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Abstract 
 

Deep phenotypic profiling of neuro-active drugs in larval Zebrafish 

 

Lev (Leo) Gendelev 

 

 In-vivo phenotypic screening in larval zebrafish has shown much promise for neuroactive 

drug discovery, but unleashing its full potential remains a challenge. How do we robustly quantify 

how drugs modulate zebrafish behavior, and in parallel, how do we unravel which targets or 

pathways they act by? We develop a phenotypic screening and computational pipeline to begin 

meeting these challenges. Starting with a motion index (MI) as a readout for phenotype, and 

correlation distance (CD) as a measure of phenotypic similarity, we extend the similarity ensemble 

approach to computationally predict targets for sets of phenotypic screening hits. Using this 

approach, we predict an “antipsychotic” target profile for previously uncharacterized hit compounds 

with MI’s matching those of known antipsychotic compounds. For a novel phenotype associated 

with sedation and paradoxical excitation caused by anesthetics such as etomidate and propofol, we 

predict not only the canonical GABAergic pathway, but a novel target entirely; the serotonin-6 

receptor, which we validate with both in-vitro and in-vivo experiments.  

However, our initial attempts at extending this approach to other known drug classes such as 

stimulants and convulsants are met with unexpected challenges; we hypothesize that the MI 

signatures and the CD used to compare might not be robust enough for these more subtle 

phenotypes. And so the Deepfish project is born. We train Siamese neural networks (SNNs) on a 

highly replicated screen of 650 known neuroactive drugs to learn a custom distance metric for 

comparing MI. This new distance metric scores higher than CD at the task of separating same-drug 

replicate pairs versus different-drug pairs, all while generalizing to a quality control screen done 
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months prior. In that arena, the new distance metric gets higher classification accuracy on average, 

but also strikingly outperforms CD for 3 drugs with more subtle phenotypes.  

Armed with a way of training robust distance metrics, we make progress with using 

unsupervised deep-learning approaches to find more robust representations of behavior. We 

discover that for computing similarities between these high-dimensional embedded fingerprints, 

training custom distance metrics is even more imperative. However, we see signs that overfitting is 

possible with the Siamese networks on our highly-replicated dataset - both with the raw MI and 

high-dimensional embedded representations - so we design and perform a version of the screen with 

fully randomized drug layouts, which we will use to benchmark our methods in the near future.  
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Introduction 

 

 Historically, the very first drugs were discovered serendipitously; in many cases, they were 

derivatives of plants with some desirable effects in humans1. Later on, advances in chemistry and 

chemical synthesis produced interesting compounds that were subsequently tested on animals or 

biological tissues for activity2. Eventually, on the heels of the revolution in basic biology, genomics, 

and biotechnology over the last few decades, target based drug discovery began to take over3. 

However, attrition rates and R&D productivity in the era of target-based discovery have been 

exceedingly high3. At the same time, the number of first-in-class drugs - or new-molecular-entities - 

discovered with phenotypic screening between 1999 and 2008 was almost double the number 

discovered with target-based screening 3. For central nervous system (CNS) disorders in particular, 

target-based approaches have been especially slow, likely due to our limited understanding of CNS 

physiology and neurocircuitry4. This highlights the ever-important role of phenotypic screening in 

drug-discovery, perhaps due to its ability to discover complex MOAs (mechanisms of action) for a 

variety of disorders, especially those of the CNS.   

However, not all phenotypic screens are equally powerful. Recently, a set of 3 criteria were 

proposed that any worthwhile phenotypic screen should strive to meet5. These include a) the model 

system’s relevance to actual disease; will activity in a biological tissue translate to an in-vivo system? 

b) Stimulus relevance; is the use of broad cytotoxants to cause cellular injury in a phenotypic model 

relevant? and c) Proximity of assay to clinical end-point. It is an arduous task for any phenotypic 

screening setup to meet all of these requirements fully. For instance, many anticancer screens rely on 

in-vitro cell-lines where the readout is cell-death; so they tend to enrich for cytotoxants. With 

Alzheimer’s disease, our understanding of the underlying disease biology is limited, therefore 

developing a robust phenotypic assay is challenging6,7.



 2 

For neurological and behavioral disorders, most in-vitro models don’t really come close to meeting 

any of those 3 criteria, which explains why neuroactive drug discovery is probably the slowest of 

all. I will add another important criteria to the list; d) scale. Mouse cancer models might get relatively 

high marks on the first 3 criteria, but scaling them up to high-throughput early-stage drug discovery 

is infeasible. 

With these criteria in mind, phenotypic screening in larval Zebrafish is uniquely suited for 

CNS drug discovery. Larval Zebrafish meet criterion (a) possessing 82% of the orthologues of 

human genes associated with disease8, criterion (b) they have specific reactions to human drugs and 

human-disease relevant stimuli9, criterion (c) they are an in-vivo system more closely positioned to 

the clinical end-point than any in-vitro model, and even criterion (d) they can be scaled to high 

throughput screening (HTS) of large chemical libraries.   

I. A platform for phenotypic screening in larval zebrafish 

Over the past decade, the Kokel lab has developed and optimized technology that allows for 

the high-throughput interrogation of neuro-active behavior as a response to small-molecule 

perturbation. Larval Zebrafish are screened on 96-well plates (usually 8 fish per well) under the 

influence of small-molecule treatment and various stimuli, and video is recorded of their swimming 

behavior over the course of 15-30 minutes (Figure i.1a-c). Videos are then converted to a “motion 

index time series” (from here-on referred to in this manuscript as MI) by taking pixel-wise difference 

maps between consecutive frames, capturing the average motion of fish over time (Figure i.1d). 

This motion index then serves as a phenotypic “fingerprint” of small molecules, a proxy for how the 

compounds affect fish behavior. 
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  Figure i.1 Zebrafish behavioral screening  

A cartoon depicting the phenotypic screening pipeline developed over the last decade in the Kokel Lab. (a) Larval zebrafish 
are loaded onto 96-well plates and placed under a video-recording apparatus. (b) Videos are recorded of the fish swimming 
as a response to various stimuli such as a soft solenoid tap or ultra-violet light. Different wells may contain different drug 
treatments or different doses. (c) Zoomed in view showing an individual well. In most experiments, each well contains 8 
fish. (d) Motion index time-series representation. Subsequent frames from the video are subtracted from each other and 
the sum over pixel differences is computed. Haloperidol, a prototypical antipsychotic shown in red, elicits a unique motion 
signature in the fish that is distinct from DMSO (negative control) treated fish. Figure reprinted with permission from 
Bruni et al, 201610.
 

Armed with motion index fingerprints of entire libraries of compounds, we can start asking 

crucial questions; what are the most prolific pharmacologically modulated behaviors exhibited by 

Zebrafish? Are these phenotypes clinically relevant for humans? Are there novel compounds that 

cause these phenotypes, too, and if so, what are their MOAs? Are they the canonical or novel 

entities associated with these behaviors? This MI-based analysis has led to a whole body of work and 

multiple publications, including early successes on an antipsychotic phenotype10 and paradoxical 

excitation in the context of sedation and anesthesia (chapter 2). Investigations of other interesting 

phenotypes by members of the Kokel Lab are ongoing affairs. 

d 
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II. A pipeline: from phenotype to target prediction  

In the process of working on these specific phenotypes, we created a pipeline for phenotypic 

drug discovery in larval zebrafish, which goes something like this: starting with the motion index 

signature for a known neuroactive drug of interest (the query drug), the correlation distance (CD) 

between the query and each compound from a high-throughput screen of unknown chemical matter 

is calculated. The list is ranked by CD, hits are triaged based on some reasonable CD cutoff, and 

remaining compounds form sets of hits defined at increasing stringency cutoffs. Targets are 

computationally predicted for the sets using the Similarity Ensemble Approach (SEA) 11, followed by 

Enrichment Factor (EF) calculations12 (see the methods section V) to compute the set-wise 

enrichment over random background. 

III. Beyond motion index and correlation distance  

But as successful as motion index has been for these “low-hanging fruits”, subtler 

phenotypes have been elusive. Stimulants, opioids, analgesics, anxiolytics, muscle relaxants, 

convulsants and anti-consultants and other drug classes didn’t seem to have readily actionable 

phenotypes in larval fish. In principle, there could be 3 possible explanations for this; (a) these 

classes of drugs simply have no effect on the behaviors of larval Zebrafish, (b) MI was not a robust 

enough fingerprint of fish behavior, or (c) CD was not the right tool for the job. Even if option (a) 

were true, we as scientists must try to disprove it, making the task of exploring (b) and (c) evermore 

worthwhile. In reality, the answer might be hidden in some combination of (b) and (c); that is, MI is 

not the most robust representation of fish behavior, CD is an imperfect tool for the job, and the 

imperfection from both stacks together to provide an overwhelming obstacle for drug discovery. 
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IV. Guide to the chapters 

This thesis is divided into three chapters. They follow the natural progression of scientific 

inquiry and development that took place during the course of our collaboration with the Kokel Lab 

over the years. 

Chapter 1 is a review that we wrote for ACS Chemical Biology in 2016. It is based on the 

phenotypic screening pipeline we were in the early stages of developing at the time. This review 

highlights the major underlying idea behind much of our work; combining larval zebrafish 

phenotypic screens with computational target identification. 

Chapter 2 is a co-first authored story of an intriguing phenotype in larval zebrafish that we 

originally called the “soft-tap phenotype” thanks to the name of the assay that triggered the 

behavior, but later realized was actually the discovery of a novel model for paradoxical excitation in 

larval zebrafish. In this paper - recently accepted for publication in Nature Communication - we 

demonstrated a successful application of our pipeline outlined in Chapter 1. 

Chapter 3 was chronologically inspired by our early work in chapter 4, where we realized that 

CD was not an appropriate metric for comparing high-dimensional embeddings of fish motion. 

However, it turns out that using Siamese neural networks (SNNs) to learn a custom distance 

function on motion index produces promising results, so we describe this work in chapter 3; 

unpublished work that will serve as the basis for a paper to be submitted for review soon. 

Chapter 4 is a work in progress; it will take the reader through some of the deep-learning 

approaches we’ve been exploring to learn more meaningful representations of fish behavior. It will 

end with a short segue into our initial attempts to employ our methods from chapter 3 to learn a 

custom Siamese distance function on these high-dimensional representations. 
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V. Birds-eye view 

Our ultimate goal is to be able to combine all the work presented in this thesis as individual 

chapters into one final opus; training robust distance metrics both on MI and more advanced 

representations of fish behavior, and applying them to our phenoblasting (phenotype-to-target) 

pipeline, enabling the discovery of novel targets and compounds for all kinds of interesting 

neuroactive phenotypes and pharmacological classes. 

  

V. Methods 

I. Similarity Ensemble Approach (SEA) 

The Similarity Ensemble Approach (SEA)11 was a technique borne out of Michael Keiser’s work in 

the Shoichet lab at UCSF, over a decade ago, that has found tremendous success in applications 

both in academia and industry alike. It has been used for predicting off-target effects, to discovering 

new targets for old drugs13, and even to driving new biological hypothesis and experiments. I will 

refer the reader to the original text for details, but the key insight behind SEA is that targets could be 

related by their shared ligand chemistry. A simple sum over all the pairwise tanimoto similarities 

across pools of target ligands proved insufficient to relate them; the key idea that made SEA so 

successful over previous attempts was that the raw tanimoto sum had to be fit to an extreme value 

distribution. This can be abstracted to relating individual ligands –  which can be thought of as 

targets with a ligand pool of size 1 - to all other targets. Statistics are computed on ligands and 

targets from the ChEMBL database14, a massive dataset of ligand-target associations (binding 

affinities, functional assays, etc) published over the last several decades both by academic and private 

entities. 
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II. Enrichment factor calculations 

Originally designed for use as “guilt-by-association” EFs in the context of adverse-drug-reactions 

(ADRs)12, we extrapolate the fundamental idea of calculating enrichment. In the original case, 

enrichment was calculated on ADRs; in our case, these are targets. The formula for calculating EFs 

is given as 𝐸"# =
%

&×(
)

. For a given set to target association (set x, target y), we compute the 

enrichment as the number of times target y is associated with any compounds from set x (n), divided 

by the number of times target y is associated with random background sets (T), and the number of 

times set x is associated with other targets (A). The EF is scaled by N, a matrix normalization factor. 

In simple terms, the EF enriches for specific set-to-target associations while penalizing for non-

specific associations. These non-specific associations can come out of two possible realms. In one, 

they are the associations between a set of compounds and other targets from ChEMBL. In the 

other, they are associations between a target and random sets of compounds from the screen. Both 

of these cases are considered, and the EF is penalized by how many times these non-specific 

associations are made. 
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Preamble to Chapter 1 

 

In the early days of the Keiser – Kokel Lab collaboration, everything seemed possible and 

the world of polypharmacological phenotypic drug discovery in larval zebrafish seemed ripe for the 

picking. We could predict polypharmacological profiles for novel antipsychotic compounds. We could 

even predict novel single-target mechanisms of action for screening hits. We thought we could predict 

novel multi-target mechanisms of action for the paradoxical excitation phenotype (more on that in 

chapter 2). As it often turns out in the biological sciences, reality is not as simple.  

In chapter 1 we suggest that computational target predictions using SEA and EFs are like a 

bridge allowing us to cross over from compound to target. For the antipsychotics, the SEA and EF 

calculations seemed to work like a magic torch, illuminating a complex polypharmacological 

landscape. But as I will explain in the preamble to Chapter 2, although this bridge has led us safely to 

new continents for single-targets, there are some important pylons still missing from the bridge to 

the multi-target archipelago.   

One of these challenges is likely a result of some of the virtues of SEA itself. SEA is 

incredibly proficient at predicting “off-target” mechanisms; but the “off-target” prediction might 

actually be the “on-target” mechanism for a different indication. Methadone, an opioid used for 

chronic pain management, was predicted by SEA and experimentally validated to antagonize the 

muscarinic M3, adrenergic α2, and neurokinin NK2 receptors1, but it’s also one of the most 

common treatments for opioid addiction2. Could some of its off-target receptors - or some 

polypharmacological combination of them – be responsible for its effectiveness in that capacity? In 

the context of predicting targets for sets of phenotypic hit compounds, how do we know which of 

the predicted targets is actually responsible for the phenotype?   
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This is very much an active area of research. I had the chance to dive into this highly 

complex and important space during the course of our research on the paradoxical excitation 

phenotype; I will discuss some of my efforts and thoughts about where we currently stand on this in 

the preamble to chapter 2.  For now, I invite the reader to come along for the ride and explore 

chapter 1, which makes our case for performing phenotypic screening in larval zebrafish and using 

computational target identification to unravel MOAs.  
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1.1 Abstract 

Many psychiatric drugs modulate the nervous system through multitarget mechanisms. 

However, systematic identification of multitarget compounds has been difficult using traditional in 

vitro screening assays. New approaches to phenotypic profiling in zebrafish can help researchers 

identify novel compounds with complex polypharmacology. For example, large-scale behavior-based 

chemical screens can rapidly identify large numbers of structurally diverse and phenotype-related 

compounds. Once these compounds have been identified, a systems-level analysis of their structures 

may help to identify statistically enriched target pathways. Together, systematic behavioral profiling 

and multitarget predictions may help researchers identify new behavior-modifying pathways and 

CNS therapeutics. 

1.2 Introduction 

Polypharmacology is both a challenge and an opportunity in central nervous system (CNS) 

drug discovery1-3. Although drugs are frequently associated with “magic bullets” against single 

targets, most CNS drugs act on multiple targets simultaneously.2 Polypharmacology complicates 

drug discovery efforts because compounds with complex mechanisms are difficult to identify, 

understand, and optimize. Despite these challenges, polypharmacology also represents an 

opportunity to discover new compounds with mechanisms of action that have not already been 

exhaustively exploited in vitro. Here, we review two approaches to large-scale behavior-based 

chemical biology—phenotypic profiling and predictive multitarget enrichments—that can help 

researchers identify novel compounds with complex polypharmacology. 

Psychiatric disorders such as psychosis, depression, and mood disorders are thought to have 

multigenic and multifactorial etiologies4-6. Typically, drug discovery paradigms focus on identifying 

compounds with single target mechanisms. This single-drug–single-target approach is very effective 
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for diseases caused by a single mutated gene or deregulated protein. However, most psychiatric 

drugs including antipsychotics, antidepressants, and anxiolytics are thought to exert their therapeutic 

effects via multiple targets2,7,8. As shown by the Psychoactive Drug Screening Program (PDSP), these 

compounds tend to have complicated target interaction profiles and complex mechanisms of 

action9. For example, antipsychotic drugs are thought to exert their efficacy through a constellation 

of multiple targets. Attempts to improve these compounds by maximizing single target selectivity 

have been largely unsuccessful2. For CNS drug discovery, more promiscuous compounds are often 

more effective2,7,8.  

1.3 High Content Compounds 

How can multitarget compounds be identified? Unlike in vitro assays that identify 

compounds acting on single predefined targets, phenotypic assays encompass a broader target space. 

For example, high-content cell-based screens are powerful tools for studying intracellular signaling 

pathways10. Similarly, behavioral screens in whole organisms are a powerful approach to 

understanding neuronal phenotypes that require integration of a multitude of cell types, sensory 

systems, and neuronal circuits across an entire organism11,12. Behavioral screens are an effective way 

to identify neuroactive compounds, but understanding their mechanisms is a major challenge. Once 

identified, how can these compounds be understood? One approach may be to leverage the hit 

compounds themselves. 

Different types of screening assays identify hit compounds with varying extents of biological 

information. (The term “hit compounds” can have different meanings in different contexts. Here, 

we use the term “hit” to refer to compounds that have been identified in a screen. In some cases, we 

may also use the terms “primary hit” and “confirmed hit” to refer to these compounds pre- and 

post-validation, respectively.) Hit compounds from target-based assays are expected to primarily 
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contain information about the target they were screened against (Figure 1a). In vitro assays can be 

used to screen millions of compounds and identify hits with maximum potency and selectivity13,14. 

However, since the screening assays are performed in a simplified system (and typically are aimed 

against a single target), the hit compounds from in vitro assays do not contain meaningful 

information about anything except the original screening target.  

 

 

 
 
 

Figure 1.1 Hit compounds from phenotype-based assays showing more target content 

Hit compounds from phenotype-based assays showing 
more target content. (a) Hit compounds from target-
based assays are expected to contain biological 
information about only the target they are screened 
against. (b) Hit compounds from phenotype-based 

assays may contain information about multiple targets 
and pathways that contribute to the phenotype. As a 
result, sets of structurally diverse and phenotypically 
related compounds are a valuable tool for understanding 
complex phenotypes. 

 

By contrast, compounds identified in vivo benefit from more biological context and 

information than those identified in vitro. These compounds are likely to act on multiple targets and 

pathways to cause a given phenotype (Figure 1b). Although some phenotypes may depend on a 
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single target15, many phenotypes depend on multiple targets. This is one reason why target 

identification is such a major challenge in phenotypic screening and why phenotype-based assays are 

so effective at identifying compounds with complex binding profiles. Any single confirmed hit 

compound can provide some clues about its target pathways. However, large numbers of 

phenotypically related compounds contain more information than the sum of their parts. Using large 

numbers of structurally diverse primary hit compounds, it should be possible to enrich for clues 

about the signaling pathway networks that underlie complex multitarget signaling pathways in vivo. 

How can large numbers of phenotypically related hits be identified? This requires a model organism 

that is well suited for large-scale chemical biology.  

1.4 Behavior-based Drug Screening in Zebrafish 

Zebrafish are uniquely suited to whole-organism phenotype-based chemicalscreening16,17,  

and therefore to the discovery of new drugs with polypharmacological effects. Zebrafish exhibit a 

wealth of complex behaviors including anxiety/fear18-21, mating22,23, feeding24,25, pain26-28, 

sensory29,30, and sleep behaviors31-33 (over 190 catalogued34). The majority of these responses are 

robust and conserved and in some instances resemble those of mammals35,36. For example, the 

acoustic startle response is a defensive reaction to potentially threatening stimuli in multiple species 

of vertebrates, including zebrafish37,38. Compounds that modify a particular phenotype, such as 

zebrafish acoustic startle response, could act on common targets. Alternatively, they could act on 

different, or multiple, targets in the same, or parallel, signaling pathways. Although this relatively 

simple zebrafish behavior does not directly simulate human CNS pathologies, the response is 

controlled by evolutionarily conserved neurotransmitter signaling pathways38. As a result, this kind 

of simple reflex can be useful for identifying compounds with the potential to modify neuronal 

signaling and behavioral circuits in humans. 
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Studies investigating how psychoactive compounds affect zebrafish behavior have been 

successfully conducted in both adult and larval animals31,39-46. Many classes of psychoactive 

compounds can modulate zebrafish behavior including hallucinogens, stimulants, sedatives, 

antipsychotics, alcohol, as well as other drugs of abuse36,42,44,47-50. Similar to their effects on humans, 

low doses of alcohol and amphetamine can increase zebrafish locomotor behavior, while higher 

doses of alcohol reduce locomotion47,51. Benzodiazepines and barbiturates are sedatives in humans 

and also reduce motor activity in larval zebrafish12,40,48,52,53. In addition, hallucinogens such as 

ibogaine change adult behavior in light/dark preference assays, promote novel tank exploration, and 

mirror exploration42. These findings suggest that zebrafish are an effective means to identify and 

characterize psychoactive compounds. 

The first high-throughput behavior-based screens in zebrafish assayed thousands of 

compounds to determine their effects on the photo-motor response (a stereotyped motor behavior 

in early zebrafish embryos initiated by high intensity light54) and sleep/wake cycles31,55. Behavior-

based screens do not require a priori knowledge of precise neurological mechanisms but rather 

utilize change in animal behavior as a read out. This is advantageous because much of neuronal 

network signaling in both healthy and pathological conditions is still unknown. Systematic 

behavioral profiling enabled identification of unique phenotypes. Importantly, different neurological 

circuits control similar behavioral phenotypes56,57, indicating various mechanisms of action through 

which screening compounds could act to alter behavior. Subsequent clustering of known and novel 

compounds by phenotypic similarity was then used to predict mechanisms of action31,55.  

Although any single assay may access a limited number of signaling pathways, a large battery 

of assays may provide a higher-resolution readout of many neurological pathways. Animal behavior 

is the output of a complex network of neurological signaling pathways18,29,58. As a result, many 

behaviors can be used to identify neuroactive compounds and study their mechanisms11. A high-
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resolution behavioral battery would increase the scope of neurological systems being assayed as well 

as further increase the multidimensional behavioral profile generated for specific small molecules. 

Because zebrafish screens are scalable, they can be used to generate large databases of behavioral 

information. The more behavioral and chemical space covered in a screen, the greater the predictive 

power of the system to classify new neuroactive compounds and identify their mechanisms of 

action. 

1.5 Identifying Phenotypically Related Compounds 

Phenotypes, and their relationships, can be challenging to measure. As more compounds are 

profiled against an expanding set of assays, the predictive power of the resulting databases will likely 

increase. However, as the number of phenotypic dimensions increase, the relationships between 

phenotypes may become more challenging to identify. To systematically identify the target pathways 

that give rise to a given phenotype, it is first necessary to identify and categorize phenotypically 

related compounds from a screen. Here, we describe three approaches to phenotype classification: 

manual annotation, similarity ranking, and cluster analysis. 

One way to classify compounds with robust phenotypes is by manual annotation. For 

example, assume a researcher is looking for drugs that modify animals’ acoustic startle response. 

Whereas control animals do not respond to a particular acoustic stimulus (Figure 2a, upper panel), a 

subset of screened compounds causes the animals to respond in a robust and reproducible way 

(Figure 2a, lower panel). Expert analysis of recorded movies is one way to identify compounds that 

cause this behavior. Manual phenotyping can be a beneficial first step because the human brain is a 

powerful pattern recognition tool, and the experience gives the researcher a first-hand appreciation 

for the entirety of the screening data set. However, despite the power of expert classification, there 
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are many limitations to this method, such as the time constraints of scoring increasingly large data 

sets, user fatigue, and lack of scalability. 

 
 

Figure 1.2 Manual and objective quantification methods to identify phenotypically related 

compounds 

(a) Manual observation of behavioral phenotypes, for example from an acoustic startle response assay, can be used to 
identify neuroactive compounds in zebrafish. (a′) A sub-threshold acoustic stimulus does not initiate the acoustic startle 
response in vehicle treated zebrafish but (a″) does cause a startle response in a subset of compound treated animals. (b) 
An example of behavioral quantification. The motion index (y-axis) is plotted against time (x-axis). Black rectangles 
represent the timing and duration of the stimulus. Vehicle treated controls (light blue) display no significant change in 
motion index in response to the stimulus. By contrast, animals treated with some hit compounds (dark blue) show large 
changes in motion index due to a sensitized startle response. (c) Normal distribution of phenotypic distances relative to a 
query profile. A small number of related compounds will match the query phenotype (outlined in red). (d) Scatter plot of 
two separate phenotypes; related compounds group together as having high magnitude in phenotype 1 but low magnitude 
in phenotype 2. (e) Hierarchical clustering algorithms can be used to group together screening compounds with similar 
behavioral phenotypes, potentially revealing patterns not recognized by other methods. (f) Venn diagram illustrating 
potential overlap of phenotypically related compounds identified from different methods. 
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Objective quantification of behavioral features can help researchers to identify phenotypically related 

compounds. Many different similarity metrics can be used to represent phenotypic similarity (Figure 

2b). Approaches to identifying phenotypically related compounds include feature extraction, 

hierarchical clustering, and calculating distances between time series31,55. For example, a plot of 

distances between a query profile and the entire data set would typically show a normal (or bimodal) 

distribution, where a few compounds in the data set may be defined as hit compounds depending on 

how closely they match the query profile (Figure 2c). Specific behavioral features can also be used 

to identify subsets of related hit compounds (Figure 2d). And, clustering approaches can be used to 

identify major clusters of phenotypically related compounds (Figure 2e). All of these approaches 

can be used to organize hit compounds into phenotypically related sets. No single method is best in 

all situations. One can expect that each of these approaches will result in a large but not complete set 

of overlap (Figure 2f). A combination of approaches may give the most comprehensive and useful 

results. 

 

1.6 Mining Phenotypically Related Compounds for Multitarget 

Mechanisms 

Phenotype-based screens can identify hundreds of primary hit compounds, and it may be impractical 

to follow up on all of them. Once phenotypically related compounds have been identified, an 

important question is how to make sense of them. Common questions include: Are the primary hits 

reproducible? How should compounds be prioritized? What are their mechanisms of action? Here, 

we review two approaches for understanding hit compounds and their targets—structure-based 

clustering and computational target predictions—and introduce the concept of multitarget 

enrichment factors. 
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Structure-based clustering is one way that biologists can quickly organize their primary hit 

compounds into meaningful groups. Structurally related compounds are often prioritized for follow-

up studies because chemical substructures that are identified multiple times are likely to indicate truly 

reproducible hit compounds. However, while structure-based clustering can help researchers to 

focus on specific compounds and compound series, this alone does not always bring the investigator 

any closer to understanding the biological mechanisms about how these compounds are working. 

Computational approaches from the field of systems pharmacology have been successfully used to 

predict single targets of single compounds. For example, the Similarity Ensemble Approach (SEA) 

has been used to both identify off-target interactions59,60 and predict targets of novel compounds 

identified from in vivo phenotypic screens in C. elegans61 and zebrafish62. Given the power of SEA to 

predict targets of single compounds, it may also be possible to identify predicted targets that are 

statistically enriched among the most phenotypically related primary hit compounds. This approach 

could enumerate testable hypotheses about how poorly understood and novel compounds affect 

behavioral phenotypes (Figure 3c). For example, in a recent study, we predicted targets for 

compounds found to modify C. elegans feeding behavior61. In the first stage, a screen yielded 84 

phenotypically related but structurally diverse compounds, which we compared against more than 

2000 human targets. Of the 84 compounds, SEA thereby predicted 79 to have one or more human 

targets in ChEMBL, with 572 compound–target pairs in total. Sixteen of these pairs were tested in 

vitro to validate their putative mammalian targets, of which nine had strong activity. These 

mechanistic hypotheses were then analyzed in vivo against both biologically and pharmacologically 

homologous proteins through combined genetic and pharmacological perturbations. Together, these 

data illustrate the use of simple model organisms with target predictions to gain mechanistic 

information from phenotypic screening compounds. Notably, the pharmacological target predictions 
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arising from SEA were articulated by ligands known to human targets, but it was possible to map the 

results back to C. elegans biology. 

 

 
 

Figure 1.3 Proposed workflow for identifying phenotypically related neuroactive drugs and 

their targets 

(a) Example of a behavioral phenotype used to identify hit compounds from a phenotypic screen; magenta bars represent 
acoustic stimulus, motion index in black. (b) Similarity ranking, phenotypic features, or clustering methods can then be 
used to identify related hit compounds. (c) SEA algorithms used to predict hit compound–target space, where subsets of 
compounds could be predicted to interact with certain targets. (d) Joint enrichment factors (EFs) are calculated from full 
sets of phenotypically related screening compounds to predict multiple targets potentially required for the phenotype. Plot 
reads outward: Inner wedges represent the first target of the enriched target-pair, and outer wedges the second target. (e) 
Validation of the single or multitarget predictions by in vivo treatment and phenocopy of animals with drugs of known 
pharmacology. Experimentally validated target pairs are colored green in d, while pairs that do not validate are orange. 
Untested pairs are light blue. (f) Information gained from complete sets of phenotypically related compounds, multitarget 
predictions, and subsequent phenocopy validation will aid in understanding networks of neuronal circuits, cellular signaling 
pathways, and whole animal neuropharmacology. Abbreviations: 5-HT1-2, serotonin receptor 1–2; ACh, acetylcholine; 
CNR1, cannabinoid receptor 1; D1–4, dopamine receptor 1–4; DAT, dopamine active transporter; GABA, gamma-
aminobutyric acid; H1–3, histamine 1–3 receptor; µ1–2, mu-opioid receptor 1–2; M1–2, muscarinic acetylcholine receptor 
1–2; σ1–2, sigma receptor 1–2; Nav, sodium ion channel; NMDA, N-methyl-d-aspartate receptor; P2X, P2X 
purinoreceptor; SERT, serotonin transporter; V(1a,1b,2), vasopressin (1a,1b,2). 
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In the future, large databases of structurally diverse compounds and their behavioral profiles 

may enable researchers to identify multitarget drugs with complex pharmacological profiles63. 

Beyond identifying novel molecules, one can leverage the entire set of phenotypically related 

compounds in order to gain insight into single targets by which hit compounds modify the system. 

For drug side-effect prediction, enrichment factors (EFs64) have been used to link target singletons 

to drug adverse events. Perhaps even more exciting is the possibility of being able to use clusters of 

targets to determine multitarget mechanisms62,65-67. For example, by looking at how hit compounds 

cluster with their predicted targets (Figure 3c), one may be able to predict potential combinations of 

targets that form mechanistic hypotheses. Joint enrichment factors could be developed to predict 

combinations of targets that underlie a given phenotype (Figure 3d). These kinds of 

chemoinformatic target predictions can help prioritize compounds and identify targets or target 

combinations that would be difficult to identify by any other means. 

There are many reasons why neuroactive drug phenotypes may not translate from zebrafish 

to humans including issues related to target engagement, the blood–brain barrier, and the 

evolutionary conservation of specific receptor and neural pathways. Neuroactive compounds are 

expected to interact with different targets at different concentrations, and saturating levels may 

engage targets above the clinical dose, thus complicating phenotypic predictions. In zebrafish, many 

compounds are frequently tested in the µM range (high compound doses >100 µM are often toxic 

while low doses <100 nM frequently have no effect31,55). Although these concentrations may differ 

from the clinical dose, full dose response curves can be generated to identify behavioral profiles at 

specific concentrations. For example, if one wanted to identify novel antipsychotic-like compounds 

it might be more useful to focus on phenotypes caused by relatively low doses (because high-dose 

phenotypes may be caused by toxic side effects.) Ultimately, compounds identified in zebrafish 
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should be tested in rodent and other mammalian models to fully understand their pharmacokinetics 

and brain penetration. 

Another issue that pertains to dose is the existence of a blood–brain barrier in the larval 

animal. Markers for the presence of a protective layer exist in zebrafish as early as 3 days post-

fertilization including epithelial cells and the presence of tight junctions68-71. The presence of a 

functional blood–brain barrier in the screening model may increase the chance that any hit 

compounds will also cross the blood–brain barrier in humans. However, some zebrafish receptors 

may differ from their human and rodent orthologs in functionally important ways. For example, 

delta opioid receptors in frogs and zebrafish are insensitive to high affinity ligands at the human 

delta opioid receptor due to a single amino acid variation72. While studies like this one do raise 

concern for the translatability of compounds identified from a zebrafish screen, other compounds 

do work on human and zebrafish receptors. For example, a reversible TrpA1 ligand, optovin15, was 

discovered in a zebrafish behavioral screen and found to work on both mouse and human 

orthologs in vivo and in vitro, respectively. Thus, confirmed hit compounds identified in a zebrafish 

screen can translate to mammalian neuropharmacology. 

A hypothetical multitarget drug discovery workflow might work as follows: First, an 

interesting behavioral phenotype is defined, and a method of quantification is established (Figure 

3a). Next, in vivo phenotypic screens are performed; hit compounds are identified and clustered into 

phenotypically related sets (Figure 3b). These related hit compounds are then analyzed via target-

prediction algorithms to determine the potential target space, and joint EFs are calculated to 

generate hypotheses of target combinations and larger network pathways acting in concert to 

produce the phenotype (Figure 3c,d). To validate these hypotheses, one could then use 

combinations of small molecules with established pharmacology to test these hypotheses in 

vivo (Figure 3e). In this way, researchers could use structurally diverse yet phenotypically related 
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compounds to gain insight into cellular pathways, neurological networks, and how neuroactive 

compounds with complex multitarget mechanisms affect the brain and behavior in intact living 

organisms (Figure 3f). 

Phenotypically related compounds contain a wealth of biological information. By 

combining in vivo high throughput screening with multidimensional phenotyping, it should be 

possible to identify large sets of diverse compounds with enough statistical power to drive target 

prediction and identification. Examination of large and diverse chemical libraries against an 

extensive repertoire of zebrafish behavioral assays could identify novel neuroactive compounds with 

complex target interaction profiles, while systems pharmacology methods can predict mechanisms 

of action for these novel compounds to generate hypotheses for further in vivo validation. Together, 

this approach may describe target-signaling pathways within the cell and circuitry within neuronal 

networks and even reveal mechanisms of whole animal behavioral neuropharmacology. 
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1.8 Glossary 

Phenotypic screening A screening approach used in biological research to identify molecules or 

genes that change a cell or animal’s phenotype in a desired or interesting 

way 

Neuropharmacology The study of small molecules or peptides that affect the nervous system, 

and how these interactions alter behavior 

Polypharmacology The identification and implementation of compounds that interact with 

multiple biological targets and or disease pathways 

Primary hit compound A compound that has been identified in a screen but has not been validated 

Confirmed hit compound A primary hit compound that has been validated in subsequent assays 

In vivo: Studies performed on whole organisms, Latin for “within the living” 

Photomotor response A stereotyped sensorimotor behavior in zebrafish provoked by visual light 

but that is not transduced by the eyes or pineal gland 

Acoustic startle response An evolutionarily conserved defensive behavioral response to adverse 

acoustic stimulus 

Enrichment factor A “guilt-by-association” metric that relates a set of compounds to a protein 

target, after correction against a distribution of random sets; in this Review, 

the sets are specifically groups of compounds selected from a phenotypic 

screen by their ability to trigger a certain behavior 

Similarity ensemble approach Statistical method to predict biological targets for compounds; it uses 

chemical “fingerprints” to rapidly compare the 2D structure of a query 
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compound against structures of ligands experimentally known to bind to 

approximately 2500 protein targets (using ChEMBL) and outputs an E 

value for each association. 

Systems pharmacology A network view of drug action, rather than the canonical “one drug, one 

target” view; seeks to answer questions such as which groups of targets or 

pathways a drug must modulate in order to achieve a therapeutic effect, as 

well as to understand how drug or protein target combinations can work by 

triggering different nodes in a multiscale biological network. 



 29 

1.9 References 

1. Anighoro, A., Bajorath, J., and Rastelli, G. 

(2014) Polypharmacology: Challenges and 

Opportunities in Drug Discovery J. Med. 

Chem. 57, 7874– 7887  

2. Roth, B. L., Sheffler, D. J., and Kroeze, W. K. 

(2004) Magic shotguns versus magic bullets: 

selectively non-selective drugs for mood 

disorders and schizophrenia Nat. Rev. Drug 

Discovery 3, 353– 359  

3 Besnard, J. et al. (2012) Automated design of 

ligands to polypharmacological profiles 

Nature 492, 215– 220  

4 Schizophrenia Working Group of the 

Psychiatric Genomics Consortium (2014) 

Biological insights from 108 schizophrenia-

associated genetic loci Nature 511, 421– 427  

5 Kendler, K. S., Aggen, S. H., and Neale, M. C. 

(2013) EVidence for multiple genetic factors 

underlying dsm-iv criteria for major 

depression JAMA Psychiatry 70, 599– 607  

6 Craddock, N. and Sklar, P. (2013) Genetics of 

bipolar disorder Lancet 381, 1654– 1662  

7 Roth, B. L., Sheffler, D., and Potkin, S. G. 

(2003) Atypical antipsychotic drug actions: 

unitary or multiple mechanisms for 

“atypicality”? Clin. Neurosci. Res. 3, 108– 117  

8 Griebel, G. and Holmes, A. (2013) 50 years of 

hurdles and hope in anxiolytic drug discovery 

Nat. Rev. Drug Discovery 12, 667– 687  

9 Roth, B. L., Lopez, E., Patel, S., and Kroeze, 

W. K. (2000) The Multiplicity of Serotonin 

Receptors: Uselessly Diverse Molecules or an 

Embarrassment of Riches? Neuroscientist 6, 

252– 262 

10 Singh, D. K. et al. (2010) Patterns of basal 

signaling heterogeneity can distinguish cellular 

populations with different drug sensitivities 

Mol. Syst. Biol. 6, 369 

11 Kokel, D. and Peterson, R. T. (2011) Chapter 

22 - Using the Zebrafish Photomotor 

Response for Psychotropic Drug Screening, in 

Methods in Cell Biology (Detrich, H. W., 

Westerfield, M., and Zon, L. I., Ed.), pp 517– 

524 

12 Rihel, J. and Schier, A. F. (2012) Behavioral 

screening for neuroactive drugs in zebrafish 

Dev. Neurobiol. 72, 373– 385  

13 Gleeson, M. P., Hersey, A., Montanari, D., 

and Overington, J. (2011) Probing the links 

between in vitro potency, ADMET and 

physicochemical parameters Nat. Rev. Drug 

Discovery 10, 197– 208  

14 Szymański, P., Markowicz, M., and Mikiciuk-

Olasik, E. (2012) Adaptation of High-

Throughput Screening in Drug Discovery—

Toxicological Screening Tests Int. J. Mol. Sci. 

13, 427– 452  

15 Kokel, D. et al. (2013) Photochemical 

activation of TRPA1 channels in neurons and 

animals Nat. Chem. Biol. 9, 257– 263  



 30 

16 Peterson, R. T., Link, B. A., Dowling, J. E., 

and Schreiber, S. L. (2000) Small molecule 

developmental screens reveal the logic and 

timing of vertebrate development Proc. Natl. 

Acad. Sci. U. S. A. 97, 12965– 12969  

17 Rennekamp, A. J. and Peterson, R. T. (2015) 

15 years of zebrafish chemical screening Curr. 

Opin. Chem. Biol. 24, 58– 70 

18 Agetsuma, M. et al. (2010) The habenula is 

crucial for experience-dependent modification 

of fear responses in zebrafish Nat. Neurosci. 

13, 1354– 1356 

19 Nowicki, M. et al. (2014) Serotonin antagonists 

induce anxiolytic and anxiogenic-like behavior 

in zebrafish in a receptor-subtype dependent 

manner Pharmacol., Biochem. Behav. 126, 

170– 180  

20 Maximino, C. et al. (2014) Fingerprinting of 

Psychoactive Drugs in Zebrafish Anxiety-Like 

Behaviors PLoS One 9, e103943  

21 Maximino, C. et al. (2010) Scototaxis as 

anxiety-like behavior in fish Nat. Protoc. 5, 

209– 216  

22 Pradhan, A. and Olsson, P.-E. (2015) 

Zebrafish sexual behavior: role of sex steroid 

hormones and prostaglandins Behav. Brain 

Funct. 11, 23  

23 Gumm, J. M., Snekser, J. L., and Iovine, M. K. 

(2009) Fin-mutant female zebrafish (Danio 

rerio) exhibit differences in association 

preferences for male fin length Behav. 

Processes 80, 35– 38  

24 De Marco, R. J. et al. (2014) The behavior of 

larval zebrafish reveals stressor-mediated 

anorexia during early vertebrate development 

Front. Behav. Neurosci. 8, 367  

25 Jordi, J. et al. (2015) A high-throughput assay 

for quantifying appetite and digestive 

dynamics Am. J. Physiol. - Regul. Integr. 

Comp. Physiol. 309, R345– R357  

26 Curtright, A. et al. (2015) Modeling 

nociception in zebrafish: a way forward for 

unbiased analgesic discovery PLoS One 10, 

e0116766  

27 Malafoglia, V. et al. (2013) The zebrafish as a 

model for nociception studies J. Cell. Physiol. 

228, 1956– 1966  

28 Malafoglia, V. et al. (2014) Extreme thermal 

noxious stimuli induce pain responses in 

zebrafish larvae J. Cell. Physiol. 229, 300– 308  

29 Del Bene, F. et al. (2010) Filtering of Visual 

Information in the Tectum by an Identified 

Neural Circuit Science 330, 669– 673  

30 Lacoste, A. et al. (2015) A Convergent and 

Essential Interneuron Pathway for Mauthner-

Cell-Mediated Escapes Curr. Biol. 25, 1526– 

1534  

31 Rihel, J. et al. (2010) Zebrafish behavioral 

profiling links drugs to biological targets and 

rest/wake regulation Science 327, 348– 351  

32 Gandhi, A. V., Mosser, E. A., Oikonomou, 

G., and Prober, D. A. (2015) Melatonin Is 

Required for the Circadian Regulation of 

Sleep Neuron 85, 1193– 1199  



 31 

33 Singh, C., Oikonomou, G., and Prober, D. A. 

(2015) Norepinephrine is required to promote 

wakefulness and for hypocretin-induced 

arousal in zebrafish eLife 4, e07000  

34 Kalueff, A. V. et al. (2013) Towards a 

Comprehensive Catalog of Zebrafish 

Behavior 1.0 and Beyond Zebrafish 10, 70– 

86 

35 Panula, P. et al. (2010) The comparative 

neuroanatomy and neurochemistry of 

zebrafish CNS systems of relevance to human 

neuropsychiatric diseases Neurobiol. Dis. 40, 

46– 57 

36 Mathur, P. and Guo, S. (2010) Use of 

zebrafish as a model to understand 

mechanisms of addiction and complex 

neurobehavioral phenotypes Neurobiol. Dis. 

40, 66– 72  

37 Burgess, H. A. and Granato, M. (2007) 

Sensorimotor Gating in Larval Zebrafish J. 

Neurosci. 27, 4984– 4994  

38 Wolman, M. A. et al. (2015) A Genome-wide 

Screen Identifies PAPP-AA-Mediated IGFR 

Signaling as a Novel Regulator of Habituation 

Learning Neuron 85, 1200– 1211 

39 Kokel, D. and Peterson, R. T. (2008) 

Chemobehavioural phenomics and behaviour-

based psychiatric drug discovery in the 

zebrafish Briefings Funct. Genomics 

Proteomics 7, 483– 490 

40 Baraban, S. C., Dinday, M. T., and Hortopan, 

G. A. (2013) Drug screening in Scn1a 

zebrafish mutant identifies clemizole as a 

potential Dravet syndrome treatment Nat. 

Commun. 42410 

41 Neelkantan, N. et al. (2013) Perspectives on 

Zebrafish Models of Hallucinogenic Drugs 

and Related Psychotropic Compounds ACS 

Chem. Neurosci. 4, 1137– 1150 

42 Cachat, J. et al. (2013) Unique and potent 

effects of acute ibogaine on zebrafish: The 

developing utility of novel aquatic models for 

hallucinogenic drug research Behav. Brain 

Res. 236, 258– 269 

43 Cachat, J. et al. (2011) Three-dimensional 

neurophenotyping of adult zebrafish behavior 

PLoS One 6, e17597 

44 Grossman, L. et al. (2010) Characterization of 

behavioral and endocrine effects of LSD on 

zebrafish Behav. Brain Res. 214, 277– 284 

45 Tran, S., Muraleetharan, A., Fulcher, N., 

Chatterjee, D., and Gerlai, R. (2015) MK-801 

increases locomotor activity in a context-

dependent manner in zebrafish Behav. Brain 

Res. 296, 26– 29  

46 Tran, S., Nowicki, M., Muraleetharan, A., 

Chatterjee, D., and Gerlai, R. (2015) 

Differential effects of acute administration of 

SCH-23390, a D1 receptor antagonist, and of 

ethanol on swimming activity, anxiety-related 

responses, and neurochemistry of zebrafish 

Psychopharmacology (Berl.) 232, 3709– 3718  

47 Guo, N. et al. (2015) Influences of acute 

ethanol exposure on locomotor activities of 



 32 

zebrafish larvae under different illumination 

Alcohol 49, 727  

48 Gebauer, D. L. et al (2011) Effects of 

anxiolytics in zebrafish: Similarities and 

differences between benzodiazepines, 

buspirone and ethanol Pharmacol., Biochem. 

Behav. 99, 480– 486  

49 Kyzar, E. J. et al. (2012) Effects of 

hallucinogenic agents mescaline and 

phencyclidine on zebrafish behavior and 

physiology Prog. Neuro-Psychopharmacol. 

Biol. Psychiatry 37, 194– 202 

50 Stewart, A. et al. (2011) Zebrafish models to 

study drug abuse-related phenotypes Rev. 

Neurosci. 22, 95– 105 

51 Kyzar, E. et al. (2013) Behavioral effects of 

bidirectional modulators of brain 

monoamines reserpine and d-amphetamine in 

zebrafish Brain Res. 1527, 108– 116  

52 Renier, C. et al. (2007) Genomic and 

functional conservation of sedative-hypnotic 

targets in the zebrafish Pharmacogenet. 

Genomics 17, 237– 253  

53 Chen, F. et al. (2015) Effects of lorazepam and 

WAY-200070 in larval zebrafish light/dark 

choice test Neuropharmacology 95, 226– 233  

54 Kokel, D. et al. (2013) Identification of 

Nonvisual Photomotor Response Cells in the 

Vertebrate Hindbrain J. Neurosci. 33, 3834– 

3843  

55 Kokel, D. et al. (2010) Rapid behavior—based 

identification of neuroactive small molecules 

in the zebrafish Nat. Chem. Biol. 6, 231– 237 

56 Ahrens, M. B. et al. (2012) Brain-wide 

neuronal dynamics during motor adaptation in 

zebrafish Nature 485, 471– 477 

57 Yokogawa, T., Hannan, M. C., and Burgess, 

H. A. (2012) The Dorsal Raphe Modulates 

Sensory Responsiveness during Arousal in 

Zebrafish J. Neurosci. 32, 15205– 15215  

58 Wyart, C. et al. (2009) Optogenetic dissection 

of a behavioural module in the vertebrate 

spinal cord Nature 461, 407– 410  

59 Keiser, M. J. et al. (2007) Relating protein 

pharmacology by ligand chemistry Nat. 

Biotechnol. 25, 197– 206  

60 Keiser, M. J. et al. (2009) Predicting new 

molecular targets for known drugs Nature 

462, 175– 181  

61 Lemieux, G. A. et al. (2013) In Silico 

Molecular Comparisons of C. elegans and 

Mammalian Pharmacology Identify Distinct 

Targets That Regulate Feeding PLoS Biol. 11, 

e1001712  

62 Laggner, C. et al. (2012) Chemical informatics 

and target identification in a zebrafish 

phenotypic screen Nat. Chem. Biol. 8, 144– 

146  

63 Kokel, D. et al. (2012) Behavioral barcoding in 

the cloud: embracing data-intensive digital 

phenotyping in neuropharmacology Trends 

Biotechnol. 30, 421– 425  



 33 

64 Lounkine, E., et al. (2012) Large-scale 

prediction and testing of drug activity on side-

effect targets Nature 486, 361– 367  

65 Ciceri, P. et al. (2014) Dual kinase-

bromodomain inhibitors for rationally 

designed polypharmacology Nat. Chem. Biol. 

10, 305– 312  

66 Carrieri, A., Pérez-Nueno, V. I., Lentini, G., 

and Ritchie, D. W. (2013) Recent trends and 

future prospects in computational GPCR drug 

discovery: from virtual screening to 

polypharmacology Curr. Top. Med. Chem. 13, 

1069– 1097  

67 Zhao, S. and Iyengar, R. (2012) Systems 

Pharmacology: Network Analysis to Identify 

Multiscale Mechanisms of Drug  

 

Action Annu. Rev. Pharmacol. Toxicol. 52, 505– 

521  

68 Eliceiri, B. P., Gonzalez, A. M., and Baird, A. 

(2011) Zebrafish Model of the Blood-Brain 

Barrier: Morphological and Permeability 

Studies Methods Mol. Biol. 686, 371– 378  

69 Jeong, J.-Y. et al. (2008) Functional and 

developmental analysis of the blood–brain 

barrier in zebrafish Brain Res. Bull. 75, 619– 

628  

70 Xie, J., Farage, E., Sugimoto, M., and Anand-

Apte, B. (2010) A novel transgenic zebrafish 

model for blood-brain and blood-retinal 

barrier development BMC Dev. Biol. 10, 76  

71 Zhang, J. et al. (2010) Establishment of a 

neuroepithelial barrier by Claudin5a is 

essential for zebrafish brain ventricular lumen 

expansion Proc. Natl. Acad. Sci. U. S. A. 107, 

1425– 1430  

72 Vardy, E. et al. (2015) Single Amino Acid 

Variation Underlies Species-Specific 

Sensitivity to Amphibian Skin-Derived 

Opioid-like Peptides Chem. Biol. 22, 764– 

775  

 

 

  

 

 

 

 

 



 

 

34 

Preamble to Chapter 2 

 

In chapter 1, we made our case for phenotypic screening in larval zebrafish and proposed a 

pipeline for leveraging its unique strengths. Chapter 2 will take the reader into our investigation of a 

very specific and distinct phenotype characterized by sedation and paradoxical excitation, induced by 

anesthetics such as etomidate and propofol. Originally called the “soft-tap” phenotype (see Figure 

2.1a) – thanks to the soft-solenoid whose tapping triggered the behavior – we eventually realized it 

was a model for paradoxical excitation in larval zebrafish. We will show that using phenotypic 

screening in larval zebrafish, we discover 125 structurally diverse “hits” that cause this unique 

phenotype, and with SEA and EF predictions are able to predict not only the canonical GABAergic 

mechanism, but a novel biological target entirely - the serotonin-6 (HT6) receptor - and to some 

extent, the metabotropic glutamate 4 receptor (mGluR4).   

Chapter 2 might read like a self-contained success story for our platform. But in this 

preamble, I’d like to focus instead on some of the interesting discoveries and challenges that didn’t 

make it into that story, but merit further investigation, and might contain one or two nuggets of 

value for the scientific community. Perhaps in the future our group, or even other groups, might 

unravel the mysteries contained therein.  

I. Dual-target EF predictions lead to exciting experimental results 

After we had confirmed the novel single target HT6, we were quite motivated and set our 

sights on the prized multi-target real estate. In our initial dual-target EF calculations, one of the most 

prominent predictions was the combination of Epidermal Growth Factor Receptor (ERBB2) with 

Voltage-Gated Sodium Channel (SCN9A). 
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Fig 2.i.1 Dual-target motion-index phenocopy experiments. 

Two examples of wildly different effects with the same ERBB2 inhibitor, AG 825. Each cell in both matrices have a 
sample of MI from two key assays for the soft-tap phenotype; the soft-tap and the blue-light assays a) x-axis; increasing 
titration of Nav26, an SCN9A inhibitor, y-axis; increasing titration of AG 825. Neither compound causes the soft-tap 
phenotype by itself (left column, or bottom row). Emergent synergy is seen towards the middle of the panel. b) Increasing 
the dose of AG 825 weakens the soft-tap effect from Etomidate (anti-synergy). Red traces indicate toxic dose.  
 

The sodium channel prediction made sense in the context of sedation; these ion channels could be 

placed in pathways that modulate neuronal excitation and inhibition. However, the ERBB2 

prediction was more unconventional and harder to place in the context of the CNS. But we were 

intrigued. We did a simple experimental test to see if this prediction had any merit; we attempted to 

phenocopy the behavior with known inhibitors of these two predicted targets. When we purchased and 

profiled a known inhibitor of SCN9A, Nav 26, and AG 825, a known inhibitor of ERBB2, in the 

fish, neither compounds caused the soft-tap response individually, but did cause a response in 

combination (Figure 2.i.1a).  

We were excited. Combination therapy1,2 is considered one of the most promising directions in 

drug-discovery because of the ability to reduce doses (synergistic potency3). Ours was a case of 
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emergent synergy, arguably the most sought after prize in drug discovery; where neither drug causes an 

effect on its own but in combination the drugs cause a strong response. To our best knowledge, 

ours was the first case of the specific prediction of emergent synergy in the context of a phenotypic 

screen.  

  

Fig 2.i.2 Dual-target EF predictions 

Sunburst diagram for dual target EF predictions for the top 173 hit compounds. The inner rainbow-colored wheel contains 
the first target and the outer light-blue colored wheel contains the second target of the dual target pair predictions. Outer 
ring slices filled in green are successfully retested predictions; orange filled outer ring slices are for unsuccessful predictions.  
 

And so the fishing expedition began. Matthew McCarroll from the Kokel Lab tested dozens of dual-

target predictions (Figure 2.i.2). There were several more successful cases, such as some synergism 

between an Nav 26, the SCN9A inhibitor, and JQ1, a bromo-domain 3 (BRD3) inhibitor, but hit 

rates were relatively low. There was even the intriguing case of negative-synergy between etomidate and 

AG 825, the same ERBB2 inhibitor that together with Nav 26 caused the emergent-synergy 

phenomenon (Figure 2.i.1b). Here, increasing concentrations of AG 825 caused a weakening of the 

soft-tap response triggered by etomidate. It seemed we had the Strange Case of Dr Jekyll and Mr 
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Hyde on our hands; AG 825 played a synergistic role in the morning, but exhibited the exact 

opposite behavior at night.  

II. Exciting results are followed by confusion, frustration, and exploration 

of new methods 

 Much time was spent on literature review; searching for signs that our predictions and 

experimental results could be placed in some biological framework. Some theories were developed, 

but we weren’t too confident in them. More importantly, the compounds that were underlying the 

original SCN9A+ERBB2 prediction, failed to validate in-vitro. Were the predictions completely 

wrong or did we test the compounds against the wrong subtypes of the receptor? Even more 

intriguing was the possibility that the predictions were actually the off-target effects of the screening 

hits; that is, perhaps there were targets that we didn’t test that were the actual drivers of the 

phenotype, and the targets we did test just came along for the ride. 

I tested the latter possibility by constructing a new SEA4, where targets were first broken up 

into target fragments. These fragments were based on a structural clustering of ChEMBL5 target 

ligand pools using the Butina clustering algorithm6. SEA predictions were then performed on a large 

subset of compounds from ChEMBL, and fragments were clustered based on the compound to 

fragment graph using the MCL network clustering algorithm7.  
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Fig 2.i.3 Target-fragment clustering. 

Illustration of the ChEMBL target-fragment clustering scheme. We break up ChEMBL targets into fragments by clustering 
their associated ligands. The fragments are grouped by clustering them based on a SEA network of ligands and their target-
fragment associations.  A new SEA library is then constructed based on these “fragment groups” instead of the usual 
ChEMBL targets.  
 

The resulting clusters represented “groups of fragments” – let’s just call them “groups” - that shared 

ligand chemistry (Figure 2.i.3). The new SEA predictions were for these “groups” instead of the 

original ChEMBL targets. This way, both the on and off-target predictions might be present in an 

enriched “group”. The idea was that these enriched “groups” could generate testable hypothesis. For 

example, in the paradoxical-excitation case, when we performed SEA-group calculations on the hit 

compounds, the top enrichment was for group 12, which, as it  turned out, contained various 

GABAAR subtypes, Peripheral-type benzodiazepine receptor (TSPO), as well as the arachidonate 

lipoxegenase-5 (LOX5) (Table 2.i.1). 

Table 2.i.1 Target fragments in group 12 

Group# Target fragment 

 1
2 

GABA-A receptor; alpha-1/beta-3/gamma-2_cluster_1 

GABA receptor alpha-2 subunit_cluster_0 

Arachidonate 5-lipoxygenase_cluster_15 

… 

Peripheral-type benzodiazepine receptor_cluster_12 

GABA-A receptor; alpha-6/beta-3/gamma-2_cluster_1 

Metabotropic glutamate receptor 5_cluster_1 
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Perhaps this could explain the AG 825 – etomidate anti-synergy observation; the prediction 

that we originally thought was ERBB2 was actually driven by LOX5, thanks to some shared ligand 

chemistry between the receptors. A literature review was able to place the 5,12 lipoxygenases in the 

context of GABA neurotransmission8,9. Indeed, there was another “group” with both ERBB2 and 

lipoxegenase-12 (LOX12), suggesting that the same shared ligand chemistry that had LOX5 taking 

the role of ERBB2 in its antagonism of GABAAR allowed it to take the role of ERBB2 in its 

synergism with SCN9A. We tested this hypothesis by ordering several LOX5 inhibitors and 

attempted to phenocopy the emergent synergy and anti-synergy phenotypes by performing co-

treatment experiments with the SNC9A inhibitor and Etomidate. These initial results were negative. 

III. Discussion   

We couldn’t disprove the prediction that ERBB2 was driving the phenotype. However, it is 

not impossible that testing additional known LOX5 inhibitors could have changed the story. In fact, 

in the case of the serotonin-6 prediction in chapter 2, multiple known inhibitors of HT6 failed to 

phenocopy; suggesting that differences between the Zebrafish and Human orthologs make it 

difficult to predict which specific drugs will work in fish, and warrant further investigation of the 

LOX5 and LOX12 hypothesis. 

         Another discovery we made along the way was that calculating EFs on multiple sets of 

compounds - assembled by increasingly stringent correlation distance threshold - drastically 

improved our signal to noise ratio for single-target predictions, but in the process caused the 

disappearance of our ERBB2 signal. This was additional evidence that ERBB2 was not the target 

responsible for the observed synergy with SCN9A and the observed anti-synergy with GABAAR.  

Although we weren’t able to explain our observations with the LOX5/12 hypothesis, they 

point to the fact that the paradoxical excitation phenotype is a polypharmacological one by nature, 
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offering a fertile breeding ground for testing bleeding-edge chemoinformatic approaches for those 

unphased by the challenges of unravelling its secrets. From the scientific and biological perspective, 

it would be of great value to the community to demystify these observations; potentially new and 

completely novel pathways related to sedation and paradoxical excitation should exist based on our 

data; and might be discovered with the right set of experiments and techniques. But for now, I hope 

the reader will forgive us some of our shortcomings in unraveling the full beauty of the 

polypharmacological multi-target story, and enjoy Chapter 2; the story of how we discovered a novel 

phenotype in larval zebrafish - paradoxical excitation - and unraveled some of the novel single-

target-biology and pharmacology that caused it using our combined phenotypic screening and 

computational target identification approach outlined in Chapter 1.  
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2.1 Abstract 

Anesthetics are generally associated with sedation, but some anesthetics can also increase brain and 

motor activity — a phenomenon known as paradoxical excitation. Previous studies have identified 

GABAA receptors as the primary targets of most anesthetic drugs, but how these compounds 

produce paradoxical excitation is poorly understood. To identify and understand such compounds, 

we applied a behavior-based drug profiling approach. Here, we show that a subset of central 

nervous system depressants cause paradoxical excitation in zebrafish. Using this behavior as a 

readout, we screened thousands of compounds and identified dozens of hits that caused paradoxical 

excitation. Many hit compounds modulated human GABAA receptors, while others appeared to 

modulate different neuronal targets, including the human serotonin-6 receptor. Ligands at these 

receptors generally decreased neuronal activity, but paradoxically increased activity in the caudal 

hindbrain. Together, these studies identify ligands, targets, and neurons affecting sedation and 

paradoxical excitation in vivo in zebrafish. 

2.2 Introduction 

Anesthetics and other central nervous system (CNS) depressants primarily suppress neural activity, 

but sometimes they also cause paradoxical excitation 1. During paradoxical excitation, brain activity 

increases 2,3 and produces clinical features such as confusion, anxiety, aggression, suicidal behavior, 

seizures, and aggravated rage 4,5. These symptoms primarily affect small but vulnerable patient 

populations including psychiatric, pediatric, and elderly patients 6,7. Understanding paradoxical 

excitation is important for discovering, understanding, and developing CNS depressants and for 

understanding how small molecules affect the vertebrate nervous system. However, relatively few 
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compounds have been identified that cause paradoxical excitation, and few model systems have 

been identified that reproducibly model paradoxical excitation in vivo. 

Many ligands that cause paradoxical excitation are agonists or positive allosteric modulators 

(PAMs) of GABAA receptors (GABAARs), the major type of inhibitory receptors in the CNS 8. 

However, it is likely that other mechanisms also affect paradoxical excitation. One such mechanism 

may involve serotonin imbalance, which affects behavioral disinhibition 9,10, and has paradoxical 

effects on neuronal circuit output 11. For example, the serotonin-6 receptor (HTR6) is an excitatory 

G protein-coupled receptor (GPCR) reported to modulate cholinergic and glutamatergic systems by 

disinhibiting GABAergic neurons 12. In serotonin syndrome, excessive serotonergic signaling causes 

agitation, convulsions, and muscle rigidity. Despite these excitatory effects of excessive serotonergic 

signaling, several serotonin receptor agonists are used as anxiolytics, hypnotics, and anticonvulsants 

13. Examples include clemizole and fenfluramine, which promote 5-HT signaling and have 

anticonvulsant properties in humans and zebrafish 13,14. By contrast, serotonin antagonists and inverse 

agonists improve sleep and are used for treating insomnia 15. Furthermore, serotonin receptors are 

secondary and tertiary targets of some anesthetics, suggesting that 5-HT receptors may contribute to 

sedation 16. However, the potential impact of serotonin receptors on anesthesia and paradoxical 

excitation is poorly understood.  

In principle, large-scale behavior-based chemical screens would be a powerful way to identify 

compounds that cause sedation and paradoxical excitation. The reason is that phenotype-based 

screens are not restricted to predefined target-based assays. Rather, phenotype-based screens can be 

used to identify targets and pathways that produce poorly understood phenotypes. Indeed, virtually 

all CNS and anesthetic drug prototypes were originally discovered based on their behavioral effects 

before their targets were known 17. Furthermore, these compounds were valuable tools for 

understanding the mechanisms of anesthesia and sedation. Although behavior-based chemical 
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screens in vertebrates would be most relevant for human biology, behavioral assays in mice, 

primates, and other mammals are difficult to scale.  

Zebrafish are uniquely well-suited for studying the chemical biology of sedation and 

paradoxical excitation. Zebrafish are vertebrate animals with complex brains and behaviors, they are 

small enough to fit in 96-well plates, and they readily absorb compounds dissolved in the fish water. 

Compared with humans, zebrafish share many conserved genes and neurotransmitter signaling 

pathways 18. For example, the zebrafish genome contains orthologs for all but two human GABAAR 

subunit isoforms 19. The α-isoform family is the largest and most diverse family of GABAAR subunits 

in both humans and zebrafish 20. The zebrafish genome also encodes orthologs of serotonin 

receptors, including orthologs of HTR6 21,22. Additionally, there are several important differences 

between the species. One such difference is that the zebrafish genome encodes a GABAAR β4-

subunit, which does not have a clear ortholog in mammals 19. Another difference is that whereas 

mammals have six GABAAR α-subunit isoforms, zebrafish have eight 20. Previously, drug profiling 

studies in zebrafish have identified neuroactive compounds related to antipsychotics, fear, sleep, and 

learning 23–26. However, specific behavioral profiles for compounds that cause paradoxical excitation 

have not been previously described in zebrafish.  

The purpose of these studies is to identify and understand compounds that cause 

paradoxical excitation. First, we develop a scalable model of paradoxical excitation in zebrafish. 

Then, we use this model in large-scale chemical screens to identify dozens of compounds that cause 

paradoxical excitation. Third, we use these compounds as research tools to identify receptors 

affecting sedation and paradoxical excitation. Finally, we map whole-brain activity patterns during 

these behavioral states. Together, these studies improve our understanding of how small molecules 

cause sedation and paradoxical excitation and may help to accelerate the pace of CNS drug 

discovery. 
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2.3 Results 

I. GABAAR ligands produce paradoxical excitation in zebrafish 

To determine how sedatives affect zebrafish behavior, we assembled a set of 27 CNS depressants in 

ten functional classes (Fig. 1a, Supplementary Table 1) and tested these compounds in a battery of 

automated behavioral assays. The behavioral assays were originally devised to discriminate between a 

broad range of neuroactive compounds23. Here, the assays were used to profile anesthetics and other 

CNS-depressants. In one assay, we used excitatory violet light stimuli to identify compounds that 

reduce motor activity (Fig. 1b, Supplementary Movie 1). In another assay, we used low-volume 

acoustic stimuli to identify compounds that enhance startle sensitivity (Fig. 1b, Supplementary 

Movie 2). Most CNS depressants caused a dose-dependent decrease in animals’ average motion 

index (MI) (Supplementary Figure 1), however we noticed a striking exception. 

Two anesthetic GABAAR ligands, etomidate and propofol, caused enhanced acoustic startle 

responses (eASRs). These eASRs occurred in response to a specific low-volume acoustic stimulus, 

but not to other stimuli (Fig. 1a-b, Supplementary Figure 2, 3). Unlike vehicle-treated controls, all 

the animals in a well treated with etomidate showed robust eASRs (Supplementary Movie 3, 4). High 

speed video revealed that the eASRs resembled short latency C-bends (Fig. 1c). Multiple eASRs 

could be elicited with multiple stimuli (Fig. 1d). Etomidate’s half maximal effective concentration 

(EC50) for causing eASRs was 1 µM, consistent with its EC50 against GABAARs in vitro (Fig. 1e) 27. 

Neither etomidate or propofol were toxic at the concentrations that  
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Fig 2.1 GABAAR PAMs enhance acoustic startle in zebrafish. 

Zebrafish were treated with the indicated compounds 
and analyzed for changes in behavioral responses. (a) 
The scatter plot quantifies acoustic startle response as a 
z-score (y-axis) in zebrafish treated with the indicated 
CNS- depressants (x-axis) at the indicated 
concentrations (colorbar). Each point represents the 
average of n = 12 wells and 6 experimental replicates 
(also listed in Supplementary Table 1). (b) These plots 
show how the indicated compounds impact zebrafish 
motor activity (y-axis) over time (x-axis) (n = 12 wells, 
shaded boundary = 95% confidence interval). Colored 
bars above the x-axis represent the timing and duration 
of low-volume acoustic stimuli (grey bars) and violet 
light stimuli (purple bars). The vertical dotted line 

indicates where the first assay ends and the second 
begins. (c) 
Representative images of animals treated with the 
indicated compounds. Time stamps indicate the 
time elapsed from the initial presentation of a low-
volume acoustic stimulus. (d) These plots compare the 
motor activity (y-axis) over time (x-axis) of animals 
treated with DMSO (grey) or etomidate (red) (n= 50 
larvae). Consecutive stimuli (n = 60) are indicated by 
vertical grey bars. (e) Dose-response curve showing 
phenoscores at the indicated concentrations (each point 
represents n =12 wells/dose, error bars: ± SD). (f) Bar 
plot showing normalized response to the indicated 
stimulus (tap or violet light) of animals treated with 
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DMSO, 6µΜ propofol, or 6µΜ etomidate (n = 12 wells, 
error bars: ± SD) for the indicated durations. (g) Average 
phenoscores (y-axis) of zebrafish treated with the 
indicated compounds. Dashed lines intersecting the y-
axis at 0.51 and 0.71 correspond respectively to 1% and 
5% significance cutoffs, as determined from statistical 

simulations. Compounds are grouped by ligand class: 1) 
GABAAR agonist, 2) GABAAR orthosteric agonist, 3) 
PAM of δ-subunit containing GABAARs, 4) GABAAR 
BZ-site PAM, 5) GABAAR R non-BZ-site PAM, 6) 
GABAAR neurosteroid PAM, 7) GABAAR anesthetic 
PAM.

 

caused eASRs (Supplementary Table 2).The eASRs persisted for several hours and rapidly reversed 

after drug washout (Fig. 1b, f).  Curiously, not all anesthetics caused eASR behaviors in zebrafish, 

including isoflurane (a volatile inhalational anesthetic that is relatively toxic in zebrafish), 

dexmedetomidine (a veterinary anesthetic and alpha-adrenergic agonist), and tricaine (a local 

anesthetic and sodium channel blocker) (Fig. 1a). Together, these data suggest that a subset of 

GABAAR ligands produce sedation and paradoxical excitation in zebrafish. 

To determine if other GABAAR ligands caused similar phenotypes, we used the phenoscore 

metric to quantify similarities between the archetypal profile caused by etomidate (6.5 uM) and a 

diverse range of GABAergic compounds (Supplementary Table 3). Average phenoscores of DMSO-

treated negative controls were significantly less than etomidate-treated positive controls (0.2 versus 

0.71, P <10-10, Kolmogorov-Smirnov test) (Supplementary Figure 20). Average phenoscores for the 

test compounds fell on a continuum between the positive and negative controls (Fig. 1g). Based on 

statistical simulations, these phenoscores were subdivided into three categories: weak, intermediate, 

and strong (Supplementary Note 1).  Compounds with the strongest phenoscores (0.71 < x < 1) 

included several anesthetic and neurosteroid PAMs including etomidate, propofol, progesterone, 

and DOC (Fig. 1g). The highest scoring treatments for these compounds produced behavioral 

profiles that were both strongly sedating and produced high-magnitude eASRs (Supplementary 

Figure 2). These profiles were not statistically different from the positive controls (P > 0.05, 

Kolmogorov-Smirnov test, Supplementary Figure 20). Together, these data suggest that a subset of 

GABAAR PAMs cause sedation and paradoxical excitation in zebrafish. However, due to the 
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overlapping pharmacology of numerous GABAAR subtypes, these data do not clearly point to any 

specific subset of receptor subtypes as being necessary or sufficient for these behaviors. 

In humans, the M-current is a low-threshold, non-inactivating, voltage-dependent current 

that limits repetitive action potentials and has been implicated in propofol-induced paradoxical 

excitation 28,29. To determine if M-currents affect eASRs in zebrafish, we tested several M-current 

activators and inhibitors. In animals treated with M-current activators (flupirtine 30,31 and ICA-069673 

32), eASR magnitudes significantly decreased (Supplementary Figure 6, P < 0.01, two-tailed t-test, n = 

6 wells; 8 fish/well). By contrast, in animals treated with M-current inhibitors (linopirdine, XE-991, 

and oxotremorine 33) eASR magnitudes significantly increased (Supplementary Figure 6, P < 

0.000001, two-tailed t-test, n = 6 wells; 8 fish/well). These data suggest that zebrafish eASRs are a 

form of paradoxical excitation affected by potassium channel M-currents.  

 

II. Large-scale behavioral screening identifies hit compounds 
 
 
To prepare for large-scale screening, we calculated phenoscores for hundreds of positive and 

negative control wells (treated with etomidate or DMSO, respectively). The average phenoscores of 

the positive controls were significantly greater than the negative controls ( 0.7, ± 0.11 SD versus 0.1 

± 0.05 SD), suggesting that a large-scale screen would have an expected false positive and negative 

rate of 2% and 0.4%, respectively (at a threshold of 3 SD) (Fig. 2a, Z-factor = 0.7, n = 944 wells).  

Then, we screened a library of 9,512 structurally-diverse compounds plus 2,336 DMSO-treated 

negative controls, and analyzed their effects on sedation and paradoxical excitation. Visualized as a 

contour plot, the highest density of phenoscores occurred in three major regions (Fig. 2b). The first 

region contained 11,679 compounds and DMSO-treated control wells that did not phenocopy 

etomidate. The second region contained 44 potentially toxic compounds that immobilized zebrafish 
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but did not cause paradoxical excitation. The third region contained 125 compounds that both 

produced immobilization and phenocopied etomidate and were considered primary screening hits 

(Supplementary Table 4, Supplementary Figure 7). 

To organize these hit compounds by structural similarity, we clustered them based on 

Tanimoto similarities and visualized the results as a dendrogram that contained 14 clusters (Fig. 2c). 

Several clusters included compounds previously associated with GABAARs (Fig. 2c, d). For example, 

Cluster 10 included several dihydro/quinazolinones that are structurally-related to methaqualone, a 

sedative hypnotic drug (Fig. 2c, d). A second cluster, Cluster 14, included several isoflavonoids, 

which are structurally-related to flavonoid sedatives 34. Overall, we selected a broad range of 57 

primary hit compounds across all the clusters to re-purchase and re-test (Supplementary Table 4). 

Each compound was re-tested in a dose-response format from 0.1 to 100 µM and scored based on 

its ability to immobilize zebrafish and increase eASRs. Together, 81% of these primary hit 

compounds (46/57) caused reproducible eASR phenotypes at one or more concentrations (Fig. 2e, 

Supplementary Figure 8, and Supplementary Table 4), indicating a high rate of reproducibility from 

the primary screen. 
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Fig 2.2 A high-throughput behavioral screen identifies GABAergic compounds.. 

Zebrafish were treated with various compounds and 
analyzed for anesthetic-related behaviors. (a) This scatter 
plot compares phenoscores of individual wells treated 
with DMSO or etomidate (6.25 µΜ) (Z-factor= 0.7, n = 
944 wells). (b) This contour plot scores each well from 
the large-scale behavior-based chemical screen (11,679 
compounds, 2,336 DMSO controls) by its phenoscore 
(y-axis) and immobilization index (x-axis). Labels 
indicate regions with 125 hit compounds (green), 44 
toxic compounds (red), and the remaining screening 
compounds and DMSO controls (blue and gray 
respectively). (c) Structural clustering of the top 125 hit 

compounds (y-axis) forms 14 clusters using a Tanimoto 
similarity metric (x-axis). (d) Example structures of 
selected compounds in the indicated clusters. (e) This 
scatter plot shows an 80.7% reproducibility rate for 57 
primary hit compounds. Each point represents the 
average phenoscore of n = 12 wells at the indicated 
concentrations (colorbar). 
The first column represents DMSO controls; the order 
of other compounds are listed in 
Supplementary Table 4. (f) Human GABAAR activation 
(y-axis) was measured by FLIPR analysis. Of 47 hit 
compounds, 23 potentiated GABAARs. Compounds 
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7013338 and 5942595 potentiated GABAARs 
significantly greater than positive controls (red asterisk 
= 7013338, two red asterisks = 5942595, P < 0.0001, 
two-tailed t-test, n = 2-4 replicates as indicated). The hit 
threshold was defined as 2x the average DMSO control 
group. Picrotoxin, BGC 20-761, progesterone, and 

DMSO were used as negative controls (x-axis) while 
etomidate, tracazolate, propofol, diazepam, and 
thiopental 24 were used as positive controls. Arrows 
indicate compounds that were predicted by SEA to bind 
GABAARs (red arrows) and compounds that bound to 
TSPO in vitro (green arrowheads).

 

To determine if these compounds targeted human GABAARs, we tested them in a fluorescent 

imaging plate reader (FLIPR) assay on HEK293 cells transfected with α1β2 and α1β2γ2 human 

GABAAR subtypes. In this cell line, etomidate, tracazolate, and propofol increased fluorescence in 

the presence of GABA, as expected for GABAAR PAMs. In addition, half of the tested hit 

compounds (23/46) also showed PAM activity (Fig. 2f, Supplementary Figure 9). By contrast, PAM 

activity was not observed with negative control compounds including BGC 20-761 (an HTR6 

antagonist) and PTX (a GABAAR channel blocker) which likely reduced GABAAR activity due to 

inhibition of constitutively active GABAARs in the system. Interestingly, the PAM activity of two hit 

compounds, 7013338 and 5942595, was significantly greater than the positive controls (Fig. 2f, P < 

0.0001, two-tailed t-test, n = 4). While some of the compounds appeared to function in this assay as 

negative allosteric modulators (NAMs), reductions in fluorescence were likely due to toxicity-

induced cell loss (Fig. 2f, Supplementary Table 5). In addition to the PAM assay, four hit 

compounds directly activated GABAARs in the absence of GABA, including 5860357, 6091285, 

5835629, and 7284610 (Supplementary Figure 9). The strongest direct activator, 5835629, did not 

further enhance GABAAR activation in the PAM assay, presumably because the cells were already 

maximally activated by the compound before GABA was added. These data suggest that behavioral 

screens in zebrafish can enrich for compounds with activity at specific human receptors. In addition, 

these data suggest that many of the hit compounds identified in the screen cause sedation and 

paradoxical excitation via GABAARs.  
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III. Hit compounds act on targets including GABAAR and HTR6 
 
 
To determine if any of the hit compounds acted on non-GABAAR targets, we used the Similarity 

Ensemble Approach (SEA)35 to predict targets based on ‘guilt-by-association’ enrichment factor 

scores (EFs). Among the top-ranked 1,000 screening compounds, 150 targets were enriched 

(Supplementary Table 6). As we analyzed subsets of hit compounds with increasing phenotypic 

stringency, the number of enriched targets decreased (Fig. 3a, b). The most stringent set of 30 top-

ranked hit compounds contained 25 enriched targets including GABAARs, 5α-reductase, mGluRs, 

and 5-HTRs (Supplementary Table 7). By contrast, this stringent set of hit compounds were not 

enriched for other sporadically predicted targets such as histone deacetylase, matrix 

metalloproteinase, and carbonic anhydrase (Fig. 3b). As additional negative controls, we tested 48 

reference compounds targeting receptors with relatively low EF scores and confirmed they did not 

cause eASR phenotypes at any concentration (Supplementary Table 8, Supplementary Figure 10). 

Together, these data suggest that the hit compounds may act on GABAARs, 5α-reductase, mGluRs, 

or 5-HTRs (Supplementary Note 2).  

A second approach to target identification was to test the binding affinity of hit compounds 

against a panel of 43 human and rodent neurotransmitter-related targets. Of 46 hit compounds, 33 

of them bound to at least one of 19 receptors at a Ki< 10µM (Fig. 3c, d). Several hit  
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Fig 2.3 Potential targets include GABAAR, mGluR, TSPO, and HTR6. 

(a) SEA analysis was performed on decreasing numbers 
of hit compounds (1,000-30). The bar plot shows the 
number of SEA enriched targets decreasing as the 
analysis focuses on the top 30 hit compounds. (b) The 
bar plot shows increasing enrichment of GABAAR, 
HTR6, and mGluR5 as the top targets predicted for the 
top 30 hit compounds. (c) This bar plot shows the 
number of 46 primary hit compounds (y-axis) that 
bound to the indicated CNS receptors (x-axis). (d) The 
clustergram shows binding affinity profiles at the 
indicated CNS receptors. The colorbar indicates 

normalized Ki (npKI) (e) Heatmap of average motor 
activity profiles for TSPO binding compounds (y-axis) 
over time (x-axis) (n = 12 wells). Assay 1 is comprised 
of 6 low amplitude acoustic stimuli (grey); Assay 2 is a 
series of 3 violet light pulses (violet). These two assays 
are separated by a dotted line. AC 5216 and PK 11195 
are TSPO binding compounds. Abbreviations: nMI, 
normalized motion index; MMP3, Matrix 
Metallopeptidase 3; CA1, Carbonic anhydrase 1; 
HDAC3, Histone Deacetylase 3. 

 

 

compounds bound to multiple targets, including compound 7145248, which bound to TSPO, the 

benzodiazepine receptor (BZP), dopamine transporter, and the alpha 2b receptor (Fig. 3d). The 
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most common targets (binding > 5 compounds) included BZP, sigma 2, HTR2A/B/C, HTR6, and 

TSPO (Fig 3c, d). TSPO, previously known as the peripheral benzodiazepine receptor (PBR) 

(because it was originally identified as a binding site for benzodiazepine anxiolytic drugs), is a 

mitochondrial protein that supplies cholesterol to steroid-producing enzymes in the brain 36. TSPO 

ligands are thought to enhance GABAergic signaling by increasing neurosteroid production. 

However, some TSPO ligands, including benzodiazepines and zolpidem, also bind to GABAARs 

directly 37. We found that 14 hit compounds bound to TSPO in vitro (Fig. 3c, d), and that two TSPO 

reference ligands, PK 11195 and AC 5216, both caused eASRs in vivo (Fig. 3e). Of the 14 

compounds that bound to TSPO in vitro, 5 compounds potentiated GABAAR in FLIPR assays (Fig. 

3c; 2f, green arrowheads). These data suggest that TSPO ligands promote anesthetic-related 

phenotypes via direct interactions with GABAARs, indirect effects on neurosteroidogenesis, or both.  

Both target identification approaches, SEA and the in vitro receptor binding assays, 

implicated HTR6. For example, SEA predicted that seven hit compounds, six benzenesulfonamides 

and one piperazine, targeted HTR6 (Fig. 4a, Supplementary Table 9). These compounds 

reproducibly caused eASRs in vivo (Fig. 4b). In vitro, six of these hit compounds bound to HTR6 at 

nanomolar concentrations (Ki = 54-807 nM) (Fig. 4c). To determine their functional effects, we 

tested them for agonist and antagonist activity in G-protein and β-arrestin pathways at eight 

serotonin receptor subtypes (1A, 2A, 2B, 2C, 4, 5A, 6, and 7A). Six of the compounds antagonized 

HTR6 in vitro. Most of them antagonized both G-protein and β-arrestin pathways,  
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Fig 2.4 A subset of hit compounds are HTR6 antagonists. 

(a) Structures of eight primary hit compounds predicted 
to bind HTR6. (b) Heatmap showing average (n = 12) 
motor activity profiles over time (x-axis) for compounds 
predicted to bind HTR6 (y-axis). Assay 1 is comprised 
of 6 low- amplitude acoustic stimuli; Assay 2 is a series 
of 3 violet light pulses (as indicated), these two assays are 

separated by a dotted line. BGC 20-761 and Idalopirdine 
are previously annotated HTR6 antagonists. (c) 
Heatmap showing binding affinities of primary hit 
compounds at 23 CNS receptors (x-axis). (d) Heatmap 
showing functional activity of primary hit compounds at 
the indicated GPCRs. (nMI, normalized motion index). 

 

suggesting that the compounds were unbiased HTR6 antagonists (activity range 3.30nM-18.2µΜ) 

(Fig. 4d). By contrast, a structurally related piperazine, 5801496, did not cause eASRs in vivo. To 

determine if any annotated HTR6 antagonists also caused eASRs, we analyzed six structurally-

diverse HTR6 reference antagonists. Two of these reference antagonists, BGC 20-761 and 

idalopirdine, reproducibly caused eASRs in vivo (Fig. 4b). It is unclear why only 2/6 reference HTR6 
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antagonists caused eASRs in zebrafish, but it may be related to issues with absorption, metabolic 

stability, and/or structural differences between human and zebrafish receptors. A panel of 36 

additional 5-HT modulating ligands at various serotonergic targets did not cause eASRs at any 

concentration tested (Supplementary Table 9). Together, these data suggest that a subset of HTR6 

antagonists cause eASRs in zebrafish. 

 
IV. A neural substrate for paradoxical excitation 
 
To determine which regions of the brain were active during eASRs, we visualized whole-brain 

activity patterns by pERK labeling 38. In DMSO-treated control animals, pERK labeling showed 

broad patterns of activity in the optic tectum, telencephalon, and other brain regions (Fig. 5a, b). By 

contrast, in animals treated with etomidate or propofol, pERK labeling was broadly reduced (Fig. 

5c-e; P < 0.0005, Mann-Whitney U test). Acoustic stimuli significantly activated a cluster of neurons 

in the caudal hindbrain at the base of the 4th ventricle near the auditory brainstem and the nucleus 

of the solitary tract (NST)39 at the level of the area postrema (Fig. 5f, g; P < 0.0005, Mann-Whitney U 

test) 40, suggesting that this hindbrain neuron cluster represented a specific substrate of eASR 

behavior.  

To determine if activity in this region specifically occurred during eASRs, we analyzed pERK 

labeling in this region during four other robust motor behaviors. First, in animals stimulated by 

optovin (a reversible photoactivatable TRPA1 ligand),24 neuronal activity increased in many brain 

regions including the telencephalon and optic tectum but not in the hindbrain (Fig. 5j, k). Second, in 

DMSO-treated control animals stimulated by light, neuronal activity increased in the  
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Fig 2.5 Hit compounds activate hindbrain neurons. 

Animals were exposed to the indicated drugs and stimuli 
and analyzed for pERK levels as a readout of neuronal 
activity. (a) Plots showing motor activity (y-axis) over 
time (x-axis) for animals treated with the indicated 
compounds (n = 25-50 larvae) in response to the 
indicated acoustic (blue) or violet light (purple) stimuli. 
(b, d, f, h, j) Confocal projections showing the average 
fluorescent intensity of image registered larval brains 
stained with α-pERK (n = 10 larvae/condition). Larvae 
were treated with the indicated compounds and exposed 
to the low amplitude acoustic stimulus once every 10 
seconds for 10 minutes, except for (b, no stimulus) and 

(f, violet light exposure). (c, e, g, i, k) Brain activity maps 
showing significant ΔpERK signals using the Z-brain 
online reference tool (n = 5-10 animals/condition). The 
heatmap indicates positive (green), negative (purple), 
and nonsignificant (black)  
changes in pERK labeling (P < 0.0005, Mann-Whitney 
U test). All activity maps are comparisons between the 
indicated treatment conditions. Abbreviations: tel, 
telencephalon; ot, optic tectum; hb, hindbrain; ob, 
olfactory bulb; nm, neuromast; 
ap, area postrema; pg, pineal gland. 
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V. Hit compounds produce distinct side effect profiles 
 
To prioritize hit compounds for further development, we tested them for specific side effects. For 

example, a serious side effect of etomidate is that it suppresses corticosteroid synthesis due to off-

target activity on 11β-hydroxylase, the enzyme that synthesizes cortisol in humans and zebrafish. To 

determine if any of the hit compounds suffered from similar liabilities, we measured their effects on 

cortisol levels. As a positive control, we used carboetomidate, a close structural analog of etomidate 

that was rationally designed to retain etomidate’s activity on GABAARs, while disrupting its ability to 

suppress cortisol synthesis. Both etomidate and carboetomidate immobilized zebrafish and caused 

eASRs (Fig. 1g). As expected, etomidate lowered cortisol levels in zebrafish, whereas carboetomidate 

did not, suggesting that these compounds have similar side effects in humans and zebrafish (Fig. 6a). 

Next, we tested 12 hit compounds in the cortisol assay, including eight GABAAR ligands (found to 

be positive in the FLIPR assay), one compound predicted to target GABAAR by SEA (5951201), two 

HTR6 antagonists (6225936 and 6029941), and one mysterious compound with no target leads 

(5736224). None of these compounds reduced cortisol levels in zebrafish (Fig. 6a), indicating that 

these ligands cause sedation and paradoxical excitation without suppressing cortisol levels.  

To determine if any of the hit compounds may be analgesic, we used optovin-induced motor 

activity as a potential analgesia-related assay. In humans, general anesthetics reduce perceptions of 

pain and suffering. Although it is unclear if fish feel pain, painful stimuli in humans also cause 

behavioral responses in zebrafish. For example, activation of the TRPA1 ion channel causes pain in 

humans 41, and optovin, a photoinducible TRPA1 ligand, induces strong behavioral responses in 

zebrafish 24. As a positive control, we found that etomidate suppressed the optovin response at the 

same concentrations that caused eASRs (Fig. 6b). Similarly, we found that two GABAergic  
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Fig 2.6 Hit compounds show diverse efficacy windows and side effect profiles. 

(a) This bar plot shows cortisol levels (y-axis) in animals 
treated with the indicated compounds (x-axis) including 
FLIPR-positive GABAergics (green), SEA predicted 
GABAergics (magenta), serotonergics (blue), and a 
compound with undetermined targets grey) (n = 2-5 
experiments, 15 animals/experiment, error bars: ± 
SEM). (b) This bar plot shows the normalized responses 
(y-axis) of animals treated with the indicated compounds 
(x-axis) in the pain-related optovin-response 
suppression assay. (c) This bar plot shows the magnitude 
of behavioral responses of adult zebrafish (y-axis) 

treated with with the 25 indicated compounds (x-axis). 
(d) Dot plot showing efficacy windows for the indicated 
compounds with strong (green) or weak (grey) 
phenocopy scores. Marker size represents the magnitude 
of the eASR response (n = 12 wells/condition).  
Compounds with broad efficacy windows have large 
green dots at multiple concentrations (x-axis). (e) This 
strip plot shows the normalized acoustic startle response 
(y-axis) of larvae treated with increasing concentrations 
(colorbar) of multiple analogs of the screening hit 
7013338 (x-axis) (n = 4-6 wells/condition, 8 fish/well).

 

hit compounds, 7114005 and 5942595, also blocked optovin-induced motor activity at the same 

concentrations that caused eASRs (Fig. 6b). By contrast, compounds 5658603 and 7013338 did not 
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suppress the optovin response (Fig. 6b). The HTR6 antagonist BGC 20-761 also blocked the 

optovin response (Supplementary Figure 16), however serotonergic hit compounds 6225936, 

6028165, and 6212662 only reduced the optovin response at concentrations that also reduced eASRs 

(Supplementary Figure 16). Together, these data suggest that the mechanisms controlling sedation 

and eASRs may be separable from analgesia, and that some eASR-causing compounds may cause 

analgesic-related effects in zebrafish. 

To determine if eASRs also occur in adult zebrafish, we treated adult animals with etomidate 

and the hit compound 7013338, the most effective hit compound in the FLIPR assays (Fig. 2f). We 

found that both of these compounds also worked in adult animals, reducing the violet light 

response, while increasing acoustic startle (Fig. 6c). These data suggest that the mechanisms 

underlying eASR phenotypes are not limited to larvae but also exist in adult zebrafish. 

In humans, therapeutic windows for many inhalational anesthetics are only 2-fold, while therapeutic 

indices for intravenous anesthetics are not much better 42. Many of the hit compounds also had 

relatively narrow efficacy windows (Fig. 6d). Numerous analogs of key hit compounds including 

thiophenes, aryloxycarboxamides, quinazolines, and sulfonamides had lower activity than the 

original hits (Supplementary Figure 17), suggesting that substantial medicinal chemistry would be 

needed to increase the potency of the primary hit compounds.  

Compound 7013338 activated human GABAARs more than any other hit compound in the 

FLIPR assay (Fig. 2f). However, its efficacy window was relatively narrow (10 to 50 µM), raising 

questions about its structure activity relationship (SAR) (Fig. 6e). To analyze its SAR, we generated 

21 analogs with different substituents on the A-, B-, and C-rings (Fig. 2d, Supplementary Figure 18, 

and Supplementary Table 10), and tested these analogs for biological activity in vivo. The most active 

analog, JG-18, increased eASR magnitude and widened the efficacy window from 1 to 50 µM (Fig. 

6e). It had a chloro substituent on C2’ of the B-ring, an ethyl substituent on C2 of the C-ring, and C-
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6 propyl and C7 hydroxyl substituents on the A-ring (Supplementary Figure 18). In congruence with 

previous SAR analyses of isoflavones 34, JG-18 and other analogs with more lipophilic substituents 

on position C6 of the A-ring and position C2 of C-ring exhibited increased biological activity (Fig. 

6e). By contrast, analogs with more dramatic enhancements in steric bulk and lipophilicity at these 

positions (i.e., phenethyl and propyl, respectively) exhibited reduced biological activity. Likewise, it 

was notable that capping the polar C7-hydroxy group of JG-18 with alkyl and acyl groups tended to 

lessen biological activity. Importantly, we found that the B-ring C2’ chloro substituent was 

absolutely critical for biological activity, since analogs without it did not cause eASRs. Previously, it 

was reported that analogs with alkoxy or trifluoromethoxy substituents at multiple positions but 

especially at C3’ on the B-ring were high affinity GABAAR binders in vitro 43. Surprisingly, compound 

JG-17 (with a trifluoromethoxy substituent on C3’ of the B-ring, an ethyl substituent on C2 of C-

ring, and C6 propyl and C7 hydroxy substituents on the A-ring) had no biological activity in vivo (Fig. 

6e). It is not clear why these ligands were not active in zebrafish. Perhaps, the anomaly could be 

ascribed to low penetrance in vivo, receptor subtype selectivity, and/or structural differences between 

the human and zebrafish GABAARs. Together, these data suggest that additional SAR analyses may 

yield analogs with greater potency and broader efficacy windows in vivo. 

2.3 Discussion 

These studies show that anesthetics and other GABAAR PAMs cause sedation and paradoxical 

excitation in zebrafish, and that this behavioral model has high predictive and construct validity for 

identifying modulators of human GABAARs. Indeed, these studies may have underestimated the 

number of hit compounds that targeted GABAARs for several reasons. One reason is that the in vitro 

GABAAR FLIPR assay only tested a very small number of receptor subtypes and subunit isoforms 

(α1β2 and α1β2γ2). As a result, these assays would have missed compounds that acted on other 
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GABAAR subtypes. A second reason is that some of the hit compounds may act on zebrafish-

specific GABAARs. Finally, some hit compounds that caused eASRs in zebrafish may need to be 

bioactivated in vivo, and would therefore not be be active in vitro. Therefore, even more of the hit 

compounds may have targeted GABAARs. 

These studies also suggest that non-GABAAR mechanisms may also affect paradoxical 

excitation, including HTR6 antagonism. For example, we found that HTR6 antagonists produced 

sedation and paradoxical excitation in zebrafish (Fig 4). These HTR6 antagonists likely reduce 

neuronal excitation via different mechanisms than GABAAR PAMs. GABAARs are widely distributed 

in the CNS, suggesting that GABA ligands likely inhibit most neurons directly. By contrast, HTR6s 

are restricted to discrete neuronal populations 44, suggesting that their effects are likely propagated 

through indirect signaling networks. HTR6 antagonists can reduce 5-HT neuronal firing45, 

presumably by blocking positive feedback control of raphe neurons that broadly project throughout 

the brain and spinal cord 21. Researchers have made remarkable progress applying the principles of 

systems pharmacology to structure-based target predictions47, computer assisted design of multi-

target ligands48-50, and the large-scale prediction of beneficial drug combinations10,51. Although we 

focused on predicting targets of compounds one at a time, in future studies it may be possible to 

calculate multi-target enrichment factors among the hit compounds from large-scale phenocopy 

screens and identify multi-target mechanisms. 

The HTR6 antagonists identified in this study add to a growing body of evidence implicating 

various serotonin ligands and receptors in phenotypes related to neuronal inhibition and excitation. 

Our finding that HTR6 antagonists activate a region in the zebrafish NST (Fig. 5h, i), are consistent 

with previous work showing that HTR6 antagonists activate neurons in the mammalian NST 46. In 

rodents, HTR6 antagonists promote sleep 47, reduce anxiety 48, and show anticonvulsant properties 49. 

However, it is not clear if HTR6 causes these effects via specific neuronal circuits, or more generally 
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by coordinating nervous system tone and arousal. Furthermore, there are substantial differences in 

the central nervous system distribution and pharmacology of the mouse, rat, and human HTR6 

receptors 50. So, although HTR6 antagonists phenocopied etomidate in zebrafish, these effects may 

not translate to anesthetic activity in humans. Despite promising effects in rodents, several HTR6 

antagonists failed in clinical trials as cognitive enhancers for the treatment of Alzheimer’s disease 51, 

underscoring the caveats of generalizing between humans and model organisms.  

These data suggest at least two possible models by which GABAAR PAMs could cause 

paradoxical excitation of the acoustic startle response. One possibility is that the ligands disinhibit 

the acoustic startle neurons. Alternatively, the ligands may excite specific neurons directly, due to 

conditions that reverse the chloride equilibrium potential, such as the tonic activation of GABAARs 

52. Our observation that caudal hindbrain neurons were activated by acoustic stimuli in etomidate-

treated zebrafish is not the first to link GABA signaling to auditory excitation. For example, in 

rodents, gaboxadol activates extrasynaptic GABAARs, hyperpolarizes resting membrane potential, 

and converts neurons in the auditory thalamus to burst mode 53. In addition, etomidate causes 

purposeless muscle excitement that is exacerbated by acoustic stimuli in dogs 54. In zebrafish, 

researchers have found that the offset of optogenetic-induced inhibition of caudal hindbrain 

neurons triggers swim responses 55. In addition, zebrafish caudal hindbrain neurons have been 

shown to be activated during hunting behaviors, a behavior that requires strong inhibitory control 56. 

However, exactly how these neurons impact motor activity, and why startle neurons remain active 

despite elevated inhibitory tone, remains unclear.  

Although these studies show that GABAAR PAMs cause paradoxical excitation, 

pharmacological experiments to determine which GABAAR subtypes caused eASRs were ultimately 

inconclusive. While the majority of GABAARs in the CNS are benzodiazepine-sensitive γ-containing 

subtypes, and multiple benzodiazepines did not cause strong eASRs (Fig. 1g), γ-containing subtypes 
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may still be very important for eASRs. One reason is that the benzodiazepines tested in this study 

only represent a very small subset of benzodiazepine analogs. Another reason is that diazepam 

produced intermediate eASR phenotypes (Fig. 1g, Supplementary Figure 2), suggesting that other 

benzodiazepines may cause even stronger eASR phenotypes. Although etomidate, propofol, 

neurosteroids, and other anesthetics are PAMs at δ-subunit containing GABAAR subtypes, these 

ligands also modulate γ-containing subtypes. Furthermore, although THIP and DS2 are reported to 

have preferential activity at δ-containing GABAARs, these compounds also modulate γ-containing 

receptors 57 , and they did not cause eASRs. One alternative explanation is that β-isoforms 58,59 could 

drive the presence or absence of eASRs. Another possible explanation is that whereas PAMs may 

produce immobilizing effects effects via some receptor subtypes, they may produce eASRs via other 

subtypes. In summary, although a subset of GABAAR PAMs caused eASRs, these compounds may 

do so via a variety of receptor subtypes. In future studies, it would be interesting to test additional 

benzodiazepines for such effects including midazolam, which causes paradoxical excitation in 

humans 60. The specificity of currently available pharmacological tools may be insufficient to 

determine which GABAAR subtypes produce eASRs. Therefore, future studies may require targeted 

knockouts and other genetic tools to help identify the key receptor subtypes. 

While these studies focused on behavioral profiling, other types of phenotypic profiling data 

may further improve the accuracy of neuroactive compound classification, including whole-brain 

imaging. Whole-brain imaging allows researchers to record real-time firing patterns will likely add 

massive amounts data to the behavioral pharmacology field 61,62. For example, recent advances in 

high-throughput brain activity mapping for systems neuropharmacology illustrate how whole brain 

activity mapping can be used in primary screening for compounds that activate specific circuits, or 

allow researchers to discriminate between compounds with similar behavioral phenotypes but that 

work on different neuronal populations 62. These approaches enable primary screening for 
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compounds that activate specific circuits and allow researchers to discriminate between compounds 

with similar behavioral phenotypes but that work on different neuronal populations. 

In summary, we have shown that GABAAR PAMs cause sedation and paradoxical excitation in 

zebrafish. Whereas previous behavior-based chemical screens in zebrafish have identified 

neuroactive compounds related to behaviors including sleep 25, antipsychotics 23, learning 26, and 

appetite 63, we show here that behavioral profiling can also be used to rapidly identify compounds 

related to sedation and paradoxical excitation. Future studies will likely expand the utility of 

behavior-based chemical phenocopy screens to additional kinds of neuroactive ligands, targets, and 

pathways. 

2.4 Methods 

Fish maintenance, breeding, and compound treatments. We collected a large number of 

fertilized eggs (up to 10,000 embryos per day) from group matings of wild-type zebrafish (from 

Singapore). All embryos were raised on a 14/10-hour light/dark cycle at 28˚C until 7 dpf. Larvae 

were distributed 8 animals per well into square 96-well plates (GE Healthcare Life Sciences) with 

300 µL of egg water. Compound stock solutions were applied directly to the egg water and larvae 

were incubated at room temp for 1 hour before behavioral analysis. To determine the impact of 

group size on this assay, we analyzed eASR behaviors from animals in different group sizes (1, 2, 4, 

8, 12, 16, 32 animals per well). Although animals in all groups responded similarly to the stimulus 

(Supplementary Movie 5), the largest differences between treated and controls were seen in groups 

of 8 and 16 animals (Supplementary Figure 19). We therefore used 8 animals to balance small group 

size with a strong MI signal. All zebrafish procedures were and approved by the UCSF’s 

Institutional Animal Care Use Committee (IACUC), and in accordance with the Guide to Care and 
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Use of Laboratory Animals (National Institutes of Health 1996) and conducted according to 

established protocols that complied with ethical regulations for animal testing and research.  

 

Compounds and chemical libraries. All chemical libraries were dissolved in DMSO. The 

Chembridge library (Chembridge Corporation) contains 10,000 compounds at 1 mM. The Prestwick 

library (Prestwick Chemical) contains 1,280 approved drugs at 10 mM. All compounds were diluted 

in E3 buffer and screened at 10 µM final concentration in < 1% DMSO. Controls were treated with 

an equal volume of DMSO. Compounds were validated in 3-12 replicate wells, on 3 replicate plates. 

For dose response behavioral assays, compounds were tested at 7 concentrations that ranged from 

0.1- 100µM, unless otherwise indicated. 

 

Automated behavioral phenotyping assays. Digital video was captured at 25 frames per second 

using an AVT Pike digital camera (Allied Vision). Each assay duration was 30-120 seconds, and 

consisted of a combination of acoustic and light stimuli 23. Low (70db) and high (100db) amplitude 

acoustic stimuli were delivered using push-style solenoids (12V) to tap a custom built acrylic stage 

where the 96-well plate was placed. Acoustic stimuli were recorded using a contact microphone 

(Aquarian Audio Products, model# H2a) and the freeware audio recording software Audacity 

(http://www.audacityteam.org). Digital acoustic stimulus was generated as a 70ms sine wave at 

various frequencies using Audacity. A computer was used to playback the audio stimulus as an mp3 

using an APA150 150W powered amplifier (Dayton Audio) played through surface transducers 

adhered to the acrylic stage. Stimulus volume was measured using a BAFX 3608 digital sound level 

meter (BAFX Products). Light stimuli were delivered using high intensity LEDs (LEDENGIN) at 

violet (400nm, 11 µW/mm2), blue (560nm, 18 µW/mm2), and red (650nm, 11 µW/mm2) 

wavelengths. Stimuli and digital recordings were applied to the entire 96-well plate simultaneously. 
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Instrument control and data acquisition were performed using custom scripts written in MATLAB 

and Python. The zebrafish motion index (MI) was calculated as follows: MI = sum(abs(framen – 

framen−1)). Normalized MI (nMI) was calculated as follows: nMI=(MI-min(MI))/max(MI). Startle 

magnitude was calculated using numerical integration via the trapezoidal method (Matlab function 

trapz) of MI values during stimulus.  

 

Computing the phenoscore. To quantify distances between multi-dimensional behavioral profiles, 

we first defined a prototypic behavioral profile to compare everything else against. Etomidate’s 

prototypical behavioral profile was determined from 36 replicates wells treated with etomidate (6.25 

µM) on 3 different plates (12 replicates per plate). Using a simulated annealing procedure (described 

in the supplement) we identified 12 replicate profiles with the most consistent eASR response that 

was also most distant from the control (DMSO) wells. The reference profile was the average of 

these 12 profiles. Phenoscore distances were computed between each well and the reference profile 

by calculating the correlation distance (using the correlation distance module from the scipy package 

in python). The correlation distance (phenoscore) has a range from -1 to +1. Positive and negative 

values represent positive and negative correlation, respectively. Negative values represent anti-

correlation. Experimentally, phenoscores tended to saturate at around 0.7, a value that represents 

substantial positive correlation given that the MI time series is a large vector with >10,000 values. 

Although etomidate and propofol are both anesthetic GABAAR PAMs with similar behavioral 

profiles in zebrafish, etomidate is more soluble than propofol, so we used etomidate as the 

archetypal positive control.  
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Ranking the screening hits. Phenoscores were computed to assign each compound in the 

screening library a rank order. Hit-compounds were defined as the top 125 scoring compounds from 

this ranked list 

 

Calculating response magnitude Z-scores. Response magnitudes were calculated by averaging 

the maximum motion index value during 3 repeated violet stimuli or 6 repeated acoustic stimuli. 

These Motion index magnitudes were converted to Z-scores using the following equation: Z-score 

= (magnitude - mean)/SD. Z-scores were then normalized from 0-1 using the scikit function 

sklearn.preprocessing.normalize written for python.  

 

In vitro receptor profiling. In vitro binding assays and Ki data were generated by the National 

Institute of Mental Health's Psychoactive Drug Screening Program (PDSP), contract no. HHSN-

271-2008-00025-C (NIMH PDSP), for assay details: 

http://pdsp.med.unc.edu/PDSP%20Protocols%20II%202013-03-28.pdf. Normalized Ki (npKi) 

values were generated as follows: npKi = 4 + (-log10 (Ki)) 64. 

 

FLIPR. We used the FLIPR system (Molecular Devices) to quantify GABA-evoked activity of 

human GABAARs. We chose a membrane potential dye (Molecular Devices) to measure changes in 

membrane potentials and stably transfected HEK293 cells that expressed α1, β2 and γ2. Since we 

observed an increase in GABA-evoked responses when transfected with γ2 transiently, we describe 

the cells as having a low level of γ-subunit expression, indicating heterogeneity of GABAAR 

compositions in the cell (α1β2 or α1β2γ2). To assay for direct agonists, fluorescence was subtracted pre- 

and post compound addition. To assay for PAMs, cells were treated with compound at 20 uM and 

then with 5 uM GABA. 
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Whole-brain activity mapping. Following behavioral experiments animals were immediately fixed 

in 4% paraformaldehyde in PBS and incubated overnight at 4˚C. Larvae were then washed in PBS + 

0.25% Triton-X (PBT), incubated for 15 minutes at 70˚C in 150mM Tris-HCl, pH9, washed in PBT, 

pearmeablized in 0.05% Trypsin-EDTA for 30-45 minutes on ice and washed with PBT. Animals 

were then blocked for 1 hour at room temperature (PBT, 1% bovine serum albumin, 2% normal 

goat serum, 1% DMSO, and 0.02% sodium azide) 38. The following primary antibodies were diluted 

into blocking buffer and incubated overnight at 4˚C: α-5HT (1:500, ImmunoStar), α-tERK (1:750, 

Cell Signaling), α-pERK (1:750, Cell Signaling). Secondary fluorescent antibodies (Life 

Technologies) were used at 1:500 and incubated in blocking buffer overnight at 4˚C in the dark. 

Whole-mount fluorescent images were obtained using a Leica SP8 confocal microscope. Image 

processing was performed in imageJ. Image registration was performed using the Computational 

Morphometry Toolkit (https://www.nitrc.org/projects/cmtk) and a user interface with the 

command string defined by Owen Randlett (-awr 010203 -T 8 -X 52 -C 8 -G 80 -R 3 -A ‘--accuracy 

0.4’ -W ‘--accuracy 1.6’). Multiple brains from each condition were then averaged using Matlab 

scripts to obtain a representative neural activity image. Brightness and contrast were adjusted using 

Fiji (imageJ). MAP-map calculations (whole brain ΔpERK significance heat maps) were performed 

using the analysis code for MAP-map which can be downloaded from the website 

(http://engertlab.fas.harvard.edu/Z-Brain/).  

 

Cortisol detection assay. Cortisol levels were measured in zebrafish 65. Briefly, 15, 7 day old larvae 

were treated with the indicated compounds for 1 hour. Larvae were anesthetized in ice-cold egg 

water and then snap-froze in an ethanol/dry ice bath. Larvae were then homogenized in 100µL of 

water. Cortisol was extracted from the homogenate with 1 mL of ethyl acetate, the resulting 
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supernatant was collected and the solvent allowed to evaporate. Cortisol was dissolved in 0.2% 

bovine serum albumin (A7030, Sigma) and frozen at -20˚C. For cortisol ELISA experiments, 96-well 

plates (VWR International) were treated with cortisol antibody (P01-92-94M-P, EastCoast Bio; 1.6 

g/mL in PBS) for 16 hours at 4°C, washed, and blocked with 0.1% BSA in PBS. Cortisol samples 

and cortisol-HRP (P91-92-91H, EastCoast Bio) were incubated at room temperature for 2 hours 

and washed extensively with PBS containing 0.05% Tween-20 (Invitrogen). Detection of HRP was 

performed using tetramethylbenzidine (TMB: 22166-1, Biomol) and Tetrabutylammonium 

borohydride (TBABH: 230170-10G, Sigma). Reaction was stopped using 1M H2SO4. Absorbance 

was read at 450 nm in an ELISA plate reader (SpectraMax MS, Molecular Devices). 

Data Availability 

The source data for all Figures and Supplementary Figures in the current study are available in the 

Zenodo repository, https://zenodo.org, DOI10.5281/zenodo.3336616 

Software and code availability  

Data acquisition and analysis were carried out using custom scripts in Matlab (MathWorks) and 

Python. Figures were prepared using Matlab, Python, ImageJ (NIH), Prism (GraphPad), and Adobe 

Illustrator. Scripts used for data acquisition and analysis are available from the corresponding author 

upon reasonable request. For Enrichment Factor calculations, code is available upon request. 
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Preamble to Chapter 3 

 

We have gotten this far using correlation distance (CD) – the previous chapter took the 

reader through our motion-index based discovery of the paradoxical excitation phenotype. But at 

some point, our goals broadened and we began asking bigger questions like “How do neuroactive 

drugs work?” and “Could we map out the entire Zebrafish behaviorome by phenotypically clustering 

entire libraries of drugs behaviorally profiled in fish?” In attempting to answer these penultimate 

questions, we ran into a bit of a roadblock. We didn’t observe very strong phenotypic clusters using 

our traditional methods, and in the same vein, when we tried phenoblasting for novel compounds 

that elicited phenotypes similar to known drugs of interest such as stimulants, the top hits weren’t 

very consistent and contained negative control wells. We reasoned there had to be some limitations 

in our methods. 

These limitations could be related to either the representation used, the metric used to 

compare them, or both. Historically, we only considered learning a custom distance function to 

replace CD when we were faced with the challenge of comparing high-dimensional embeddings of 

Zebrafish videos (more on that in chapter 4). CD and other popular metrics operate on 1 

dimensional vectors. This was a problem; we were now in a high-dimensional space. Should we just 

have concatenated all the dimensions into a 1D vector? This seemed like a fools-errand, since this 

procedure would basically eliminate most temporal relationships across features from different 

dimensions. Siamese neural networks (SNNs) seemed like a much more natural solution. These 

types of networks could be trained on a highly-replicated dataset to learn a custom distance metric 

for comparing embeddings in a space of arbitrary dimensionality. The network would be tasked with 

learning to distinguish replicates of same drugs from different drugs, and would in the process learn 

how to differentiate fundamental aspects of behavior.  The advantage of SNNs is that the specific 
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architecture used for encoding input to output can be very flexible (see Figure 3.1 for an illustration 

of this). There are deep neural network (DNN) architectures, like convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), that can operate on multi-dimensional inputs. 

Indeed, many of the most popular CNNs, such as VGG1 , Inception2, and ResNets3 operate on 

RGB images, where the inputs have 3-dimensions (red, green, and blue). These can be readily 

adapted to support arbitrary numbers of input dimensions. Further, in the time-series domains, 1D 

CNNs have demonstrated state-of-the-art performance in many time-series classification4 and 

natural language processing tasks5, and they too can be easily adapted to multi-dimensional inputs. 

Hence, we reasoned that perhaps Siamese 1D CNNs operating on multidimensional time-series 

embeddings of zebrafish videos had a lot of potential compared to other approaches. 

In the process of developing and benchmarking these Siamese architectures on MI, we 

observed some promising results and learned a ton about our datasets and how to properly set them 

up for Siamese training; we present this story in the following chapter. We will then proceed to 

outline some of the progress we’ve made in computing more sophisticated embeddings of Zebrafish 

motion and some of the challenges that remain in learning distance metrics to compare them in 

chapter 4.  
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3.1 Abstract 

High-throughput screening of neuroactive drugs in larval zebrafish has shown much promise in 

recent years for the discovery of new targets for known neuroactive drugs. Although the approach 

used in those studies – a combination of motion index and correlation distance - was highly 

successful for several interesting phenotypes including antipsychotics and paradoxical excitation, 

using it for characterization and discovery of more subtle phenotypes and behaviors has been 

elusive. Here, we propose to replace the correlation distance with a custom learned distance metric; 

using Siamese Neural Networks trained on a highly replicated screen of 650 known neuroactive 

drugs. We see a dramatic improvement in our ability to discern same-drug from different-drug 

replicates. The method generalizes to a different screen entirely, performed months before the 

highly replicated screen on which the model was trained. In that arena, the new distance metric gets 

higher classification accuracy on average, but also strikingly outperforms CD for 3 drugs with more 

subtle phenotypes.  The Siamese distance metric can cluster neuroactive drugs into 

pharmacologically meaningful classes, and its ability to separate drugs from control-treated wells is 

significantly better than correlation distance. 

3.2 Introduction 

Approximately one in five adults in the US live with mental illness1, and 970 million people 

around the world live with mental or substance abuse disorders2,3. Mental health disorders are the 

leading cause of disability adjusted life years in the US4. But treatment of mental health disorders, 

such as major depressive disorder (MDD), is critical; adult suicide rates have dramatically fallen since 

a significant increase in prescriptions of Fluoxetine and other serotonin re-uptake inhibitors SSRIs5–

7. However, antidepressant use in adolescents - associated with increased suicide rates9, is not 

clinically recommended8, and in adults carries many commonly occurring but poorly understood side 
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effects, such as the alteration of sleep cycle10 and sexual dysfunction11 12. Antipsychotics such as 

Haloperidol are infamous for a plethora of severe and debilitating side effects, including extra-

pyramidal side-effects (EPS)13, and although second generation antipsychotics such as Clozapine 

manage to circumvent these to some extent, they have been shown to cause rare and fatal 

agranulocytosis and myocarditis14, and have been implicated in hypertension and obesity15. 

To make matters worse, the genetics underlying Anxiety Disorder, MDD, and post-

traumatic stress disorder (PTSD) are poorly understood16, and antidepressants are the first-line 

treatment options given to patients in a “magic bullet”17 approach18,19 for these disparate mental 

conditions. But a reliable, consistent, and actionable mechanistic understanding of these disorders 

remains elusive. In patients with PTSD, Amygdala hyperactivity has been proposed based on 

magnetic resonance imaging (MRI) studies to play an important role20, but it has also been 

implicated in other mood disorders including anxiety21. These observations highlight the challenges 

both in understanding the basic biology of these common mental disorders and the limits in our 

ability to effectively treat them.   

To complicate things, most mental disorders are thought to be polypharmacological in 

nature17, and antipsychotics such as haloperidol interact with an entire spectrum of various targets in 

the central nervous system (CNS)22. It is assumed its actions on Dopamine receptors23 are crucial for 

its effectiveness in treating psychosis and schizophrenia, but various contributions from binding to 

the other targets likely contribute to both its desired and undesired effects24. For many mental 

illnesses, we are only beginning to unravel the complex and interconnected neuro-circuitry. 

Although most SSRI’s work through serotonin transporter (SERT) inhibition25, many other 

serotonin receptors, as well as the norepinephrine and neuropeptide systems, are thought to 

contribute to both their immediate and long-term effects26. For anxiety, while both the glutamatergic 

and GABAergic systems are thought to play key roles19, SSRIs and SNRIs have effectively replaced 
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benzodiazepines as the preferred treatment options27. This exposes the gap between our already 

limited understanding of the polypharmacology underlying these complex and heterogeneous 

disorders and our ability to leverage it towards improving standard-of-care.  

Perhaps instead of “magic bullets” we should be designing “magic shotguns”; drugs that 

selectively hit an entire profile of targets to elicit their effect17. In line with this philosophy, the 

Kokel Lab has been using phenotypic screens in larval zebrafish to discover novel compounds that 

elicit behavioral responses by potentially binding an entire gamut of receptors. A behavioral 

fingerprint for antipsychotics was established using known antipsychotics (such as Haloperidol), and 

using a “phenoblast” approach, compounds from a high-throughput screen (HTS) of a novel library 

were discovered22. These compounds were computationally predicted and validated to interact with a 

Haloperidol-like profile of targets in-vitro. Building on this initial success, a similar approach was 

taken for a phenotype caused by known anesthetics including etomidate and propofol (chapter 2). 

This phenotype was the first animal model for paradoxical excitation in the context of anesthetics 

and sedation in larval zebrafish, in a field where few reliable animal models exist. Here, novel 

compounds were discovered with chemical structures distinct from known anesthetics that were 

predicted and experimentally validated to bind both the expected target, the GABAA receptor, as 

well as a novel target entirely, the serotonin-6 receptor (HT6). Taken together, these two studies 

have demonstrated the ability of phenotypic screening in larval zebrafish to expose novel 

pharmacology for known neuroactive drugs, helping generate testable biological hypotheses and 

allowing for the discovery of novel chemical scaffolds acting through distinct pathways. 

However, the phenoblasting approach used in these previous two studies - a combination of 

motion index time series (MI) and correlation distance (CD) to compare them - hasn’t been readily 

applicable to other classes of neuroactive drugs, such as stimulants, anxiolytics, antidepressants, and 

convulsants. In this study we explore the notion that CD is not the ideal metric for comparing larval 
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fish swimming behavior. The issue with CD is that it presupposes perfect swim synchronization. An 

extreme but realistic example of this are  misaligned videos, offset by some number of frames. In 

this situation, CD could in theory completely fail to identify the similarity between perfectly 

synchronized motions for identical behaviors. In a less extreme but likely scenario, fish in two 

different wells could respond strongly to a certain stimulus (for example UV-light) but not in an 

instantaneous or fully synchronized way. Again, correlation distance might severely penalize the 

similarity-score between the fish in these wells, even if they were treated by the same neuroactive 

drug at the same concentration. 

In this study we propose to learn a custom distance function for computing similarity 

between zebrafish MI. For this goal, we perform a highly-replicated screen of neuroactive drugs on 

the Screen-Well Neurotransmitter Library28 (from here on referred to as the Biomol library), which 

contains 661 CNS receptor ligands. From a highly-replicated screen, we can construct a dataset of 

“positive” pairs (drug-pairs that are replicates of each other), and “negative” pairs (drug-pairs from 

different plates that are not replicates of the same drugs). We will describe the data-preparation 

process in more detail shortly, but first we discuss some of the considerations that went into 

selecting which approach to use for distance learning.  

We considered the following requirements for this: (1) the method should be able to learn 

which parts of the MI are important for distance learning and discard noisy or meaningless regions 

of the assays (2) it should be robust to poorly aligned videos and segments of video, as well as being 

robust to delayed fish responses and out-of-phase motions, and (3) it should be designed to take a 

pair of MI as input, and output a distance or similarity score. In principle, the Siamese Neural 

Network (SNN) is an architecture that seems to fit this set of requirements perfectly. SNNs were 

first developed at Bell Labs for signature validation29 and personal identity fingerprints30; they were 

later applied towards facial recognition and “one-shot” learning, showcasing their ability to learn 
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even on smaller datasets31. In all of the above applications of SNNs, the goal was to learn a distance 

function rather than a classification label or regression score. The latter highlights the robustness of 

SNNs in the realm of real biological data, where we don’t always have the luxury of “big-data” that 

is so critical towards successful training ultra-deep architectures; for example for the popular image-

classification challenges like the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)32. 

Additionally, SNNs are by design a very flexible architecture. The Siamese halves can be arbitrary 

neural network architectures (Figure 3.1). Indeed, there have recently been successful applications 

of a wide variety of SNN architectures in different domains, for example; convolution SNNs for 

object-tracking and image re-identification31,33, multi-layer perceptron (MLP) SNNs34 and 

convolutional SNNs35 in the time-series and audio signals, and Long Short-Term Memory (LSTM) 

SNNs36 for sentence matching.  

Thus we are given a variety of options for encoding our motion-index time series data. As a 

baseline for performance we use a simple Siamese MLP (multilayer perceptron) architecture (from 

now on referred to as Sia-MLP). For a more advanced architecture inspired by recent state-of-the-art 

performance of CNNs in the time-series domain37 we choose to modify a CNN architecture, the 

DenseNet, that has recently demonstrated state-of-the-art performance in the image-classification 

domain38. Since the zebrafish videos can be quite long, up to 20250 frames, an efficient encoding of 

the video would require a deep CNN architecture. 
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Figure 3.1 Siamese Neural Network Cartoon Illustration

Conceptual illustration of SNN in the context of learning a motion-index similarity function.  
A pair of MI for two drugs are fed into the SNN. The SNN consists of two identical halves; the choice of architecture can 
be arbitrary. In our study, we use both MLP and DenseNet architectures for the encoding layers of the SNN. Once the 
network is trained, the distance can be computed as the Euclidean norm between the output vectors from each half of the 
network. For training (not shown), labels are also provided in the form of “0”, or “positive”, for same-drug replicate pairs 
and “1”, or “negative”, for different-drug pairs; the loss function is the contrastive loss function (see methods) that 
provides some measure of how different the Euclidean norm is from the actual label, clamping the maximum possible 
contribution from inputs that are drastically different with a “margin” term, and weights are updated accordingly.  
 

The issue with using standard CNNs is that with deeper architectures, vanishing gradients can make 

training challenging or even impossible39. DenseNets circumvent this problem by allowing for a 

complete information flow across all the layers of the network by utilizing skip-connections 

(information from all previous layers gets added to the information from all subsequent layers)40,41. 

Doing a complete comparison of all possible choices of Siamese architectures is beyond the scope 

of this work; the goal of the current study is to demonstrate improvement over existing methods for 

neuroactive drug-classification and clustering in the context of larval zebrafish phenotypic screens.  

We do not perform a full comparison of our performance against dynamic time warping 

(DTW)42,43 because of the prohibitively slow nature of that algorithm; regardless of performance, one 

of our requirements is for rapid phenotypic profiling in high-throughput screens and clustering large 
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datasets of small molecules. In our hands, even the Python fastdtw package44,45, which has a linearly 

increasing run time of O(n) as opposed to the O(n2) run time of traditional DTW, is prohibitively 

slow for computing distance matrices for our long time series of 20250 frames, with or without 

subsequence sampling. Due to the speed and parallelizable nature of Graphics Processing Units 

(GPUs), we can compute a Siamese distance (SD) trained on GPUs orders of magnitude faster than 

with DTW. This is another key advantage of our approach that can be adapted to other time-series 

classification and clustering domains. 

Siamese dataset preparation 

I. Splitting the highly-replicated screen into training and validation sets 

One of the main requirements and applications we considered in deciding how to partition 

our dataset was that our new distance metric had to generalize to novel compounds from new 

screens. This would require a distance metric that has learned something fundamental about 

phenotype; not features specific to a certain set of drugs encountered during training. In theory, the 

most conservative approach would be a by-plate split, but in our specific situation this is undesirable 

since the Biomol library as supplied consists of activity-class based layouts (Figure 3.2a); such a split 

would omit entire pharmacological classes of drugs during training. The only way to fully address 

this limitation is by completely randomizing the drug-layouts; we have already completed this step 

and are currently in the process of finishing up collecting this new fully-randomized highly-

replicated Biomol dataset (see methods, the computationally randomized plate layouts are presented 

in the appendix, Supp Figure A.2.6); we will be validating results from this chapter on this dataset 

in the immediate future (see discussion and future directions). 

The least conservative split is to randomly select a subset of the shuffled library for training 

and use the rest for testing. In our hands this leads to grotesque overfitting (not shown) – the SNNs 
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are likely able to memorize relationships between positive and negative pairs that are present in the 

validation set. This sort of combinatorial memorization during training can lead to exceedingly high 

validation performance but a meaningless distance metric that completely disregards any notion of 

phenotype underlying the positive and negative pair membership. With these considerations in mind, 

we use a drug-split approach to create our training and validation sets. This way, the validation set will 

never encounter a drug or any of its replicates that was made available to the training set, reducing 

the possibility of learning drug-specific effects or combinatorial patterns.  

II. Plate-location effect considerations 

As mentioned in the previous section, the Biomol library is supplied with activity-class based plate 

layouts (Figure 3.2a). Since positive pairs always come from the same plate-location (by definition), 

this could hypothetically introduce another kind of over-fitting; plate-location based effects. Here, 

instead of learning the actual phenotype, the SNNs might learn light-falloff patterns and edge-

effects, and other location based artifacts common in microscopy46,47. To account for this possibility, 

we explore another way of circumventing plate-location effects without shifting away from the 

original dataset. We create a “same-well” version of our dataset where we keep the positive labels 

unchanged, but only allow negative pairs to come from the same physical locations on plates. That 

is, if two drugs come from the same well-location (for example, well A1), but from two different 

library plates (e.g. they are not replicates of the same drug), then we consider them negative-pairs 

(Figure 3.2b). This way, both positive-drug replicate pairs and negative pairs will always come from 

the same plate-location, so that the SNNs can’t employ plate-location as a means of distinguishing 

positive from negative pairs. We call this dataset the same-well dataset and we call the original dataset 

where negative pairs can come from any wells the all-well dataset. In both datasets, we never allow 
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negatives to come from the same plate. Both versions of the dataset are used for training in the 

subsequent analyses; however, validation is always done on the all-well dataset. 

 

 
Figure 3.2 Illustration of Biomol highly-replicated screen and training dataset design

Our highly-replicated screen design a) 2 of 8 Biomol plates (cartoons); plates are supplied by activity-class. Some plates 
have multiple activity classes. Green circles might be dopaminergic drugs; purple circles might be serotonergic drugs. There 
are 12 DMSO Controls wells per plate (bottom rows, yellow) b) We replicate each copy of the library 7 times. Positive 
replicates are repeated drugs (for example, all combinations of well P1-A1 with itself; green with green). For the all-well 
negative dataset, negatives can come from different wells (P1-A1 with P2-D2 is allowed; green with red); for the same-
well dataset, negatives can only come from same-well locations on different plates (P1-A1 with P2-A1; only green with 
magenta allowed).  

3.4 Results 

I. Initial benchmarks: Siamese distance vs correlation distance  

Our first test is to compare both SNNs architectures (Sia-MLP and Sia-Dense) performance to CD 

and Euclidean distance (ED) at the task of separating out positive from negative pairs. For this 

analysis, we only consider the all-well dataset. Both the DenseNet and MLP distance metrics show 

drastically better performance, both in terms of positive vs negative distance (Figure 3.3 a,b,d,e), 

and AUC/PRC performance (Figure 3.3 c,f).  

 
 
 
 

b a 
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Figure 3.3 Motion index performance comparison; separation of same-drug replicate from 

different drug pairs 

Here we present our trained SNNs ability to differentiate 
between pairs of drugs that have been replicated (pos 
labels, mint green) and different drug pairs (neg labels, 

gray) on a validation hold-out set.  a) Sia-Dense b) Sia-
MLP d) CD e) ED. c,f) AUC and PRC curves. 

 

Sia-Dense in particular has somewhat outlandish performance; 0.97/0.98 AUC/PRC (compared to 

0.74/0.74 for correlation distance), followed by the MLP, then CD, and finally ED. We notice that 

both SNN metrics and CD produce distances in the [0,1] range, unlike ED, as expected. 

Another way of comparing distance metrics is using them to cluster data. We explore the 

ability of Sia-Dense to cluster our dataset based on the time-point wise means taken across all 

replicates of the drug compared to CD. In total, this mean-MI-dataset consists of 650 time-series, 

corresponding the 650 drugs from the Biomol library. We cluster this 650x20250 matrix (650 time 

series each with 20250 time-points) using the Python SciKit Learn48 (sklearn) implementation of the 
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K-means algorithm49, and we use the UMAP dimensionality reduction technique50 to embed the data 

onto 2 dimension for visualization, plotting the data colored by K-means clusters. The Sia-Dense 

clusters (Figure 3.4b) are strikingly more aggregated and structured than the CD clusters (Figure 

3.4a). We decided to investigate whether the Sia-Dense network was overfitting our dataset as an 

explanation for such extreme performance. 

 
 
 
Figure 3.4 DenseNet clusters - potential overfitting? 

UMAP50 embeddings of Biomol drugs in terms of their 
mean-motion index time-series across all replicates. a) 
Using CD. The clusters are colored by cluster-

membership based on a K-means clustering49 of the time 
series means with 24 clusters. b) Same as a) but with Sia-
Dense.

 

II. Investigating plate-location effects by comparing performance on the same-well dataset  

We suspected that plate-location effects could have been employed by the network. Here we 

test the possibility that the extreme performance achieve by the Sia-Dense architecture could be 

explained by these plate-location effects by comparing performance versus the same-well dataset.  

a b 
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The AUC and PRC scores for replicate separation, for both the Sia-MLP  and Sia-Dense 

architectures, are not strongly affected by dataset choice (Table 3.1, Supplemental Figures A.2.1 

and A.2.2). For example, for Sia-Dense, the AUC scores are 0.97 for all-well and 0.96 for same-well. 

These results suggest that the potential overfitting observed with the Sia-Dense architecture can’t be 

explained by plate-location effects alone. 

Table 3.1 All-well vs same-well performance   

Dataset Arch AUC Score PRC Score 

 

All-well Sia-MLP    0.89 0.91 

 
Sia-Dense    0.97 0.98 

 

Same-well Sia-MLP    0.92 0.93 

 
Sia-Dense    0.96 0.97 

 

III. Other possible explanations for over-fitting?  

What other factors, aside from plate-location effects, could explain overfitting? Recent work in the 

time-series and signal processing domains with deep neural networks (DNNs) suggests that during 

training, they may fit the meaningful part of the signal first, but eventually overfit the high-frequency 

components51. With MI, factors like camera noise, water movement, and small vibrations of the 

plates could manifest themselves as high-frequency noise. We hypothesized that by removing this 

noise, we might reduce overfitting. To remove the high frequency components of the signal, we 

convolve a hanning smoothing function52 over each MI time series (see methods). We explored how 

choice of window-size affected the result (Supplemental Figure A.2.3); by visual inspection, a 

window size of 11 filters out most of the high-frequency components while preserving the low-

frequency, high amplitude motions. We create a smoothed version of the MI dataset using this 

window size.  
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Smoothing out the data drastically reduces performance for both Sia-MLP and Sia-Dense 

models (Figure 3.5, Table 3.2). The Sia-Dense in particular takes a huge hit to performance; 

decreasing from 0.97 AUC on raw MI to 0.78 on smooth MI. This indicates that a significant part of 

the high performance of the Sia-Dense raw model was based on the high- frequency components of 

the signal. This is also the case for the Sia-MLP model, but to a much lesser extent; its performance 

drops from 0.89 raw MI to 0.83 smooth MI.   

 
Figure 3.5 Smoothing out data lowers performance for both Siamese models  

Smoothing out the motion index data with a hanning 
window lowers performance dramatically for both Sia-
Dense and Sia-MLP models in terms of a) AUC and b) 
PRC. All smooth data is plotted in solid lines; raw data 

in dashed lines.  CD and ED aren’t strongly affected by 
data smoothing. All  models benchmarked on the all-well 
dataset.

We we’re faced with two conclusions from our experiments so far; either a) the high-frequency 

components were a real and meaningful feature of Zebrafish behavior, and we couldn’t train 

effective distance metrics without them, or b) there were other reasons for the poor performance on 

the smoothed data. We decided to test the latter by considering additional potential underlying issues 

with our training datasets and models. 

 

a b 
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Table 3.2 Raw vs smooth performance    

Data Arch auc_score prc_score 

 

Raw Sia-MLP 0.89 0.91 

 
Sia-Dense 0.97 0.98 

 

Smooth Sia-MLP 0.83 0.85 

 
Sia-Dense 0.78 0.79 

IV. Filtering out ineffective drugs from training 

We realized another potential issue for SNN training; the positive and negative labels. They were 

based on the assumption that all the drugs actually induced a substantial effect on fish behavior. In 

reality, we knew this was unlikely the case. Some drugs may not induce behavioral change in 

Zebrafish given differences between human and Zebrafish orthologs, may require different pre-

incubation periods, may not have been screened at their ideal therapeutic dose, or a may encounter a 

long-list of other potential issues including but not limited to drug solubility, drug degradation, 

experimental mixing and handling error, sick fish, and contaminants. So we set out to test whether 

removing ineffective drugs from the training dataset could improve the SNN performance on the 

smoothed dataset. We chose to use a random forest classifier (methods) for this simpler task of 

classifying wells as negative (ineffective drug or DMSO-control) or positive (effective drug) based 

on their MI.  

We observe increasing AUC and PRC scores as we allow the classifier to use more of the 

time series (Figure 3.5 b,c). With the full time series, or 20250 frames (RF 100% in the legend), we 

observe an AUC of 0.88 and PRC of 0.72, which indicates reasonable performance at the task of 

distinguishing drug from DMSO-treated wells, even on a relatively small dataset. 

 



97 

 

Figure 3.5 Random Forest Drug vs DMSO Control Classifier

Filtering out ineffective drugs using a random forest. a) The RF classifier doesn’t flag any Loxapine replicates, but does 
flag 3 of 7 homoquinolonic replicates as indistinguishable from DMSO (red traces represent DMSO-classified replicates, 
blue represent non-DMSO classified traces). The top 500 ranked time points important to the random forest classifier are 
plotted in the green ticks below the DMSO traces. b,c) Area under the curve (AUC) and precision recall (PRC) 
performance of the DMSO-classifying RF. d) Barplot showing what percentage of drugs in the dataset (y-axis) we filter 
out depending on how stringent of a filter threshold we use. A cutoff of 3-ineffective replicates filters out 37% of the 
drugs (bar with red rectangle).   
 
We showcase selected drug treatments where this classifier successfully filters out DMSO-like 

behaviors (Figure 3.5a). For loxapine, a typical antipsychotic (top row), which has a well defined 

phenotype, no replicates are filtered out (all effective time-series colored blue). For homoquinolonic, 

an excitotoxin, 3 of 7 replicates are filtered out (red time series, middle row),  and its replicates at 

this concentration of 30µM look visually similar to DMSO control replicates (grey, bottom row). 

Extracting the most important features from the random forest classifier, we show that it utilizes a 

wide assays of time-points and assays to perform the classification (green marks, bottom row). We 

use the criterion that 3 or more of a drugs replicates must be classified as DMSO as grounds for 
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removal; this procedure removes 37% of the dataset (Figure 3.5d). We also filter out individual 

replicates predicted to be ineffective. The remaining drugs and replicates are used to construct the 

“RF-Filtered” Siamese training dataset. Note that we used this filtering procedure solely to filter 

confounding replicates from model training, so as to improve the clarity of the training signal. In the 

model's evaluation, however, we left all replicates in place, regardless of their quality, so as to avoid a 

self-referential and trivial performance boost pitfall. 

Pre-filtering the dataset for ineffective drugs, we are able to “rescue” performance (Figure 

3.6a,b dash-dotted lines) on smoothed data. This may be consistent with the idea that removing 

ineffective drugs improves the ability of our models to learn meaningful Siamese distance, without 

having to resort to exploiting high-frequency artifactual signal..  

 

Figure 3.6 Filtering our ineffective drugs with RF classifier “rescues” performance 

On the smoothed dataset, filtering out ineffective drugs 
with the RF classifier dramatically improves 
performance for both Sia-Dense and Sia-MLP models in 

terms of a) AUC and b) PRC.  All RF-filtered data is 
plotted in dash-dotted lines; unfiltered data in smooth 
lines.   All plots shown based on all-well dataset.

VI. Generalizability of models 

Now that the Siamese models were yielding high performance on smoothed data, we wanted 

to see if they were capable of generalizing to a different dataset entirely. Fortunately the Kokel Lab 

b a
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had completed a quality control (QC) screen (see methods) just months prior to the highly-

replicated screen. This QC screen was done on a smaller set of 16 drugs distributed in different 

regions of the plates to account for potential plate-position effects. These drugs were replicated 108 

times each. The average MI of those 16 drugs are presented in the appendix (see Supp Figure 

A.2.4) for reference. 

 

Figure 3.7 Quality control vs biomol screen 

The mean motion index time series (average across all  
DMSO replicates) from both the Biomol highly-
replicated screen (grey trace) and the QC control screen 

(yellow trace) are not the same. We subtract 5000 from 
the MI of the QC dataset to bring it closer to the Biomol 
dataset.

 

We noticed substantial differences in the motion index time series of DMSO control treated 

wells when comparing to the highly replicated screen (Figure 3.7). There could have been some 

differences between the camera settings or experimental setups between the two screens; after all, 

they were performed months apart. These kinds of experimental discrepancies are common in 

biological data. Carefully normalizing the two datasets is a highly non-trivial task and beyond the 

scope of this paper. One approach we’ve considered as a future direction for this is borrowing from 

the neural machine translation field and training neural network “transcoders” to translate between 

the two datasets. For now, in order to prevent the discrepancy from undermining the comparison, 

we base-subtract the QC data by 5000 – doing that seems to at least visually normalize the baselines 

between the two datasets, without over-engineering the problem and introducing overfitting. We 

note this is actually more of a problem for the SNN metric; CD doesn’t depend on the absolute 
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magnitudes of the time-series vectors since it focuses on trends in the time-domain and is invariant 

to shifts across the y-axis. In a sense, CD might actually have an a priori advantage in this 

comparison over Siamese distance.  

We use the Sklearn implementation of the K-Nearest-Neighbor classifier53, supplying either 

the SD or CD as the metric by which the algorithm compares rows of the input data, to classify the 

QC screen replicates into the 16 possible labels. First we investigate the best choice for the number 

of neighbors for the kNN algorithm. We observe that the overall classification performance peaks 

around 15 neighbors for all kNN-Sia models; for the kNN-CD models, the highest performance is 

observed at n=1. This effect is similar for both RF-filtered (Figure 3.8a) and unfiltered (Figure 

3.8b) datasets. Performance gradually declines with large neighbor number for all models – likely 

due to an averaging effect. For all subsequent analysis in this section, we set 15 as the choice of 

neighbors for all SNN models, and 1 for CD.  

We find that multiple Siamese models outperform correlation distance in terms of overall 

accuracy at the task of classifying the 16 QC screen drugs (Table 3.3). CD classifies QC drugs at an 

overall accuracy of 59% while the highest scoring model - the Sia-MLP with the raw unfiltered all-

well negative dataset reaches 68.75%. Consistent with the behavior we observed previously, the 

random forest filtered data outperforms unfiltered data on the smoothed dataset, same-well 

negatives don’t change performance substantially, and the MLP networks outperform DenseNets 

across the board. 
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Figure 3.8 kNN accuracy as a function of number of neighbors 

We investigate kNN accuracy for classifying the 16 QC 
screen drugs (y-axis) as a function of  number of 
neighbors, for some of our architectures.    a)  Non RF-

filtered data and b) RF-filtered data.  All smooth dataset 
plotted with solid-lines; raw datasets with dash-dotted 
lines. 

 

Our interpretation of these results is that the models indeed generalize to different datasets 

collected at different times, despite the substantial differences in the MI traces from these. The 

highest overall performance is achieved by a Sia-MLP on the raw data. This was rather surprising to 

us, since we thought the networks were overfitting the raw data, and didn’t expect to see cross-

screen generalization. This indicates that Sia-MLP performance on raw data could be largely based 

on real phenotypic similarity rather than similarity hidden within instrument or behavioral high-

frequency components.  

Table 3.3 Raw vs smooth performance 

Arch Data Type RF filtered? Well Type? Accuracy  

mlp raw nonfilt allwells 68.75% 
mlp raw nonfilt samewell 66.48% 
mlp smooth filt allwells 66.48% 
mlp raw filt allwells 63.07% 
mlp smooth nonfilt samewell 60.23% 
mlp smooth nonfilt allwells 60.23% 
corr raw   59.66% 

 corr raw   59.66% 
mlp smooth filt samewell 57.39% 
dense smooth nonfilt allwells 56.25% 
dense smooth filt allwells 55.68% 
mlp raw filt samewell 55.11% 

b a
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Arch Data Type RF filtered? Well Type? Accuracy  
dense smooth nonfilt samewell 51.14% 
dense smooth filt samewell 47.73% 
dense raw filt allwells 43.18% 
dense raw nonfilt allwells 39.20% 
dense raw filt samewell 21.02% 
dense raw nonfilt samewell 9.66% 

 

Next we examine the by-class performance of selected models. For the following analysis, 

we compare the two top performing models from the smooth and raw datasets; “mlp-raw-nonfilt-

allwells” and “mlp-smooth-filt-allwells”, against correlation distance (Figure 3.9a). Both MLP 

models drastically outperform CD on 3 drugs in particular; Tracazolate, Tiagabine, and Lidocaine 

(starred on x-axis). The MI for these 3 starred drugs is shown for comparison in Figure 3.9b below.  

 

 

Figure 3.9 kNN by-class classification performance for top Siamese models 

kNN performance by class is shown for  QC screen  for 
two of the top performing MLP Siamese models. a) 
barplot   with 16 drugs on x-axis and accuracy on y-axis. 

b) The motion index averages for the 3 starred QC 
compounds is shown.

 

b
a
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Although the raw MI model has the best overall accuracy by a small-margin, the smooth MI model 

has the best performance for Tracazolate and Tiagabine, 2 of the 3 drugs for which SD has a 

dramatic edge over CD. It is nice to see the SNN distances providing a significant edge over CD for 

drugs with potentially more challenging phenotypes. In the case of Tiagabine and Lidocaine, the 

phenotypes are quite subtle and tricky to discern from DMSO control by eye (Figure 3.9b, rows 2 

and 3). Encouraged by the smooth Sia-MLP models generalizability and robust performance, we 

examine its ability to meaningfully cluster drugs. 

VII. Neuroactive Clustering 

Following the same procedure we used in section I (initial results), we cluster the mean MI of the 

650 drugs from the Biomol highly replicated screen (Figure 3.10a) using the Kmeans algorithm with 

48 clusters and embed the time-series matrix onto two components for visualization using the 

UMAP technique with all default parameters except for the neighbor number, which we set to 10, 

and visualize select clusters from distinct parts of the UMAP (Figure 3.10b). Mean traces for the 48 

distinct clusters can be found in the appendix for reference (Supp Figure A.2.5). The most distinct 

region in the UMAP appears towards the middle-left part of the plot; this region consists of the 

“lethal” phenotype, and closely followed by sedation and the paradoxical excitation phenotype 

(cluster 31, red “x’s”, top 3 rows of panel b). This cluster contains MPEP, a specific inhibitor of the 

metabotropic glutamate receptor (mGLuR4), which we originally discovered as an inducer of the 

paradoxical excitation phenotype from chapter 2. This cluster also contains B-CCE and ICI-

198,256,  both of which have activity on Benzodiazepine receptors54,55. The Benzodiazepine 

association is quite interesting for this phenotype, since benzodiazepines induced partial paradoxical 

excitation in chapter 2. 



104 

The next cluster, 7, (Figure 3.10b, aqua, circles) is a cluster of antidepressants; we visualize 

the MIs for fluoxetine, nisoxetine, and fluvoxamine. Cluster 4 (green circles), has a strong adrenergic 

signal, with MIs for yohimbine, clenbuterol, and epinephrine visualized. Finally, we visualize cluster 

13 (located in the middle of the large top-right lobe in the UMAP, magenta circles). This cluster is 

interesting because it is phenotypically similar to DMSO control. It does appear to have some opioid 

signal; nociceptin is the endogenous ligand for the nociceptin opioid receptor; endomorphin is an 

endogenous m-opioid receptor neurotransmitter; however muscimol is a potent GABAAR receptor 

agonist with hallucinogenic and sedative-hypnotic activity, so its membership in this cluster is 

grounds for further interrogation. It is possible this cluster is just one of several DMSO-like clusters, 

and is phenotypically non-distinct. Regardless, the Siamese distance metric does seem to do a 

reasonable job of placing drugs into phenotypic groups, and appears to be useful for neuroactive 

drug clustering. 

 

Figure 3.10 Siamese MLP clusters 

UMAP embedding of Biomol drugs in terms of their 
mean-MI across all replicates. a) A UMAP two-
component embedding with Siamese distance on the 
smooth data. The clusters are colored by the cluster-

membership based on a K-means clustering. b)  
Visualization of select clusters.  The row labels 
correspond to the cluster and marker style as they appear 
in the UMAP.  

b a
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VIII. Metric sensitivity  

A key performance criterion we’d like to satisfy with our new distance metric is sensitivity to weaker 

phenotypes. CD performs well for exceptionally strong, outlier phenotypes - such as paradoxical 

excitation - but it doesn’t seem to robustly distinguish more subtle phenotypes. We compute the SD 

and CD between drug and DMSO for all 650 drugs and plot the result (Figure 3.11a,b). In the left 

panel of the figure (a), the drugs on the x-axis are ordered by their SD from DMSO; in the right 

panel (b), by their CD from DMSO (in ascending order). SD from DMSO is greater than CD from 

DMSO for an overwhelming number of drugs; implying SD is more sensitive to a broader range of 

drugs and associated behavior.  

 

Figure 3.11 SD and CD vs DMSO for 650 Drugs 

Sensitivity of Sia-MLP vs DMSO and CD vs DMSO for 
650 drugs ordered by a) SD from DMSO, b) CD from 

DMSO.  In both panels, blue markers are for SD, and 
purple markers are for CD. 

 

We might have been worried if SD had little overlap with CD, but it was reassuring to see SD get 

the low-hanging fruit; drugs with the highest DMSO CDs also tend to get very high DMSO SDs. 

After all, we don’t expect correlation distance to be completely “wrong”; it’s probably just limited to 

the strongest phenotypes.  

b a
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Discussion 

Through a set of experiments performed in this study, we train distance metrics with fully-connected 

Siamese Neural Networks that, a) perform substantially better than correlation distance at the task of 

separating same-drug replicate pairs from different-drug pairs, b) are able to generalize to a 

completely different dataset, c) substantially outperform CD at classifying several drugs with more 

subtle phenotypes, d) produce neuroactive drug clusters that seems reasonable phenotypically and 

pharmacologically, and e) are more sensitive to a broader range of phenotypes. We believe these 

Siamese distance metrics should have an immediate impact and applicability in Zebrafish phenotypic 

drug discovery.  

I. DenseNets vs MLPs 

One of the most unexpected discoveries we make in the process is that the fully connected 

MLP networks outperform the more advanced and in-principle more powerful DenseNets. Further, 

we find that DenseNets are more prone to overfitting on high-frequency components of the time-

series. Upon reflection, this is not so surprising. DenseNets learn hierarchical representations of the 

time-series with a deep stacks of convolutions; layers at various depths should be able to perceive 

different temporal features and connections between motions occurring at different length-scales. 

However, it is not clear that larval Zebrafish behavior actually exhibits a strong long-term memory 

component. It may not always be the case that fish experiencing one type of stimulus will respond 

differently to a future stimulus. Further, even if this effect does exist, its magnitude is uncertain; it is 

possible that for some stimuli, this “assay-memory” is not significant. Unfortunately, we currently 

lack strong evidence of this one way or another; future studies need to elucidate the prevalence of 

long-term assay effects on Zebrafish behavior.  
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For now, we suggest that one possible explanation for the poor DenseNet performance and 

overfitting stems from their detail-oriented view of motion index patterns at various length-scales, 

burdening their learning flux with high-frequency details and possibly weak long length-scale effects. 

In contrast, the fully-connected networks seem to accomplish the task of comparing motion index 

time-series effectively by learning all the possible ways time-points for two time-series can be 

compared to each other. By design, they should be able to accomplish what dynamic time warping 

sets out to do – allowing for shifts while comparing different combinations of time-points. In future 

studies, it should be insightful to test other architectures that incorporate the best from each 

approach. One such network might be an MLP/CNN hybrid56, or a RNN/CNN hybrid57,58, with 1D 

convolutions performed on shorter segments of time series (perhaps in the context of individual 

assays) stitched together by an outer fully-connected or recurrent layers operating on the CNN 

segment embeddings.  

Another explanation entirely might be that the DenseNets - as the more complex 

architecture - require a larger dataset to effectively train; for this the solution is a performing a larger 

screen with more replicates (which can be prohibitively expensive), or generating more data with 

smart data augmentation. In this vein, recently there has been some promising work using 

Generative Adversarial Networks (GANs)59 for generating new time-series data60. It would be ideal 

to be able to improve Siamese distance performance without having to generate new experimental 

data.  

Yet another possibility entirely is that DenseNets are more likely to overfit MI data because 

of their higher complexity. With a fully randomized, highly replicated screen, there should be fewer 

opportunities for the DenseNets to overfit drug-layout and plate-layout-based effects, and they 

could play to their strengths better in such an arena. 
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II. Data smoothing, overfitting, and pre-filtering 

 In our experiments we observe that smoothing out MI with a Hann filter before training 

reduces performance, suggesting that overfitting occurs on high-frequency components. Pre-filtering 

ineffective drugs with a random forest DMSO classifier rescues performance on smoothed data; 

suggesting that data-smoothing and improving the quality of training labels is a key step. There is 

some support for this notion stemming from the observation that the smooth-MI MLP network 

performs better than its raw-MI counterpart on 3 of the 16 drugs for which correlation distance 

performance is particularly poor.  

It is possible that the Hanning 11 filter is too aggressive for certain phenotypes; in particular 

ones where sharp peaky effects might be important. In this case a narrower window might yield 

better results. An important future direction is exploring how the choice of Hanning window size 

affects Siamese performance. It is possible that with a more optimized smoothing procedure, the 

smooth-MLP networks will outperform their raw-MLP counterparts on more drugs. 

         For the time being, we believe the smooth-MLP Siamese distance is the best choice for 

current phenotypic drug discovery efforts in larval Zebrafish. In future phenoblasting experiments 

on compounds from novel compound screens (see chapters 1 and 2), we believe the smooth-MLP 

distance will produce the most robust results, least prone to plate effects. We intend to test these 

notions once we have new Siamese distance metrics trained on the fully randomized screens.  

         We forgo drawing strong conclusions based on this work without training SNNs on a the 

fully well-location randomized screen. The SD metrics do generalize to the QC screen that was 

designed to control for plate-effects, giving us confidence that subsequent analysis on the fully 

randomized screen will validate our findings. We are also encouraged by the fact that we get good 

classification on the QC screen despite the underlying data incongruity between the two screens. In 
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fact we were quite surprised by how well the metrics performed in this task. With more uniform data 

across screens, we expect to achieve even higher classification performance.  

Methods 

Raw and smoothed motion index calculation  

The raw motion index is calculated as follows: 𝑀𝐼 = 	∑ 𝑎𝑏𝑠(𝑓𝑟𝑎𝑚𝑒% − 𝑓𝑟𝑎𝑚𝑒%78):
%;< . The 

smoothed motion index time series is obtained by convolving a Hanning window function52 of 

width 11 with the Python NumPy61 convolve module. The effect of choosing various window sizes 

for a random segment of video of 750 frames is illustrated in (Supp Figure A.2.3). We set the 

window size to be 11 because we observed this removed most of the high-frequency component of 

the signal while preserving most of the low-frequency motions. 

Siamese networks 

The Sia-MLP architecture (Figure 3.12a) consists of two MI inputs of 20250 frames, followed by a 

series of fully connected layers, batch-norm layers62, and ReLU activations63. The hidden size of the 

siamese output layer is set to 10. The loss is computed using a contrastive loss function 64 commonly 

used in many SNN implementations, where we choose a margin of 0.5 on the negative labels. All 

MLP networks were run for 25 epochs using the learning rate of 1x10-4 with the Adam optimizer 66 

and weight decay of 1x10-3.  

 

The Sia-Dense architecture (Figure 3.12b) is an SNN with each identical half an adaptation of 2D 

DenseNets where we made the following modifications: all 2D convolutions are converted to 1D, 

instead of max-pooling we use convolutions with a stride of 2, and instead of the original large 

architecture (6, 12, 24, 16) dense blocks, we simplify to (3, 3, 3, 3), since our training dataset is 
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limited in size compared to the ImageNet dataset on which the original DenseNets were trained on. 

After the last convolution, the hidden size is 635. We added 2 fully connected layers to reduce the 

resulting hidden size to 10, to match Sia-MLP, adding batch-normalization and a ReLU activation in 

between them. Everything else is identical to the Sia-MLP implementation. Dense networks were 

run for 50 epochs using a learning rate of 1x10-3 with the Adam optimizer and weight decay of 1x10-

3. Both architectures were designed and trained using the PyTorch deep learning software65 (version 

1.1.0), on in-house GPU clusters consisting of either Nvidia GTX 1080 or GTX 2080 GPUs. 

 

Figure 3.12 Sia-MLP and Sia-Dense Architectures

Sia-MLP vs Sia-MLP illustration. a)  Sia-MLP consists of 
4 fully-connected layers (20250, 500, 100, 10), with 
batch-norm and ReLU activations after each one except 
the output layer.  b) Sia-Dense consists of 4 1D dense 

blocks (3, 3, 3, 3) followed by a fully-connected layer of 
100, batch-norm and ReLU activations, and finally an 
output layer of size 10. 

 

b 

a



111 

Random Forest DMSO Classifier 

The dataset was constructed by enumerating all the DMSO replicates in the highly-replicated screen 

(a total of 748 unique traces), and under-sampling from the drug wells to match the number of 

DMSO for class balance. The drugs and DMSO replicates were split at random for the training and 

validation sets. The random forests were trained using the sklearn random forest package67 using all 

default parameters except for the number of estimators. We explored this as a parameter and 

observed the best performance with 2000 estimators. 

Performance evaluation  

For all machine learning analysis, model performance was evaluated on the validation sets using the 

area under the curve (AUROC) and precision recall (PRC) functions from the Python sklearn 

package48. Correlation distance and Euclidean distance baselines are computed using the Python 

SciPy package68.  

Highly replicated screen and quality Control screens 

The highly-replicated Biomol28 library was ordered and layouts were unchanged. This library 

containing 661 known neuroactive drugs spread across 8 plates. DMSO control treated wells were 

designated as the last (bottom) row of all plates. 

The layouts for the QC screen were designed to control for potential plate-location effects. 

16 drugs, chosen based on diversity of phenotype, (see Supp Figure A.2.4 for the drug names) were 

systematically spread out across 18 plates; each 96-well plate contained 6 copies of the 16 drugs at 

physically distinct locations. We refer the reader to chapter 2 (see methods) for all aspects of 

Zebrafish maintenance, breeding, and behavior phenotyping; they are analogous to the methods 

used for this chapter.  
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Fully randomized screen 

This randomization involved a 3 step procedure. In the first step, we separated DMSO and Water 

dissolved drugs into separate 96 well plates. There were 76 water compounds, and they were all 

transferred robotically with the help from the Small Molecule Discovery Center at UCSF onto one 

96-well plate, while all the DMSO-dissolved compounds were spread across the remaining 7 plates. 

The second step involved a “quad-map” transfer of compounds from the 7 DMSO compound 

plates onto 2 384-well plates, where the drugs from each 96 well plate are transferred to a unique 

quadrant of the 384-well plate. To account for higher water-evaporation rates, we transferred the 

water-dissolved compounds from their 96-well plate to a separate 384-well plate which was sealed 

off. For the final step, we computationally randomized layouts using Python that the robot used to 

transfer drugs from the 384-well plates to the target randomized 96-well plates. In total we prepared 

80 randomized layouts (8 target plates with 10 replicates). For each library replicate, the DMSO-

dissolved compounds were transferred first, followed by the water-dissolved compounds. The robot 

was programmed to open and close the seal on the Water-dissolved compounds before and after 

randomization, to minimize evaporation and make sure the final drug concentrations in the final 

randomized plates were as close to the final desired 30µM as possible. The final randomized plates 

were designed to have 73 drug wells, 8 DMSO wells, and 3 water wells, 2 eugenol (lethal positive 

control) wells, except for the last plate of each library copy, which was designed to have 72 drug 

wells and 7 water wells, and the same number of DMSO and eugenol wells.  

3.8 Acknowledgments 
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Preamble to Chapter 4 

 

Out of all the challenges I’ve come across during my PhD, none were greater than the 

DeepFish project. At first glance it feels like a huge disappointment to acknowledge that our 

approach remains as of yet unproven. But after some reflection I realize that only by setting sights 

high enough is real progress made. The idea behind the DeepFish project was simple in its 

formulation; construct a dictionary of Zebrafish behavior; where words are “motion primitives” 

from which “sentences” of behavior are formed. I understand now that I was thinking more like a 

reductionist and physicist and less like a biologist when I thought it would be simple to encode 

Zebrafish behavior.  

Chapter 4 will go through some of our progress in forging this dictionary. But for now, I 

simply acknowledge that the promising results of chapter 3 owe their upbringing to the DeepFish 

project. We always suspected correlation distance was imperfect, but we may never have had enough 

motivation to embark on the endeavor of learning a custom distance metric (and performing highly 

replicated screens) if it hadn’t become absolutely critical to do so in the context of comparing the 

high-dimensional encodings of Zebrafish behavior.  

 Even without reaching the summit, a mountain might reveal to its climbers glorious views 

and offer a new perspective of a complicated landscape extending past the horizon of its shadow. As 

of yet, that landscape hasn’t fully revealed itself to us, with plenty of hills, forests, plate effects, and 

high-frequency components in the way. But we see a path forward, full of Siamese neural networks 

and fully randomized screens, and it may very well lead to lush and fertile land. I attempt to paint my 

best rendition of this vision in chapter 4.  
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4.1 Introduction   

It’s almost surprising how successful motion index has been despite its inherent limitations. 

It served us two bountiful phenotypes all while neglecting to encode information beyond bulk 

motion. Admittedly, our work in chapter 3 suggests that with a better distance metric, motion index 

might have even more riches in store for us. But from motion index’s perspective, fish vigorously 

wiggling their tails in-place and fish swimming across the well might be indistinguishable. If there is 

even a remote chance that some of these potential behaviors and motions could be important drug-

response signatures, it is worth developing a method that can effectively capture them.   

We could have chosen to encode behavior based on existing work; the Zebrafish community 

has characterized many behavioral patterns and motions1–5, that have been associated with 

neurological disease phenotypes; but these are likely not a complete repertoire. Even for just the 

well-studied phenotypes and behaviors, algorithmically encoding them in our 96-well, multi-animal 

setting, where the fish motion is not synchronized and somewhat stochastic is a daunting task. 

Further, the Kokel Lab has developed a robust sequence of in-house assays where the fish are 

stimulated in a myriad of ways. These assays have been pivotal for fingerprinting fish behavior 

because they cause the fish to respond in distinct and neuro-actively interesting ways6–8; but the full 

gamut of responses that the fish can potentially exhibit when stimulated by these unique assays 

might be larger than what has so far been illuminated by the Zebrafish community.  

With these considerations, we take an unsupervised approach to learning a “dictionary” of 

zebrafish response “primitives”, and fingerprinting the videos (or “stories”) with these basic 

“words” of behavior. Our approach is visualized in Figure 4.1.  
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Figure 4.1 Unsupervised video encoding approach 

A cartoon representation of our strategy for 
unsupervised video representation and subsequent 
Siamese distance metric training 1) A video of a drug-
well treatment is broken up into  8-frame segments 2) 
We train an autoencoder on a large-dataset of segments 

to learn a hidden representation of 8-frame segments of 
video. 3) We concatenate all the “segment-fingerprints” 
from a video and train a Siamese neural network on our 
highly replicated dataset to learn a distance metric 
(analogous to Chapter 3).

  
 

Why autoencoders? Autoencoders are Neural Net (NN) architectures9,10 used in many unsupervised 

learning applications10–12, where instead of learning to classify data into bins, they instead learn an 

efficient embedding of the data. This kind of unsupervised pre-training13 can be used for many 

subsequent purposes, including clustering or training a classifier. For example, in the popular 

Word2Vec14 approach in the natural language processing domain, the first step is to embed the 

English vocabulary onto a space that captures some aspects of distance and relationships between 

words; subsequent training of LSTMs or other recurrent networks for text classification can be 

performed on this embedded text. This architecture isn’t strictly an autoencoder, but the notion of 

learning an embedding of English vocabulary is somewhat analogous to our use of autoencoders in 

the context of zebrafish behavioral videos; we wish to embed behavior into a space that is 

meaningful in the context of fish behavior and can be used for subsequent phenotypic drug 

clustering and phenoblasting.  In the text that follows, we will discuss each of the steps of our 

encoding strategy in more detail. 
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4.2 Training dataset for autoencoders   

The first part of our pipeline (Figure 4.1 step 1), is to break up videos of drug-treated wells into 8-

frame segments. This is done out of practical considerations; the full videos (20250 frames) are too 

long to use as inputs for Siamese distance training in their raw form. We break the video into 

segments so that we can embed each segment into a well-behaved latent space of motion 

“primitives”. Any motion or behavior in any video should in principle be embeddable in this space. 

For constructing a training-dataset for the autoencoder, we take the highly-replicated Biomol screen 

(see chapter 3), and split it by-plate into training and validation sets, sampling 8-frame segments from 

these pools so as to balance segments with low versus high-motion content (Figure 4.2). We sample 

evenly across the 3 regions for a total of 1 × 10? segments for the training dataset, and 1 × 10@ 

segments for the validation set.  

 

 

Figure 4.2 Sampling from a distribution of 8-frame segments 

This is the distribution of 8-frame segments based on 
the average of motion across the 8 frames. We sample 
evenly from the three regions; low-motion, left (0-
14413); average-motion, middle (14413-21913); and 

high-motion, right (14413-21913). These regions were 
calculated based on the mean and standard deviation of 
motion across the 8-frame segment dataset.     

 

Region 1 Region 2 Region 3 
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4.3 Removing noise from videos 

In chapter 3, we observed that Siamese DenseNet architectures were able to easily overfit 

our datasets of raw motion index time-series (MI). By removing the high-frequency components of 

the signal, we were able to reduce overfitting and improve generalizability. With this insight, we 

looked for analogous ways of de-noising our video datasets. What spurious video artifacts might be 

the analogues of high-frequency components in MI? We thought the most likely culprits to be 

camera noise, water movement in wells, high-frequency movement of plates as a result of solenoid 

tapping, etc. Additionally, in the videos, the physical well-boundaries and plastic-artifacts from the 

96-well plates are present; these artifacts can be exploited by our networks to learn features encoding 

for plate-location.  To account for these potential artifacts, we sought to get rid of all the non-fish 

features from our videos. To do this, we used a semantic segmentation approach - the UNET 

architecture (Figure 4.3a)15 - that has been applied with much success since its inception for various 

image segmentation applications across the biological sciences16,17 To train UNETs, a labeled dataset 

of masks is required. We use the GIMP image editing software18 to manually select fish from a hand-

selected dataset of 100 frames with challenging fish occlusion situations and orientations from our 

training plates (Figure 4.3b). The result of this procedure are binary masks that are composed of 

values of “1” for regions of the image with fish, and values of “0” for background. When we first 

trained the UNETs, we observed that they sometimes confused circular well plastic-elements with 

rounded fish tails. We found that pre-training on a small set of 10 manually selected frames with 

these artifacts, followed by a main-training procedure on the rest of the 100 mask dataset (Figure 

4.3c), helped to reduce this confusion and produced visually accurate whole-fish masks (Figure 

4.3d).  
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Figure 4.3 UNET Masking and Training 

UNET-Mask dataset construction, training, and results. a)  The UNET architecture15 (cartoon representation),    takes raw 
images as input, and is trained on a dataset of human-annotated masks to produce binary masks as output. b) Some 
examples shown from the manually curated dataset of challenging images. c) Pre-training and main-training loss curves 
(train loss; blue, validation loss; orange).  The UNETs are first pre-trained on a set of 10 images and masks with plastic 
artifacts, then training is continued on the rest of the 100 masks. d) Some example masks from the validation set (original 
images; 1st column, human-annotated masks; 2nd-column, UNET-raw masks; 3rd column, UNET-thresholded at 0.5 masks; 
4th column. 
 

We explored other ways of removing camera artifacts. We realized that coordinate 

representations could be quite useful. They are the most parsimonious in terms of their feature 

space, and can be used with non-convolutional architectures, such as recurrent neural networks. 

Entire coordinate videos can even be fed directly into Siamese neural networks for end-to-end 

training. We wondered if a simple modification to the UNET architecture could be used for

producing coordinate masks instead of whole-fish masks. To test this hypothesis, we manually 

annotated the same dataset of 100 images that we used for the whole-fish UNETs using GIMP, but 
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this time placing small circle masks around regions of interest in the image; specifically, the heads, 

bodies, tails, and tail-tips of the fish. It turned out that this UNET adaptation was quite robust and 

straightforward in terms of training and optimization (Figure 4.4).  

 

Figure 4.4 UNET Masking and Training 

UNET-Coordinate mask dataset training and results a) 
Example from a fully trained model. b)   Illustration of 
the dataset prep and performance of the UNET-
Coordinate architecture. Original images (left column), 
are annotated with small circular masks (2nd from left 
column). The UNET is trained and raw masks are 
predicted (3rd from left column), and thresholded (2nd 

from right column). Open-cv blob-detection is applied 
to the thresholded masks to get the coordinates of the 
blobs for each of the possible fish-regions of interest 
(rightmost column, heads; blue, bodies; red, tails; yellow; 
tail-tips; green).  c) UNET-Coordinate architecture 
training loss curves.  

 

We kept the same architecture as our whole-fish UNETs; we only had to supply a different kind of 

mask (coordinate masks instead of whole-fish masks). Finally, we set the number of output channels 

as 4 (for the 4 possible regions of interest).  

In principle, we could have used one of the many alternative approaches that already exist 

for coordinate extraction. There are deep neural net approaches such as DeepLabCut19,20 for tracking 

multiple limbs of animals, idtracker21 for tracking the center of mass of many animals, and 

YOLO22,23 and Mask R-CNN24 and Fast R-CNN25 for tracking objects with bounding boxes. 

However, adapting any of these implementations for our high-throughput dataset of videos 
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composed of 8-fish per well where we’d like to track individual fish-body-parts would be quite 

challenging. Finally, we discovered it was straight-forward to adapt our UNETs to this task and it 

felt prudent to get an additional representation (coordinates) with recycled components. 

4.4 Training autoencoders 

I. Image-based Autoencoders 

Our autoencoder architecture was inspired by a recent study in video-classification26. There, a 3D-

convolutional architecture was designed to classify 16-frame clips from the UCF101 dataset27 of 101 

sports-action classes and was found to be more efficient and perform better or on-par with state-of-

the-art LSTM28 and LSTM-CNN Hybrid29 networks. Here we adapt and modify their architecture 

for the purposes of auto-encoding video-fragments (Figure 4.5). We make some significant changes 

to the original architecture, with the biggest change being the addition of the decoding network to 

reconstruct video-fragments; other smaller changes are discussed in more detail in the methods 

section.  

 

 

Figure 4.5 3D Convolutional Autoencoder Architecture 

3D Convolutional autoencoder architecture inspired by 
recent work on video classification26. The time-
dimension is not shown.  An input video-segment of 8 
frames is fed into the CNN, embedded into a hidden 
latent space of size 72, and training is done to minimize 

the loss between the input and reconstructed fragments. 
Time convolutions are performed only after the first 2 
layers. The number of resulting channels after each 
convolution is displayed above the gray rectangle 
representing each layer. 



128 

 

Additionally, we considered the possibility that a better-behaved latent space could result in 

embeddings that perform better for subsequent tasks. With “vanilla” autoencoders (autoencoders 

that are trained simply by learning to minimize reconstruction loss), the learned features might be 

more useful for reconstructing images than for comparing behavior. In light of this we train 

variational autoencoders (VAEs)30 as well, which have been successfully applied in many different 

domains and applications, including Generative Adversarial Nets (GANs)31, generating images from 

text32, and audio synthesis with generative WaveNets33. I will not attempt to reconstruct the beautiful 

mathematical underpinnings underlying VAEs here; I will simply state that in VAEs, a Kullback-

Leibler (KL) Divergence term is added to the loss function, so that training is done not only to 

minimize the reconstruction error between input and output, but also such that the distribution of 

the embedded latent space follows a chosen distribution (often, and in our case, this is the Gaussian 

distribution). In practice, this insures that the hidden space is well behaved; it uses its neurons more 

evenly in the task of reconstructing input. The performance of our 3D-Convolutional Autoencoders 

both on raw-images and UNET masked images is visualized in Figure 4.6. We are able to get nice 

reconstructions (visually) with all architectures. 
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Figure 4.6 3D CNN Autoencoder Reconstructions 

Original and reconstructed images are presented for 3 
versions of the trained autoencoders. a,b) raw-image 
non-variational (original and reconstructed); c,d) UNET 

masked input non-variational; e,f) UNET masked 
variational.

II. Coordinate Autoencoders 

Analogous to our work on segments of video, we explore the idea of embedding the UNET 

coordinate representations of fish video into a compressed, well-behaved space, using autoencoders. 

We use Gated Recurrent Units GRUs34, a type of recurrent neural architecture with performance 

similar to Long Short-Term Memory Networks (LSTMs)35,36, since they can accept multi-

dimensional time-series inputs. We use a stacked GRU architecture to embed segments of 25 frames 

(corresponding to approximately 1 Zebrafish bout). We get good reconstructions (visually) with 256 

hidden features (Figure 4.7). With the coordinates GRU Autoencoders, we can embed more frames 

at the cost of a larger hidden size. 
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Figure 4.7 GRU Autoencoder Reconstructions 

Original coordinate frames, plotted at an interval of each 
5th frame from the 25-frame block, are encoded with a 
stacked-GRU autoencoder with 256 hidden neurons. 

The reconstructed coordinates are shown in the bottom 
panel.

 

4.5 Model Interpretability and visualization  

Besides looking at reconstructions, one way to judge what an autoencoder is learning is 

visualizing the hidden layer. For our 3D CNN autoencoders, we can use the activation 

maximization37–39 technique to visualize the input patterns that cause our 72 hidden neurons to 

maximally “fire”. After 100 steps, we plot the results for each neuron (Figure 4.7), where we’ve 

taken the average over the 8 frames such that each of the 72 neurons is represented with its own 

individual 96x96 image. There is an obvious geometric pattern in the activations; each of the 8 rows 

has 9 possible spatial locations (4 corners, 4 edges, and 1 center-well); and each column seems to 

have one of 8 possible activation patterns. We believe the design choice of our architecture is 

responsible for these patterns. The last convolution right before the hidden layer uses a 3x3 filter, 

hence it learned to sense one of 9 possible spatial locations.  It has 8 output channels, hence it learns 

8 kinds of motions and fish-distribution patterns. In other words, the choice of filter and number of 
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channels right before the hidden layer has seemingly produced a latent space where neurons pick up 

on well-locations of fish with 8 different fish behavior “sensors”. 

  

 

Figure 4.7 Activation maximization for 3D CNN (VAE) 

Visualization of the hidden 72 neurons in the latent 
space of the fully trained VAE using the activation 
maximization technique. Each cell corresponds to a 

unique neuron.  The rows appear to correspond to 
distinct motion types; the columns to  one of 9 possible 
well locations. 

 

A nice downstream result of performing this visualization was the discovery that the hidden 

neurons were not completely random; they were geometrically related. But we posit that for the 

purposes of encoding behavior, well-direction effects are undesirable. Preference of one corner over 

another, or one side over another, might not be a smart proxy for drug-induced behavior. For one, 

there could be physical directional preferences imposed by the experimental setup, which could lead 

to well-direction effects, making it all the more desirable to reduce them. By averaging over the 

corner, side, and middle-well features, we could bring the total number of hidden features down 



132 

from 72 to 24 (3 possible locations each with 8 possible behavior sensors). In the future, it would be 

interesting to explore a choice of autoencoder architecture that naturally performs such a directional 

“collapse”. One such architecture might consist of polar-coordinate convolutions on polar-

coordinate representations of video instead of cartesian; explicitly collapsing the possible range of 

angle to be between 0 and 45 degrees so as to remove directionality. One potential pitfall of 

collapsing directionality is if there are behaviorally-significant cases where fish flee to different 

corners of the well or purposefully group together in corners. Further studies need to be done to 

investigate how prevalent such behaviors are to inform this crucial choice of architecture or post-

processing procedure.  

We perform a case study with these 24-feature hidden embeddings, choosing to investigate 

an interesting behavior in Zebrafish related to fish moving in close contact with well walls; this 

phenomenon is known as “thigmotaxis” and is thought to be relevant for anxiety40,41. We find an 

example of such behavior in our dataset and visualize it (Figure 4.8a); a fish (circled) starts moving 

from the lower-right corner along the right wall towards the top-right corner of the well. We can 

track the activations of each of the 24 geometrically compressed neurons in the hidden layer as we 

feed in subsequent frames from this video (Figure 4.8c). As expected, the edge and corner neurons 

are activated more than the center-well neurons. There is some activation in one of the center-well 

channels likely because it catches a bit of fish tail. If we take the average across neurons, we get a 

trace that closely resembles the MI for this segment of video (Figure 4.8b). Together these 

observations highlight a key advantage of our autoencoders; they’ve learned an embedding of fish-

behavior that can differentiate between distinct well-location movements. This virtue can be critical 

for successfully identify compounds that induce behaviors like Thigmotaxis.  
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Figure 4.8 Edge-hugging (thigmotaxis) case-study 

We investigate what geometrically-compressed hidden 
layer activation patterns can reveal in the context of edge 
hugging (thigmotaxis) behavior. a) Sequential frames 
selected from a ~30 second edge-hugging video 
(difference maps plotted to highlight moving fish only). 

The fish (circled) starts its motion from the lower-right 
corner and travels along the right wall towards the top-
right corner of the well. b) Comparison of MI and 
average of hidden layer activations. c) Visualization of 
hidden layer activations by location.  

 

4.6 Siamese distance learning with 3D encoded features 

We were now at a point where our embeddings seemed to encode Zebrafish behavior in a 

meaningful and useable way, so we attempted to learn a new distance metric on them. Instead of 

encoding entire videos, which might contain a lot of redundancy, we sample frames only directly 

a b 

c 

Time (Frames) 
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around important stimuli during the assay. We include 39 stimuli events, and sample -24 to +48 

(corresponding to roughly 1 bout before and 2 bouts after) frames around the stimulus (equivalent 

to 9 8-frame segments); this results in 351 8-frame segments of video. We use our trained 3D 

UNET Mask VAEs to embed these 351 8-frame segments into the 72 neuron hidden space; 

subsequently performing the geometric averaging to 24 distinct neurons per segment. The final 

fingerprints for 20250 long videos are 351 by 24 arrays. How do we use these arrays for Siamese 

training?  

As a proof of concept, we start with a Sia-MLP, analogous to chapter 3. There, we used pairs 

of 20250 frame MI as inputs to the SNNs. Here, we project our 351x24 fingerprints into one 

dimension, resulting in 8424-long inputs. Thus the input layer of the Sia-MLP architecture has 8424 

neurons instead of the 20250 neurons used in chapter 3. We train this Sia-3D network on the same 

dataset as our most promising model from chapter 3 (the smoothed, random forest filtered, all-well 

negative dataset). The Sia-3D does a reasonably good job of separating out positive and negative 

pairs (Figure 4.9a), and gets reasonable AUC/PRC performance, albeit substantially worse than Sia-

MI from chapter 3, 0.86 vs 0.93, respectively (Figure 4.9b,c). Correlation distance and Euclidean 

distance calculated on the 3D embedded features perform atrociously. This highlights the 

importance of learning a custom distance metric, especially when dealing with high-dimensional, 

embedded representations of behavior.  
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Figure 4.9 Sia-3D vs Sia-MI comparison  

Sia-3D performance compared to Sia-MI, and correlation and Euclidean distance calculated on the 3D embeddings, for 
the highly-replicated, RF-filtered, all-well negatives dataset from chapter 3. a,b,d,e) positive-drug replicate pairs vs different 
drug pairs; c,f) AUC,PRC curves, respectively (red=3D, blue=MI, purple=Correlation, gray=Euclidean).  
 

Next we investigate whether the Sia-3D distance can be used to cluster the high-replicated dataset 

(Figure 4.10) using the same methods (K-means to cluster, UMAP to embed onto 2 dimensions for 

visualization) as we used for visualizing the Sia-MLP clusters in chapter 3. We notice less 

pronounced structure in the clustering compared to Sia-MI (see Figure 3.10a). Since it’s difficult to 

visualize the high-dimensional embeddings, we show the motion index time series of 10 drugs from 

cluster 15 (Figure 4.10b, red circles) for comparison. In terms of MI, the cluster is problematic; 

there are drugs that have the lethal phenotype as evidenced by flat-MI (GBR, DH, Loratadine, for 

example), but there are also several drugs with non-lethal phenotypes (Propranolol, B-CCE, 
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Clopidogrel, and Levallorphan). For a robust distance metric, we’d like to be able to discriminate 

between lethal and non-lethal drugs; there is certainly much room for improvement for our 3D 

distance metric.  

 

Figure 4.10 Sia-3D Clustering  

Sia-3D clustering performed on the means across replicates from the highly-replicated screen on the embedded (3D-VAE 
UNET Masks fingerprints). a) UMAP embedding on fingerprints, colored and marked by the Kmeans clusters. b) For the 
drugs that have been grouped together into cluster 15, we visualize their time-series representations (red circles, middle-
left part of the UMAP).  
 

4.7 Discussion 

We have in this chapter introduced an unsupervised approach for learning more advanced 

representations of Zebrafish behavior from videos. We are able to demonstrate we can do the 

following: a) denoise videos by extracting whole-fish masks with UNETs, b) extract body-part-

specific coordinate masks for fish with UNETs, c) train 3D convolutional autoencoders to embed 8-

frame segments of video, d) train GRU autoencoders to compress 25-frame segments of coordinates 

using 256 hidden layer features, e) provide evidence that the hidden activations from the 3D-CNN 

a b 



137 

autoencoders have learned to discern between corner, edge, and center-well positions and motions 

of fish, and show that averaging over the activations yields motion index, and finally f) show that we 

can modify the Sia-MLP architecture from chapter 3 to work on the high-dimensional embeddings. 

Current limitations and future directions 

Our first attempts at training a Sia-3D distance metric has produced mixed results; the 

AUC/PRC for separating same-drug replicates from different drugs is 0.86 and 0.87, respectively, 

which would indicate reasonable performance, but clustering performance seems relatively poor. 

Here we suggest several possible explanations for this.  

I. Overfitting 

In chapter 3 we saw that DenseNets were able to overfit on this dataset. We have already 

suggested that to fully control for overfitting, we need the fully randomized screen. Analogous to 

our smoothing procedure for motion index in chapter 3, we have attempted to use UNETs to 

denoise the images prior to training to circumvent this problem but it is possible that this hasn’t 

removed all types of noise from the images. Perhaps there is still spurious high-frequency camera-

noise or plate-vibrations that remain even after masking. It’s likely the case that the only real 

solution for fully getting rid of overfitting is by training on the fully randomized screens.  

II. Model selection 

In our approach, we make many choices for architectures that might not be ideal and 

performance could be significantly improved with even the most obvious optimization. For 

instance, we attempt to encode 8-frame segments of video with the 3D-CNNs. Perhaps 8 frame 

segments of motion are just too short to encode behaviors that might actually occur on the scale of 

bouts (25-30 frames). Optimizing this critical choice of segment length should be a top priority for 
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subsequent work. The other critical choice is the Siamese architecture we use; the MLPs seem to 

work great on motion index, but they’re probably not ideal for high-dimensional embedded video 

fingerprints. Here, we envision that a carefully designed convolutional or recurrent architecture 

should be able to greatly boost performance.  

III. Deeper problems 

It would be disappointing but not entirely surprising if the ways that fish distribute 

themselves around wells is not always significant from the behavioral and phenotypic standpoint. 

Our 3D-CNNs expend most of their learning-energy towards reconstructing these patterns. 

Perhaps, this distracts them too much from the really important behaviors and encourages them to 

overfit on potentially irrelevant fish-distribution patterns. An analogy is trying to track a specific car, 

driving erratically, in a sea of highway traffic during rush-hour. An autoencoder that takes in raw 

traffic camera footage and is tasked with reconstructing segments of traffic video might rarely 

encounter features that have any relationship at all with the swerving, speeding outlier, and might 

only learn general aspect of rush-hour traffic instead. A smarter approach might be to first learn 

what the “general traffic features” are, filter them out, and attempt to encode the remaining features 

- including the erratic car. In our realm of Zebrafish videos, this might be equivalent to first filtering 

out the static or motionless fish, and letting the 3D-CNNs focus on moving fish; or first learning 

features that are common to most videos and filtering those out, since they would likely not be 

useful for learning drug-specific encodings. In principle, neural networks should be able to perform 

feature selection automatically – that is, selecting drug-specific features and filtering out general ones 

– but this relies on having large enough datasets. With our limited datasets, this nice benefit of 

neural networks might be unrealized.   
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IV. Final thoughts 

To conclude, we believe we’ve made important progress on finding improved 

representations of Zebrafish behavior, but much work still remains. At the least, we have an 

actionable pipeline which can be optimized further and benchmarked on the fully randomized 

screens. In chapter 3 we establish a context for learning custom distance functions for comparing 

MI; we should be able to extend it to this more challenging but potentially more-rewarding arena of 

high-dimensional embeddings.  

We foresee the possibility that we might eventually get better classification and 

phenoblasting performance for specific classes of drugs with the Sia-3D distance functions. Perhaps 

certain classes of drugs and behaviors are just naturally predisposed for MI encoding; for sedating 

compounds this is a likely possibility. But for other classes of drugs – ones that cause the fish to 

behave in more unpredictable ways – learning representations that encode for more than just bulk 

motion seems prudent. For practical drug discovery purposes, we envision using the more advanced 

representations in conjunction with MI. With a combination of these representations we should be 

able to cast the widest net and provide the broadest coverage over the entire Zebrafish phenotypic 

and pharmacological landscape.  
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Appendix A: 

A.1 Supplementary material for Chapter 2 

Supplementary Note 1 

GABAAR ligands produce paradoxical excitation in zebrafish. Compounds with weak 

phenoscores (x < 0.51) included one GABAB receptor agonist, one PAM of δ-subunit containing 

GABAARs, two non-BZ-site ligands, three structurally-related GABAAR orthosteric agonists, and 

seven BZ-site GABAAR PAMs (Fig. 1g). For these compounds, the average phenoscores were 

significantly less than the positive controls (P < 0.01, Kolmogorov-Smirnov test, Supplementary 

Figure 20a), suggesting that these compounds did not phenocopy etomidate. For example, the 

highest scoring ocinaplon treatment produced a behavioral profile that resembled the negative 

controls (Supplementary Figure 2). These data suggest that a variety of GABAergic compounds 

do not cause sedation and paradoxical excitation. 

Compounds with intermediate phenoscores (0.51 < x < 0.71) included several types of GABAAR 

PAMs including thiopental, carboetomidate, THDOC, alfaxalone, diazepam, and valerenic acid. The 

highest scoring profiles produced by some of these compounds (including alfaxalone, thiopental, 

and tracazolate) showed a barely detectable statistically significant difference compared to the 

positive controls (0.01 < P < 0.05). The highest scoring profiles of animals treated with diazepam, 

and valerenic acid were significantly lower than the positive controls (P < 0.01, Kolmogorov-

Smirnov test, Supplementary Figure 20a), however these treatments produced interesting 
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intermediate effects on sedation and paradoxical excitation. For example, although the highest-

scoring diazepam treatment was strongly sedating in most assays, it produced eASRs that were 

relatively weak and inconsistent (Supplementary Figure 2). These data suggest that a variety of 

PAMs have intermediate effects on sedation and paradoxical excitation. 

Interestingly, although DOC and progesterone are neurosteroid precursors, they were among the 

most potent compounds tested (Fig. 1g). As expected, progesterone’s etomidate-like phenotype was 

suppressed by dutasteride, a 5-alpha-reductase inhibitor that blocks the metabolic conversion of 

progesterone to allopregnanolone, suggesting that these compounds were converted to active 

neurosteroids (Supplementary Figure 5). 

 
 

Supplementary Note 2 

Target prediction using SEA. We used the Similarity Ensemble Approach (SEA) to 

predict targets based on ‘guilt-by-association’ enrichment factor scores (EFs). These EFs were first 

developed for predicting adverse drug interactions 1, and balance the overall strength of a given 

target-to- compound-set association by correcting for the frequency that specific targets are 

predicted over random compounds sets in the screen 2. Here, we used EFs to predict targets for the 

compounds that caused eASRs in the zebrafish. SEA identified 15 compounds with enriched target 

predictions for mGluRs (Supplementary Table 9, Supplementary Figure 12a). We chose eight of 

these compounds to reorder and retest and found that four of them reproducibly caused eASRs in 

vivo (Supplementary Figure 12b, Supplementary Table 9). Next, we tested five of these 

compounds as agonists and antagonists for activity at seven human mGluRs (mGluR1-6 and 

mGluR8). However, none of the compounds showed strong functional effects against mGluRs in 

vitro (Supplementary Figure 12c), suggesting that the 2compounds did not act via mGluRs in vivo. 
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To further test the mGluR hypothesis, we tried to phenocopy etomidate in dose-response 

experiments with a panel of structurally-diverse mGluR ligands and ligand combinations 

(Supplementary Table 9). Although MPEP, a mGluR5 antagonist, reproducibly caused eASRs, 

MPEP-induced eASRs were substantially lower in magnitude than etomidate-induced eASRs, and 

MPEP-induced eASRs only occurred in a narrow concentration range (Supplementary Figure 12b, 

Supplementary Table 9). Therefore, although MPEP weakly phenocopied etomidate, we found no 

further evidence that hit compounds targeted mGluRs, as predicted by SEA. SEA predicted that 

GABAAR was a target of four hit compounds (Supplementary Figure 11). We tested three of them 

(5658603, 5142031 and 7145248) and found that one (5658603) potentiated GABAAR in vitro (Fig. 

2f, red arrow). Curiously, we noted that SEA failed to predict GABAAR as a target for most hit 

compounds that tested positive in the GABAAR FLIPR assay (Fig. 2f), underscoring the value of 

behavior-based screens for identifying bioactive compounds with poorly annotated chemical 

structures. 

 
 

Supplementary Note 3 

GABAAR and HTR6 ligands likely converge on a common neural substrate. To determine if 

HTR6 antagonists activated the same neurons as GABAergic ligands, we took three approaches. 

First, we looked for overlap between 5HT immunohistochemistry and the eASR substrate neurons 

(Supplementary Figure 13f). Consistent with previous reports, we observed strong 5-HT staining in 

the telencephalon, pineal gland, hindbrain, and dorsal raphe nuclei 3. In addition, we observed 

bilateral 5-HT staining in tracts that converged on the midline of the caudal hindbrain at the same 

location of the putative eASR substrate neurons in the caudal hindbrain (Supplementary Figure 13f). 

These tracts likely originated from the dorsal raphe, but we could not trace their origin definitively. 
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Second, we visualized HTR6 mRNA expression by RNAscope but could not detect reproducible 

expression patterns (Supplementary Figure 14), suggesting that HTR6 mRNA is not abundantly 

expressed. Finally, we tested for pharmacological interactions between GABAergic and serotonergic 

ligands. As expected, pretreatment with the GABAAR antagonist PTX rescued etomidate-treated 

animals, increasing and decreasing the magnitude of the violet light and eASR phenotypes, 

respectively (Supplementary Figure 15a). Similarly, PTX rescued the GABAergic compound 

5658603, and partially rescued compounds 701338, and 5942595, albeit to a lesser extent than 

etomidate (Supplementary Figure 15a). PTX also partially rescued the behavioral phenotypes of 

several HTR6 antagonists including BGC 20-761, 6029941, 6028165, 6030006, and 6013263 

(Supplementary Figure 15b). By contrast, EMDT oxalate, a HTR6 agonist, did not suppress eASRs 

caused by HTR6 antagonists (Supplementary Figure 15c), suggesting that the effects of HTR6 

antagonists are not easily reversed. Together, these data suggest that GABAAR agonists and HTR6 

antagonists likely cause eASR behaviors via different targets that converge on a common neural 

substrate in the zebrafish hindbrain. 

 
 

Supplementary Discussion 

Although etomidate and propofol are human anesthetics, the hit compounds identified in 

this study may not be useful as human anesthetics. One reason, is that the primary screen in 

zebrafish did not include behavioral correlates key anesthetic effects including analgesia and 

amnesia. Furthermore, only a minority of the hit compounds suppressed the TrpA1-induced pain-

related assay (Fig. 6b), suggesting that many of the compounds may not cause the analgesic effects 

associated with human anesthesia. Another reason is hat paradoxical excitation is an unwanted side 

effect of anesthetic drugs. Even if the hit compounds translated to mammals (causing both sedation 
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and paradoxical excitation), additional studies would be necessary to determine if the paradoxical 

excitation phenotype could be overcome at higher concentrations or via medicinal chemistry. For 

example, the 21 analogs of compound 7013338 showed variable efficacies (Fig. 6e), suggesting that 

it may be possible to use medicinal chemistry to increase or decrease eASR activity. These shifts 

likely correspond specific effects on one or more molecular targets that would need to be identified 

with more sensitive functional assays, such as electrophysiological experiments, of recombinantly 

expressed receptor subtypes. Future studies may seek to identify different ligands that sedate 

zebrafish without causing eASRs, or eASRs may be used as a counter screen for other potential 

anesthetic lead compounds. Presumably, such compounds would work through different 

mechanisms than etomidate, propofol, and the other compounds identified in this study, and would 

further improve our understanding of GABAergic signaling, anesthesia, and paradoxical excitation. 

 
 

Supplementary Methods 

Behavioral assays for pERK. Animals were treated with DMSO or drug for one hour then 

exposed to a low-volume acoustic stimulus every 10 seconds for 10 minutes. Optovin-treated 

animals were stimulated with violet light for one second every 10 seconds for 10 minutes. Videos 

were recorded to measure response to the stimulus and quantified by motion index (MI). Animals 

were immediately fixed in 4% PFA in PBS. 

High speed imaging. Digital video was recorded at 500-1000 frames per second using an 

Integrated Design Tools NX5-S1 digital camera. Assay duration was 500-1000 ms. Low amplitude 

tap stimuli was delivered as described above. Videos and still images were assembled using Fiji 

(imageJ) and Photoshop (Adobe). 
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RNAscope. Zebrafish (6 dpf) were fixed using 10% normal buffered formaldehyde overnight at 

4˚C, dehydrated in 100% methanol and stored at -20˚C until the assay was performed. Fluorescent 

in situ hybridization was performed using the RNAScope kit (Advanced Cell Diagnostics)4 with the 

following modifications: target retrieval was performed using 150 mM Tris pH 9.5 for 15 minutes at 

70˚C, washes were performed using 0.2x SSCT (0.01% Tween-20, 3mM NaCl, 0.3mM TriNa-citrate, 

pH7), samples were stored overnight after probe hybridization and 2x 5 minute washes in 5x SSC 

(75 mM NaCl, 7.5 mM TriNa-citrate, pH7) at room temperature before amplification and detection 

steps were performed the following day. 

Viability. Animals were scored manually to determine viability after anesthetic treatments. 100 

animals were scored per condition at 10 minutes, 1 hour and 5 hours post treatment. Strong heart 

rate was observed under a dissecting scope (Leica M-80) for our viability score. 

Structural Clustering. Structural clustering was performed on the top 125 hit compounds using the 

rdkit function FingerprintMols package written for python. Tanimoto similarity function was used 

with  a threshold of 0.25 to define clusters and visualized using the scipy hierarchy dendrogram 

function. 

SEA and EF calculations. Here we describe our computational pipeline: 1) Use the reference trace 

to discover the top 125 hit compounds (most similar phenotypically related to etomidate). 2) 

Organize hit compounds into hierarchical supersets of increasing numbers of hit compounds. Use 

SEA analysis to generate target predictions for each of the compounds in the sets. Perform 

enrichment factor calculations on the sets, which attempt to correct the occurrence of target 

predictions for a set of compounds by comparing to a background distribution.2 To do so we 

generated 10,000 sets of 200 random screening compounds each, and applied the following formula 

to calculate the enrichment of target y for set x: E_xy = n*N / (A * T), where n is the number of 

times target y is predicted for set x compounds by SEA, A is the number of times any target shows 
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up for set x, T is the number of times target y shows up for any set, and N is a normalization factor 

equal to the product of all the targets and all the sets. 

Determination of phenotypic thresholds and significance. For each ligand, we selected the 

dose that gave the highest average phenoscore, and for that dose, we performed a two-sample 

Kolmogorov-Smirnov (KS) test to calculate the KS statistic against the 12 positive control replicates 

of etomidate @ 6.25 µM using the scipy function ks_2samp from the scipy.stats package 

(Supplementary Figure 20a). 

To calculate approximate thresholds of phenoscore significance, we performed a statistical 

simulation. For each score in the space of possible phenoscores (binned in 0.05 increments from 0 

to 1), we sampled 12 replicates from a uniform distribution centered around the score ranging from -

4σ to +4σ away from the mean, and calculated the KS statistic against the etomidate 6.25 µM 

replicates. We repeated this simulated procedure 100 times to get robust statistics, and took the 

average of these P values. However, we realized that the standard deviation of replicates across 

different GABAAR ligands was not a constant value. It tended to be low for extremely poor 

phenotypes, peaked for intermediate phenotypes, and decreased again for extremely strong 

phenotypes. 

Therefore, we fit the standard deviations for GABAAR ligands as a function of phenoscore with a 

10th order polynomial using the Polynomial package in numpy (Supplementary Figure 20b). 

Using this resulting polynomial, we calculated the KS P values from the simulated uniform 

distributions as we iteratively stepped along the y-axis ; these P values were smoothly distributed 

except for a discontinuity around phenoscore 0.5 due to rapidly increasing P values in this range 

(Supplementary Figure 20c). We derived the threshold phenoscores associated with these P values 

by fitting another polynomial to the resulting distribution in the smooth region (above phenoscore 

0.5) (Supplementary Figure 20d) and calculating the roots of the function at those P values. The 
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resulting phenoscores corresponding to 0.01 and 0.05 P value thresholds were 0.51 and 0.71, 

respectively. 

Z’ and false positives and negatives calculation. To calculate the Z’ (quality of screen coefficient), we 

use the formula Z’ = 1 − 3(σp + σn)/(µp − µn), expressed in terms of the mean and SD of the 

positive (p) and negative (n) controls. The false positive/negative rates were determined at a 

threshold of 3 SD. Any positive controls with a phenoscore 3 SD away from the positive control 

mean (µp) were labeled false positives. Likewise, any negatives controls 3 SD away from the negative 

control mean (µn) were labeled false negatives. 

General Synthesis Scheme of Isoflavones 

 
 

General Procedure for the Synthesis of 2. To a mixture of resorcinol (1 equiv) and carboxylic acid 

(1 equiv), BF3·Et2O (3 equiv) and ionic liquid ([bmim][BF4]) (3.5 equiv) was added. The reaction 

mixture was irradiated at 100 °C for 30 min in a microwave reactor at the maximum power of 300W. 

The solution was allowed to cool and poured into water. The reaction mixture was extracted with 

ethyl acetate, and the organic layer is separated and washed with brine, dried, and concentrated. The 

concentrate was purified by silica gel column chromatography to get ketone 2. 
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General Procedure for the Synthesis of 3. 2 was dissolved in trifluoroacetic acid (20 equiv) and 

triethylsilane (2.5 equiv) was added at room temperature. The resulting solution was stirred 

overnight, and the solvent was removed by flushing nitrogen gas in mild temperature. The residue 

was purified by silica gel column chromatography to get diol 3. 

General Procedure for the Synthesis of 4. To a mixture of 3 and a phenylacetic acid (1 equiv), 

BF3·Et2O (3.5 equiv) and ionic liquid ([bmim][BF4]) (3 equiv) was added. The reaction mixture was 

irradiated at 100 °C for 30 min in a microwave reactor at the maximum power of 300W. The 

solution was allowed to cool and poured into water. The reaction mixture was extracted with ethyl 

acetate, and the organic layer was separated and washed with brine, dried and concentrated. The 

concentrate was purified by silica gel column chromatography to get ketone 4. 

General Procedure for the Synthesis of 5. A mixture of 4, propionic anhydride (5 equiv) and 

triethylamine (4 equiv) was heated at 125 °C for 12 h. Then the reaction mixture was added to cold 

dilute 1M HCl solution. The mixture was extracted with ethyl acetate, and the organic layer was 

separated and washed with brine, dried and concentrated. The concentrate was purified by silica gel 

column chromatography to get isoflavone 5. 

General Procedure for the Synthesis of 6. A solution of 5 in ethanol (0.2 M) containing 10% w/w 

NaOH was refluxed for 30 min. After 30 min, the same amount of water was added, and heating 

was continued for another 1.5 h. The reaction mixture was acidified with dilute hydrochloric acid 

and extracted with ethyl acetate, and the organic layer was separated and washed with brine, dried 

and concentrated. The concentrate was purified by silica gel column chromatography to get 

isoflavone 6. 

General Procedure for the Synthesis of 7. To a solution of 6 in DMF (0.5 M), methyl 

bromoacetate (1.1 equiv) and K2CO3 (3 equiv) was added. The mixture was heated to 90 °C for 8 h. 

The reaction mixture was cooled to room temperature and extracted with ethyl acetate.  
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GABAAR terminology. Notation for GABA receptors conform to IUPHAR recommendations 5. 

Receptor subunits are indicated by their greek symbols with subscripted numbers to indicate specific 

isoforms as in: “the α1 subunit isoform”. To refer to GABAA receptor (GABAAR) subtypes, the term 

GABA is used to indicate the receptor type, and the subscript A is used to refer to all GABAARs. 

Subtypes comprised of specific subunit isoforms are indicated like: “the α1β2γ2 subtype”. 

 
 

   Supplementary Figures 
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Supplementary Figure A.1.1.   

Sedatives cause a dose dependent reduction in zebrafish motion. A panel of 30 known sedatives administered to 7dpf 
zebrafish larvae (n = 12 replicates; 96 fish/ condition) at a 2 fold dilution series. The y-axis represents motion index (MI) 
and the x-axis represents dose. 
 

 

 

 

Supplementary Figure A.1.2.  

Propofol and etomidate block light-induced behaviors, but enhance the acoustic startle response. The plots show motor 
activity (y-axis) of zebrafish treated with the indicated compounds (n = 12 wells). Colored bars above the x-axis represent 
the timing and duration of indicated stimuli. 
 

 

 

 



154 

 
 

Supplementary Figure A.1.3.  

eASR stimulus characterization. We explored a range of digital, acoustic stimuli to understand which parameters were 
important for triggering eASRs. (a) Recorded waveform of the dampened solenoid. The original stimulus, generated by a 
dampened solenoid, approximated a 100 Hz inverse fading sine wave, with a 70 dB maximum volume and 70 ms duration. 
(b) Bar graph depicting startle frequency (y-axis) of 100 animals to the dampened solenoid stimulus at increasing 
concentrations of etomidate (x-axis), it elicited responses in 85% of etomidate-treated animals (6.25 µΜ) and in 2% of 
controls. (c) Startle frequency (y-axis) of 100 animals treated with indicated concentrations of etomidate (x-axis) in response 
to different frequencies of synthesized and dampened solenoid acoustic stimulus (colored bars). In frequency scans from 
50-1000 Hz, the highest magnitude eASRs were elicited by 100 Hz stimuli. Interestingly, the most effective synthesized 
stimulus (a 100 Hz inverse fading sine wave; 70ms) was only 50% as effective as the original solenoid, suggesting that 
some unknown feature of the original solenoid-based stimulus was not captured by the synthesized waveform and/or the 
surface transducers. (d) Heat map of the startle frequency of 100 animals (color bar) in response to increasing volume (top 
y-axis) of different frequency synthesized acoustic stimulus and the solenoid stimulus (x-axis). Animals were treated with 
increasing concentrations of etomidate (y-axis). At 100Hz, all stimuli greater than 60 dB were effective, whereas those less 
than 55 dB were not. 
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Supplementary Figure A.1.4.  

Dose response analysis of GABA reference compounds. Average phenoscores (y-axis) of zebrafish treated with the 
indicated compounds (n = 12 wells) at increasing concentrations (x-axis). 
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Supplementary Figure A.1.5. Dutasteride inhibits progesterone-induced eASRs. 

The plots show the normalized behavioral responses (y-axis), to acoustic (grey) or light (black) stimuli, in animals treated 
with the indicated compounds (x-axis). 
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Supplementary Figure A.1.6.  

M-current ligands modify eASRs. Boxplots depicting the motor activity (y-axis) of animals treated with the indicated 
compounds (x-axis) in response response to acoustic (top) or violet light stimuli (bottom). M-current activators and 
inhibitors were analyzed alone or combined with etomidate, at the indicated concentrations. 
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Supplementary Figure A.1.7.  

Hit compound efficacy does not correlate with hydrophobicity. Animals were treated with hit compounds. For each 
compound, the cLogP (calculated partition coefficient) (x-axis) and minimum concentration required to cause the eASR 
phenotype, were plotted (y-axis). Unlike historical Myer-Overton analyses, the minimum effective concentration does not 
decrease with hydrophobicity. The best-fit line and shading represent the resulting regression line and a 95% confidence 
interval for that regression. 
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Supplemental Figure A.1.8.  

Dose response retest of primary hit compounds. Average phenoscores (y-axis) of zebrafish treated with the indicated 
compounds (n = 12 wells) at the indicated concentrations (x-axis). 
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Supplementary Figure A.1.9.  

Hit compounds cause direct and indirect activation of GABARs. (a,b) Human GABAAR activation 

(y-axis) was measured by FLIPR analysis in random fluorescent units (RFUs). Direct (a) and indirect 

(b) activation was analyzed for the indicated hit compounds (x-axis, n= 2-4). 
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Supplementary Figure A.1.10.  

Phenoscores of ligands at targets with low value EFs. Ligands for targets with low (left of dotted line) and high (right of 
dotted line) EF scores. The plot shows the phenoscore (y-axis) of the indicated compounds (x-axis). Color bar represents 
concentration in µM. 
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Supplementary Figure A.1.11.  

Chemical structures of hit compounds predicted to target GABAARs by SEA. 
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Supplementary Figure A.1.12. Characterization of hit compounds predicted to target mGluR 

by SEA.  

(a) Chemical structures of 8 hit compounds predicted to target mGluR. (b) The heatmap represents the normalized motion 
index (nMI) of larvae treated with the indicated compounds. Assay 1 is composed of 6 low amplitude acoustic stimuli; 
Assay 2 is a series of 3 violet light pulses as indicated on the x-axis. MPEP is a known mGluR4/5 ligand. Compounds 
were tested for agonist and antagonist activity in Gq functional assays in-vitro. (c) The heat map represents the activity of 
5 novel mGluR predicted compounds (y-axis) at the indicated receptor (x-axis). Low-level activation of mGlur2/4 was 
detected for compounds 5583877, 5128592, and 7136301 (46.13 µM to 2871 µM) 
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Supplementary Figure A.1.13. pERK whole brain neural activity maps in control assays and 5-

HT immunohistochemistry. 

(a-d) Brain activity maps showing significant ΔpERK signals using the Z-brain online reference tool (n = 5-10 
animals/condition). Heatmaps indicate positive (green), negative (purple), and nonsignificant (black) changes in pERK 
labeling (p < 0.0005, Mann-Whitney U test). All activity maps are comparisons between the indicated treatment conditions. 
(e) Overlay of average α-pERK signal for BGC 20-761(magenta), and etomidate treated animals (green). (f) Overlay of α-
5ΗΤ staining (magenta) and the average α-pERK staining (green) for BGC 20-761 treatment. Abbreviations: tel, 
telencephalon; mb, midbrain; ot, optic tectum; hb, hindbrain; ha, habenula; ob, olfactory bulb; nm, neuromast; ap, area 
postrema; pg, pineal gland. 
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Supplementary Figure A.1.14. Fluorescent in situ hybridization of the zebrafish htr6 transcript 

shows low expression in the telencephalon.  

(a-a’’) Confocal projections from image registered animals showing transcripts for htr6 (a) and non specific negative control 
antisense probe (a’), overlay in (a’’). 
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Supplementary Figure A.1.15. 

 The GABAergic antagonist picrotoxin reverses the eASRs-induced by some ligands, but the serotonergic agonist EMDT 
oxolate does not. (a-c) Normalized behavioral responses (y-axis) of animals treated with the indicated compounds (x-axis). 
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Supplementary Figure A.1.16.  

Serotonergic hit compounds inhibit optovin response. Normalized behavioral response (y-axis) of animals treated with 
the indicated compounds (x-axis). 
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Supplementary Figure A.1.17. Preliminary SAR of key compound classes. (a-d)  

The plots show the Z-score of the acoustic startle response (y-axis) in animals treated with the indicated compounds (x- 
axis). The compound structures in each class are shown to the right of each plot including the original hit compounds 
(black) and their analogs (red). Many analogs did not cause the eASR behaviors. 
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Supplementary Figure A.1.18.  

Structures of Isoflavone analogs 
 



170 

 
 
Supplementary Figure A.1.19. Group size affects eASR quantification.  

To determine the impact of group size on this assay, we analyzed eASR behaviors from animals in different group sizes 
(1, 2, 4, 8, 12, 16, 32 animals per well). Groups of 8 and 16 animals generated the most robust MI values. Here, we chose 
to use 8 animals per group because it balanced a small group size with high signal to noise using the MI metric. (a) Bar 
graph illustrating the average tap response (y-axis) per tap stimulus (each marker represents one of 6 total stimuli averaged 
over 6 replicate wells), for wells with the indicated number of fish larvae (x-axis) and treated with DMSO control or 6µM 
etomidate, as indicated. (b) Representative image of wells containing increasing numbers of animals. 
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Supplementary Figure A.1.20. Statistical analysis of phenotypic thresholds for GABAAR 

ligands. 

(a) This plot shows the Kolmogorov-Smirnov (KS Test) statistic for the highest-scoring profiles produced by the indicated 
treatments (y-axis). On the x-axis, the ligands are sorted in order of ascending average phenoscore (left to right) from 
lowest to highest. Horizontal lines on the y-axis indicate the 1%( yellow) and 5% (red) P value significance thresholds (b) 
Plot showing the standard deviations for GABAAR ligands as a function of phenoscore with a 10th order polynomial. (c) 
Plot showing simulated P values as a function of phenoscore. Horizontal dashed lines indicate 1% and 5% P value 
thresholds, and vertical lines indicate the phenoscores at which these thresholds are met (0.51 and 0.71, respectively). (d) 
Plot showing a 10th order polynomial fit for the smooth region of the simulation where phenoscore > 0.5 in panel (c). 
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Supplementary Tables 

Supplementary Table A.1.1. CNS depressants characterized on zebrafish larval behavior. 

class ID chemical name class citation 
1 carbamazepine anticonvulsant 19 

1 phenytoin anticonvulsant 20 

2 fluoxetine antidepressant 21 

2 trazodone antidepressant 22 

3 diphenhydramine antihistamine 23 

3 dimenhydrinate antihistamine 23 

3 promethazine antihistamine 23 

4 buspirone anxiolytic 24 

4 alprazolam anxiolytic 25 

4 diazepam anxiolytic 26 

4 oxazepam anxiolytic 27 

5 quetiapine atypical antipsychotic 28 

5 olanzapine atypical antipsychotic 29 

6 atenolol beta blocker 30 

6 propranolol beta blocker 31 

7 ACPA cannabinoid 32 

7 methanandamide cannabinoid 33 

8 zolpidem hypnotic 34 

9 benzocaine local anesthetic 35 

9 lidocaine local anesthetic 39 

9 bupivacaine local anesthetic 40 

9 tricaine local anesthetic 41 

9 procaine local anesthetic 42 

10 ketamine intravenous anesthetic 38 

10 isoflurane inhalational anesthetic 35 

10 propofol intravenous anesthetic 36 

10 etomidate intravenous anesthetic 37 
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Supplemental Table A.1.2. Viability of anesthetic treated animals 

treatment concentration alive/total 10 min alive/total 1 hour alive/total 5 
hours 

DMSO 0 µM 100/100 100/100 100/100 

etomidate 3 µM 100/100 100/100 100/100 

etomidate 6 µM 100/100 100/100 100/100 

etomidate 12 µM 100/100 100/100 98/100 

propofol 3 µM 100/100 100/100 100/100 

propofol 6 µM 100/100 100/100 100/100 

propofol 12 µM 100/100 100/100 99/100 

 
 
 
Supplementary Table A.1.3. GABAAR ligand reference set 
 

Chemical Name Class Reference 
dmso vehicle control NA 

baclofen GABAB agonist 4 

GABA orthosteric GABAAR agonist 5 

muscimol orthosteric GABAAR agonist 6 

gaboxadol (THIP) GABAAR delta subtype preferring PAM 7 

DS-2 GABAAR delta subtype preferring PAM 7 

ocinaplon GABAAR BZ-site PAM 11 

bromazepam GABAAR BZ-site PAM 8 

etizolam GABAAR BZ-site PAM 12 

alprazolam GABAAR BZ-site PAM 5 

oxazepam GABAAR BZ-site PAM 8 

clobazam GABAAR BZ-site PAM 9 

temazepam GABAAR BZ-site PAM 10 

diazepam GABAAR BZ-site PAM 5 

stripentol GABAAR non BZ-site PAM 14 

methaqualone GABAAR non BZ-site PAM 15 

valerinic acid GABAAR non BZ-site PAM 16 

thiopental GABAAR non BZ-site PAM 18 

tracazolate GABAAR non BZ-site PAM 13 

carboetomidate GABAAR anesthetic PAM 18 

propofol GABAAR anesthetic PAM 18 

etomidate GABAAR anesthetic PAM 18 



177 

Chemical Name Class Reference 

tetrahydrodeoxycorticosterone (THDOC) GABAAR neurosteroid PAM 17 

alphaxalone GABAAR neurosteroid PAM 17 

progesterone GABAAR neurosteroid PAM 17 

deoxycorticosterone (DOC) GABAAR neurosteroid PAM 17 

 

Supplementary Table A.1.4. Chemical names and SMILES of the top 125 hit compounds 
from a zebrafish behavioral drug screen. 

Chemical 
Name 

SMILES        Retested 

progesterone CC(=O)C1CCC2C3CCC4=CC(=O)CCC4(C)C3CCC12C                                    Yes   yes 

alfaxalone CC(=O)C1CCC2C3CCC4CC(O)CCC4(C)C3C(=O)CC12C yes 

DOC CC12CCC(=O)C=C1CCC1C2CCC2(C)C(C(=O)CO)CCC12 yes 

7166683 Cc1cc(C)n2c(SCc3ccc(C(=O)c4ccccc4)cc3)nnc2n1 yes 

etomidate CCOC(=O)c1cncn1C(C)c1ccccc1 yes 

6587027 CC(=O)c1cccc(NC(=O)c2ccc(-c3ccc(Cl)cc3)o2)c1 no 

etomidate CCOC(=O)c1cncn1C(C)c1ccccc1 yes 

6858658 O=C(c1cc(Cl)ccc1Cl)N1CCN(c2cccc(C(F)(F)F)c2)CC1 no 

5846886 Nc1ccc(Oc2ccc(Cl)c3cccnc23)c(Cl)c1 yes 

6767569 Cc1nc2ccccc2n1C(=O)N(c1ccccc1)c1ccccc1 yes 

 6762995 Fc1ccccc1OCCn1c(S)nc2ccccc21 yes 

alfaxalone CC(=O)C1CCC2C3CCC4CC(O)CCC4(C)C3C(=O)CC12C yes 

7013338 CCc1cc2c(=O)c(-c3ccccc3Cl)c(C)oc2cc1OC yes 

7010474 CCc1cc2c(=O)c(-c3ccccc3Cl)coc2cc1OC no 

6376886 COc1cc(OC)cc(C(O)=Nc2ccc(Cl)cc2C(F)(F)F)c1 yes 

7100598 O=C(c1ccccc1)c1cccc(N=C(O)Cc2ccc(Cl)cc2)c1 yes 

7113584 Nc1ccc(OC(F)(F)F)cc1C(=O)c1ccccc1 yes 

7114005 CCOC(=O)c1c(C)n(Cc2ccco2)c2ccc(OC)cc12 yes 
6576466 O=[N+]([O-])c1cccc(C(O)=Nc2ccc(Cl)cc2C(F)(F)F)c1 no 
6029941 COc1ccc(OC)c(NS(=O)(=O)c2ccc(OC)c(Br)c2)c1 yes 
7285168 OC(=Nc1ccc(Cl)cc1F)c1cccc2ccccc12 no 
7136301 OC(=Nc1ccc(Cl)c(Cl)c1)c1ccc(Cl)cc1Cl yes 
6890102 CCOc1ccc2c(=O)c(-c3ccccc3Cl)c(C)oc2c1 no 
6225936 O=S(=O)(Nc1cccc(Br)c1)c1ccc2c(c1)OCCO2 no 
6525784 O=c1c2ccccc2nc(C=Cc2ccc([N+](=O)[O-])cc2)n1-c1ccccc1Cl no 
7273455 Cc1cccc(OCCn2c(NC(=O)c3ccco3)nc3ccccc32)c1 yes 
6314322 CC(C)(C)N=C(O)COc1ccc(C(C)(C)c2ccccc2)cc1 Yes 
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Chemical Name SMILES   Retested 

6474599 CCCN(CCC)S(=O)(=O)c1ccc(Cl)c(Cl)c1OC yes 
6682129 C=CCn1c(SCC(=O)c2cccs2)nc2sc(CC)cc2c1=O no 

ivermectin 

6028165 

CCC(C)C1OC2(CCC1C)CC1CC(CC=C(C)C(OC3CC(OC)C(OC4CC(OC)C(O)      yes 

C(C)O4)C(C)O3)C(C)C=CC=C3COC4C(O)C(C)=CC(C(=O)O1C34O)O2 

COc1ccc(S(=O)(=O)NC2CCCC2)cc1Br                                                      yes 

7271289 Cc1cc(Cl)ccc1OCC(=O)N1CCN(c2ccc(Cl)cc2)CC1 yes 

5584178 CCc1nc2c(cnn2-c2ccccc2)c(=O)n1-c1ccc(C)cc1 no 
5735460 COc1ccccc1CC(O)=Nc1ccc(Br)cc1F no 
7305598 OC(=Nc1cccc(N=C(O)c2cc(Cl)ccc2Cl)c1)c1cc(Cl)ccc1Cl no 
6993015 CC(C)CC(O)=NC(S)=NCc1ccccc1 yes 
progesterone CC(=O)C1CCC2C3CCC4=CC(=O)CCC4(C)C3CCC12C yes 
6645327 COc1ccccc1-c1coc2cc(OC(=O)c3cccs3)ccc2c1=O yes 
6772634 O=c1c2ccccc2nc(S)n1Cc1ccccc1 no 
6366118 COc1ccc(S(=O)(=O)N2CCC(C)CC2)cc1Br yes 
7282929 CCOC(=O)c1c(N=C(O)C2CCCC2)sc2c1CCCC2 yes 
6193422 O=S(=O)(Nc1cccc(Cl)c1)c1ccc2c(c1)OCCO2 no 
5694163 Cc1csc(N=C(O)C2c3ccccc3Oc3ccccc32)n1 no 
5754452 COC(=O)c1cccc(N=C(O)COc2ccc(C(C)(C)C)cc2)c1 yes 
6565557 CCCCOc1ccc(C(=O)NC(C)C2COc3ccccc3O2)cc1 yes 
5587256 O=C(Nc1c(C(=O)Nc2ccc(Cl)cc2)cnn1-c1ccccc1)c1ccccc1F yes 
5551268 Clc1ccc(CSc2nc3ccccc3[nH]2)cc1 yes 
5149665 Brc1ccc(CSc2nc3ccccc3[nH]2)cc1 no 
5869570 CC(O)=NC(=Nc1cccc(C(F)(F)F)c1)Nc1nc(C)cc(C)n1 yes 
5729729 O=C(CC(c1ccccc1)c1ccccc1)N1CCN(c2ccc(F)cc2)CC1 yes 
6877352 CC(c1ccccc1)n1c(S)nc2ccccc21 no 
6595002 CCc1ccc(O)c(N=C(S)N=C(O)c2ccccc2I)c1 no 
5352629 COc1ccccc1N1CCN(C(=O)c2ccc(C(=O)c3c(C)cc(C)cc3C)cc2)CC1 yes 
7184284 CCc1cccc(C)c1N=C(O)COc1ccc(Cl)cc1Cl no 
7114335 Nc1ccc(SC(F)(F)F)cc1C(=O)c1ccccc1 yes 
7014338 CCc1cc2c(=O)c(-c3ccccc3Cl)coc2cc1O yes 
DOC CC12CCC(=O)C=C1CCC1C2CCC2(C)C(C(=O)CO)CCC12 yes 
5142031 CCOC(=O)c1c(N)sc2ccccc12 yes 
5695025 CCOC(=O)c1c(N=C(O)OCC)sc(C)c1CC yes 
5935291 Cc1ccc(N2C(=O)CC(N3CCN(c4cccc(Cl)c4)CC3)C2=O)cc1Cl yes 
6625147 CC1CC(OCC(O)CN2CCN(c3ccccc3F)CC2)CC(C)(C)C1.Cl.Cl no 
6340625 O=C(c1cc2ccccc2o1)N1CCCC(c2ccccc2)C1 no 
6383686 C=C(C)Cn1c(-c2ccc(OC)c(OC)c2)nc2ccccc21 no 
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5813444 CCC(O)=Nc1nc(-c2ccccc2)nc(SC)c1C(C)=O no 
6570890 CCOc1ccc(NCc2ccccc2NS(=O)(=O)c2ccc(C)cc2)cc1 no 
6400155 O=C(c1cc2ccccc2o1)N1CCN(c2ccc(C(F)(F)F)cc2[N+](=O)[O-])CC1 yes 
5951201 CCOC(=O)c1c(C)nc(-c2ccccc2)nc1N=C(O)Cc1ccccc1 yes 
riluzole N=c1[nH]c2ccc(OC(F)(F)F)cc2s1 yes 
5583877 O=C(Nc1ccc(Cl)cc1)c1cnn(-c2ccccc2)c1N=C(O)c1ccco1 yes 
6642835 Cc1c(O)ccc(C(=O)Cc2ccccc2)c1O no 
5573728 CC(=O)c1c(C)nc2n(Cc3ccccc3)c3ccccc3n12 yes 
5658603 CCCCn1c2ccccc2n2c(C(=O)OCC)c(C)nc12 yes 
6013263 COc1ccc(S(=O)(=O)Nc2ccc(C)cc2)cc1Br yes 
riluzole N=c1[nH]c2ccc(OC(F)(F)F)cc2s1 yes 
6652383 CC(C)(C)C(=O)Oc1ccc2c(=O)c(-c3ccccc3Cl)coc2c1 no 
6522346 CC(=O)Oc1ccc(OC(C)=O)c(S(=O)(=O)c2ccc(Cl)c(Cl)c2)c1 no 
6271180 Cc1cccc(OCC(=O)N2CCN(c3ccc(C(F)(F)F)cc3[N+](=O)[O-])CC2)c1C yes 
5480577 CCOC(=O)c1cc2n(c1N=CN(C)C)-c1ccccc1C2=O yes 
6204912 CCC(C)c1ccc(NC(=O)CC(C)(C)C)cc1 no 
6386892 Cc1cc(C)c(N=C(O)Cc2cccs2)c(C)c1 no 
5846693 OC(=NCc1ccco1)c1cc2nc(-c3ccc(F)cc3)cc(C(F)(F)F)n2n1 no 
6030006 CCOc1ccccc1NS(=O)(=O)c1ccc(OC)c(Br)c1 yes 
6756477 COc1cccc(-n2nnnc2SCC(O)=Nc2c(C)cc(C)cc2C)c1 no 
6353053 CC(C)(c1ccccc1)c1ccc(OCC(O)=Nc2ccccc2C(=N)O)cc1 no 
6667020 CCCOC(O)=Nc1nc(-c2ccc(C)cc2)c(C)s1 no 
5978667 OC1=Nc2c(ccc3ccccc23)C(c2ccc(C(F)(F)F)cc2)C1 no 
5649824 CCC(=O)c1c(C)nc2n(Cc3ccccc3)c3ccccc3n12 yes 
7211089 O=[N+]([O-])c1cccc(N=C(O)c2ccc(Cl)cc2Cl)c1 no 
5577990 O=C(c1c(N=C(O)c2ccccc2Cl)sc2c1CCCCC2)N1CCCCC1 no 
6805976 CCC(C)c1ccccc1N=C(O)c1ccccc1I no 
5799128 CCCCOc1nnc(-c2ccccc2)c2ccccc12 no 
5795075 Clc1ccc(OCc2nc(-c3ccccn3)no2)c(Br)c1 no 
7115521 O=C1CCCc2c1[nH]c1ccc(C(F)(F)F)cc21 no 
7145248 O=C(NCc1cccc(Oc2ccccc2)c1)C(=O)c1c[nH]c2ccccc12 yes 
7015047 Cc1ccc(C(C)C)c(OCCNCc2ccccc2)c1 no 
5802987 Clc1ccc(OCc2nc(-c3cccnc3)no2)c(Br)c1 no 
5982161 COC(=O)c1c(N=C(O)CCN2C(=O)c3ccccc3C2=O)sc2c1CCC2 no 
6647373 CC(=O)Oc1ccc2c(=O)c(Oc3ccc(F)cc3)c(C(F)(F)F)oc2c1C no 
7112518 CCOC(=O)COc1ccc2c(c1)c(C(C)=O)c(C)n2Cc1ccccc1 No 
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6653154 CC(=O)Oc1ccc2c(=O)c(Oc3ccccc3)c(C(F)(F)F)oc2c1C no 
6689594 CCc1cc2c(=O)c(Oc3ccccc3F)c(C)oc2cc1OC(C)=O no 
6793728 Cc1cc(=Nc2cccc3ccccc23)c2cc(Cl)ccc2[nH]1.Cl no 
5846232 CC(=O)c1cc(F)c(N2CCN(C(=O)c3ccc(Cl)cc3Cl)CC2)cc1C yes 
6639477 COc1ccc2c(=O)c(-c3ccccc3Cl)c(C)oc2c1 no 
5128592 Cc1cccc(NC(=O)c2ccc(C(C)(C)C)cc2)c1 yes 
6216715 Cc1cccc(C)c1N=C(O)CSCc1cccc(Br)c1 no 
6053334 O=C(Cc1cccc(Cl)c1)Nc1ccc(Cl)cc1 no 
6646535 COc1ccc2c(=O)c(-c3ccccc3)c(C)oc2c1C no 
6367818 CCC(=O)Nc1ccc(Oc2ccc(Cl)cc2)cc1 no 
7115235 CC(C)(C)C(=O)CSc1nc2ccccc2c(=O)n1Cc1ccccc1 no 
promazine CN(C)CCCN1c2ccccc2Sc2ccccc21 no 
6661919 CCCCN=C(S)N=C(O)c1ccc(Cl)cc1Cl yes 
6163607 O=S(=O)(Nc1ccc(OCc2ccccc2)cc1)c1ccc2c(c1)OCCO2 yes 
5690842 COC(=O)c1sc(N=C(O)C2CCCO2)c(C(=O)OC)c1C yes 
6673619 Cc1ccccc1CC(=O)c1ccc(O)c(C)c1O no 
7011253 COc1ccccc1-c1nnc(SCc2ccccc2F)n1-c1ccccc1 no 

7150160 O=C(CC(CC(=O)c1ccccc1)c1ccccc1)c1ccccc1 no 

5867832 COc1ccc(N=C(O)c2ccccc2Oc2ccccc2)c(OC)c1 no 

5942595 Cc1ccc(Cl)cc1N=C(O)COc1c(C)cccc1C yes 

6150813 Cc1noc(C)c1CSc1nc2sc3c(c2c(=O)n1-c1ccccc1)CCC3 no 

6165550 Cc1cccc(-n2c(C=Cc3cccc([N+](=O)[O-])c3)nc3ccccc3c2=O)c1 no 

6678692 CCc1cc2c(=O)c(Oc3ccc(F)cc3)coc2cc1OC(C)=O no 

7237541 Cc1ccc2c3c1C(=O)C(=O)N3C(C)(C)CC2(C)c1ccccc1 yes 
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Supplementary Table A.1.5. Compound names and summary of results from in vitro FLIPR 
experiments for GABAA. 

Compound Name FLIPR Results Ave Norm FLIPR Score SD 
DMSO Negative 1 0.992 
BGC 20-761 Negative 1.188647747 3.043 
picrotoxin Negative -9.759599332 2.087 
progesterone Positive 17.80300501 4.5 
etomidate Positive 50.67111853 0.892 
tracazolate Positive 50.13856428 2.255 
propofol Positive 34.52337229 8.439 
thiopental Positive 11.39232053 2.274 
DOC Negative -4.308013356 2.091 
diazepam Negative -10.89565944 1.052 
7013338 Positive 116.3580968 3.651 
5942595 Positive 84.9148581 6.339 
5658603 Positive 55.23539232 3.39 
6474599 Positive 52.02420702 3.831 
6537142 Positive 50.97579299 1.64 
5649824 Positive 41.41402337 4.859 
5583877 Positive 36.70784641 3.964 
5925611 Positive 32.94657763 0.645 
6376886 Positive 32.44240401 6.486 
5695025 Positive 32.2721202 4.675 
6028165 Positive 28.75792989 3.955 
5573728 Positive 27.62103506 2.061 
5860357 Positive 25.8706177 3.621 
6993015 Positive 23.92654424 2.021 
5937132 Positive 20.70033389 3.122 
7282929 Positive 17.15317195 2.717 
7114005 Positive 15.23205343 0.272 
5869570 Positive 15.03672788 0.574 
6366118 Positive 14.5033389 0.336 
6029941 Positive 14.00584307 NA 
5690842 Positive 12.09432387 6.775 
7273455 Positive 7.892320535 5.349 
7100598 Positive 7.736227046 0.217 
6091285 Positive 7.664440735 0.253 
5986291 Positive 6.420701169 4.018 
5142031 Positive 5.23706177 0.349 
6030006 Negative 3.04590985 3.264 
5768306 Negative 2.243739566 0.059 
6013263 Negative 1.035058431 2.342 
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Compound Name  FLIPR Results Ave Norm FLIPR SD 
5102870 Negative -0.944908181 1.695 
7166683 Negative -1.302170284 0.581 
5811265 Negative -1.4557596 3.792 
5551268 Negative -1.463272121 1.876 
7113584 Negative -2.454924875 0.79 
5835629 Negative -2.682804675 3.707 
5845856 Negative -2.947412354 1.101 
6645327 Negative -4.733722872 0.776 
6212662 Negative -5.178631052 0.047 
5846886 Negative -5.25542571 0.94 
6163607 Negative -5.679465776 1.265 
7014338 Negative -6.270450752 2.581 
6246227 Negative -6.910684474 1.718 
7284610 Negative -7.29966611 4.074 
6366421 Negative -8.515859767 1.221 
5736224 Negative -10.45158598 1.238 
6225936 Negative -14.696995 0.004 
7145248 Negative -24.78631052 0.673 
5587256 Negative -26.36894825 22.82 
 
 
 
Supplementary Table A.1.6. SEA predictions prioritized by EF from the top 1000 hit 
compounds. 

CHEMBL ID EF p-Value q-Value Description 
CHEMBL5469 10.832 2.82E-153 9.38E-148 Protein tyrosine kinase 2 beta 

CHEMBL2094122 9.2246 3.67E-20 1.22E-14 GABA-A receptor; alpha-5/beta-3/gamma-2 

CHEMBL3746 8.2498 5.69E-90 1.89E-84 11-beta-hydroxysteroid dehydrogenase 2 

CHEMBL3012 6.1087 6.66E-54 2.22E-48 Phosphodiesterase 7A 

CHEMBL4501 5.2561 9.62E-22 3.20E-16 Ribosomal protein S6 kinase 1 

CHEMBL5936 5.2175 8.15E-29 2.71E-23 Toll-like receptor 7 

CHEMBL1907607 5.16 1.14E-53 3.79E-48 GABA-A receptor; anion channel 

CHEMBL4409 4.6661 1.65E-09 0.000549 Phosphodiesterase 10A 

CHEMBL2835 4.3081 2.33E-56 7.74E-51 Tyrosine-protein kinase JAK1 

CHEMBL1787 4.3081 4.35E-30 1.45E-24 Steroid 5-alpha-reductase 1 

CHEMBL2095227 4.2252 3.99E-178 1.33E-172 Vascular endothelial growth factor receptor 

CHEMBL4296 4.2035 1.41E-35 4.69E-30 Sodium channel protein type IX alpha subunit 

CHEMBL3055 4.1484 9.87E-10 0.000328 Cyclin-dependent kinase 7 

CHEMBL4975 4.0012 8.05E-14 2.68E-08 Adenosine A1 receptor 

CHEMBL2034 3.827 6.36E-34 2.12E-28 Glucocorticoid receptor 

CHEMBL1856 3.5805 9.87E-79 3.28E-73 Steroid 5-alpha-reductase 2 
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CHEMBL4977 3.5709 8.07E-63 2.69E-57 Proto-oncogene c-JUN 

CHEMBL ID EF p-Value q-Value Description 

CHEMBL2488 3.5637 3.50E-43 1.16E-37 Prostanoid EP2 receptor 

CHEMBL4040 3.4143 7.31E-47 2.43E-41 MAP kinase ERK2 

CHEMBL259 3.3269 5.86E-17 1.95E-11 Melanocortin receptor 4 

CHEMBL3072 3.2333 7.50E-24 2.49E-18 Androgen Receptor 

CHEMBL1907605 3.1718 1.64E-15 5.46E-10 Cyclin-dependent kinase 2/cyclin E1 

CHEMBL1918 3.0062 8.12E-184 2.70E-178 Glutamate receptor ionotropic kainate 1 

CHEMBL2337 2.8332 9.25E-110 3.08E-104 Glycine transporter 1 

CHEMBL3687 2.7944 2.78E-49 9.26E-44 Arachidonate 12-lipoxygenase 

CHEMBL4430 2.7913 4.86E-43 1.62E-37 Cytochrome P450 17A1 

CHEMBL330 2.7913 3.71E-67 1.24E-61 Glutamate (NMDA) receptor subunit zeta 1 

CHEMBL3514 2.7732 4.06E-30 1.35E-24 LDL-associated phospholipase A2 

CHEMBL5652 2.7499 2.49E-110 8.27E-105 Glucose-dependent insulinotropic receptor 

CHEMBL2569 2.7405 3.98E-110 1.32E-104 Microsomal triglyceride transfer protein large subunit 

CHEMBL2971 2.6595 2.83E-47 9.41E-42 Tyrosine-protein kinase JAK2 

CHEMBL5658 2.6443 6.50E-66 2.16E-60 Prostaglandin E synthase 

CHEMBL1293255 2.6013 8.60E-140 2.86E-134 15-hydroxyprostaglandin dehydrogenase [NAD+] 

CHEMBL1889 2.5984 4.47E-68 1.49E-62 Vasopressin V1a receptor 

CHEMBL2568 2.5325 5.69E-92 1.89E-86 Liver glycogen phosphorylase 

CHEMBL3230 2.4991 3.40E-103 1.13E-97 Sphingosine 1-phosphate receptor Edg-6 

CHEMBL4036 2.454 2.29E-26 7.61E-21 Cyclin-dependent kinase 5 

CHEMBL2903 2.4465 7.17E-17 2.39E-11 Arachidonate 15-lipoxygenase 

CHEMBL3227 2.4305 6.64E-166 2.21E-160 Metabotropic glutamate receptor 5 

CHEMBL1790 2.3894 1.62E-28 5.39E-23 Vasopressin V2 receptor 

CHEMBL275 2.3347 2.22E-16 7.40E-11 Phosphodiesterase 4B 

CHEMBL4652 2.3307 3.35E-40 1.11E-34 Somatostatin receptor 1 

CHEMBL3371 2.2818 1.39E-12 4.62E-07 Serotonin 6 (5-HT6) receptor 

CHEMBL5409 2.2229 7.73E-26 2.57E-20 G-protein coupled bile acid receptor 1 

CHEMBL3351 2.1837 2.62E-12 8.72E-07 Acetyl-CoA carboxylase 1 

CHEMBL4336 2.1425 6.56E-15 2.18E-09 Prostanoid EP3 receptor 

CHEMBL235 2.1375 3.50E-48 1.16E-42 Peroxisome proliferator-activated receptor gamma 

CHEMBL2095160 2.1118 2.42E-09 0.000807 Leukotriene B4 receptor 

CHEMBL5071 2.0202 2.18E-57 7.25E-52 G protein-coupled receptor 44 

CHEMBL1811 1.9836 1.35E-19 4.51E-14 Prostanoid EP1 receptor 

CHEMBL4315 1.9642 1.48E-22 4.93E-17 Purinergic receptor P2Y1 

 



184 

 

 

CHEMBL ID EF p-Value q-Value Description 
CHEMBL1906 1.9542 1.78E-33 5.91E-28 Serine/threonine-protein kinase RAF 

CHEMBL2001 1.9359 1.07E-72 3.55E-67 Purinergic receptor P2Y12 

CHEMBL4478 1.9234 9.22E-19 3.07E-13 Voltage-gated N-type calcium channel alpha-1B 

subunit 

CHEMBL3338 1.9062 1.44E-28 4.79E-23 Squalene synthetase 

CHEMBL1966 1.8407 7.61E-12 2.53E-06 Dihydroorotate dehydrogenase 

CHEMBL2993 1.8048 1.81E-19 6.01E-14 Monoamine oxidase B 

CHEMBL4051 1.7585 8.50E-33 2.83E-27 Cystic fibrosis transmembrane conductance regulator 

CHEMBL3974 1.7366 3.74E-29 1.24E-23 Proteinase-activated receptor 1 

CHEMBL2868 1.7226 1.58E-63 5.24E-58 Vasopressin V1a receptor 

CHEMBL1868 1.694 3.93E-17 1.31E-11 Vascular endothelial growth factor receptor 1 

CHEMBL2736 1.6741 1.24E-32 4.14E-27 Metabotropic glutamate receptor 4 

CHEMBL244 1.6674 2.31E-22 7.70E-17 Coagulation factor X 

CHEMBL3553 1.6663 4.38E-44 1.46E-38 Tyrosine-protein kinase TYK2 

CHEMBL285 1.6627 2.46E-10 8.20E-05 Acyl coenzyme A:cholesterol acyltransferase 1 

CHEMBL1901 1.6571 2.88E-28 9.58E-23 Cholecystokinin A receptor 

CHEMBL1741186 1.6522 2.90E-36 9.66E-31 Nuclear receptor ROR-gamma 

CHEMBL311 1.6361 5.80E-22 1.93E-16 Glutamate [NMDA] receptor subunit epsilon 2 

CHEMBL3969 1.6281 2.92E-10 9.72E-05 Carbonic anhydrase VB 

CHEMBL4892 1.6142 6.42E-10 0.000213 Alpha-1a adrenergic receptor 

CHEMBL3238 1.6083 4.80E-75 1.60E-69 Carnitine palmitoyltransferase 2 

CHEMBL249 1.6064 1.82E-46 6.06E-41 Neurokinin 1 receptor 

CHEMBL3766 1.5872 3.26E-14 1.09E-08 Vasopressin V2 receptor 

CHEMBL2413 1.5732 1.63E-13 5.43E-08 C-C chemokine receptor type 1 

CHEMBL2047 1.5349 1.17E-10 3.88E-05 Bile acid receptor FXR 

CHEMBL3858 1.5283 7.25E-56 2.41E-50 Carnitine palmitoyltransferase 1A 

CHEMBL2564 1.5215 5.48E-46 1.82E-40 Metabotropic glutamate receptor 5 

CHEMBL1913 1.4884 1.72E-11 5.72E-06 Platelet-derived growth factor receptor beta 

CHEMBL1293194 1.4697 1.28E-46 4.25E-41 Carnitine O-palmitoyltransferase 1 liver isoform 

CHEMBL2095150 1.4663 4.96E-23 1.65E-17 Phosphodiesterase 1 

CHEMBL3156 1.457 8.36E-13 2.78E-07 Thromboxane A2 receptor 

CHEMBL4018 1.4434 3.32E-17 1.10E-11 Neuropeptide Y receptor type 2 

CHEMBL1844 1.3767 3.24E-17 1.08E-11 Macrophage colony stimulating factor receptor 

CHEMBL2216739 1.3745 2.01E-23 6.68E-18 Carnitine O-palmitoyltransferase 1 muscle isoform 

CHEMBL4722 1.3586 2.22E-13 7.40E-08 Serine/threonine-protein kinase Aurora-A 
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CHEMBL ID EF p-Value q-Value Description 

CHEMBL2093869 1.3358 4.11E-15 1.37E-09 Integrin alpha-IIb/beta-3 

CHEMBL2093866 1.3354 6.69E-25 2.23E-19 Estrogen receptor 

CHEMBL5669 1.2425 3.27E-24 1.09E-18 Epoxide hydrolase 2 

CHEMBL4140 1.2125 3.30E-37 1.10E-31 Epoxide hydratase 

CHEMBL256 1.1181 3.59E-12 1.19E-06 Adenosine A3 receptor 

CHEMBL3572 1.0034 8.31E-15 2.77E-09 Cholesteryl ester transfer protein 

CHEMBL3105 0.89889 1.50E-20 4.99E-15 Poly [ADP-ribose] polymerase-1 

CHEMBL1937 0.86861 2.11E-25 7.01E-20 Histone deacetylase 2 

CHEMBL1951 0.8684 3.01E-09 0.001 Monoamine oxidase A 

CHEMBL255 0.85701 2.34E-19 7.79E-14 Adenosine A2b receptor 

CHEMBL2111429 0.8541 7.13E-15 2.37E-09 Histone deacetylase (HDAC1 and HDAC2) 

CHEMBL3254 0.82456 9.65E-20 3.21E-14 Monoamine oxidase A 

CHEMBL273 0.82284 3.24E-17 1.08E-11 Serotonin 1a (5-HT1a) receptor 

CHEMBL2095189 0.78671 5.92E-11 1.97E-05 Platelet-derived growth factor receptor 

CHEMBL251 0.78053 3.07E-14 1.02E-08 Adenosine A2a receptor 

CHEMBL321 0.77988 1.51E-14 5.02E-09 Matrix metalloproteinase 9 

CHEMBL6009 0.76082 2.88E-15 9.60E-10 Diacylglycerol O-acyltransferase 1 

 
CHEMBL4191 0.74784 1.01E-11 3.36E-06 Monoglyceride lipase 

CHEMBL205 0.73443 1.20E-10 3.99E-05 Carbonic anhydrase II 

CHEMBL3571 0.73416 2.94E-14 9.79E-09 Cannabinoid CB1 receptor 

CHEMBL3192 0.72428 1.63E-38 5.42E-33 Histone deacetylase 8 

CHEMBL5393 0.71706 5.11E-59 1.70E-53 ATP-binding cassette sub-family G member 2 

CHEMBL219 0.68396 5.99E-16 1.99E-10 Dopamine D4 receptor 

CHEMBL3594 0.68047 7.19E-21 2.39E-15 Carbonic anhydrase IX 

CHEMBL281 0.67296 3.75E-19 1.25E-13 Carbonic anhydrase IV 

CHEMBL1945 0.66941 1.07E-24 3.57E-19 Melatonin receptor 1A 

CHEMBL1980 0.6652 2.77E-10 9.22E-05 Sodium channel protein type V alpha subunit 

CHEMBL332 0.65466 2.02E-22 6.71E-17 Matrix metalloproteinase-1 

CHEMBL4302 0.65163 1.11E-12 3.71E-07 P-glycoprotein 1 

CHEMBL3138 0.64379 1.19E-20 3.98E-15 Dopamine D3 receptor 

CHEMBL246 0.62469 5.68E-10 0.000189 Beta-3 adrenergic receptor 

CHEMBL261 0.62233 6.21E-24 2.07E-18 Carbonic anhydrase I 

CHEMBL2095171 0.58411 9.03E-10 0.0003 Sodium channel alpha subunits; brain (Types 

I II III) 

CHEMBL3180 0.58231 1.61E-12 5.36E-07 Carboxylesterase 2 

CHEMBL2093865 0.57073 9.07E-25 3.02E-19 Histone deacetylase 

CHEMBL4792 0.55951 8.64E-24 2.87E-18 Orexin receptor 2 
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CHEMBL ID EF p-Value q-Value Description 

CHEMBL2093870 0.55882 4.04E-20 1.34E-14 Serotonin 2 (5-HT2) receptor 

CHEMBL260 0.55449 2.22E-15 7.37E-10 MAP kinase p38 alpha 

CHEMBL3898 0.55037 1.05E-20 3.50E-15 Bone morphogenetic protein 1 

CHEMBL1878 0.54726 1.45E-14 4.82E-09 Calcium sensing receptor 

CHEMBL2096671 0.53752 1.76E-11 5.86E-06 Serotonin 2 (5-HT2) receptor 

CHEMBL3229 0.53436 5.63E-21 1.87E-15 Anandamide amidohydrolase 

CHEMBL3473 0.53004 2.87E-34 9.54E-29 C-C chemokine receptor type 3 

CHEMBL234 0.52084 4.19E-46 1.39E-40 Dopamine D3 receptor 

CHEMBL1946 0.51445 3.27E-42 1.09E-36 Melatonin receptor 1B 

CHEMBL214 0.51376 1.16E-28 3.84E-23 Serotonin 1a (5-HT1a) receptor 

CHEMBL3455 0.5133 1.69E-28 5.62E-23 Anandamide amidohydrolase 

CHEMBL2094268 0.50345 2.06E-31 6.84E-26 Melatonin receptor 

CHEMBL283 0.50011 9.33E-46 3.10E-40 Matrix metalloproteinase 3 

CHEMBL3361 0.49714 4.58E-39 1.52E-33 Dopamine D4 receptor 

CHEMBL3427 0.49437 2.44E-14 8.12E-09 Dopamine D2 receptor 

CHEMBL264 0.49369 5.49E-16 1.83E-10 Histamine H3 receptor 

CHEMBL217 0.48105 2.23E-52 7.43E-47 Dopamine D2 receptor 

CHEMBL3465 0.48013 9.07E-15 3.02E-09 Sigma opioid receptor 

CHEMBL220 0.47337 8.15E-17 2.71E-11 Acetylcholinesterase 

CHEMBL2409 0.44961 2.31E-28 7.68E-23 Epoxide hydratase 

CHEMBL4588 0.4342 2.36E-49 7.85E-44 Matrix metalloproteinase 8 

CHEMBL1873 0.42696 3.40E-20 1.13E-14 Tissue-type plasminogen activator 

CHEMBL325 0.42455 3.61E-39 1.20E-33 Histone deacetylase 1 

CHEMBL3286 0.41945 7.47E-29 2.49E-23 Urokinase-type plasminogen activator 

CHEMBL287 0.39167 2.26E-39 7.51E-34 Sigma opioid receptor 

CHEMBL3223 0.37809 4.88E-32 1.62E-26 Serotonin 7 (5-HT7) receptor 

CHEMBL3199 0.36708 2.07E-29 6.88E-24 Acetylcholinesterase 

CHEMBL3602 0.33883 6.17E-42 2.05E-36 Sigma opioid receptor 

CHEMBL3198 0.3105 2.27E-38 7.55E-33 Acetylcholinesterase 

 
 
 
 
 
 
 
 
 



187 

Supplementary Table A.1.7. SEA predictions prioritized by EF from the top 30 hit 
compounds. 

CHEMBL ID EF p-Value q-Value description 
CHEMBL3746 53.234 0 0 11-beta-hydroxysteroid dehydrogenase 2 

CHEMBL1787 27.799 7.30E-267 2.43E-261 Steroid 5-alpha-reductase 1 

CHEMBL3072 20.864 1.26E-225 4.18E-220 Androgen Receptor 

CHEMBL1856 19.253 5.42E-146 1.80E-140 Steroid 5-alpha-reductase 2 

CHEMBL1907607 14.798 6.99E-127 2.33E-121 GABA-A receptor; anion channel 

CHEMBL2096664 8.055 2.14E-54 7.12E-49 Steroid 5-alpha-reductase 

CHEMBL230 7.6613 1.04E-24 3.47E-19 Cyclooxygenase-2 

CHEMBL2903 5.92 1.39E-48 4.61E-43 Arachidonate 15-lipoxygenase 

CHEMBL2095227 4.8113 2.18E-125 7.25E-120 Vascular endothelial growth factor receptor 

CHEMBL1889 4.5727 3.51E-99 1.17E-93 Vasopressin V1a receptor 

CHEMBL1918 4.4766 5.57E-125 1.85E-119 Glutamate receptor ionotropic kainate 1 

CHEMBL3371 4.4172 2.91E-50 9.70E-45 Serotonin 6 (5-HT6) receptor 

CHEMBL2564 4.0909 1.99E-49 6.60E-44 Metabotropic glutamate receptor 5 

CHEMBL2337 3.6564 5.47E-147 1.82E-141 Glycine transporter 1 

CHEMBL2568 3.4403 2.69E-29 8.97E-24 Liver glycogen phosphorylase 

CHEMBL244 3.3105 3.62E-30 1.20E-24 Coagulation factor X 

CHEMBL2993 2.9115 2.77E-20 9.22E-15 Monoamine oxidase B 

CHEMBL3230 2.8458 8.52E-70 2.83E-64 Sphingosine 1-phosphate receptor Edg-6 

CHEMBL1966 2.6394 3.89E-14 1.29E-08 Dihydroorotate dehydrogenase 

CHEMBL2868 2.6154 1.21E-59 4.04E-54 Vasopressin V1a receptor 

CHEMBL3238 2.5944 7.37E-27 2.45E-21 Carnitine palmitoyltransferase 2 

CHEMBL3766 2.5604 2.80E-50 9.32E-45 Vasopressin V2 receptor 

CHEMBL2216739 2.2174 5.63E-11 1.87E-05 Carnitine O-palmitoyltransferase 1 muscle 

isoform 

CHEMBL4681 2.0292 2.43E-10 8.09E-05 Aldo-keto-reductase family 1 member C3 
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Supplementary Table A.1.8. Reference compounds targeting receptors with relatively low EF 
scores  
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Supplementary Table A.1.9. Compound names and descriptions for 
annotated and novel small molecules that interact with 3 of the primary 
SEA predicted targets (mGluR, GABAA, and HTR6). 

mGluR Compounds 
tested 

SMILES Mechanism Notes Phen
oscor
e 

Fenobam CN1CC(=O)N=C1NC(=O)Nc2cccc(c2)Cl mGlu5 agonist 0.3 
STK234931 c1ccc(cc1)C#Cc2ccc(cc2)C(=O)N3CCC(CC3)O MGluR antagonist 0.4 
MPEP CC1=NC(=CC=C1)C#CC2=CC=CC=C2.Cl mGlu5 antagonist 0.73 
TOPIRAMATE CC1(O[C@@H]2CO[C@@]3([C@H]([C@@H]2O1)OC(O3)(C)C)COS(=O)(=O)N)C mGluR5 antagonist 0.1 
UBP 302 c1ccc(c(c1)Cn2c(=O)ccn(c2=O)C[C@@H](C(=O)O)N)C(=O)O mGluR5 antagonist 0.17 
VU 0361737 COc1cc(ccc1Cl)NC(=O)c2ccccn2 mGluR4 positive allosteric modulator 0.28 
VU 0155041 NaSalt c1c(cc(cc1Cl)Cl)NC(=O)[C@H]2CCCC[C@H]2C(=O)O mGluR4 positive allosteric modulator 0.11 
Cinnabarinic acid c1cc(c2c(c1)oc-3cc(=O)c(c(c3n2)C(=O)O)N)C(=O)O mGluR4 agonist 0.18 
L-AP4 [H][C@](N)(CCP(O)(O)=O)C(O)=O mGluR4/6/7/8 agonist 0.1 
LY-354740 C1C[C@]([C@H]2[C@@H]1[C@@H]2C(=O)O)(C(=O)O)N mGluR2/3 agonist 0.1 
Biphenylindanone A CC1=C(C=C2CC(C(=O)C2=C1C)C3CCCC3)OCC4=CC(=CC=C4)C5=CC=C(C=C5)C(=O)O mGluR2 positive allosteric modulator 0.11 

Predicted mGluR    

7285168 OC(=Nc1ccc(Cl)cc1F)c1cccc2ccccc12 predicted mGluR 0.54 
7211089 O=[N+]([O-])c1cccc(N=C(O)c2ccc(Cl)cc2Cl)c1 predicted mGluR 0.5 
5128592 Cc1cccc(c1)NC(=O)c2ccc(cc2)C(C)(C)C predicted mGluR 0.52 
6576466 O=[N+]([O-])c1cccc(C(O)=Nc2ccc(Cl)cc2C(F)(F)F)c1 predicted mGluR 0.57 
5795075 Clc1ccc(OCc2nc(-c3ccccn3)no2)c(Br)c1 predicted mGluR 0.39 
7136301 O=C(N[C@H](c1occc1)C)COC(=O)c3cc([N+]([O-])=O)ccc3N2CCCC2 predicted mGluR 0.42 
6587027 CC(=O)c1cccc(NC(=O)c2ccc(-c3ccc(Cl)cc3)o2)c1 predicted mGluR 0.57 
7271289 Cc1cc(Cl)ccc1OCC(=O)N1CCN(c2ccc(Cl)cc2)CC1 predicted mGluR 0.56 
7305598 OC(=Nc1cccc(N=C(O)c2cc(Cl)ccc2Cl)c1)c1cc(Cl)ccc1Cl predicted mGluR 0.51 
7100598 O=C(c1ccccc1)c1cccc(N=C(O)Cc2ccc(Cl)cc2)c1 predicted mGluR 0.54 
6053334 O=C(Cc1cccc(Cl)c1)Nc1ccc(Cl)cc1 predicted mGluR 0.34 
6376886 COc1cc(OC)cc(C(O)=Nc2ccc(Cl)cc2C(F)(F)F)c1 predicted mGluR 0.59 
5869570 Cc1cc(nc(n1)N/C(=N\C(=O)C)/Nc2cccc(c2)C(F)(F)F)C predicted mGluR 0.68 
5583877 c1ccc(cc1)n2c(c(cn2)C(=O)Nc3ccc(cc3)Cl)NC(=O)c4ccco4 predicted mGluR 0.66 
5943451 CCOC(=O)c1c(C)n(Cc2ccco2)c2ccc(OC)cc21 predicted mGluR 0.37 

GABA Compounds 
Tested 

   

diazepam CN1c2ccc(cc2C(=NCC1=O)c3ccccc3)Cl GABAA agonist 0.68 
propofol Oc1c(cccc1C(C)C)C(C)C GABAA agonist 0.78 
DMCM CCc1c(ncc2[nH]c3cc(OC)c(OC)cc3c12)C(=O)OC GABAA negative allosteric modulator 0.54 
β-CCE CCOC(=O)c1cc2c3ccccc3[nH]c2cn1 GABAA inverse agonist 0.37 
flumazenil CCOC(=O)c1ncn2c1CN(C)C(=O)c1cc(F)ccc1-2 GABAA antagonist 0.1 
TB 21007 CC1(CC2=C(SC(=C2C(=O)C1)SCCO)C3=NC=CS3)C GABAA inverse agonist 0.12 
bicuculline (-) CN1CCc2cc3c(cc2[C@H]1[C@H]4c5ccc6c(c5C(=O)O4)OCO6)OCO3 GABAA antagonist 0.05 
picrotoxin C[C@@]12[C@H]3[C@H]4[C@H]([C@@H]([C@@]1(C[C@@H]5[C@]2(O5)C(=O)O3)O)C(=O)O4)C(C)

(C)O 
GABAA antagonist 0.03 

bicuculline (+) CN1CCc2cc3c(cc2[C@H]1[C@H]4c5ccc6c(c5C(=O)O4)OCO6)OCO3 GABAA antagonist 0.23 
etomidate N1(C=NC=C1C(=O)OCC)C(C)c2ccccc2 GABAA agonist 0.81 
Alphaxalone CC(=O)[C@H]1CC[C@@H]2[C@@]1(CC(=O)[C@H]3[C@H]2CC[C@@H]4[C@@]3(CC[C@H](C4)O)C

)C 
GABAA agonist 0.58 

thipoental CCCC(C)C1(C(=O)NC(=S)NC1=O)CC GABAA agonist 0.51 
SR-95531 [H]/N=c/1\ccc(nn1CCCC(=O)O)c2ccc(cc2)OC.Br GABAA antagonist 0.21 
muscimol NCc1cc(O)no1 GABAA agonist 0.21 
GABA NCCCC(=O)O GABA agonist 0.21 
tracazolate CCCCNc1c2cnn(c2nc(c1C(=O)OCC)C)CC.Cl GABAA agonist 0.8 
clonazepam c1ccc(c(c1)C2=NCC(=O)Nc3c2cc(cc3)[N+](=O)[O-])Cl GABAA agonist 0.23 
zolpidem Cc1ccc(cc1)c2c(n3cc(ccc3n2)C)CC(=O)N(C)C GABAA agonist 0.23 
21-
Hydroxyprogesterone 

C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@@H]2C(=O)CO)CCC4=CC(=O)CC[C@]34C GABAA agonist 0.79 

SCS C1=CC=C(C(=C1)/C=N/NC(=O)C2=CC=CC=C2O)O GABAA antagonist 0.04 
Isoflurane C(C(F)(F)F)(OC(F)F)Cl GABAA agonist 0.03 
TACA C(/C=C/C(=O)O)N GABAA agonist 0.07 
R-Baclofen c1cc(ccc1C(CC(=O)O)CN)Cl GABAB Agonist 0.26 
Progesterone CC(=O)[C@H]1CCC2C3CCC4=CC(=O)CC[C@]4(C)C3CC[C@]12C GABAA agonist 0.68 
Indiplon CC(=O)N(C)C1=CC=CC(=C1)C2=CC=NC3=C(C=NN23)C(=O)C4=CC=CS4 GABA agonist -0.06 
Ocinaplon C1=CC=NC(=C1)C(=O)C2=C3N=CC=C(N3N=C2)C4=CC=NC=C4 GABA agonist -0.01 
L-655,708 CCOC(=O)c1c2n(cn1)-c3ccc(cc3C(=O)N4[C@H]2CCC4)OC GABAA antagonist 0.51 
Gabapentin C1CCC(CC1)(CC(=O)O)CN increases GABA biosynthesis 0.15 
Valproic Acid CCCC(CCC)C(=O)O GABA agonist 0.75 

Predicted GABA    

5658603 CCCCn1c2ccccc2n2c(C(=O)OCC)c(C)nc12 predicted GABAA 0.74 
5951201 CCOC(=O)c1c(C)nc(-c2ccccc2)nc1N=C(O)Cc1ccccc1 predicted GABAA 0.48 
5142031 CCOC(=O)c1c(N)sc2ccccc12 predicted GABAA 0.54 
7145248 c1ccc(cc1)Oc2cccc(c2)CNC(=O)C(=O)c3c[nH]c4c3cccc4 predicted GABAA 0.5 

Serotonin-6 
Compounds Tested 

   

BGC 20-761 CN(C)CCC1=C(NC2=C1C=C(C=C2)OC)C3=CC=CC=C3 5-HT6 antagonist 0.74 
Idalopirdine C1=CC(=CC(=C1)OCC(C(F)F)(F)F)CNCCC2=CNC3=C2C=CC(=C3)F 5-HT6 antagonist 0.55 
R1485 DI HCL c1ccc(c(c1)F)S(=O)(=O)N2CCOc3c2cccc3N4CCNCC4.Cl.Cl 5-HT6 antagonist 0.07 
MS 245 OXALATE CN(C)CCC1=CN(C2=C1C=C(C=C2)OC)S(=O)(=O)C3=CC=CC=C3.C(=O)(C(=O)O)O 5-HT6 antagonist 0.09 
SB 399885 
hydrochloride 

COC1=C(C=C(C=C1)S(=O)(=O)NC2=C(C(=CC(=C2)Cl)Cl)OC)N3CCNCC3 5-HT6 antagonist 0.16 

Ro 04-6790 CNc1cc(NS(=O)(=O)c2ccc(N)cc2)nc(NC)n1 5-HT6 antagonist 0.11 
WAY 208466 CN(C)CCN1C=C(C2=C1N=CC=C2)S(=O)(=O)C3=CC=CC(=C3)F.Cl.Cl 5-HT6 agonist 0.21 
ST 1936 OXALATE Cc1c(c2cc(ccc2[nH]1)Cl)CCN(C)C.C(=O)(C(=O)O)O 5-HT6 agonist 0.09 
EMD 386088 
HYDROCHLORIDE 

Cc1c(c2cc(ccc2[nH]1)Cl)C3=CCNCC3.Cl 5-HT6 agonist 0.15 

EMDT oxalate CCc1c(c2cc(ccc2[nH]1)OC)CCN(C)C.C(=O)(C(=O)O)O 5-HT6 agonist -0.03 
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Predicted Serotoni-6 SMILES Mechanism Notes Pheno
score 

6028165 COc1ccc(S(=O)(=O)NC2CCCC2)cc1Br predicted 5-HT6 0.66 
6366118 COc1ccc(S(=O)(=O)N2CCC(C)CC2)cc1Br predicted 5-HT6 0.66 
6029941 COc1ccc(OC)c(NS(=O)(=O)c2ccc(OC)c(Br)c2)c1 predicted 5-HT6 0.61 
6030057 CCc1ccccc1NS(=O)(=O)c1ccc(OC)c(Br)c1 predicted 5-HT6 0.36 
6193422 O=S(=O)(Nc1cccc(Cl)c1)c1ccc2c(c1)OCCO2 predicted 5-HT6 0.46 
6030006 CCOc1ccccc1NS(=O)(=O)c1ccc(OC)c(Br)c1 predicted 5-HT6 0.52 
6013263 COc1ccc(S(=O)(=O)Nc2ccc(C)cc2)cc1Br predicted 5-HT6 0.61 
5352629 COc1ccccc1N1CCN(C(=O)c2ccc(C(=O)c3c(C)cc(C)cc3C)cc2)CC1 predicted 5-HT6 0.48 

Other Serotonin 
Compounds Tested 

   

ALMOTRIPTAN 
MALATE 

CN(C)CCc1c[nH]c2c1cc(cc2)CS(=O)(=O)N3CCCC3.C(C(C(=O)O)O)C(=O)O 5-H1B/1D agonist 0.18 

GR 55562 
DIHYDROCHLORIDE 

CN(C)CCCc1cc(ccc1O)C(=O)Nc2ccc(cc2)c3ccncc3.Cl.Cl 5-HT1B silent antagonist 0.24 

LISURIDE MALEATE CCN(CC)C(=O)N[C@@H]1CN([C@@H]2Cc3c[nH]c4c3c(ccc4)C2=C1)C.C(=C\C(=O)O)\C(=O)O 5-HT2b antagonist 0.11 
MESULERGINE 
HYDROCHLORIDE 

Cn1cc2c3c1cccc3[C@H]4C[C@@H](CN([C@@H]4C2)C)NS(=O)(=O)N(C)C.Cl 5-HT2A/2C2C antagonist 0.4 

Rizatriptan Benzoate CN(C)CCc1c[nH]c2c1cc(cc2)Cn3cncn3.c1ccc(cc1)C(=O)O 5-HT1B/1C agonist -0.01 
Duloxetine 
Hydrochloride 

CNCCC(c1cccs1)Oc2cccc3c2cccc3.Cl SNRI 0.27 

 
Other Serotonin Compounds 
Tested 

SMILES Mechanism Notes Phen
oscor
e 

TCB-2 COc1cc(c(c2c1C(C2)CN)OC)Br.Br 5-HT2a agonist 0.1 
Fluoxetine Hydrochloride CNCCC(c1ccccc1)Oc2ccc(cc2)C(F)(F)F.Cl SSRI 0.46 
Ondansetron Hydrochloride N2(c1c(cccc1)C3=C2CCC(C3=O)CN4C(=NC=C4)C)C 5-HT3 antagonist 0.13 
SB-216641 Cc1cc(ccc1c2ccc(cc2)C(=O)Nc3ccc(c(c3)OCCN(C)C)OC)c4nc(on4)C 5-HT1B antagonist 0.11 
SDZ-205557 CCN(CC)CCOC(=O)c1cc(c(cc1OC)N)Cl 5-HT3/4 antagonist 0.07 
sumatriptan CNS(=O)(=O)Cc1ccc2c(c1)c(c[nH]2)CCN(C)C 5-HT1 agonist 0.07 
BW 723C86 CC(N)Cc1c[nH]c2ccc(OCc3cccs3)cc12 5-HT2B agonist 0.1 
DOI HYDROCHLORIDE CC(Cc1cc(c(cc1OC)I)OC)N.Cl 5-HT2A/2C agonist 0.1 
Cisapride Fc1ccc(cc1)OCCCN2CC(C(CC2)NC(=O)c3c(cc(c(c3)Cl)N)OC)OC 5-HT4 agonist 0.08 
Sertraline ClC1=CC=C([C@H]2C3=C([C@H](CC2)NC)C=CC=C3)C=C1Cl SSRI 0.54 
Fluvoxamine maleate FC(F)(F)c1ccc(cc1)/C(=N/OCCN)/CCCCOC SSRI 0.23 
Paroxetine Hydrochloride Cl.Fc1ccc(cc1)[C@@H]1CCNC[C@H]1COc1ccc2OCOc2c1 SSRI 0.2 
8-HYDROXY-DPAT CCCN(CCC)C1CCc2cccc(O)c2C1 5-HT1A agonist 0.49 
alpha-METHYLSEROTONIN CC(Cc1c[nH]c2c1cc(cc2)O)N 5-HT agonist 0.18 
Trazodone hydrochloride Cl.Clc1cccc(c1)N1CCN(CCCn2nc3ccccn3c2=O)CC1 SSRI 0.22 
1-(3-
CHLOROPHENYL)BIGUANIDE 

c1cc(cc(c1)Cl)NC(=N)NC(=N)N.Cl 5-HT3 agonist 0.18 

Quipazine maleate salt c1ccc2c(c1)ccc(n2)N3CCNCC3.C(=C\C(=O)O)\C(=O)O 5-HT agonist 0.16 
Zimelidine dihydrochloride 
monohydrate 

Brc1ccc(cc1)/C(=C/CN(C)C)/c2cnccc2 SSRI 0.16 

Chlorpheniramine maleate Clc1ccc(cc1)C(CCN(C)C)c2ncccc2 SNRI 0.05 
Buspirone hydrochloride N1(CCN(CC1)c2ncccn2)CCCCN4C(=O)CC3(CCCC3)CC4=O 5-HT1A agonist 0.08 
FENFLURAMINE CCNC(C)Cc1cccc(c1)C(F)(F)F.Cl SSRI and 5-HT release stimulator 0.13 
57-DIHYDROXYTRYPTAMINE c1c(cc(c2c1c(c[nH]2)CCN)O)O 5-HT neurontoxn 0.05 
serotonin NCCc1c[nH]c2ccc(O)cc12 5-HT agonist 0.19 
Desipramine hydrochloride CNCCCN1c2ccccc2CCc3c1cccc3.Cl SNRI 0.49 
clomipramine CN(C)CCCN1c2ccccc2CCc2ccc(Cl)cc12 SNRI 0.13 



191 

Supplementary Table A.1.10. Isoflavone analogs of hit 7013338 

 
 
 

**Spectral Analysis of Isoflavone Analogs Omitted** 
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A.2 Supplementary material for Chapter 3 

 

Supplemental Figures 

 

 
Supplementary Fig A.2.1 Samewell vs Allwell AUC performance 

Same-well (dashed) vs All-well (dotted) negatives dataset performance comparison. a) Area under the curve plots. b) Precision 
recall curves.  
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Supplementary Fig A.2.2 Samewell vs Allwell positive vs negative separation  

Same-well  vs All-well negatives for positive vs negative pair separation. a) mlp all-well b) dense all-well c) mlp same-well d) dense 
same-well 
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Supplementary Fig A.2.3 Hanning-smoothing motion index time-series 

We examine how the choice of window-size for the hanning windowing function affects the resulting smoothed time-series. 
We decide to use the hanning 11 window because it seems to reduce most of the high-frequency components without sacrificing 
too much of the low-frequency, high amplitude motions.  
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Supplementary Fig A.2.4 Quality control compounds 

Mean motion-index time-series plots for each of the 16 quality control compounds. The mean DMSO control motion index is 
plotted in grey in all rows.  
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Supplementary Fig A.2.5 MLP Time-series Clusters 

Mean motion-index time-series plots for the mean of each of the 48 Kmeans MLP smooth clusters. The mean DMSO control 
motion index is plotted in grey in all rows.  
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Supplementary Fig A.2.6 Computational randomized plate-layouts for new randomized screen 

We computationally randomized the Biomol screen. Each row is based on one full library replicate (10 replicates total), and 
each column is a library  plate (one of 8 possible plates). For each plate, we show the controls (Grey=DMSO (-), Red=Eugenol 
(+lethal), Blue = Water (-), light green = DMSO-dissolved drugs, darker green = Water-dissolved drugs). These layouts are 
saved into CSV files and read in by the randomization robot. 
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