the 

3The FDR is defined as 
FP

TP+FP . This was computed by approximating the number of false and true positives, which was done in the 

preceding two paragraphs, then solving the FDR equation.
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sparsity assumptions is violated, the necessary (for model selection consistency) 

irrepresentable condition is almost never satisfied (P. Zhao & Yu, 2006). This condition is 

difficult to examine in practice, but essentially states that the relevant and irrelevant variables 

may not be (highly) correlated with one another. In P. Zhao and Yu (2006), with synthetic 

data generated from a Wishart distribution, they showed that this assumption was often met 

with very few non-zeroes (i.e., a sparse model), but was almost never satisfied when over 

half of the effects were non-zero which appears to be common in psychological applications. 

Second, this allowed for examining the decision rule based on α levels, that did not include a 

correction for multiple comparisons.

We assumed one sample size (n = 500), two values for p ∈ {10 and 20}, and 5 sparsity levels 

η ∈ {90%, 80%, 70 %, 60 %, and 50%}. Two representative graphical structures can be 

found in the Appendix (Figure: A14). The magnitude of the partial correlations also varied 

by adjusting the degrees of freedom of the G-Wishart distribution, corresponding to 90 % of 

the partial correlations within ± 0.40 for the former and 90 % within ± 0.25. That is, we 

adjusted the degrees of freedom such that there was a 2 × 5 × 2 simulation design: two 

values for the number of variables × five sparsity levels × two different partial correlation 

ranges. As pointed out by a reviewer, when the network becomes more connected, the partial 

correlations must be smaller to ensure the matrix is positive definite. We accounted for this 

by determining which degrees of freedom, for given sparsity level and network size, resulted 

in the previously stated ranges. As such, the only thing that varied in this simulation study 

was sparsity and the partial correlation sizes. These distributions were approximately 

normal, such that smaller values were sampled more often than larger values. Of note, the G-

Wishart distribution is a generalization of the Wishart distribution, with some off-diagonal 

elements in the precision matrix constrained to be zero. The network structure was again 

random, and all generating matrices were positive definite. For each trial, of which there 

were 1,000, the simulation procedure followed:

1. Generate data n = 500 from a p dimensional G-Wishart distributed precision 

matrix Θ ∼ WG(df, Ip), where Ip is a p dimensional identity matrix (Mohammadi 

& Wit, 2015b).

2. Fit the same models as in the previous simulation study (Section: Empirical 

Partial Correlations).

3. Compute performance measures.

Results.—The results are displayed in Figure 6. We focus on the false positive rate for both 

network sizes (p = 10 and 20), with the remainder of the results provided in the Appendix. 

As a reminder, the sample size has been fixed (n = 500) and the primary objective is to 

evaluate the influence of sparsity and partial correlation size on edge set identification. There 

are striking differences between the non-regularized methods and glassoEBIC. The boostrap 

method in particular, described above (Section: Non-Parametric Bootstrap), provides an 

interesting contrast because there is an expected error rate (α = 0.01). Here, irrespective of 

sparsity and partial correlation size, the error rate was consistently at the nominal level. In 

other words, α can be used to directly control specificity which stands in contrast to 

glassoEBIC, where neither lambda (Equation: 4) or gamma (Equation: 5) have a direct 
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correspondence to edge identification. Further, the accuracy of glassoEBIC was influenced by 

the sparsity level and partial correlation size. For example, with the larger partial 

correlations (±0.40), the error rate was below 0.10 for the sparsest network, but consistently 

increased to be over 0.40 when sparsity was 50 %. The error rate was lower for the smaller 

partial correlations (±0.25), but also increased as the networks became more dense. Of note, 

the regression approach with BIC was also affected by the sparsity level in that the error rate 

also increased with denser network. However, not only was this less pronounced than 

glassoEBIC, the “and-rule” did not show this increase in false positives (Figure: A9).

Discussion

In this paper, we compared the most popular estimation method for estimating psychological 

networks, the graphical lasso, with a number of non-regularized methods that can be used to 

estimate networks in low-dimensional settings (i.e., when p << n). We found that the non-

regularized methods typically out-performed the graphical lasso. Most notably, whereas non-

regularized methods showed better performance with increasing n, for glasso increasing n 
simultaneously increases sensitivity to detect conditional relationships and steadily inflates 

the false positive rate (1 - specificity). This lack of (model selection) consistency is 

particularly problematic in the context of psychological network estimation where 

researchers typically aim to estimate a network among a fixed set of variables (p) with the 

largest sample size (n) possible. Second, as the true connectivity of networks became more 

dense, the false positive rate substantially increased for glassoEBIC, whereas this increase 

was far less pronounced for the non-regularized methods based on multiple regression and 

there was no increase for the non-parametric bootstrap strategy. Third, the performance of 

glassoEBIC varied substantially as a function of the range of partial correlations (edge 

strengths) in the generating model, whereas non-regularized estimates were more stable. 

Although these findings build a strong case for using non-regularized methods in practice, 

we would prefer that applied researchers justify their method choice. The present results, as 

well as the following exposition, can provide a foundation for building this rationale.

The glasso method offers two potential advantages over maximum likelihood estimation: (1) 

regularization–shrinkage–that can either improve the estimate of the precision matrix, or 

ensure the matrix can be computed altogether (n < p); and (2) improved predictive accuracy. 

We demonstrated that these benefits may not be appreciable when estimating psychological 

networks in low-dimensional settings (p ≪ n). First, the improved properties of the precision 

matrix (i.e., eigenvalue estimation), which allows for more accurate estimation, steadily 

diminished with increasing sample sizes to ultimately be comparable to maximum 

likelihood. Second, the improved predictive accuracy of glassoEBIC, as measured by the 

cross-validated log-likelihood, similarly diminished with increasing samples sizes.

For estimating networks, we introduced two non-regularized estimation methods that rely on 

multiple regression with forward selection and a non-parametric bootstrap strategy. To our 

knowledge, in the context of network estimation, these methods each included a novel 

decision rule for determining conditional relationships. With extensive numerical 

experiments, we demonstrated that the non-regularized approaches consistently recovered 

the true network with increasing sample sizes. In contrast, the performance of glassoEBIC, 
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with respect to specificity, decreased with larger samples sizes. This suggests that glassoEBIC 

does not provide consistent model selection for common applications of network modeling 

in psychology. Further, we examined how the false positive rate is influenced by sparsity 

which showed that glassoEBIC was especially sensitive to the overall connectivity of the 

network (Epskamp et al., 2017). Of course, while the exact definition of sparsity is a 

subjective one, many network models show over 50 % connectivity and ℓ1-based approaches 

assume only a small proportion will be non-zero for accurate edge set identification (Figure: 

6; P. Zhao & Yu, 2006). We would argue that it is unreasonable to suggest this level of 

connectivity exemplifies sparsity, which then influences the accuracy with which the 

network is estimated. For constructs such as personality traits and psychiatric symptoms, one 

could argue that the statistical assumption of sparsity is questionable. The present results 

suggest that the non-regularized methods are less sensitive to this assumption, and therefore 

offer advantages in this respect compared to glassoEBIC.

Non-regularized Methods in Practice

The primary goal of this work was to compare non-regularized methods to glassoEBIC. It 

was revealed that partial correlation networks can readily be estimated with tools already 

well-established to the social-behavioral sciences. Building on this information, but applied 

to networks, it makes sense that AIC had a higher false positive rate than BIC and that 

confidence intervals can readily be used to control specificity (1 - α). In other words, 

although network models are novel to psychology, the information provided in countless 

methodological papers applies to estimating psychological networks. For example, Casella 

et al. (2009) and Bollen, Harden, Ray, and Zavisca (2014) that use BIC for model selection 

and Burnham and Anderson (2004) that makes clear the distinction between AIC and BIC. 

The importance of this cannot be understated, in that it allows for applied network 

researchers to use and review methods that they are more familiar with. For example, to our 

knowledge, it has not once been stated why BIC was extended in the first place. According 

to Chen and Chen (2008), who introduced EBIC, “…yet our consistency result has extended 

our understanding of the original BIC for the small-n–large-P problem”, where it is clear 

BIC was extended to address a problem uncommon to psychology. Indeed, in that work, the 

applied example with real data included 233 observations (n) and 1414 variables (p).

We found that, for the regression based approaches, not much was gained from applying the 

more conservative “and-rule.” Here both specificity and sensitivity were similar for both 

decision rules. The one notable difference between decision rules was for sparsity, where the 

“and-rule” provided consistent edge identification across sparsity levels (Figure: A8). 

Interestingly, it was also revealed that direct estimation does not necessarily lead to more 

accurate estimates than using multiple regression. This could have been due to detecting 

fewer edges, thus error would naturally increase. In support of this notion, AIC was best 

among the non-regularized methods for the correlations and MSE. However, as shown 

throughout the simulation results, the direct method based on confidence intervals allows for 

calibrating to a desired level of specificity. These methods have been implemented in the R 

package GGMnonreg.
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Comparison to Previous Simulations

Although glasso has emerged as the default approach for network estimation in psychology, 

and is a very popular method outside of psychology (Kuismin & Sillanpää, 2017), there have 

been many alternative methods that have shown superior performance. It should first be 

noted that, while the original glasso paper is highly cited (Friedman et al., 2008), no 

comparisons were made to alternative methods with respect to edge identification. In fact, 

when measuring cross-validation error, it was demonstrated that a non-regularized method 

was superior to glasso when p < n (Bien & Tibshirani, 2011; Friedman et al., 2008). 

According to Friedman et al. (2008), “…cross-validation curves indicate that the 
unregularized model is the best, [which is] not surprising given the large number of 

observations and relatively small number of parameters” (p. 9). Their conclusion is 

consistent with our results, and we further demonstrated reduced prediction error with 

increasing samples sizes for the maximum likelihood estimate. Further, the paper that 

introduced the method of using EBIC to select the tuning parameter (λ) similarly did not 

make comparisons to other network estimation methods (Foygel & Drton, 2010). Rather, the 

focus was on alternative γ values in comparison to using cross-validations for selecting λ. 

This parallels the psychological network literature, where to our knowledge the glassoEBIC 

method has never been directly compared to alternative estimation methods.

However, since the introduction of the glasso method in Friedman et al. (2008), there have 

been numerous papers that have compared novel methods to glassoEBIC. Most recently, for 

example, Williams et al. (2018) introduced a Bayesian approach based on predictive loss and 

used the horseshoe prior distribution for regularization purposes (Carvalho, Polson, & Scott, 

2010; Piironen & Vehtari, 2017). They showed that glassoEBIC rarely had the best 

performance among three methods for accurately detecting edges. Similarly, Leppä-aho, 

Pensar, Roos, and Corander (2017) introduced an approximate Bayesian method, using a 

marginal pseudo-likelihood approach, that showed glassoEBIC was not always consistent 

with respect to Hamming distance (Norouzi, Fleet, Salakhutdinov, & Blei, 2012), whereas 

the lasso regression approach was consistent. Moreover, Mohammadi and Wit (2015a) 

compared their proposed Bayesian method, based on posterior model probabilities, to 

glassoEBIC. They also included the StARS and RIC methods for tuning parameter selection. 

In addition to the Bayesian method showing superior performance compared to glassoEBIC, 

both StARS and RIC also showed clear advantages compared glassoEBIC. This is 

particularly interesting for psychology, because the simulation conditions were primarily in 

low-dimensional settings (p < n). There are several additional methods that have been shown 

to outperform glassoEBIC, but a thorough discussion is beyond the scope of this paper. We 

refer interested readers to Kuismin and Sillanpää (2017), where they review numerous 

methods as well as the benefits and limitations of each.

Limitations

There are several important limitations of the present research. First, although we argued 

that inferences from regularized methods are not straight forward, the non-regularized 

methods did not explicitly address these limitations. As such, a limitation of the present 

work is that we have only provided one method for making inference about individual partial 

correlations–the bootstrap approach–which would also require corrections for multiple 
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comparisons in practice. Of course, ℓ1-regularization only provides a point estimate and 

would also require corrections if attempting to make inference (assuming one could obtain 

valid standard errors). However, there are several reasons to prefer the non-regularized 

approaches. The limitations of automated model selection are known for traditional methods 

(Harrell, 2001), and this readily allows for the research community to critique inferences 

that are extended beyond the exploratory nature of this approach. Note that we only used 

forward selection that is not without problems4. For example, it could be that sequentially 

adding predictors will not converge on the true model. However, our results revealed that 

performance can be very good compared to the current default estimation method in 

psychology. Furthermore, methods and corresponding inferences that are unfamiliar to 

psychologists are much more difficult to evaluate and critique.5 Additionally, while 

inference is possible from lasso estimates, their asymptotic properties (e.g. α) are often 

evaluated in high-dimensional settings (Bühlmann, 2012). However, there are methods that 

allow for valid inference in low-dimensional settings when forward selection has been used 

(Benjamini & Gavrilov, 2009; Blanchet, Legendre, & Borcard, 2008).

Second, our primary simulation results were obtained from empirically derived partial 

correlations. This could be problematic, because it is possible that performance would 

change with different partial correlations. Indeed, our simulation results showed that 

different partial correlation strengths affected the relative performance of the estimators. 

Third, our decision to not assume one network structure with fixed partial correlations 

values may be viewed as a limitation. However, in our experience, performance can differ 

substantially based on the assumed data generating matrix. As such, when a simulation study 

examines results under a single fixed population, the results are then conditional on that 

population, which in our view limits generalizability. Therefore, our simulation approach 

provided a measure of robustness to uncertainty in knowing the truth, such as network 

structure and partial correlation magnitude, although the latter were restricted to plausible 

ranges. Fourth, it should be noted that we did not fully characterize the performance of the 

non-regularized methods. For example, we did not consider a variety of graphical structures, 

which is commonly done when characterizing the performance of a novel method compared 

to existing methods. The generating matrices could have presented challenges for ℓ1-

regularization, as revealed in the section Synthetic Partial Correlations. We investigated 

several structures (e.g., AR-1), and found that the decrease in specificity as n increased was 

not specific to these particular generating networks. We further found that glassoEBIC can 

have excellent performance as n increases, but this required strong assumptions regarding 

sparsity (η ≈ 0.95), which parallels the findings in Figure 6. The decision to use this 

particular simulation procedure, in particular the empirically derived partial correlations, 

was made because we wanted to make our results comparable to the recent psychological 

literature on network models: (1) Epskamp (2016) used empirical partial correlation and set 

absolute values less than 0.05 to zero; and (2) Epskamp and Fried (2016) also used these 

post-traumatic stress data for simulation purposes and an applied example.

4We have implemented both best subset selection and backwards elimination in the accompanying R package.
5To understand the inferential challenges for lasso estimates, and recently proposed methods for inference, we recommend chapter six 
(Statistical Inference) of Hastie et al. (2015).
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Fifth, we also did not consider ℓ2-regularization, for example ridge regression that is 

commonly used in the context of prediction (de Vlaming & Groenen, 2015; Hoerl & 

Kennard, 1970). This differs from lasso regression, in that variable selection (i.e., estimation 

of exact zeroes) is not achieved by minimizing the residual sums of squares with respect to 

the penalty term. It is also possible to obtain a ridge-type estimator of the covariance matrix, 

for example with the approach described in Van Wieringen and Peeters (2016) and Kuismin 

et al. (2017). These approaches require a decision rule for setting values to zero. A common 

approach for computing p-values, with ridge-type estimators, relies on constructing a null 

sampling distribution which also makes strong assumptions about sparsity and have 

primarily been characterized in high-dimensional settings (Schäfer & Strimmer, 2005a). 

Further, to our knowledge, only ℓ1-regularization has been used to estimate psychological 

networks. For these reasons we did not consider ℓ2-regularization, although it should be 

noted that ridge approaches may offer some advantages for psychology in particular (as 

point out by an anonymous reviewer). For example, assuming small effects are common in 

psychology, ℓ2-based methods could preserve these effects by proportionally shrinking all of 

the edges and not pushing them to zero.

Sixth, our primary objective was to characterize method performance across a variety of 

simulation conditions. We did not extensively discuss the practical implications of a 40 % 

false positive rate (Figure: 5), although we did relate this to the false discovery rate (FDR) in 

the results section. The magnitude of the false positives is important to consider; that is, 

whether they were small or large would have differing effects on network interpretation. 

Assuming the false positives were small in size, they may not be detrimental for interpreting 

which relations are the strongest, but would certainly affect inferences regarding global 

characteristics including overall connectivity and neighborhood size. For the boostrap 

method, the false positives will necessarily be large, at least 1.96 × the standard error away 

from zero (assuming a 95 % confidence interval). However, in our view, this is advantageous 

because researchers can readily perform null hypothesis significance tests that require 

nominal α levels to achieve desired error rates. In other words, to make customary 

inferences about the population, sampling variability is a necessary component.

Lastly, note that there are alternative methods for estimating networks and this limits the 

generalizability of our findings (Kuismin & Sillanpää, 2017). However, our focus was 

explicitly on the most common estimation method in the social-behavioral sciences. We 

refer interested readers to Fan, Liao, and Liu (2016) and Kuismin and Sillanpää (2017) 

where alternative methods are reviewed. These reviews do not include Bayesian methods, 

but these can be found in Mohammadi and Wit (2015a) and Williams and Mulder (2019).

Future Directions

The present paper suggests that more quantitative work is needed on the topic of network 

estimation. First, these non-regularized regression approaches should be compared to 

alternative methods for network estimation (Kuismin & Sillanpää, 2017). Second, for glasso, 

alternative tuning parameter selection methods (Section: Precision Matrix Estimation) can 

be investigated. These topics should be examined in research settings common to 

psychology (p < n). Importantly, the necessary components for estimating a network, outside 
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of ℓ1-regularization, include parameter estimation and a decision rule for including edges in a 

network. In fact, even for the Bayesian version of the lasso, a decision rule is needed to 

achieve sparsity (Khondker, Zhu, Chu, Lin, & Ibrahim, 2013; H. Wang, 2012). This does 

stand in contrast to fully automated procedures (e.g., that automatically set values to zero), 

but has the added benefit of requiring a justification for the chosen decision rule (Sections: 

Akaike Information Criterion and Bayesian Information Criterion). Additionally, there are 

many possibilities to develop or characterize existing methods specifically for psychology. 

For example, we only considered 5-level ordinal data and looking at different levels is an 

important future direction–e.g., this boostrapping scheme can be compared to glassoEBIC. Of 

course, there are high-dimensional settings in psychology to consider. For these fields, 

glassoEBIC should not be the de facto default, because several methods have been shown to 

have superior performance.

Conclusion

We conclude that network analysis is an important tool for understanding psychological 

phenomenon. Since network modeling is a burgeoning area, addressing the issues that we 

raised will ensure a solid methodological foundation going forward and a deeper 

understanding of this relatively novel statistical method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Eigenvalue (λ) estimation. The maximum eigenvalue was divided by the smallest 

eigenvalue. The true value is denoted with the grey line. A “well-conditioned” estimate will 

have a small disparity between these values. B) Predictive accuracy measured with k-fold 

cross-validation. This measure is based on the likelihood, with larger values indicating 

superior predictive accuracy (i.e., maximizing the likelihood). The ribbons denote one 

standard deviation.
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Figure 2. 
The distribution of empirically estimated partial correlations. These were sampled from to 

generate the partial correlation matrices for the first simulation study (Section: Empirical 

Partial Correlations).
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Figure 3. 
Elapsed time for estimating each model. The glasso method estimated polychoric 

correlations for the ordinal data, whereas the non-regularized methods estimated Pearson 

correlations.
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Figure 4. 
Simulation results of the larger networks (p = 20). The glasso method estimated polychoric 

correlations for the ordinal data, whereas the non-regularized methods estimated Pearson 

correlations. The error bars denote one standard deviation.
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Figure 5. 
Simulation results of the larger networks (p = 20). Specificity (SPC) is the true negative rate 

and 1 - SPC is the false positive rate. Sensitivity is the true positive rate. This is analogous to 

the “power” to detect the true edges for a given network. The glasso method estimated poly-

choric correlations for the ordinal data, whereas the non-regularized methods estimated 

Pearson correlations. The error bars denote one standard deviation.
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Figure 6. 
Simulation results (n = 500). The ± denotes that 90 % of the partial correlations were in that 

range. Sparsity is the probability an edge was zero for a given network. Sparsity decreases 

when moving from the left to right. The error bars denote one standard deviation.
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