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Introduction 

Despite its apparent complexity, nearly every human learns to use language in the first 
ten years of life, and as scientists we would like some theory to explain this phenomenon. 
Ideally, such a theory should explain the processes that lead from naive to sophisticated 
language use, just as chemical theories explain the processes involved in reactions. The 
natural places to turn for such process descriptions are the fields of artificial intelligence 
(AI} and cognitive science. In particular, one should look to machine learning, the subfield 
of artificial intelligence concerned with computational approaches to learning - i.e., with 
processes that lead to improved performance over. time. 

Over the past two decades, machine learning researchers have made considerable 
progress in understanding the nature of learning mechanisms, and many of their results 
are relevant to models of human behavior. In this paper, we examine these results and 
their implications for theories of language acquisition. We begin by reviewing four basic 
learning tasks that have been the focus of the machine learning work, describing each in 
terms of a common framework. We then turn to the task of grammar learning, comparing 
and contrasting it with other learning tasks. After this, we review some earlier computa
tional models of grammar learning and consider some drawbacks of these models. Finally, 
we outline a new approach to modeling language acquisition that we hope will overcome 
these limitations. 

An Overview of Machine Learning Research 

In order to give the reader a better feel for the nature of machine learning research 
and its implications for models of language acquisition, let us begin by considering some 
common tasks that researchers in this field have addressed. We will consider the tasks in 
roughly historical order, based on the periods at which they first drew the major attention 
of machine learning researchers. Using this ordering, we have the tasks of learning from 
examples, learning search heuristics, conceptual clustering, and learning macro-opf ~ators. 
This list is not exhaustive, but the majority of AI learning research has focused on these 
tasks. 

Considerable work has also been carried out on the task of learning grammars. Interest 
in this area emerged early in the history of machine learning and has remained active until 
the present. Despite its early role in the field, we will delay our discussion of grammar 
learning (and thus violate our historical ordering) so we can better see its relation to other 
work. However, before moving on to specific tasks, let us first present a general framework 
within which each task can be viewed. 

The Components of Learning from Experience 

Any attempt to define learning is as doomed to failure as attempts to define life and 
love. One can certainly generate a formal definition, but others can always find intuitive 
examples that fall outside the specified conditions or find counterexamples that fall within 
them. Rather than trying to define learning in general, we will focus on the more con-
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strained issue of learning from experience. Most of the research in machine learning has 
focused on this class of problems, as opposed to learning by being told or learning by 
deduction from known facts. Will we not attempt to define the task of learning from expe
rience; instead we will specify some components or subproblems which must be addressed 
by any system that learns from experience. 

As we will see, these components are designed to characterize the five basic learning 
tasks that we consider in the following pages. It is possible that additional dimensions 
are required, but we will not know this until someone formulates a new learning task 
that forces expansion of the framework. Of course, other frameworks are possible that 
divide the learning problem along orthogonal dimensions. However, we will see that the 
current framework leads to useful insights about the nature of the language acquisition 
task, making it sufficient for our present goals. The four basic components of learning 
from experience are: 

• Aggregation - the learner must identify the objects from which he will form rules or 
hypotheses; i.e., he must determine the appropriate part-of relations.1 For instance, 
in understanding a visual scene, the viewer must identify the basic objects and their 
components. Similarly, in language acquisition, one must first group utterances into 
component sound-sequences (words). Thus, one may aggregate over either spatial or 
temporal descriptions. 

• Clustering - the learner must identify which objects or events should be grouped to
gether into a class; i.e., he must determine the appropriate instance-of relations, or gen
erate an extensional definition of the rule or hypothesis. For example, a concept learner 
must divide objects into instances and non-instances of the concept being learned. 

• Characterization - the learner must formulate some general description or hypothesis 
that characterizes instances of the rule; i.e., he must generate an intensional definition 
of the rule or hypothesis.2 For instance, the task of language acquisition requires one 
to move beyond specific sentences, and to formulate general rules or gram.mars. 

• Storage/Indexing - the characteriza:tion of the rule must be stored in some manner 
that lets one retrieve it when appropriate. For example, one may store an acquired 
problem solving heuristic in some form of discrimination network. 

1 Some readers will prefer:the term segmentation to the term aggregation, but this is simply a 
matter of perspective. One can view part-of relations as being established in either a top-down or 
a bottom-up manner. 

2 This is often called the generalization problem. We will avoid this term because it has has 
two distinct meanings within machine learning. The first sense includes the process of moving 
from a specific hypothesis to a more general one, and is the opposite of discrimination learning. 
The second sense includes any process for constructing a general rule from data, and encompasses 
both discrimination and the first sense of generalization. We intend the term characterization 
to replace this second (more general) sense. 
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As we proceed, we will see examples of these components in concept learning, in procedural 
learning, and in grammar learning. All learning tasks include the components in one form 
or another, and all learning systems must address them in some sense. 

However, in many tasks one or more components have been idealized out; that is, the 
solution to a subproblem is either provided by some outside source or can be effectively 
ignored. For instance, the programmer may divide the learner's input into distinct ob
jects, thus solving the aggregation problem. Similarly, the learner may acquire only a few 
characterizations, so that storage issues are not significant. We will see examples of these 
and other simplifications shortly, but Table 1 summarizes the basic results of this analysis, 
listing the relevant components of the five learning tasks we will consider. 

TABLE 1 

Relevant Components of Machine Learning Tasks 

Learning task 

Learning from examples 
Learning search heuristics 
Conceptual clustering 
Learning macro-operators 
Grammar learning 

Learning from Examples 

Relevant components 

characterization 
clustering, characterization 
clustering, characterization, storage 
aggregation 
aggregation, clustering, 

characterization, storage 

The task of learning concepts from examples is the most widely studied problem in 
machine learning. Research on this task addresses the question of how one forms concepts 
from examples presented by a tutor. The general version of this task may be stated: 

• Given: One or more classes or concepts, along with a set of instances or examples for 
each class. E.g., one might be given instances and non-instances of the concept uncle. 

• Find: Some description or rule that correctly predicts the class to which each in
stance should be assigned. In the uncle example, one would hypothesize some general 
description of this concept. 

In other words, given an extensional definition of one or more concepts, one must generate 
intensional definitions for each of those concepts. These descriptions must satisfy two 
constraints - each instance of a class must be covered by the description of that class, and 
no instance of a class may be covered by the description of any other class. Michalski 
(1983) has called the first of these the completeness condition and the second of these the 
consistency condition. In general, the description is expected to correctly classify instances 
that were not in the training set, so the learner must move beyond simple summaries of 
the original data. 
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The simplest version of learning from examples involves formulating a description for 
a single concept. In this case, we use the term positive instances for all examples of the 
concept and the term negative instances for all non-examples. Let us consider a simple 
task in which objects can be described in terms of only two attributes - size and shape. 
The learner might be told that a large circle and a large square are positive instances 
of the concept to be learned, while a small circle is a negative instance. One hypothesis 
that accounts for these data (though not the only one) is that the concept is simply 
large; this description covers the positive instances but not the negative instance. Concept 
learning tasks of this type were widely studied in psychology (e.g., Bruner, Goodnow, & 
Austin, 1956) before they were adopted by the machine learning community. 

The task of learning multiple concepts from examples can be reduced to the simpler 
problem of learning a single concept, repeated a number of times. Focusing on one of the 
classes, we label all objects associated with this class as positive instances, and label all 
objects associated with other classes as negative instances. The task of learning this single 
concept involves formulating some description which covers all positive instances but none 
of the negative instances. Suppose we repeat this process for each of the other cl&{lses, 
in each case producing a set of positive and negative instances, and generating a concept 
description for that class. The result of this scheme is a set of concept descriptions, each 
complete and consistent with respect to the others.3 Since the multiple concept learning 
task can be subdivided in this manner, most researchers have focused on the task of 
learning single concepts, and we will do so here as well. 

Learning from examples can be viewed as an idealized version of the general task of 
learning from experience. Since the tutor provides the basic objects upon which rules or 
descriptions are based, the aggregation subproblem is bypassed. Since the tutor assigns 
instances to classes for the learner, the clustering subproblem is trivialized. Finally, since 
only a few concepts are learned, the resulting descriptions can be stored in a simple list, 
thus avoiding the subproblem of storage and indexing. 

In other words, the task of learning from examples can be viewed as "distilled" char
acterization, and it is undoubtedly for this reason that it proved so popular in the early 
days of machine learning research. Focusing on this simplified task let researchers deal 
with characterization issues to the exclusion of complicating factors, much as the early 
physicists ignored nuisances like air resistance. This strategy led to a variety of interesting 
methods for formulating general descriptions from positive and negative instances (Win
ston, 1975; Hayes-Roth & McDermott, 1978; Mitchell, 1982; Anderson, 1983}, which later 
proved invaluable in studying more complex learning tasks. 

Since these characterization methods have been widely used in the work on more com
plex learning tasks, we should briefly review the set of methods that have been developed. 
The vast majority of methods rely on the insight that the set of descriptions or hypotheses 
considered during the characterization process can be partially ordered according to their 
generality. However, since this is only a partial ordering, multiple paths exist through the 

3 This approach assumes that classes must be disjoint; this assumption is not necessary, but is 
very common among machine learning researchers. 

4 



space of hypotheses, and this leads to search. Even very simple spaces are only partially or
dered along the dimension of generality; e.g., Figure 1 shows the space for the size/shape 
task described above. As a result, most characterization methods carry out a systematic 
search through the hypothesis space, but they differ widely in the details of this search. 

Figure 1. A partially ordered space of hypotheses. 

For instance, one can start with very specific hypotheses and gradually make them 
more general until an acceptable description is found (specific-to-general search), or one 
can begin with very general hypotheses and gradually make them more specific (general
to-specific search). One can even search in both directions simultaneously (the version 
space method). These approaches have different implications for the nature of the re
sulting description; for example, specific-to-general strategies will arrive at more specific 
characterizations than general-to-specific methods. However, all will generate descriptions 
that are both consistent and complete over the given instances, provided certain assump
tions are met, such as the absence of noise (misclassified instances). We will see examples 
of both approaches in our review of grammar learning methods. 

Characterization methods also vary in their processing of the instances they are given. 
Some approaches incorporate data one instance at a time; these are usually called incre
mental learning methods. Other approaches examine all of the instances simultaneously, 
often using statistical techniques to direct their search for useful hypotheses. These are 
typically called nonincremental learning methods. Naturally, the former are more plausi
ble models of the human learning process, while the latter are more analogous to scientific 
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data analysis. Most of the grammar learning systems we examine later are incremental, 
but we will see one example of the nonincremental approach. 

Finally, characterization methods differ in the operators that they employ for moving 
through the space of hypotheses. Some systems use operators that require only the current 
hypothesis as input. These techniques use some knowledge of the domain to transform the 
current description into one or more new hypotheses, and use the data only to test these 
hypotheses. We will call these model-driven methods. Other systems employ operators 
that require both the current hypothesis and a new instance as input; such techniques 
use the new data to transform the current description into one or more new hypotheses. 
We will call these data-driven methods. Historically, there has been a strong association 
between data-driven and incremental approaches, and a similar correlation between model
driven and nonincremental approaches, though exceptions to this trend exist. All of the 
grammar learning systems we will consider are data-driven in nature. 

Within the data-driven approach, we find two quite different classes of operators. The 
first of these finds common structure between instances and/or hypotheses, and is always 
combined with specific-to-general methods. For instance, suppose one's current hypothesis 
states that all members of some concept are large, red, and square, and that one 
observes the new positive instance large, blue, and square. Since the hypothesis fails 
to match the new example, we know it is overly specific and should be made more general. 
In this case, the technique would generate the revised hypothesis that all examples of the 
concept are large and square, since these features are held in common between the old 
hypothesis and the new instance. Such methods are usually conservative, in that they 
generalize only enough to cover the new instance and no more. 

One interesting aspect of the "finding common structures" operators is that, given 
a simple attribute-value representation involving a single object (like the one above), no 
search is required through the hypothesis space. Given relational or structural representa
tions (in which predicates take two or more arguments), one description may be mapped 
onto another in multiple ways, so that competing hypotheses must be considered anL search 
carried out. However, to the extent that one can represent one's hypotheses entirely in 
terms of attributes and their values, the characterization task will be greatly simplified. 4 

In relational cases involving search, there must be some way to distinguish good hy
potheses from bad ones, and this is where negative instances come into play. If hypothesis 
H covers any of the known negative instances, we know it is overly general; thus, we can 
remove H from consideration and concentrate on the alternatives. Another important as
pect of these operators is that they generate hypotheses containing those features held 
in common by all positive instances. This is desirable if the concept can be described as 
a conjunction, but if a disjunction is required, the approach will lead to overly general 
hypotheses that cover some negative instances. Note that if the concept can be expressed 

4 A number of researchers, including MacWhinney (1978), Berwick (1979), and Wexler (this 
volume), have applied this approach to grammar learning. Given the inherent relational nature of 
language, this seems counterintuitive, but their success speaks for itself. Hedrick {1976) employed 
a relational version of the common structures method in his grammar learning system. 
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in terms of an attribute-value scheme and if we know the concept is conjunctive in form, 
then we can determine the correct concept description using only positive instances. 

The second type of data-driven operator finds dijf erences between instances and/ or 
hypotheses, and is always combined with general-to-specific characterization methods. For 
instance, suppose one's current hypothesis is that all members of some concept must be 
red, and that the last positive instance of this concept was small, red, and circle. 
Further suppose that the next negative instance is small, red, and square. Since the 
current hypothesis matches this counterexample, we know the hypothesis is overly general 
and should be made more specific. In this case, a better hypothesis would be red and 
circle. 

We can generate more specific hypotheses by finding the differences between the posi
tive and negative instances, and using these differences to further constrain the hypothesis. 
Thus, each difference leads to an alternative description, each more specific than the one we 
started with. In this case, the only difference is that the positive instance is a circle while 
the negative instance is a square. Winston (1975) has used the term near miss to refer to 
such one-difference negative instances. They are important because they eliminate se'a.rch 
for difference-based methods in the same way that attribute-value based representations 
eliminate search for commonality-based methods. One can still make progress with far 
misses, but alternative hypotheses must be considered.5 As with specific-to-general tech
niques, these methods are conservative in that they discriminate only enough to ensure 
that the negative instance will not be covered. 

The majority of research on learning from examples has employed empirical methods 
like those we have just considered, which rely on many instances to induce an adequate 
characterization. We will see that these methods have been widely used in other ma
chine learning tasks, including grammar learning. However, recently some researchers 
have explored another approach that generates descriptions on the basis of a single posi
tive instance. 

These have been called analytical methods, since they reason about why the instance 
belongs to the specified class. They have also been called explanation-based methods, since 
they construct justifications for the instance's classification. For example, one might be 
given a functional specification of the concept cup - that it must contain liquids, that it 
can be lifted, and so forth. If one is then given a specific coffee cup labeled as a positive 
instance, one can prove that the physical features of this object satisfy the functional 
definition of cup. Thus, the cup's handle lets it be lifted, its concavity lets it contain 
liquid, etc. This proof identifies the relevant features of the instance, and these features 
can be used to formulate a general structural description of the concept. 

We do not have the space to describe such analytical approaches in detail, but later 
we will see that some of the work on grammar acquisition fits into this framework, rather 

5 Langley (1980, 1982) and Anderson (1981) have employed difference-based methods in their 
models of first language acquisition. Unfortunately, since parents do not carefully plan their 
presentation of sample sentences, we cannot assume that the first language learner relies on near 
misses to eliminate search. 
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than the empirical one. We direct interested readers to Mitchell, Keller, & Kedar-Cabelli 
(1986) for an excellent review of explanation-based learning methods. 

Learning Search Heuristics 

One of the central insights of AI is that intelligence requires the ability to search, and 
another is that expertise involves the ability to direct search down useful paths. This 
search occurs within the context of some problem space, which can be defined as a set of 
problem states together with operators for moving between those states. Each operator 
has an associated set of legal conditions that specify when it can be applied, but these are 
not enough to let one discover the goal state without search. For this one needs additional 
heuristic conditions on each operator that suggest the optimal move at each point in the 
problem solving process. 

Naturally, researchers in machine learning are concerned with how such heuristics 
might be learned from experience. The task of learning search heuristics may be stated as 
follows: 

• Given: A problem space defined in terms of an initial state and set of legal operators; 

• Given: A test to determine when the goal has been reached, and a search strategy for 
selecting operators and states. 

• Find: Heuristic conditions for each operator that will reduce or eliminate search. 

For example, Mitchell, Utgoff, and Banerji (1983) have examined heuristics learning in the 
domain of symbolic integration. In this case, problem states take the form of symbolic 
expressions such as J 6x2dx and 2x3 , and the goal is to find some state in which no 
integral sign occurs. Similarly, operators take the form of rules for transforming one state 
into another, such as J a· bx"'dx ~ a J bx"'dx. Fifty such operators commonly occur in 
solving simple integration problems, and the search space generated by these operators is 
quite large. 

As with learning from examples, researchers have explored a variety of different meth
ods for automatically generating heuristics. However, each such method must respond to 
an issue that makes the heuristics learning task more difficult than the task of learning 
from examples. This is known as the credit assignment problem. 

Minsky (1963) was the first to identify the difficulty of assigning credit and blame in 
procedural learning. This issue arises in situations where the learner receives feedback only 
after it has taken a sequence of actions. In order to improve its performance, the learner 
must assign credit to desirable actions and blame to undesirable ones. For instance, if one 
loses a chess game, the final move is seldom responsible for checkmate. Usually, some other 
(much earlier) move led to this undesirable state, but identifying this move may be very 
difficult. . 

Significant progress in heuristics learning occurred only when researchers identified 
effective methods for assigning credit and blame. The most obvious of these methods 
involves waiting until one finds the goal state through search, and then using the complete 
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solution path to distinguish desirable moves from undesirable ones. For the integration 
problem J 6:z:2d:z:, the optimal solution path would be J 6z2dz => 2 J 3:z:2d:z: => 2z3• Any 
move lying directly along this path to the goal state is marked as desirable, while any 
move leading one step off the solution path is marked as undesirable. Sleeman, Langley, 
& Mitchell (1982) have called this method learning from solution paths. Later, we will see 
that Berwick (1979) has employed a very similar approach to learn grammar rules. 

An alternative method involves assigning credit and blame during the search process 
itself. Rather than waiting until a complete solution has been found, one may note regu
larities in the search tree as it is generated. For instance, one might notice that an existing 
state has been revisited. This may result from a loop or from a longer path to that state, 
but in either case the move that led to the state is undesirable. (In integration, loops can 
easily occur when integration by parts is attempted.) Similarly, moves that lead to dead 
ends should be avoided if possible. Anzai & Simon (1979) and Langley (1985) have called 
this approach learning while doing, since it lets one assign credit and blame while search 
is being carried out. 

Once a credit assignment technique has been used to label moves as desirable or uR.de
sirable, one can easily identify positive and negative instances of each operator. These can 
be passed to a characterization method, which in turn generates general descriptions of the 
conditions under which each operator should be applied. When the heuristic conditions 
associated with an operator are used to determine when that operator should be applied, 
search is reduced or even eliminated. Langley & Ohlsson (1984) have called this basic 
method the problem reduction approach to heuristics learning, since it involves separately 
identifying the heuristic conditions for each operator and then recombining them into a 
system that requires little or no search. The vast majority of research on heuristics learning 
has taken this approach, though there has been considerable variation in both the credit 
assignment methods and characterization methods employed. 

Like the task of learning from examples, the heuristics learning problem is an idealized 
case of the general task of learning from experience.· Since the problem space is provided 
by the programmer, the basic objects upon which rules are based (the problem states) are 
given at the outset. As a result, there is no significant aggregation problem. Since the 
problem spaces that have been examined seldom have more than a few operators (the fifty 
that Mitchell et al. examined was very unusual), and since no more than a few heuristics 
are learned for each operator, there is no significant storage or indexing problem. 

However, the heuristics learning task differs from learning from examples in that the 
programmer does not provide the clusters from which descriptions (in this case heuristics) 
are generated. The learning system must of its own accord cluster instantiations of each 
operator into groups of positive and negative instances, using complete solution paths 
or some other credit assignment method. In fact, within the context of learning search 
heuristics, the subproblem of clustering is identical to the problem of assigning credit 
and blame. Once the system has determined the positive and negative instances for each 
operator, it must still employ some characterization method to determine the heuristic 
conditions for that operator. However, the same methods that have proven so useful in 
learning from examples can also be applied in this situation. To summarize, the task of 
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heuristics learning involves less idealization than the task of learning from examples, since 
the former requires one to address issues of both clustering and characterization. 

Conceptual Clustering 

We associate the notion of taxonomies with biology, but many (if not all) of the sciences 
progressed through a stage of taxonomy formation before moving on to discovering laws 
and theories. The task confronting scientists in this stage can be stated: 

• .Given: A set of objects and their associated descriptions. 

• Find: A hierarchical classification tree that covers all objects, and which places similar 
objects in the same classes. 

For instance, one might observe many different species or plants and animals, and then 
attempt to formulate a taxonomy which places similar species in the same categories. The 
most frequent examples come from biology, but taxonomies have also played an important 
role in astronomy (classifying stars and galaxies) and chemistry (classifying substanc.es). 

At first glance, this task appears quite similar to the problem of learning from examples. 
However, it differs from the simpler task on three dimensions. First, objects are not 
assigned to classes by a tutor, so that a distinction between positive and negative instances 
is not inherent in the data. Second, the goal is to generate extensional definitions of each 
class rather than general descriptions (intensional definitions). Finally, since a taxonomy 
is hierarchical, one must discover concepts at multiple levels of abstraction, as contrasted 
with the single level concepts that occur in learning from examples. 

Despite the apparent complexity of the taxonomy formation task, statisticians and bi
ologists have developed computational methods for automating this process. These tech
niques share the general names of cluster analysis and numerical taxonomy, and a variety 
of them have been proposed (Everitt, 1980). Most of the methods employ some measure 
of the distance between objects or clusters in a N-dimensional feature space, attempting 
to group together objects that are close to each other. Unlike most statistical methods, 
cluster analysis and numerical taxonomy have little theoretical justification and are largely 
heuristic in nature. Moreover, different methods tend to produce radically different tax
onomies unless the data are very regular, and the resulting hierarchies are often difficult 
to interpret. 

In response to these limitations, Michalski & Stepp (1983) have formulated a related 
task they call conceptual _clustering. This task differs from the traditional taxonomy for
mation task in two respects: 

• In addition to generating a hierarchy containing clusters of objects, one must also 
characterize those clusters. 

• In evaluating potential clusters, one should consider the characterizations of these 
clusters as well as the objects they contain. 

The authors argued that by including characterizations in the evaluation process, the 
resulting clusters will be easier to understand than those generated by traditional methods. 
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Given this revised framework, it is not surprising that Michalski and Stepp used established 
characterization methods as subroutines in their approach to taxonomy formation. Other 
methods for conceptual clustering (Langley & Sage, 1984; Fisher, 1984) differ in various 
respects, but all take advantage of standard characterization techniques in some manner. 

Methods for conceptual clustering can be viewed in terms of three different levels of 
search, each involving a different problem space. The first of these involves search for 
clusterings or groupings of objects at a given level of the hierarchy. The second involves 
search for descriptions or characterizations of object clusters; this is identical to the search 
carried out by systems that learn from examples. The final search is through the space of 
possible hierarchies within which the clusters and· their descriptions are contained. 

Methods for dealing with each of these subproblems can vary along a number of di
mensions. We have already seen some varieties of characterization methods, and similar 
variations exist in the search for clusterings and hierarchies. For instance, one may search 
for clusterings exhaustively or using heuristic search techniques; in particular, Michalski 
& Stepp employed a hill-climbing method to find useful clusterings. Similarly, one may 
construct hierarchies from the top down or from the bottom up; Michalski & Stepp 1tsed 
a top-down approach, while most numerical taxonomy methods operate in a bottom-up 
fashion.6 The interested reader is directed to Fisher & Langley (1985) for a more detailed 
discussion of conceptual clustering methods in these terms. 

The conceptual clustering task can be viewed as another variant on the general problem 
of learning from experience. Like the task of learning from examples, it ignores the problem 
of aggregation, since the basic objects and their descriptions are given to the learner. 
However, it differs from the simpler task in that it explicitly addresses the problem of 
clustering objects into groups without aid from a tutor. Unlike traditional clustering 
techniques, it also addresses the characterization problem, since one must form general 
descriptions for each cluster. Finally, it begins to deal with the storage/indexing problem, 
since objects and classes are stored in a hierarchy that can be used in classifying novel 
objects. 

In other words, conceptual clustering forces one to address three of the four components 
of learning from experience, more than either learning from examples or heuristics learning. 
Later in the paper, we will see that the clustering problem also arises in the grammar 
learning task, and we will examine some responses to this problem by several grammar 
learning systems. 

Learning Macro-Operators 

The .notion of chunks was originally proposed by Miller (1956) to explain short-term 
memory phenomena. The term chunk denotes some familiar pattern that one can re
member or manipulate as a single entity. Chunks can be perceptual or action-oriented, 
and can involve either spatial or sequential relations. In practice, machine learning re-

6 Researchers in numerical taxonomy (Everitt, 1980) use the term divisive for top-down methods 
and agglomerative for bottom-up approaches. 
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searchers' interest in issues of procedural learning has led them to emphasize sequential 
action structures. 

Like the work on heuristics learning, the chunking research has focused on learning in 
the context of search through some problem space. In this case, the goal is to discover 
sequences of operators, or macro-operators, that achieve useful results in the problem space 
(e.g., bringing one closer to the goal). Since relatively little work has been done on the 
acquisition of spatial or perceptual chunks, we will focus on macro-operators here. 7 

A number of mechanisms for generating macro-operators have been described in the 
literature, though they have not always been cast in these terms. For example, Lewis 
(1978) and Neves & Anderson (1981) discuss a process called composition that combines 
two production rules into a single, more powerful rule whenever the original rules apply 
in sequence. They have used this to explain the Einstellung effect, in which problem 
solvers prefer a well-practiced solution to some problem even when more efficient solutions 
are possible. More recently, Anderson (1983) has described a more selective version of 
composition that combines only those rules used to achieve a common goal. 

Korf (1982) has described a quite different method for generating macro-oper~tors 
that involves the notion of decomposable subgoals, while Iba (1985) has employed a third 
method that combines rules when it notes peaks in a numeric evaluation function. Finally, 
Laird, Rosenbloom, & Newell (1986) have described a method called chunking that is 
evoked only when a goal is achieved; however, this method differs from Anderson and Neves' 
composition in that it constructs the resulting macro-operator from memory elements 
involved in the goal, rather than from the rules used to reach the goal. 

Despite the differences in these approaches to forming sequential chunks, some common 
themes have emerged. First, most of the work has occurred within a heuristic search 
framework, in which macro-operators are composed from primitive legal operators. Second, 
goals play a central role in determining when most of the chunking methods are evoked. For 
this reason, most of the methods are embedded within a means-ends analysis framework 
like that used by Newell, Shaw, & Simon's GPS (1960), which allows intelligent generation 
of subgoals. 

The task of forming macro-operators can be viewed as another variant on the general 
task of learning from experience. In this case, the structure to be learned is some configu
ration of actions or operators - a sequential chunk. Methods for learning macro-operators 
directly address the aggregation issue, since they decide which components to include as 
parts of the higher level structure. In most chunking methods, the characterization prob
lem is made trivial, since new rules are based directly on existing rules, for which the level 
of generality is already known. Even in methods that address issues of characterization 
(such as Laird, Rosenbloom, & Newell's approach), chunks are based on single instances, so 
that the clustering problem is bypassed. Finally, none of the research in this area explicitly 
addresses storage issues, though much of the work is embedded within production system 

7 However, later we will see that sequential chunks also arise in the grammar learning task, 
where they correspond to structures such as noun phrases and verb phras_es. 
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frameworks like Anderson's ACT (1983), which have implicatio11$ for how knowledge is 
indexed in long term memory. 

Grammar Learning 

Now that we have considered a number of machine learning tasks, let us turn to the 
problem of language acquisition. The overall task of language acquisition is very complex 
and involves many levels, including: learning to recognize and generate words; learning the 
meanings of words; learning grammatical knowledge; and learning pragmatic knowledge. 
Each of these subproblems is interesting in its own right, but since the majority of AI work 
on language acquisition has dealt with grammar learning, we will focus on this issue in the 
current section. 

Some of the earliest work in machine learning addressed the problem of grammar 
acquisition, and this is still an active area of research in the field. The basic task may be 
stated in the following manner: 

• Given: A set of grammatical sentences from some language; .. 

• Find: A procedure for recognizing and/or generating all grammatical sentences in that 
language. 

The learned procedure may take many different forms, such as a set of rewrite rules, an 
augmented transition network, or a production system. Note that one is given only legal 
sentences from the language to be learned, and that no "negative instances" are presented. 
Solomonoff (1959) carried out some of the earliest AI work on this problem, followed by 
Knowlton (1962), Garvin (1967), and Horning (1969). Wolff (1978, 1982) and Berwick 
(1979) have described more recent grammar learning systems in this tradition. 

However, we know from the child language data that the human learner does not hear 
sentences in isolation; rather, the sentences usually describe some event or object in the 
immediate environment. This observation leads to a different formulation of the grammar 
learning task, which may be stated: 

• Given: A set of grammatical sentences from some language, each with an associated 
meaning; 

• Find: A procedure for mapping sentences onto their meanings or vice versa. 

This view of grammar acquisition differs significantly from the first one we examined. 
Grammatical knowledge may again be represented in a variety of ways, but it must con
tain more than information about sentence structure - it must also relate this structure 
to meaning. We will see that the second view of grammar learning leads to quite differ
ent models of the learning process. Kelley (1967), Sikl6ssy (1968), and Klein & Kuppin 
(1970) carried out the earliest work in this "semantic" tradition. More recent systems 
have been described by Hedrick (1976), Reeker (1976), Anderson (1977), Selfridge (1981), 
Sembugamoorthy (1981), Langley (1982), Smith (1982), and Hill (1983). 

Since we review some of the earlier work on grammar learning in detail in the following 
section, we will not delve deeply into particular methods here. However, we should note 
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that both versions of the grammar learning task can be viewed as further variants on the 
general problem of learning from experience. However, they differ from the other four tasks 
in an important respect. Like the chunking task, they address the problem of aggregation, 
since the grammar learner must form sequential chunks such as noun phrase and verb 
phrase. Like the conceptual clustering task, they address the clustering problem, since 
one must group words into disjunctive classes like noun and verb without the aid of a 
tutor. 

The opportunity for characterization also exists in the second (semantic) version of the 
task, since semantic features can often be used to predict when a class like noun or verb is 
appropriate. Finally, most representations of grammatical knowledge (such as ATNs and 
production systems) have implications for the storage/indexing problem, and this carries 
over into the work on grammar learning. In other words, the task of grammar learning is 
the only task that forces one to address all four components of learning from experience, 
making it (in principle, at least) the most challenging of the problems we have examined. 

Machine Learning Research on Grammar Acquisition 

Now that we have reviewed the types of tasks that machine learning researchers have 
focused on, let us consider some examples of AI systems that address the grammar learning 
process. Considerable work has been done in this area, and we will not have time to cover 
it all here. Instead, we will examine four specific systems that we feel will clarify the nature 
of this work and its relation to other problems in machine learning. The interested reader 
is directed to reviews by McMaster, Sampson, & King (1976), Pinker (1979), and Langley 
(1982). 

We will examine four AI systems that implement quite different approaches to gram
mar learning: Wolff's SNPR (1978, 1982), Berwick's LPARSIFAL (1979, 1980), Anderson's 
LAS (1977), and Langley's AMBER (1980, 1982). We will see that these systems differ 
on a variety of dimensions, the most important involving whether they learn from iso
lated sentences or from sentence-meaning pairs. In each case, we describe the inputs and 
outputs of the system, its representation of acquired grammatical knowledge, its learning 
mechanisms, and the relation of these mechanisms to the four components of learning from 
experience. We close with some comments on the role of negative instances in grammar 
learning. 

Wolff's SNPR System 

Wolff (1978, 1982) has developed SNPR, a program that acquires grammatical knowl
edge in a very data-driven manner. The system begins with a sequence of letters, and 
generates a phrase structure grammar (stated as rewrite rules) that summarizes the ob
served sequence. SNPR is not provided with any punctuation or with any pauses between 
words or sentences; it must determine these boundaries on its own. The program pro
cesses the strings in a semi-incremental manner, first examining a subset of the data, then 
processing another segment, and so forth. 
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One of SNPR's strategies is to look for common sequences of symbols, and to define 
chun/cs in terms of these sequences. For example, given the sequence thedogchasedth
ecatthecatchasedthedog ... , the program might define chunks like the, dog, cat, and 
chased. This example is somewhat misleading, since the system always builds chunks 
from pairs of symbols, but it conveys the basic idea. Whenever a chunk is created, the 
component symbols are replaced by the symbol for that chunk. In this case, the sequence 
the-dog-chased-the-cat-the-cat-chased-the-dog would result. This process can be 
applied recursively to generate hierarchical chunks. 

In addition, when SNPR finds a number of different symbols (letters or chunks) that 
precede or follow a common symbol, it may define a disjunctive class in terms of the first 
set. For instance, in the above sequence we find the subsequences the-dog-chased and 
the-cat-chased. Based on this regularity, Wolff's program might define the disjunctive 
class noun= {dog, cat}. It would then substitute the symbol for this new class into the 
letter sequence for the member symbols. In this case; the sequence the-noun-chased
the-noun-the-noun-chased-the-noun would be generated. Additional classes such as 
'verb' and 'determiner' Would be defined and replaced in the same manner. 

These two basic methods are applied recursively, so that chunks can be defined in 
terms of disjunctive classes. This leads to constructs such as noun phrases, prepositional 
phrases, verb phrases, and ultimately to sentences. Thus, the interleaving of chunks and 
disjuncts leads SNPR to construct phrase structure grammars which summarize the letter 
sequences it has observed. 

From this description we see that Wolff's learning system employs two operators - one 
for forming disjunctive classes such as noun, and another for defining chunks or conjunctive 
structures, such as dog. SNPR also includes operators for generalization (by discarding 
some data) and recursion, but we will not focus on them here. The system employs a 
numeric evaluation function to determine which of its operators should be applied in a 
given situation. This function measures two features of the grammar that would result -
the compression capacity or the degree to which a given grammar compresses the original 
data, and the size of the grammar. At each point in its learning process, SNPR selects 
that step which gives the greatest improvement in compression capacity per unit increase 
in size. Thus, the system can be viewed as carrying out a hill-climbing search through the 
space of possible phrase structure grammars. 

Now that we have described Wolff's SNPR in process terms, let us reexamine the 
system in terms of the four components of learning from experience. The first operator 
is clearly responsible for generating sequential chunks, and thus addresses the aggregation 
problem. Similarly, the second operator is responsible for forming disjunctive classes or 
extensional definitions, and thus addresses the clustering component. The most interesting 
feature of SNPR is that these operators both compete for attention through the evaluation 
function, and interact in that chunks are later used in disjunctive classes, which are in 
turn used in higher level chunks. Thus, the solution to both aggregation and clustering is 
inherently intertwined, with both using co-occurrence statistics to determine which step to 
take. Note that this data-intensive approach to chunking differs radically from the work 
on macro-operators, in which chunks are determined on the basis of a single instance. 
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Wolff's system is also interesting in that it makes no explicit attempt to characterize 
its disjunctive classes (e.g., noun and verb} after they have been extensionally defined. 
However, the interaction between aggregation and clustering can lead to multiple chunks 
which reference the same disjunctive class. For instance, the symbol noun may occur in 
the rewrite rules for noun phrase and prepositional phrase. Taken together, one can 
view the set of chunks that refer to noun as an intensional definition or characterization of 
that class. Thus, SNPR arrives at characterizations of a sort, though it does so indirectly. 

Similarly, Wolff does not explicitly address the details of the storage process, but the 
notion of efficient storage is a major motivation behind his work. Rewrite rules are com
monly used within computer science to store grammars for compilers, and recent versions of 
the AI programming language Prolog incorporate efficient implementations of such rewrite 
rules. Moreover, although SNPR's heuristics are concerned with efficient storage rather 
than efficient access and retrieval, the two measures are certainly correlated. Now that 
we have considered SNPR's relation to the components of learning, let us turn to some 
incremental approaches to grammar acquisition. 

Berwick's LPARSIFAL System 
. . 

Berwick (1979, 1980} has described LPARSIFAL, a system that learns grammars from 
a sequence of legal English sentences. The program incrementally modifies its grammar 
after each input sentence, unless that sentence can already be parsed by the grammar. 
The input sentences differ from Wolff's in that each one is composed of a sequence of 
separate words, and the sentences themselves are separated from each other. No meanings 
are associated with either words or sentences. Grammatical knowledge is represented as a 
set of rules, but ones quite different from the rewrite rules used by Wolff's SNPR. In order 
to understand the nature of these rules, we must review Marcus' (1980} PARSIFAL, the 
natural language system upon which Berwick's work is based. 

PARSIFAL differs from most AI natural language systems in that it employs a look
ahead method to avoid the need to backtrack on the vast majority of sentences. The 
system employs two data structures - a buffer containing the words in the sentence (the 
input} and a stack of nodes representing phrase structures (the output). The conditions 
of rules can examine only the first three items in the buffer and the top item in the node 
stack. There are four available actions: 

(1} Create a node and push it onto the stack; 

(2) Remove the top node_on the stack and put it in the buffer, pushing existing items to 
the right; 

(3) Attach the first buffer item to the top node on the stack, moving the remaining items 
in the buffer to the left; 

(4) Switch the first and second items in the buffer. 

The first of these actions can be instantiated in different ways. For instance, one rule may 
create a noun-phrase node, while another may create a verb-phrase node. However, the last 
three actions are completely determined by the situation in which they apply. PARSIFAL 
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operates in cycles, applying the first rule that matches, altering the stack and buffer 
accordingly, applying the next rule that matches, and so forth. This process continues 
until the sentence has been completely analyzed and a parse tree has been constructed. 

Now let us return to Berwick's LPARSIFAL, which operates within this framework. 
The system begins with a knowledge of X theory and an interpreter for applying grammar 
rules to parse sentences. Although the program can learn rules "from scratch" , our dis
cussion will be simplified if we assume that LPARSIFAL has already acquired a few rules 
for parsing simple sentences, such as active statements like The boy bounced the ball. 

When given a new sentence, LPARSIFAL attempts to parse it using the existing rules. 
If it encounters some problem, the system attempts to create a new rule that will handle 
the problem-causing situation. The program determines the action on this rule using a 
generate and test strategy, first seeing if attach will let it continue parsing the sentence, 
and if this fails, seeing if switch will suffice. Assuming one of these ultimately leads to a 
successful parse, the program constructs a new rule containing that action. 

The conditions of the new rule are based on the state of the parse when the iml?asse 
was encountered. This includes the top of the stack and the contents of the input buffer, 
including lexical features associated with the words in the buffer. Upon adding the new 
rule to memory, the system checks to see if any existing rules have identical actions. If 
there are none, the rule is inserted at the beginning of the rule list. 

However, if a rule with the same action and the same X context is found, LPARSIFAL 
compares the two condition sides to determine what they hold in common. The resulting 
mapping is used to construct a more general rule with the same action. Differing conditions 
are dropped from the resulting general rule or, in some cases, lead to the creation of 
syntactic classes like nouns and verbs. In the latter case, the words that differ in the two 
conditions are replaced by the name of the class, and the words are stored as members of 
that class. If the old rule contains a class where the new rule contains a word, the word is 
added to that class. 

The reader will note that LPARSifAL's method for combining rules is identical to 
one of the data-driven characterization operators we considered in the context of learning 
from examples. This is the "finding common structures" operator, which is often used in 
conjunction with specific-to-general strategies for learning concepts from examples. There 
are three interesting aspects to Berwick's use of this method. 

First, the system decides for itself into which of the existing rules it should incorporate 
the new "instance" (a given buffer-node combination). LPARSIFAL determines this by 
examining the action and the X context associated with existing rules and the new situ
ation, much as a system that learns from examples uses the name of the class associated 
with an instance. Second, the system represents instances and condition sides purely in 
terms of attribute-value pairs. As a result, there is never more than one way to incorporate 
a new instance into an existing rule, so that absolutely no search through the rule space 
is required. This leads directly to the third point. Since no search problem exists, the 
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program does not require negative instances to prune the search tree, and LPARSIFAL 
can learn grammars without computing such negative instances. 8 

However, recall that the "finding common structures" approach relied on an important 
assumption - that there exists a conjunctive characterization of the data. H an adequate 
description requires a disjunct of some form, then this approach will lead to an overly gen
eral characterization, and only negative instances will reveal the difficulty. Thus, Berwick's 
approach relies on the assumption that each action/X context combination has at most 
one associated set of conditions. H this assumption were violated, his system would acquire 
overly general grammatical rules, though it would never realize this fact. 

Now let us reconsider LPARSIFAL's approach to grammar acquisition as it relates to 
the four components of learning from experience. We have seen that the system addresses 
the issue of clustering, since it decides which instances (combinations of buffer items and 
nodes) to compare to one another. We have also seen that it attempts to characterize 
the resulting clusters by finding common features. The system's response to the storage 
problem is to create rules that are indexed for easy retrieval, a common approach that 
we have seen in other contexts. However, the program does not form any new sequeRtial 
chunks beyond those it starts with, so that it bypasses the aggregation problem. 

Upon reflection, LPARSIFAL feels quite different not only from Wolff's SNPR, but 
from every other grammar learning system that has been proposed. The reason for its 
distinctiveness becomes apparent when we recall another class of learning problems that 
addresses clustering and characterization but not aggregation - the task of heuristics learn
ing. We would argue that Berwick has successfully transformed the grammar learning task 
into the task of learning search heuristics, a counterintuitive (but apparently useful) ap
proach. 

The relation will become apparent if we consider a conservative approach to the heuris
tics learning task. Suppose one begins with a set of heuristic rules that are overly specific, 
and which thus lead to a state in which no move is proposed. At this point, one fa.Us back 
on those operators whose legal (but not heuristic) conditions are met. If applying one 
of these operators eventually leads to the goal state, then a new heuristic rule is created 
based on the successful move. This specific rule may then be combined with other rules 
that involve the same operator. The operators correspond to Berwick's four actions, and 
the learned heuristics correspond to his acquired grammar rules. This analogy is not as 
forced as it appears at first glance. Ohlsson (1983) has described UPL, a heuristics learn
ing system that uses a nearly identical strategy to learn rules for puzzles like the Tower of 
Hanoi.9 

Although Berwick's approach is an elegant one, it clearly addresses different issues in 
grammar learning than other systems. For instance, Wolff's SNPR generates sequential 

8 Berwick's system could identify negative instances of each action using the learning from 
solution paths method described earlier. Later, we will see another approach to "constructing" 
negative instances from grammatical sentences. 

9 We should note that Berwick reported the first version of LPARSIFAL in 1979, when very few 
results had been achieved in heuristics learning. 
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chunks like noun phrase and verb phrase, while LPARSIFAL does not. Similarly, Berwick's 
program learns the conditions under which to apply specific "parsing" operators, while 
other systems do not. The main overlap lies in the formation of syntactic classes like nouns 
and verbs, which both SNPR and LPARSIFAL (and many other systems) define. What is 
interesting about the latter system is that it clusters objects at two entirely different levels 
- the level of instances of each operator, and the level of words that should be grouped 
into one syntactic class. 

" 

The big dog chased the red ball 

Figure 2. Inferred parse tree for a simple sentence. 

Anderson's LAS System 

Anderson (1977) has developed LAS, a program that learns to understand and gener
ate sentences in both English and French. The system accepts legal sentences and their 
associated meanings as input, with meaning represented in terms of a semantic network. 
The goal is to acquire a mapping from sentences onto their meanings and vice versa, rather 
than simply learning to recognize grammatical utterances. LAS represents grammatical 
knowledge as an augmented transition network (ATN), with both semantic and syntactic 
information stored on each link. 

In addition to this basic information, LAS is provided with additional knowledge that 
constrained the learning process. This information included: 

• Connections between -concepts and their associated words; 

• The main topic of each sentence; 

• Knowledge that some concepts (like shapes) were more significant than others; the 
words for these concepts eventually developed into the class of nouns; 

• The graph deformation condition, which roughly states that if two words occur near 
each other in a sentence, the concepts associated with those words must occur near 
each other in the meaning of that sentence. 
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These sources of information are sufficient to enable LAS to determine a unique parse tree 
for any given sentence-meaning pair. For instance, suppose the system is given the sentence 
The big dog chased the red ball and its associated meaning. We can represent this 
meaning using node-link-node triples, with each triple specifying a connection in a semantic 
network: (event-1 action chase), (event-1 agent agent-1), Cagent-1 type dog), 
(agent-1 size big), Cevent-1 object object-1), (object-1 type ball), (object-
1 color red) .10 Given this information, LAS would generate the parse ((The (big) 
dog) chased (the (red) ball)), where parentheses indicated the level of the tree. Fig
ure 2 presents a graphic version of this parse tree. 

The big ball chased the red dog 

Figure 3. A sentence that violates the graph deformation condition. 

. . 

Let us consider the graph deformation condition in somewhat more detail. Stated 
more formally, this says that the parse tree for a sentence must be a graph deformation of 
the network representing that sentence's meaning, and that the branches in this parse tree 
must not cross each other. This assumption constrains the space of grammars that LAS 
considers, but it does not eliminate search by itself. Given the same meaning representation 
as above, a variety of associated sentences would satisfy the constraint. These include The 
dog big chased the ball red, The red ball chased the dog big, and Chased the 
big dog the red ball. If LAS observed any of these sentences paired with the same 
meaning, it would find them acceptable and generate their parse trees. Since the parses 
would be different, the system would acquire a different ATN in each case. 

However, the sentence- The big ball chased the red dog violates the graph defor
mation condition. When one orders the words in this fashion, there is no way to redraw 
the tree from Figure 2 so that the lines do not cross. As Figure 3 shows, the agent dog is 
too far from the agent node and the object ball is too far from the object node for this to 
be possible. As a result, LAS would reject this sentence as unacceptable, and would never 
consider learning a grammar which generated such sentences. 

lO LAS actually used a different set of links in its network representation, but we have used 
mnemonic ones for the sake of clarity. 
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Given the parse tree for a sentence, it is a simple matter to generate an augmented 
transition network that will parse that sentence. For instance, suppose LAS is given the 
parse tree ((The (big) dog) chased (the (red) ball)), shown graphically in Figure 
2. Using the knowledge it has been given (including the graph deformation condition), the 
program can transform this structure directly into the (initial) ATN shown in Figure 4. 

Since the parse tree has three branches at the top level, LAS would generate a top
level ATN with three links - one for the first structure {The (big) dog), one for the 
second structure chased, and one for the third {the (red) ball). Since the first and 
third components themselves contain internal structure, LAS would build a sub-ATN for 
both of these, each with three links. For example, the first sub-ATN (call it NPl) would 
have links for The, (big), and dog. Similarly, since the second element for each of the 
sub-ATNs has internal structure, LAS would create even lower level ATNs for these, each 
having one link (in one case for big and in the other for red). 

start NPl 

NPl 

ADJl e Al 

NP2 

ADJ2 e A2 

V = {chased} 
ARTl ={the} 
Al= {big} 

sl 

s3 

stop 

sS 

stop 

eV 

Nl ={dog} 
ART2 ={the} 
A2 ={red} 

s2 

s4 

s6 

NP2 stop 

e Nl stop 

stop 

N2 = {ball} 

Figure 4. Initial ATN based on a single sentence. 

·. 

In other words, there is a direct mapping from a parse tree to an ATN for generating 
that parse tree. Note from Figure 4 that specific words are never used as tests on the ATN's 
links. Instead, LAS defines a word class that initially has a single member, and uses this 
class in the test. Also note that the initial grammar employs different subnetworks for 
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constructs that we view as equivalent, such as the two networks for noun phrases. As the 
system progresses, such distinctions gradually disappear. 

After it has constructed an initial ATN, LAS attempts to incorporate new parse trees 
with as little modification as possible. For instance, given the new sentence The small 
cat chased the long string, the system would note that its ATN would parse this quite 
well, if only the certain classes were expanded. In this case, the class ADJ1 = {big} must 
be extended to ADJ1 = {big. small}, the class NOUN1 = {dog} must be extended to 
NOUN1 = {dog. cat}, and so forth. However, LAS is cautious about taking such steps, 
carrying them to completion only when the concepts associated with the words play the 
same semantic role as in earlier sentence meanings. 

In addition to expanding word classes, LAS employs two other mechanisms for pro
ducing more general grammars. First, when the system finds two word classes that share a 
significant number of elements, it combines them into a single class. Second, if LAS finds 
two sub-ATNs to be sufficiently similar, it combines them into a single subnetwork. A 
special case of this process actually leads to recursive networks for parsing noun phrases, 
so that arbitrarily deep embeddings can be handled. These steps occasionally lead. the 
system to learn overly general ATNs, which generate constructions such as foots instead 
of feet, and it has no mechanisms for recovering from such errors. 

Figure 5 presents a revised ATN that LAS might construct after hearing the second 
sentence A tall man followed the big dog. In this case, the word followed has been 
added to the syntactic class V. Moreover, the two classes N1 and N2 have been combined 
into the single class N with members dog, ball, and man.11 Similarly, the classes ART1 and 
ART2 have been collapsed, as have the classes A1 and A2. More important, the two noun 
phrase ATNs have been combined into the single ATN NP, based on their similar structure 
and components. An analogous combination has occurred for the ADJ1 and ADJ2 networks, 
generating a much simpler grammar than we had after the first example. 

Now let us reconsider Anderson's LAS in terms of the four components of learning 
from experience. First, we see that the system employs the meanings of sentences, their 
main topic, and the graph deformation condition to determine a unique parse tree. This in 
turn determines an augmented transition network, which can be viewed as a hierarchically 
organized set of sequential chunks. In other words, LAS used the above information to 
solve the aggregation problem for each sentence it is given. Note that this approach is 
quite different from chunking methods that have been used for building macro-operators, 
employing knowledge about language to determine the chunks. 

Anderson's approach to the clustering problem also differs from methods used for con
ceptual clustering. LAS uses a bottom up (agglomerative) approach to form disjunctive 
word classes, but this process operates in two stages. In the first stage, the system extends 
its word classes incrementally, expanding them whenever required to parse new sentences. 
In the second stage, it combines classes (nonincrementally) if they have enough common 

11 This combination could occur after dog had been added to N2, causing the two sets to have a 
50% overlap. Actually, we doubt that LAS would collapse word classes on the basis of such slim 
evidence, but we have assumed that it would for the sake of simplicity. 
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members. Moreover, both mechanisms are limited by semantic constraints. Thus, LAS's 
clustering method is evoked by syntactic regularities, but is filtered by semantic informa
tion. Syntax is used to generate possible clusters, while semantics is used to test whether 
they are appropriate. 

LAS determines the semantic constraints on its ATN's links from a single sentence
meaning pair, assuming that all portions of the semantic network relating concepts at 
the same level in the ATN are relevant. For instance, given the parse tree ( (The (big) 
dog) chased (the (red) ball)), LAS would assume that only the agent, action, and 
object relations would be relevant to the top-level ATN. Thus, Anderson's response to the 
characterization problem also differs from the traditional approaches, producing a general 
rule from a single instance. In this sense, it is similar to the explanation-based learning 
methods that have recently been formulated by Mitchell, Keller, & Kedar-Cabelli (1986) 
and others. 

start NP sl 

NP E ART s3 

ADJ stop 

V = {chased, followed} 
ART= {the, a} 

s2 

ADJ s4 

N = {dog, ball, man} 
A = {big, red, tall} 

NP 

Figure 5. Initial ATN based on a single sentence. 

stop 

stop 

Finally, Anderson's decision to use augmented transition networks constitutes a re
sponse to the storage issue. The use of ATNs have implications for retrieval, since the con
necting arcs act as direct pointers to successor states, giving them a top-down, expectation
driven flavor. Assuming the system has parsed the first part of a sentence, the most likely 
steps to follow can be easily retrieved. In addition, LAS combined sub-ATNs whenever 
possible. Although this was primarily intended as an induction technique, it also led to an 
efficient storage of grammatical knowledge. This is another dimension on which Anderson's 
work differs from other machine learning efforts, but this is not surprising, considering that 
ATNs were designed to handle linguistic phenomena. 
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Langley's AMBER System 

Langley (1980, 1982) has described AMBER, a cognitive simulation of the early stages 
of child grammar acquisition. Like LAS, the system accepts sentence/meaning pairs as in
put, using a semantic network to represent meaning. Again, the goal is to learn a mapping, 
in this case from meanings to sentences. AMBER represents this grammatical knowledge 
as production rules for generating sentences, including both semantic constraints and in
formation about what has already been said in the conditions of rules. 

AMBER is also similar to LAS in that it requires knowledge of the meanings of content 
words (like small, ball, and bounce), as well as information about the main topic of 
each sentence. In addition, the system assumes that utterances having no associated 
meaning (like the and ing) are function words, and that these play a quite different role 
than content words. Although AMBER does not assume Anderson's graph deformation 
condition, we will see that something analogous arises from the system's strategy for 
generating sentences. 

The reader will recall that LAS used each sample sentence-meaning pair to gene1ate 
a parse tree, which formed the basis for its ATN. Instead, AMBER employs information 
about the main topic of the sentence to transform the semantic network representation of 
meaning into a tree, in which the top node corresponds to the main topic. Consider the 
following sentences: 

The big dog chased the red ball. 
The red ball was chased by the big dog. 
The dog that chased the red ball was big. 

Although these sentences describe the same event, they differ in their main topic. In the 
first construction, the chasing action is emphasized; in the second, the ball is highlighted; 
and in the final sentence, the dog is emphasized. In each case, AMBER transforms the 
network representation of the meaning into a different tree structure. 

Based on the resulting tree, AMBER proceeds to generate an utterance to describe 
the structure. In doing so, it employs the notion of goals and subgoals. The system's top 
level goal is to describe the entire tree. In order to achieve this high level goal, it creates 
subgoals to describe nodes lower in the tree. At the outset, AMBER can handle only 
one subgoal at a time, leading the system to generate one-word "sentences". Much of the 
system's learning consists of acquiring rules that let it deal with multiple subgoals, and 
then identifying the relative order in which those subgoals should be achieved. 

However, even in its early stages AMBER places two important constraints on this 
process. First, it never creates a goal at level L while another goal at the same level is 
still active. Second, once it has deactivated a given goal, it cannot reactivate it for the 
current utterance. Thus, in describing an event in which a big dog chased a red ball, 
AMBER might not mention all aspects of the event; for instance, it might fail to mention 
that the dog was big or that the action involved cha.sing. However, it would never say 
dog, followed by chase, and then return to big, since the concepts big and dog occur in 
the same subtree. As a result of this goal-processing strategy, AMBER is guaranteed to 
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generate only utterances which obey Anderson's graph deformation condition, even though 
this constraint is not explicitly included in the system. 

AMBER begins with the ability to say one content word at a time. Based on differences 
between these utterances and the sample sentences it is given, the system generates new 
rules that let it generate combinations of words and phrases in the correct order. For 
instance, upon describing the shape of an object (say ball) without mentioning its color 
(say red), AMBER would acquire a rule stating that it should only describe shape after 
it had described color. Such rules must be constructed a number of times before gaining 
enough "strength" to take control from the default rules. Similarly, if the agent was 
omitted entirely from the system-generated sentence while the object was described, the 
system would construct a rule stating that the object should only be described once the 
agent had been mentioned. This last situation leads AMBER to constructions like Daddy 
ball in which the action is omitted. Of course, such omissions eventually disappear as the 
system progresses. 

Whenever AMBER successfully predicts all of the content words in an adult sentence, 
it turns its attention to function words like is, the, and ing. In the early stages;.the 
system simply omits these terms and creates rules to produce them in the future. How
ever, these initial rules include only limited conditions based on the semantic role played 
by the associated content word. For instance, ing would only be produced following an 
action word, but no additional constraints are included. Once such rules gain sufficient 
strength, they begin to generate errors of commission by applying in inappropriate situ
ations. In these cases, AMBER invokes a discrimination learning mechanism to identify 

. differences between positive and negative instances of the overly general rule. This creates 
more conservative rules with additional conditions, which (after gaining sufficient strength) 
eliminate the errors of commission. 

Now let us reconsider Langley's system in light of our four components of learning. 
First, we see that AMBER uses the meaning of a sentence, together with the main topic, 
to determine a tree structure that is very similar to a parse tree. In fact, this tree contains 
all of the information in a parse tree except the word order, which is available from the 
sentence itself. As in LAS, this tree structure tells AMBER which basic chunks it should 
form, solving the aggregation problem. · 

Although their basic response to this problem is the same, the two system differ in 
their implementation details. In particular, Langley's system does not require an explicit 
statement of the graph deformation condition, since this falls out of the model's mecha
nisms for processing goals.12 In this sense, AMBER 's approach to chunking is similar to 
Anderson's (1983) composition learning method, which creates chunks based on goal trees. 

Unlike the other language acquisition systems we have discussed, AMBER does not 
formulate explicit syntactic word classes. Rather, the system states its "grammar" entirely 
in terms of semantic roles like agent, action, color, and shape. This corresponds to 

12 Anderson's (1981) ALAS employs a very similar response to the chunking problem, and to 
modeling first language acquisition in general. The two systems employ quite similar representa
tions and learning mechanisms, though AMBER accounts for somewhat earlier stages than ALAS. 
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children's early utterances, though eventually they move beyond the semantic stage to 
more abstract syntactic classes like nouns and verbs. In any case, this means that AMBER 
has no explicit response to the clustering problem for content words. The system does have 
to group sentences into positive and negative instances for each function word, but this is 
easily done by seeing whether each word occurs in the expected position. 

Langley's model has two distinct responses to the characterization problem. Once 
it has identified positive and negative instances for the various function words, AMBER 
invokes a discrimination mechanism to determine the semantic conditions for each word. 
We discussed this method earlier in the context of learning from examples. Basically, 
it is a data-intensive technique that begins with ·general hypotheses and generates more 
specific ones as errors of commission occur, using a differencing technique to determine 
new conditions. Anderson (1983) and Langley (1985) have used similar methods for other 
domains, including learning from examples and heuristics learning. AMBER combines the 
discrimination process with a strengthening mechanism that serves to direct search through 
the space of hypotheses, as well as modeling the gradual nature of children's mastery of 
function words. . . 

. In contrast, AMBER employs a quite different strategy to identify conditions on rules 
for content word order. In this case the system learns from a single instance, rather than 
relying upon a method that requires multiple observations. Learning occurs when the 
system correctly generates one content word but omit another content word it should have 
produced. To determine the relevant conditions, the system finds the path through the 
semantic network that connects the two content words, and includes all links along this 
path as conditions in the new production rule. Although the details differ, this strategy 
is similar to that used by LAS, in that the system reasons about the meaning of a sample 
sentence to decide which conditions are relevant. Although AMBER must relearn the 
resulting rules many times before they affect behavior, the same conditions would be 
determined in each case. Thus, Langley's system uses a simple form of explanation-based 
learning to acquire rules for content words, rather than the empirical method it 11ses for 
function words. 

Although it makes no explicit response to storage issues, AMBER is implemented as a 
production system model. Newell and Simon (1972) have argued that production systems 
are a viable model of human long term memory, accounting for a variety of robust phe
nomena exhibited in human cognition. Moreover, Forgy (1979) has proposed a method for 
efficiently storing large numbers of production rules that takes advantage of shared features, 
and for efficiently matchh1g against these rules by retaining partial matches. AMBER is 
implemented in PRISM (Langley & Neches, 1981), a production system architecture that 
employs Forgy's storage and matching methods to provide reasonable performance even 
when large numbers of rules are involved. Thus, the system provides a plausible response 
to issues of the storage and retrieval of grammatical knowledge. 
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Negative Instances in Grammar Learning 

Before concluding our review, we should add a few words about the role of negative 
instances in grammar learning. In an earlier section, we saw that many learning methods 
rely on negative instances to direct their search through the space of hypotheses. Charac
terization methods that find common structure employ such instances to determine when 
a description is overly general, and thus should be eliminated. Characterization methods 
that find differences use negative instances to determine how overly general descriptions 
should be made more specific. We found that negative instances are heavily used in learn
ing from examples, where they are provided by. the tutor. However, they are also used 
in heuristics learning and conceptual clustering, where they must be generated by the 
learning system itself. 

Only one of the grammar learning systems we discussed (Langley's AMBER) actually 
employs negative instances, but a number of other systems have also used this type of 
information, including Reeker's PST (1976) and Anderson's ALAS (1981). At first glance, 
the use of negative instances may seem odd, since these models are given only examples 
of legal sentences. However, AMBER and its relatives are not dealing with positive

0

'and 
negative instances at the level of the entire sentence. Rather, they are learning the condi
tions on rules or networks that deal with only parts of sentences.13 Moreover, they are not 
acquiring the ability to judge grammaticality, but to map sentences onto their meanings 
and vice versa. 

The presence of sentence meanings makes a major difference. Since a particular word 
or phrase may fail to occur in the presence of a particular meaning, negative instances 
become possible. As a result, one can use difference-based characterization methods such 
as discrimination (Langley, 1985) that require comparisons between positive and negative 
instances. Let us consider a brief example of how this can occur. Suppose the learner 
knows that ed may occur after a verb or action word, but not exactly when. Each case 
in which the ending does occur is marked as a positive instance of ed, while e<i.ch case 
in which it fails to occur is marked as a negative instance. Based on this clustering, 
one can systematically search the space· of characterizations to determine which semantic 
conditions best predict the occurrence of the ending. Similar methods could be used for 
content words or larger structures, such as phrases. 

Let us repeat that we do not mean that children receive negative evidence in the form of 
ungrammatical sentences. However, we do mean that one can generate negative instances 
from sentences paired with their meanings, and use this information in the grammar learn
ing process. The ability to do this relies on an important assumption that has not been 
clearly stated in earlier papers taking this approach: there must be a one-to-one mapping 
between sentences and meanings.14 If this uniqueness assumption does not hold, then 

13 Berwick (1979) could also have employed negative instances at the rule level by noting which 
actions failed to allow a successful parse. However, LPARSIFAL did not employ this information, 
since its search for rules was already sufficiently constrained. 

14 We direct the reader to other chapters in this volume for a fuller treatment of the uniqueness 
assumption. In particular, the chapters by Clark, by Pinker, and by MacWhinney and Sokolov all 
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one cannot infer that a missing word or phrase implies a negative instance; the construct 
might be perfectly acceptable, but the speaker has simply decided to describe the meaning 
another way. 

Thus, the uniqueness assumption guarantees that a. missing construct constitutes a 
negative instance of that construct. This considerably simplifies the learning task, since 
one can then use the inferred negative instances to eliminate overly general rules or to 
formulate more specific ones. Of course, learning mechanisms that can handle noise (such 
as strength-based methods) might still learn if this assumption is not met, and in this case, 
more frequent constructs would come to be preferred. Still, the greater the degree to which 
the assumption is violated, the more difficult the grammar learning task will become. 

A Research Proposal 

Our review of computational approaches to language acquisition would not be complete 
without some evaluation of this work, and some suggestions for future efforts. For instance, 
we might evaluate various systems in terms of the psychological and linguistic validity, but 
this would not really be fair. Of the four grammar learning systems we have examined, 
only Langley's AMBER (1980, 1982) is intended as a psychological model of first language 
acquisition, and thus made a serious attempt to account for child language data.. Other 
models have been proposed by Kelley (1967), Reeker (1976), MacWhinney (1978a, 1983), j 

Selfridge (1979), and Hill (1983), but the majority of AI research on language learning has 
not attempted to explain the observed phenomena.. We would like to encourage more work 
of this sort, but even ignoring this issue, the existing systems suffer on other dimensions. 
In this section, we consider their limitations and outline an alternative approach that we 
are using in our own work. 

Limitations of Previous Research 

One problem with the existing work is its focus on grammar learning to the e.xclusion 
of other aspects of language acquisition. A few systems, such as Sikl6ssy's ZBIE (1968) and 
Selfridge's CHILD (1979), learn to associate words with concepts, but the majority assume 
that these connections are present at the outset. Wolff's SNPR (1978, 1982) acquires words 
themselves as well as grammars, and MacWhinney (1983) has modeled the development 
of morphophonology, but these are distinct exceptions to the rule. In addition, all existing 
systems focus on generating or understanding correct sentences rather than interesting 
ones. We know of no system that acquires pragmatic knowledge for determining what one 
should talk about in a given context. Ultimately, we would like an integrated theory of 
language acquisition that incorporates all of the above components. 

The previous work has also ignored interactions between the process of languag~ ac
quisition and other aspects of cognition, such as concept formation. Thus, it fits well with 
the traditional machine learning focus on isolated tasks like those we reviewed earlier in 

make use of this assumption, though not always by the same name. For example, Clark calls it 
the principle of contrast. 
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the paper. However, it is clear that concept learning has major implications for language 
acquisition, and a. complete model would take their interaction into account. One can 
make similar arguments for other components of intelligence. 

A more subtle criticism concerns only those systems that learn mappings between 
sentences and their meanings. However, this assumption holds for all psychological models 
of grammar learning, an important class of learning systems. The problem is that the 
representation of meaning is provided by the programmer, and this leaves considerable 
room for hand-crafting the input. Similar problems a.rise for other machine learning tasks, 
but the nature of the grammar learning task emphasizes the issue. There are two ways in 
which such "cheating" can be embedded in the meanings presented to a model of language 
acquisition. 

First, one may employ concepts and features that are well-suited to the language 
being learned. For instance, some systems allow a progressive feature to be associated 
with the action of an event. This considerably simplifies the acquisition of the English 
ing construct, while the progressive concept is useless for other languages that make 
orthogonal distinctions. Second, one may include in the meaning representation only tkose 
features that are relevant to the learning task. This lets one avoid modeling the process of 
focusing attention on important aspects of the environment. All existing cognitive models 
of language acquisition suffer from such hand-crafting; the "kludges" have moved out of 
the models (which are often quite general) and into the inputs. 

An Alternative Approach to Modeling Language Acquisition 

We have been somewhat unfair in criticizing machine learning's emphasis on isolated, 
idealized tasks, and equally unfair in criticizing models of grammar learning for their 
carefully crafted inputs. Simplifying assumptions a.re always helpful when one is first 
attempting to understand a problem area, and the simplifications that occurred were 
natural ones. However, the history of artificial intelligence reveals a recurring trend - after 
the components of a problem are reasonably well understood, more "complex" problems 
may become easier to solve than the original "simple" ones. 

An example from vision research should clarify the trend. Early work in this area 
focused on the idealized problem of constructing three-dimensional models from very well
lit scenes. Methods for solving this problem involved considerable computation and search. 
However, when the "harder" task of working with shadowed scenes was attempted, many 
of the difficulties disappeared. In retrospect, the reason is obvious; the presence of shadows 
provided constraints that -were absent in the original, idealized task, and this significantly 
reduced the space of possible interpretations. 

We believe that research on computational models of language acquisition would benefit 
from similar strategy. Since this work is still in its early stages, we will spend the remainder 
of the paper on the constraints we have set ourselves, rather than on solutions to them. 
Such constraints can occur at two distinct levels. First, one can make the modeling problem 
more difficult for oneself, using the resulting constraints to direct search through the space 
of possible models. Second, one can make the language acquisition task more difficult for 
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the learning system, providing additional constraints for the system to use itself. We plan 
to use both of these strategies in our work on language acquisition. 

One way to constrain our search for mechanisms of language acquisition is to model 
human behavior in this domain. In addition to the intrinsic interest of this endeavor, 
human children are still our best examples of language learning systems, making them 
obvious objects of study. MacWhinney (1978b) has proposed nine criteria that should be 
satisfied by computational models of human language acquisition. Here we will list only 
four broad classes of constraints that our model should meet, but each of these is sufficient 
to rule out many of the approaches that have been previously explored. 

First, it is clear that children acquire language in an incremental fashion, so our learn
ing mechanisms must have this characteristic as well. Second, it is clear that humans 
learn not only to judge the grammaticality of sentences, but to map sentences onto their 
meanings, and our model must do the same. Third, the model should be consistent with 
our knowledge of the human cognitive architecture. For instance, Newell and Simon (1972) 
and Anderson (1983) have argued that production systems are central to human cogni
tion; this makes production systems an obvious framework to consider, though certarinly 
not the only one. Finally, children progress through clearly identifiable stages during their 
acquisition of language, and our model should account for these stages. Thus, the model 
should progress from the one word stage, through a telegraphic stage, and eventually pro
duce complete adult sentences. We have not decided the level of detail we should strive to 
explain, but even the highest levels significantly limit the space of models. 

Towards an Integrated Model of Learning 

In addition to developing a psychologically plausible model of first language acquisi
tion, we hope to develop a more complete model that moves beyond grammar learning in 
isolation. The planned system must learn to recognize and generate words like bounce and 
ball, and it must also associate these words with particular concepts. The model will have 
to learn the mapping between combinations of words (sentences) and their meanings, and 
to acquire heuristics for generating usefol sentences. Moreover, these different components 
must be integrated into a single model of the language acquisition process. 

The advantage of this approach is that the various learning tasks should feed into each 
other, reducing the learner's reliance on carefully crafted inputs. For instance, the model 
will initially learn the meanings of words based on repeated situations in which a given 
word and concept cooccur. This knowledge can then be used to aid the grammar learning 
process, much as existing grammar learning systems use word meanings. However, once an 
initial grammar has been acquired, this can be used in turn to learn new word meanings 
from context (Granger, 1977). Such positive feedback would let the system move away 
from its initial reliance on sentence-meaning pairs. 

We also hope to integrate the language acquisition process with a model of both concept 
formation and problem solving. It is clear that children have many concepts in memory 
before they associate words with them, and the concept formation process must account 
for their origin. Presumably, some concepts will be acquired later than others, and this 

30 



may account for the fact that certain words are learned relatively late. Thus, the model of 
concept formation may contribute to explaining phenomena that appear entirely linguistic 
at first glance. The causal arrow may point in the other direction as well, since language 
may be used to communicate new concepts once it has advanced sufficiently. 

We believe the problem solving process is also important to language acquisition, since 
it is responsible for the generation of goals, and for the creation of plans to achieve these 
goals. Many of children's early utterances seem to revolve around goals such as easing 
hunger and getting attention. H we hope to explain these utterances, we must account 
for the origin of these goals, and thus the need for a model of problem solving. Also, it 
seems quite likely that an explanation of pragmatic rules and their acquisition will revolve 
around goals, and a full account must explain how these goals originate. 

Learning in a Reactive Environment 

Machine learning researchers have traditionally focused on abstract, symbolic tasks like 
learning from examples and heuristics learning. Not surprisingly, they have attempted to 
cast the task of language acquisition in the same mold, providing well-defined inputs ~uch 
as sentence-meaning pairs, and expecting clean categorical rules or grammars as outputs. 
However, humans learn language in the context of a complex physical world, and our model 
of the acquisition process should reflect this fact. 

In the World Modelers Project, we have implemented a complex simulated environment 
in which our learner will perceive and act, much as a human child does in the real world. 
There are three central motivations for using this simulated environment: (1) to provide our 
learning model with (qualitatively) the same class of inputs as a human learner might find 
in the real world, rather than some mathematical abstraction of preselected information 
with no surrounding context; (2) to investigate reactive learning, in which the learner can 
experiment with different ways of generating language or action, and directly observe the 
behavioral consequences of its linguistic or physical acts; and (3) to provide situations in 
which learning can be guided by the pursuit of goals, rather than being an end in itself. 

The simulated environment supports three-dimensional objects (such as furniture and 
toys), and these objects obey standard physical laws involving gravity, friction, and torque. 
The learner itself has a (simplified) physical body that lets it move around and affect its 
surroundings, as well as senses that let it observe these surroundings. Carbonell & Hood 
(1985) describe the simulated environment in more detail, but the important point is that it 
has much the same flavor as the environment in which a child learns language. To date, we 
have constructed only very simple agents, but our long-term goal is to develop an integrated 
model of learning (including the acquisition of language) within this environment. 

The planned agent will perceive its surroundings through various senses (sight and 
hearing), and store the resulting descriptions in memory. This has important implications 
for the language acquisition task, since it means that the programmer need no longer spoon
feed the meanings of sentences to the model. In fact, such direct transfer of information 
is explicitly forbidden; the learner will have access only to what it can see and hear. 
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This will force us to deal explicitly with two issues we raised earlier: giving the model 
hand-crafted features like progressive to ease the learning task; and limiting the agent's 
attention by presenting only relevant aspects of an event. Let us consider some responses 
to these issues that we plan to explore in our model of learning in a reactive environment. 

Rather than provide the system with arbitrary high-level features, we must show how 
these concepts arise naturally out of an integrated cognitive architecture. For instance, any 
system that interacts with a physical world must have some representation for time and be 
able to use this in describing events. The system must be able to distinguish between events 
that are currently occurring and those which are not. Thus, such a system will already 
have one of the features needed to state progressive rules (like the English ing), which 
are used only in describing ongoing events. However, this feature arises naturally from 
the architecture itself and has many uses, rather than being given by the programmer 
specifically for the grammar learning task. We believe that most other features can be 
handled in an analogous manner. 

Similarly, we should not simplify the grammar learning task by providing only the 
relevant features of an event. Instead, we must model the process by which the learner 
focuses on relevant information and ignores other features, and this requires a model of 
attention. We believe that existing concepts and schemas generate goals and expectations, 
and that humans use these expectations to filter the overwhelming information provided 
by their senses. Attention is initially focused by specific object and procedural concepts 
such as ball and bounce, since the child's early interactions with the world lead to such 
concepts. This bias helps account for the dominance of content words in early speech. 
Only later, after he has mastered content words, does the child turn to function words. If 
the learner is unable to account for these with existing schemas, he must "loosen up" his 
filter and examine other features that he previously ignored. Different features will prove 
useful in different languages, and this is the point at which grammar can influence the 
learner's knowledge structures in significant ways. 

In addition, placing the learner in a physical world should lead naturally to a variety of 
goals, such as easing hunger. If the agent has only limited manipulation capabilities (e.g., 
an object may be out of reach), then it will have significant motivation to communicate its 
goals, in the hope that another agent (e.g., a parent) will satisfy them. Thus, goals will 
play a central role not only in our model of problem solving and concept formation, but 
in our model of language use as well. In general, the agent will talk about what it wants, 
rather than describing random objects and events. Such goal-driven focus of attention 
should constrain the otherwise combinatorially intractable problem of correlating linguistic 
utterances with physical objects or actions. Moreover, these goals will arise naturally from 
the learner's interaction with the world, rather than being provided by the programmer. 

This opens the way to modeling the development of discourse strategies. We expect 
that the learner will usually be accompanied by an "adult" who has both sophisticated 
language skills and a repertoire of actions available to it. (This agent will be directly 
controlled by the programmer, so we can "put words into its mouth".) Thus, the learner 
will be able to make demands, ask questions, and exhibit a variety of linguistic behaviors 
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beyond simple declarative sentences. Different types of sentences can be used to satisfy 
different goals, and the model must acquire the proper distinctions from experience. 

Also, the presence of world knowledge provides an explanation for why understanding 
often appears to precede production (generation). Although the process of concept forma
tion leads to knowledge of the world without need for language, this does not mean that 
the knowledge cannot be used in linguistic contexts. Upon hearing a sentence that it only 
partly understands, the agent may well take the appropriate action based on its previous 
experience. 

For example, suppose the child hears Go to the door, but only knows the meaning 
of door. Since moving towards an object is a common strategy used to explore one's 
surroundings, the child may perform the desired action, even with no knowledge of syntax 
and little knowledge of semantics. Selfridge (1981) has used a similar approach in his 
model of first language acquisition. However, he provided the learner with the necessary 
knowledge structures, rather than modeling the process through which this knowledge is 
acquired, as we plan. . 

Of course, to the extent that such non-linguistic strategies are useful, the child will Ii.ave 
little reason to learn word meanings and grammar. But in many cases, this approach will 
lead to behaviors that the adult does not desire, and the learner will observe his displeased 
response. For example, the above strategy would produce the same response to Close the 
door (the child would go to the door), but in this case it would be incorrect. At this point, 
the parent might demonstrate his intention by closing the door and repeating the word 
close. Only in a reactive environment can such interaction be modeled and exploited for 
learning. 

This approach to language learning should work in the opposite direction as well. 
Suppose the child says ball to request that an adult bounce the ball to him, and then sees 
the adult place the ball in his pocket. This is a violated expectation, and as we described 
earlier, such failures can be used to generate the negative instances that are so useful to 
learning mechanisms. Experiences of this type will encourage the child to use complete 
sentences to achieve his goals, rather than isolated words or telegraphic sentences. 

We can say little more about the model at this point, since it exists only in the most 
abstract terms. In fact, we have said more about the task we have set ourselves than the 
model. However, we feel the nature of this task is central, since it will force us to deal 
with issues that have been ignored (or at least postponed) in previous work on language 
acquisition. We feel that the goals of modeling human behavior, developing an integrated 
model of learning, and examining learning in a reactive environment will lead us down 
paths that have never been traversed, but which are essential if we hope to understand the 
full nature of language acquisition 
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Summary 

In closing, let us briefly review the main points of the paper. We have seen that 
the field of machine learning has addressed a number of distinct tasks, including learning 
from examples, heuristics learning, conceptual clustering, and learning macro-operators. 
Significant work has also been carried out on the problem of learning grammars from sample 
sentences. We described each of these tasks in terms of four components or subproblems 
- aggregation, clustering, characterization, and storage. We found that only the grammar 
learning task forces one to address all four of the components, making it the most complex 
of the learning problems we examined. 

We also saw that in the area of language acquisition, machine learning researchers have 
focused almost exclusively on grammatical knowledge, and we reviewed four systems that 
acquire such knowledge. These systems differed along a number of dimensions, including 
their representation of grammars, their reliance on sentence meanings, and the actual 
learning mechanisms they employed. Each system also had its own response to the four 
components of learning given above. Finally, we discussed some problems with existing 
computational approaches to language acquisition, and outlined an alternative app~oach 
in which we plan to integrate different aspects of the learning process, and in which we 
plan to model learning in a complex, reactive environment. 

We have no illusions that developing an integrated model of language learning will be 
easy. Nor do we believe that we will succeed in any absolute sense. However, we do believe 
that the attempt to construct such an integrated model will lead to questions that have 
never before been asked, and to some tentative answers that future researchers will expand 
and improve upon. In the long run, w~ expect that this strategy will lead to our common 
goal - a fuller understanding of the mechanisms that underly language acquisition. 
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