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Abstract

Local vector control and public health agencies in California use the California Mosquito-

Borne Virus Surveillance and Response Plan to monitor and evaluate West Nile virus

(WNV) activity and guide responses to reduce the burden of WNV disease. All available

data from environmental surveillance, such as the abundance and WNV infection rates in

Culex tarsalis and the Culex pipiens complex mosquitoes, the numbers of dead birds, sero-

conversions in sentinel chickens, and ambient air temperatures, are fed into a formula to

estimate the risk level and associated risk of human infections. In many other areas of the

US, the vector index, based only on vector mosquito abundance and infection rates, is used

by vector control programs to estimate the risk of human WNV transmission. We built mod-

els to determine the association between risk level and the number of reported symptomatic

human disease cases with onset in the following three weeks to identify the essential com-

ponents of the risk level and to compare California’s risk estimates to vector index. Risk

level calculations based on Cx. tarsalis and Cx. pipiens complex levels were significantly

associated with increased human risk, particularly when accounting for vector control area

and population, and were better predictors than using vector index. Including all potential

environmental components created an effective tool to estimate the risk of WNV transmis-

sion to humans in California.

Author summary

The California Mosquito-Borne Virus Surveillance and Response Plan was designed to

monitor and evaluate West Nile virus activity in the state and guide vector control and

public health responses to reduce the burden of West Nile virus disease. It uses a formula

to estimate the risk of human infections based on available environmental surveillance

data: the abundance and infection rates in Culex tarsalis and the Culex pipiens complex

mosquitoes, the numbers of dead birds, seroconversions in sentinel chickens, and/or

ambient air temperatures. We evaluated the effectiveness of this risk level system and
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compared it to the vector index, a simpler risk estimate based only on mosquito abun-

dance and infection rates, used by many vector control agencies inside the U.S. We found

that that the California risk levels were significantly associated with increased reported

human disease incidence, particularly when all potential environmental components were

included, and better fit the data than vector index.

Introduction

West Nile virus (WNV) is a flavivirus that is the leading cause of mosquito-borne disease in

the United States [1,2]. Enzootic transmission of WNV is maintained in a cycle involving wild

birds and mosquitoes but there is spillover that can result in human infections [3–5]. The pri-

mary mosquito vectors in California are Culex tarsalis and the Cx. pipiens complex [4,6],

namely Cx. pipiens and Cx. quinquefasciatus and their hybrids. Cx. tarsalis is found primarily

in rural, agricultural areas of the state whereas Cx. pipiens complex is found in more urban

areas [7], with Cx. pipiens in the north, Cx. quinquefasciatus in the south, and both species, as

well as an interspecific hybrid, found in the middle [8]. Birds in the order Passeriformes are

the primary zoonotic hosts of WNV, and some species, particularly those in the family Corvi-

dae, are regularly infected and found dead from WNV [9,10]. The complex ecology of this dis-

ease is heavily influenced by temperature, with higher temperatures resulting in increased

WNV transmission due to increased mosquito abundance and a faster extrinsic incubation

period [11–14].

While the majority of WNV infections are asymptomatic, 20–30% of infections result in

febrile illness, with fewer than 1% of cases developing West Nile neuroinvasive disease

(WNND), which has a case fatality-rate close to 10% [3,15–17]. Diagnosis and reporting of

neuroinvasive disease are more complete than milder non-neuroinvasive disease due to the

severity of disease [18,19]. From 2009 through 2018, 21,869 WNV disease cases were reported

in the US, including 12,835 neuroinvasive cases and 1,199 deaths [20]. California reported

4,035 (18%) of all US cases, more than any other state, and disproportionate to its 12% of the

nation’s population [21,22]. The majority of California’s cases have occurred in Southern Cali-

fornia and the Central Valley [21,23].

The California Department of Public Health (CDPH), local mosquito and vector control

agencies, and academic institutions in California developed an organized, comprehensive

environmental surveillance program to monitor mosquito-borne viruses, beginning with mos-

quito testing in 1969 [24]. From its inception, the program has focused on arboviruses

endemic to California, initially western equine encephalitis virus (WEEV) and St. Louis

encephalitis virus (SLEV), and more recently WNV, which was first detected in the state in

2003 [25]. Vector control agencies conduct routine environmental surveillance by trapping

mosquitoes, identifying and tallying the captures, and testing the primary disease vectors for

the endemic viruses of WNV, SLEV, and WEEV [26]. Many agencies also collect and test dead

wild birds for WNV [10]. Because chickens develop antibodies to WNV, SLEV, and WEEV

after exposure but are dead end hosts and do not otherwise show signs of infection [27], many

agencies maintain sentinel chicken flocks from late spring through the fall to monitor arbovi-

rus activity in their region. Ambient air temperature, obtained from NASA’s North American

Land Data Assimilation System [28,29], is also monitored. The California Mosquito-Borne

Virus Surveillance and Response Plan (“Response Plan”) [30] provides guidelines for vector

control agencies to estimate risk using these surveillance elements [31]. Each is assigned a

weight and averaged across an area to provide an overall risk level to estimate the risk of WNV
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transmission in that particular area at any given time and guide response decisions. The

Response Plan has been updated annually since its inception and includes a detailed descrip-

tion of the methodology used to calculate transmission risk [26]. The quantitative risk assess-

ment is integrated into California’s Vectorborne Disease Surveillance (VectorSurv) system, an

online data management system that supports vector-borne disease surveillance and control.

VectorSurv enables local vector control agencies to enter their surveillance data and automati-

cally estimates risk levels for any spatial area with adequate surveillance [32]. In comparison,

many vector control programs outside of California rely on the vector index alone, which is a

simpler measure based solely on vector abundance and mosquito infection rate, to estimate

risk of human infection and trigger additional interventions [33,34].

Although previous analyses have considered the association between the Response Plan sys-

tem and environmental arbovirus activity [31,35], there has never been a study examining how

the risk levels are associated with reported human disease. This analysis seeks to evaluate the

performance of the Response Plan for predicting human incidence of WNV disease for the

years 2009 through 2018. Also, the system has been evaluated only as a whole, including all

available environmental surveillance elements, so we evaluated how well human incidence was

predicted when one or more environmental factors were excluded from the analysis. Finally,

we sought to compare the predictive performance of the Response Plan, which incorporates

many surveillance elements, compared to that of the simpler vector index, which is based only

on entomological surveillance.

Methods

Ethics statement

Analysis of human surveillance data is a routine public health activity and therefore exempt

from Institutional Review Board review and approval (Project 2020-072-CDPH).

Human data

Human cases of WNV disease in California residents that meet the Council of State and Terri-

torial Epidemiologists’ case definition [36] are reported to CDPH and subsequently to the

United States Centers for Disease Control and Prevention because WNV disease is a nationally

notifiable condition [37]. Asymptomatic WNV infections (such as those identified via screen-

ing of blood donors) do not fulfill the case definition and were excluded from this analysis.

Other inclusion criteria for human WNV disease included disease onset between April 1 and

December 31 for the years 2009 through 2018, residence in a county in the Central Valley or

Southern California, and residence within the jurisdictional boundaries of a vector control

agency that has at least 20,000 residents within its service area (Fig 1).

Environmental surveillance data

Environmental surveillance data, originating from specimens collected by vector control agen-

cies, are stored in an online data management system, the California Vectorborne Disease Sur-

veillance Gateway (VectorSurv). Data for this project were obtained via data request #000032.

We included the data elements described below for the period April 1-December 31 of each

year from 2009 through 2018.

Local vector control agencies collected adult mosquitoes using a variety of traps, sorted

them by species into pools of�50 females, and froze samples at -80˚C before arbovirus testing.

Mosquito abundance was calculated as the mean count of a particular species per trap-night,

then divided by the prior 5-year average abundance for the same location. The University of
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Fig 1. Map of California vector control agencies and counties included in analysis of effectiveness of vector index and California

Response Plan, CA, 2009–2018. County data courtesy of U.S. Census Bureau TIGER/line spatial files, 2016 (https://www.census.gov/

geographies/mapping-files/time-series/geo/tiger-line-file.2016.html). Vector control agency data courtesy of Mosquito and Vector Control

Association of California web map, 2018, (sources: ESRI, USGS, NOAA, TomTom, U.S. Department of Commerce, U.S. Census Bureau,

NPS). (https://www.arcgis.com/apps/mapviewer/index.html?webmap=604a0fe9f2b74e98a53b53d192b2ac67).

https://doi.org/10.1371/journal.pntd.0010375.g001
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California Davis Arbovirus Virus Research and Training (DART) laboratory conducted most

arbovirus testing, although in recent years some vector control agencies began in-house testing

programs. Vector control agencies that conducted their own testing passed annual proficiency

panels developed by DART and reviewed by CDPH. All mosquito pools were screened for

WNV, SLEV, and WEEV primarily by a multiplex real-time (TaqMan) reverse transcriptase-

polymerase chain reaction (RT-qPCR) or singleplex RT-qPCR, although a few agencies used

rapid commercial antigen-capture assay (RAMP, Rapid Analyte Measurement Platform,

Response Biomedical Co., Vancouver, BC, Canada). Mosquito infection rates were calculated

per 1,000 mosquitoes. CDPH was notified of dead birds by the public via a WNV call center,

an online reporting system, and reports that came through vector control agencies. Carcasses

that fulfilled collection criteria and were in acceptable condition were collected by vector con-

trol agencies and submitted to DART or tested in-house. Tissue samples and oral swabs were

tested by RT-qPCR, RAMP, or VecTOR/VecTest (Medical Analysis Systems, Inc., Camarillo,

CA). Dead birds were reported as the number of positive birds in a broad or specific region

during the prior 3-month period. Sentinel chickens were obtained each spring by participating

vector control agencies and tested to ensure that they had no antibodies for WNV, SLEV, or

WEEV. Flocks of 6 to 10 chickens were established at locations specified by vector control

agencies and bled biweekly by comb prick from April through November, then tested for

WNV antibodies at CDPH. Chicken surveillance was reported as the number of seroconver-

sions within a flock in a broad or specific region. The temperature data were obtained from

NASA’s North American Land Data Assimilation System [28,29].

West-Nile virus risk assessment

Each environmental variable was assigned an ordinal number from 1 through 5 based on the

observations within a 2-week window, as defined in the risk assessment model in the Califor-

nia Mosquito-Borne Virus Surveillance and Response Plan (Table 1) [26]. The biweekly inter-

val was reset and recalculated every week (e.g. the value from week 19 represented data from

weeks 18 and 19, while the week 20 value represented data from weeks 19 and 20). Mosquito

abundance and infection rate were calculated separately for Cx. tarsalis and Cx. pipiens com-

plex mosquitoes. For each 2-week interval within a given geographic area that had observa-

tions for temperature and at least one other environmental component, all available

environmental risk values were then averaged to calculate the overall risk level for Cx. tarsalis
and Cx. pipiens complex mosquitoes, ranging between 1 and 5. Risk levels between 1.0 and 2.5

are considered Normal Season, 2.6 to 4.0 Emergency Planning, and 4.1 to 5.0 Epidemic

Conditions.

Statistical analysis

Data were analyzed in R Statistical Software version 4.0.2 [38], using package glmmTMB ver-

sion 1.0.2.1 [39] and package DHARMa version 0.4.4 [40]. Because several vector control

agencies span multiple counties, all data were aggregated spatially within each unique combi-

nation of county and agency, hereafter called vector control areas (VCAs). Each VCA operates

independently, making decisions on the extent of their surveillance, which could impact when

and where WNV was detected. The outcome, measured as the number of human cases of

WNV disease that occurred in a 3-week period within each VCA, was analyzed by negative

binomial regression. To compare the predictive value of the full suite of environmental surveil-

lance elements versus reduced subsets typical of local programs with fewer resources, overall

risk levels were also calculated by systematically excluding one or more components from cal-

culations. Vector index was calculated by multiplying the mean number of mosquitoes
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captured per trap night by the mosquito infection rate per 1,000 mosquitoes, by species, for the

VCA. Other elements included in all models were: 1) random intercepts for each VCA to

allow for variation in baseline WNV disease incidence and differences in surveillance and con-

trol practices among VCAs, and 2) the log of the 2017 population [41] as an offset.

To determine how accurately the Response Plan predicts human cases, models were strati-

fied by Cx. tarsalis and Cx. pipiens complex. To determine which components were essential to

the Response Plan, data were used for time periods and locations which had all five risk com-

ponents from agencies that consistently operate and collect data for sentinel chicken and dead

bird programs. Risk levels were compared to the vector index using data from time periods

and locations which had both abundance and infection rate data for both Cx. tarsalis and Cx.

pipiens complex.

All models were compared using the Akaike information criterion (AIC), where the lowest

AIC value indicates the best-fitting model, though AIC differences�2 are not considered sig-

nificant [42]. The best-fitting model for research question was then analyzed for spatial auto-

correlation by Moran’s I, using distance measurements based on the centroid for each VCA.

To reduce the influence of multiple time points on spatial autocorrelation, all longitude values

were shifted by 10,000 km each biweekly interval.

Table 1. Mosquito-Borne Virus Risk Assessment for West Nile virus, from the California Mosquito-Borne Virus Surveillance & Response Plan, by California

Department of Public Health, Mosquito & Vector Control Association of California, and University of California, published May 2021.

WNV Surveillance Factor Assessment

Value

Benchmark

Temperature Conditions 1 Avg. daily temperature during prior 2 weeks�56˚F

2 Avg. daily temperature during prior 2 weeks 57–65˚F

3 Avg. daily temperature during prior 2 weeks 66–72˚F

4 Avg. daily temperature during prior 2 weeks 73–79˚F

5 Avg. daily temperature during prior 2 weeks >79˚F

Relative abundance of adult female Culex tarsalis and Cx. pipiens complex

mosquitoes

1 Vector abundance well below average (�50%)

2 Vector abundance below average (51–90%)

3 Vector abundance average (91–150%)

4 Vector abundance above average (151–300%)

5 Vector abundance well above average (>300%)

Virus infection rate in Cx. tarsalis and Cx. pipiens complex mosquitoes

(MIR = mosquito infection rate per 1,000 mosquitoes)

1 MIR = 0

2 MIR = 0.1–1.0

3 MIR = 1.1–2.0

4 MIR = 2.1–5.0

5 MIR>5

Sentinel chicken seroconversion 1 No seroconversions in broad region

2 �1 seroconversions in broad region

3 1 or 2 seroconversions in specific region

4 �2 seroconversions in a single flock or 2 flocks with 1 or 2

seroconversions in specific region

5 �2 seroconversions per flock in multiple flocks in specific

region

Dead bird infection 1 No positive dead birds in broad region

2 �1 positive dead birds in broad region

3 1 positive dead bird in specific region

4 2–5 positive dead birds in specific region

5 >5 positive dead birds in specific region

https://doi.org/10.1371/journal.pntd.0010375.t001
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Results

During the study period from 2009 through 2018, 4,123 cases of WNV disease in humans were

reported in California. Of those, 3,614 (88%) cases met the inclusion criteria of residing in a

Central Valley or Southern California county, within a vector control agency that serves

�20,000 people, and with symptom onset between April 1 and December 31. There were

15,210 biweekly time periods within VCAs with sufficient environmental surveillance data to

calculate risk levels. Observed disease incidence per 100,000 individuals generally increased as

the observed overall Cx. tarsalis and Cx. pipiens complex risk levels increased (Figs 2 and 3).

Records from 36 VCAs had data for both Cx. tarsalis and Cx. pipiens complex mosquitoes,

resulting in 12,364 observations (S1 Table). When comparing models, including population as

an offset and agency as a random effect produced the models with the lowest AIC for predict-

ing human disease incidence using both the Cx. tarsalis and Cx. pipiens complex risk levels

(Tables 2 and S2). When controlling for human population and VCA, the incidence of human

disease increased 274% for every unit increase in Cx. pipiens complex overall risk level, a risk

ratio of 3.74 (95% CI: 3.58–3.90) and 224% for every unit increase in Cx. tarsalis overall risk

level, a risk ratio of 3.24 (95% CI: 3.11–3.38). Though models using the Cx. pipiens complex

risk level had lower AIC values than those with Cx. tarsalis risk level, their 95% CI had nearly

perfect congruence (Fig 4). Both models had significant distance-based autocorrelation

(p<0.01). All subsequent comparisons were made using models that included an environmen-

tal predictor (risk level or vector index), population as an offset, and VCA as a random effect.

Seven VCAs consistently operated sentinel chicken and dead bird surveillance programs

during this time period; these vector control agencies covered all or most of Butte, Los Angeles,

Placer, Sacramento, Sutter, Yolo, and Yuba counties. Collectively, these agencies had 1,176

observations of risk levels when all five environmental components were available, including

abundance and infection data for both Culex species. Risk levels for Cx. tarsalis and Cx. pipiens

Fig 2. Observed human WNV disease incidence in 3-week periods versus antecedent biweekly overall risk levels,

based on temperature, abundance and at least 1 infection indicator, for Cx. tarsalis in California, 2009–2018.

https://doi.org/10.1371/journal.pntd.0010375.g002
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complex calculated using all available components were on average better than risk levels that

omitted components (Tables 3 and S3). Interestingly, the Cx. tarsalis risk level was a better pre-

dictor of human incidence when mosquito infection rate was omitted. Similarly, predicting

human incidence by Cx. pipiens complex response level was slightly improved by omitting

mosquito abundance. While AIC was slightly lower than the full model for Cx. pipiens complex

when only temperature and mosquito infection rate were included, the difference was not sig-

nificant. Although response level calculations that omitted one variable (i.e., drop out models)

were technically stronger than the response levels that included all components for both Cx.

tarsalis and Cx. pipiens complex based on AIC, the 95% CI for the full and drop out models

did not differ significantly in their ability to predict human incidence (Figs 5 and 6). The best

two models for Cx. tarsalis and Cx. pipiens complex had significant distance-based autocorre-

lation (p<0.01).

Fig 3. Observed human WNV disease incidence in 3-week periods versus antecedent biweekly overall risk levels,

based on temperature, abundance and at least 1 infection indicator, for the Cx. pipiens complex in California,

2009–2018.

https://doi.org/10.1371/journal.pntd.0010375.g003

Table 2. Comparison of models that predict human WNV disease occurrence, CA, 2009–2018, ranked by Akaike

Information Criterion (AIC). Lower AIC values indicate better fit.

Model Components ΔAIC

Overall Cx. pipiens complex risk level + offset(log(population)) + (1|VCA) (referent)

Overall Cx. pipiens complex risk level + (1|VCA) 7.6

Overall Cx. tarsalis risk level + offset(log(population)) + (1|VCA) 61.2

Overall Cx. tarsalis risk level + (1|VCA) 677.9

Overall Cx. pipiens complex risk level + offset(log(population)) 2,051.3

Overall Cx. pipiens complex risk level 2,118.0

Overall Cx. tarsalis risk level + offset(log(population)) 2,489.0

Overall Cx. tarsalis risk level 2,842.8

https://doi.org/10.1371/journal.pntd.0010375.t002
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Sufficient data were available to calculate vector index values from 34 VCAs, yielding

observed values for 6,600 biweekly periods, the same time scale as response levels. Most obser-

vations (56.4%) of vector index for Cx. pipiens complex were 0, with a mean of 77.2 (range: 0–-

25,954), whereas 65.1% of observations of vector index for Cx. tarsalis were 0, with a mean of

40.5 (range: 0–2,709). To reduce the influence of outliers, the data was subset to vector index

observations�1,000, which left 98% of observations for both Cx. pipiens complex (1,528/

1,561) and Cx. tarsalis (1,307/1,330). Models based on a response level had a lower AIC than

the associated model based on vector index for the same species. The AIC of the regression

model based on Cx. pipiens complex vector index was 1,336 higher than that which was based

on response level, while the ΔAIC for Cx. tarsalis vector index model was 1,421 higher than the

Fig 4. Predicted incidence of human WNV disease with 95% confidence interval during 3-week periods over the

range of biweekly overall risk levels for California, 2009–2018.

https://doi.org/10.1371/journal.pntd.0010375.g004

Table 3. Comparisons of models based on different calculations for risk level, ranked by Akaike Information (AIC).

Components Included in Risk Level Calculation Cx. pipiens complex models Cx. tarsalis models

Temperature Abundance Infection Dead Birds Sentinel Chickens ΔAIC ΔAIC

Yes Yes Yes Yes Yes (referent) (referent)
Yes – Yes Yes Yes -11.3� 8.1

Yes Yes – Yes Yes 31.2 -22.7�

Yes Yes Yes – Yes 13.4 18.6

Yes Yes Yes Yes – 16.6 18.1

– Yes Yes Yes Yes 17.7 18.6

Yes Yes Yes – – 39.8 42.4

Yes – Yes – – -1.9 42.3

– Yes Yes – – 73.9 73.4

� indicates a significant improvement in model fit compared to the referent all-elements model.

https://doi.org/10.1371/journal.pntd.0010375.t003
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response level model, indicating that the response level was a better predictor of human disease

incidence overall compared to vector index (Figs 7 and 8 and S4 Table). All four models had

significant distance-based autocorrelation by the Moran’s I test (p<0.01).

Fig 5. Comparison of predicted human WNV incidence using Cx. tarsalis-based response level models including

all environmental components vs best drop-out model, with 95% confidence intervals, in California, 2009–2018.

https://doi.org/10.1371/journal.pntd.0010375.g005

Fig 6. Comparison of predicted human WNV incidence using Cx. pipiens complex-based response level models

including all environmental components vs best drop-out model, with 95% confidence intervals, in California,

2009–2018.

https://doi.org/10.1371/journal.pntd.0010375.g006
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Discussion

We found that the current California arbovirus surveillance system was positively associated

with reported human WNV disease incidence and that relationship was improved after

Fig 7. Predicted human WNV incidence estimated using California Mosquito-Borne Virus Surveillance &

Response Plan, with 95% confidence intervals, with observed mean human WNV incidence (as points), in

California, 2009–2018.

https://doi.org/10.1371/journal.pntd.0010375.g007

Fig 8. Predicted human WNV incidence estimated using vector index, with 95% confidence intervals, with

observed mean human WNV incidence (as points), in California, 2009–2018.

https://doi.org/10.1371/journal.pntd.0010375.g008
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accounting for population size and baseline variation among local vector control areas

(VCAs). The latter element encompasses geographic, ecological, and administrative differ-

ences across various regions of California. There were no significant differences in predicted

human disease incidence when using environmental indicators based on Cx. tarsalis or Cx.

pipiens complex vectors. Although there were models that omitted specific elements that more

accurately predicted human disease incidence than those that included all possible environ-

mental elements, namely omitting Cx. pipiens complex mosquito abundance or Cx. tarsalis
mosquito infection, there was no significant difference in model fit when comparing these to

the full model. Including all possible environmental elements in Response Plan risk calcula-

tions predicted human WNV disease incidence and also simplifies both data entry and

response decisions for vector control agencies. The Response Plan improved predictions of

human incidence compared to the vector index for both Cx. tarsalis and Cx. pipiens complex.

There have been numerous studies investigating WNV risk in California, seeking to identify

important environmental predictors. Hartley et. al. successfully used two components from

the California Vectorborne Disease Surveillance System, temperature and mosquito abun-

dance, to predict a third component, sentinel chicken seroconversions, as a measure of virus

transmission [43]. The Dynamic Continuous-Area Space-Time (DYCAST) system used dead

bird reports to identify areas at high risk of WNV transmission to humans, with an 81% sensi-

tivity and 91% specificity during an epidemic year, though predictive performance declined in

non-epidemic years [44]. Kwan et al. compared how well the Response Plan, vector index, and

DYCAST predicted human WNV cases in Los Angeles, California and found that the includ-

ing surveillance data from bird, mosquito, and temperature sources led to the best risk assess-

ment model for human WNV cases [45].

When identifying important components of the Response Plan, we used data only from

VCAs that had robust dead bird and sentinel chicken programs and had available data monitor-

ing all five possible environmental components. Since data for all Response Plan elements are

not collected by most VCAs, only temperature and one other environmental parameter are

required to estimate risk level. However, our models showed the additional value when agencies

were able to incorporate dead birds and sentinel chickens because they improved predictions of

human disease risk. Whenever possible, VCAs should consider including these components, as

well as mosquito and temperature data, when feasible in their arbovirus surveillance system. A

previous analysis found that in areas with susceptible bird species, surveillance systems based

on dead birds reported by the public along with strategic mosquito and sentinel flock monitor-

ing was effective and efficient in estimating risk in terms of both cost and effect [46].

The vector index is used in many US states for estimating risk of human disease caused by

WNV and other arboviruses [33,34,47,48]. Our models showed a significant positive relation-

ship between human incidence and vector index (P< 0.001), when accounting for population

and VCA. However, models that used California’s risk level system had a better fit, indicating

that they better explained the variability in WNV disease incidence. This is likely attributable

to the additional elements included in the Response Plan: temperature, which directly influ-

ences viral replication and the rate of transmission, and dead birds and sentinel chickens,

which are effective indicators of virus transmission. This study’s primary focus was on the pre-

dictive performance of the California response plan’s risk model, including the full range of

surveillance elements or subsets thereof. We compared the California risk model’s estimates to

the vector index alone as a typical basis for vector control action thresholds, and future studies

would be useful to evaluate other ways to synthesize available environmental and surveillance

data to predict human disease risk.

One limitation of this study is that our estimates of human disease incidence were based on

reported cases of WNV; however, WNV is a vastly underreported disease. WNND is most
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likely to be diagnosed and reported, due to its severity of disease, but it is estimated that fewer

than 5% of non-neuroinvasive disease cases are diagnosed and reported [2,19]. For every neu-

roinvasive disease case, there are an estimated 30–70 non-neuroinvasive cases, which means

the true annual incidence of WNV in California is between 19 and 45 cases per 100,000 people

[21], considerably higher than the observed incidence of 1.1 cases per 100,000 during this

time-period [23]. WNV reporting is also likely influenced by additional factors such as access

to healthcare and socio-economic status, which could lead to underreporting from some areas.

In addition, this analysis focused exclusively on the Central Valley and Southern California,

areas with high levels of endemic WNV transmission and correspondingly higher burdens of

WNV disease. Excluding areas with lower levels of WNV activity eliminated some data at the

lower end of the risk levels. However, by extending the study period to slightly before and after

the season when most human WNV infections occur, we have accounted for the full range of

conditions under which human cases were likely to occur and those during which transmis-

sion risk was low. Human infectious disease cases are reported based on the jurisdiction within

which the case-patients reside and does not take into consideration the possibility that these

individuals may spend considerable amounts of time outside that jurisdiction for work and/or

recreation.

There was spatial autocorrelation within each of our models which limits the interpretabil-

ity of our study. Public health surveillance data is not randomly collected; VCAs monitor areas

where there have been previously high levels of virus activity. In addition, VCAS may increase

mosquito trapping and testing in areas where there have been other indicators of viral activity,

including dead birds, human cases, and even equine cases. VCAs are often within close prox-

imity to one another and have similar ecologies, so the risk within one VCA can influence the

risk within another.

This study aimed to compare the predictive performance of the Response Plan’s risk assess-

ment and the vector index in a relative sense to identify the surveillance components that were

most predictive of disease incidence. Based on these analyses, it is not possible to declare that

the incidence predicted by a given model is “accurate,” only that it was more accurate than

other models considered. Further study would be needed to evaluate predictive performance

of the Response Plan and vector index using operationally relevant measures of accuracy, such

as the sensitivity or specificity of various action thresholds that could be used as triggers for

public health or vector control actions. All models treated human disease risk versus environ-

mental surveillance factors as a simple logarithmic relationship: as response level increased, so

did human risk. However, our observed data shows a slight but consistent decline in human

incidence following time periods with the highest response level for both Cx. tarsalis and Cx.

pipiens complex. This may be due to activities conducted by local vector control agencies in

response to these elevated levels which are not accounted for in this analysis, such as the use of

adult mosquito control products (adulticides) at the highest response levels, thus lowering

human disease risk. As there are no treatments or vaccines available for WNV [49,50], the use

of adulticides is one the strongest tools available to combat human disease. During a season

with epidemic WNV disease and environmental conditions, Sacramento-Yolo Mosquito and

Vector Control spent $700,000 to provide emergency vector control, including adulticiding,

covering the county’s 2,570 km2 [51]. With an estimated cost of $33,000 to treat each WNV

neuroinvasive disease case, it was more cost effective to adulticide than treat patients if only 15

cases were prevented [52]. More recent estimates from California found a median charge for

treating a WNND case of $142,321, making adulticiding an even more cost-effective tool for

mitigation of human disease [53].

Building a WNV disease surveillance program that includes the monitoring of vertebrate

hosts and temperature, in addition to mosquito abundance and infection rates, yields a robust
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system for predicting when and where human cases are most likely to occur. The VectorSurv

system then automatically analyzes the data and generates risk levels that are easily interpret-

able, and each state has the ability to adjust risk thresholds for each environmental surveillance

component based on their own analysis [54]. This automation of the Response Plan’s risk

assessment allows California’s local vector control and public health agencies to allocate

resources optimally to reduce human disease risk, including public education on personal pro-

tection and enhanced mosquito surveillance and control efforts.
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