
UC Irvine
ICS Technical Reports

Title
Language acquisition and machine learning

Permalink
https://escholarship.org/uc/item/3vk4d9g0

Authors
Langley, Pat
Carbonell, Jaime G.

Publication Date
1986-02-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vk4d9g0
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

LANGUAGE ACQUISITION

AND MACHINE LEARNING

Pat ~angley
Irvine Computational InteIDgence Project

Department of Information & Computer Science
University of California, Irvine, CA 92717

Jaime G. Carbonell
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

Technical Report 86-12

February 1, 1986

To appear in B. MacWhinney (Ed.), Mechanisms of Language Acquisition. Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1986.

We would like to thank Brian MacWhinney and Jeff Sokolov for their comments on an
early draft of the chapter. We also thank Doug Fisher and Dan Easterlin for discussions
that led to our framework for research in machine learning.

This research was supported by Contract N00014-84-K-0345 from the Information Sci
ences Division, Office of Naval Research. Approved for public release; distribution unlim
ited. Reproduction in whole or part is permitted for any purpose of the United States
Government.

ARt_HtVfS
-:z__

0C/9
C3
h 01 ~0-12
(', 2-.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE {When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report No. 4

4. TITLE (and Subtitle) 5. TYPE OF REPORT le PERIOD COVERED

Interim Report 6/85-12/85
Language Acquisition and Machine Learning

6. PERFORMING ORG. REPORT NUMBER

UCI-ICS Technical Report 86-12
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Pat Langley and Jaime G. Carbonell N00014-84-K-0345

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA le WORK UNIT NUMBERS

Department of Information & Computer Science
University of California, Irvine, CA 92717

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Information Sciences Division February 1, 1986
Office of Naval Research 13. NUMBER OF PAGES
Arlington, Virginia 22217 38 . .

14. MONITORING AGENCY NAME le ADDRESS {if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

To appear in B. MacWhinney (Ed.), Mechanisms of Language Acquisition. Hillsdale, N. J.: Lawrence
Erlbaum Associates, 1986.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

language acquisition learning macro-operators
learning from examples aggregation
heuristics learning characterization
conceptual clustering negative instances

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

OVER

DD 1 ~~~~3 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE {When Data Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE {When Data Entered}
20. ABSTRACT

In this paper, we review recent progress in the field of machine learning and examine
its implications for computational models of language acquisition. As a framework
for understanding this research, we propose four component tasks involved in learning
from experience - aggregation, clustering, characterization, and storage. We then con
sider four common problems studied by machine learning researchers - learning from
examples, heuristics learning, conceptual clustering, and learning macro-operators -
describing each in terms of our framework. After this, we turn to the problem of gram
mar acquisition, relating this problem to other learning tasks and reviewing four AI
systems that have addressed the problem. Finally, we note some limitations of the ear
lier work and propose an alternative approach to modeling the mechanisms underlying
language acquisition.

..

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered}

Introduction

Despite its apparent complexity, nearly every human learns to use language in the first
ten years of life, and as scientists we would like some theory to explain this phenomenon.
Ideally, such a theory should explain the processes that lead from naive to sophisticated
language use, just as chemical theories explain the processes involved in reactions. The
natural places to turn for such process descriptions are the fields of artificial intelligence
(AI} and cognitive science. In particular, one should look to machine learning, the subfield
of artificial intelligence concerned with computational approaches to learning - i.e., with
processes that lead to improved performance over. time.

Over the past two decades, machine learning researchers have made considerable
progress in understanding the nature of learning mechanisms, and many of their results
are relevant to models of human behavior. In this paper, we examine these results and
their implications for theories of language acquisition. We begin by reviewing four basic
learning tasks that have been the focus of the machine learning work, describing each in
terms of a common framework. We then turn to the task of grammar learning, comparing
and contrasting it with other learning tasks. After this, we review some earlier computa
tional models of grammar learning and consider some drawbacks of these models. Finally,
we outline a new approach to modeling language acquisition that we hope will overcome
these limitations.

An Overview of Machine Learning Research

In order to give the reader a better feel for the nature of machine learning research
and its implications for models of language acquisition, let us begin by considering some
common tasks that researchers in this field have addressed. We will consider the tasks in
roughly historical order, based on the periods at which they first drew the major attention
of machine learning researchers. Using this ordering, we have the tasks of learning from
examples, learning search heuristics, conceptual clustering, and learning macro-opf ~ators.
This list is not exhaustive, but the majority of AI learning research has focused on these
tasks.

Considerable work has also been carried out on the task of learning grammars. Interest
in this area emerged early in the history of machine learning and has remained active until
the present. Despite its early role in the field, we will delay our discussion of grammar
learning (and thus violate our historical ordering) so we can better see its relation to other
work. However, before moving on to specific tasks, let us first present a general framework
within which each task can be viewed.

The Components of Learning from Experience

Any attempt to define learning is as doomed to failure as attempts to define life and
love. One can certainly generate a formal definition, but others can always find intuitive
examples that fall outside the specified conditions or find counterexamples that fall within
them. Rather than trying to define learning in general, we will focus on the more con-

1

strained issue of learning from experience. Most of the research in machine learning has
focused on this class of problems, as opposed to learning by being told or learning by
deduction from known facts. Will we not attempt to define the task of learning from expe
rience; instead we will specify some components or subproblems which must be addressed
by any system that learns from experience.

As we will see, these components are designed to characterize the five basic learning
tasks that we consider in the following pages. It is possible that additional dimensions
are required, but we will not know this until someone formulates a new learning task
that forces expansion of the framework. Of course, other frameworks are possible that
divide the learning problem along orthogonal dimensions. However, we will see that the
current framework leads to useful insights about the nature of the language acquisition
task, making it sufficient for our present goals. The four basic components of learning
from experience are:

• Aggregation - the learner must identify the objects from which he will form rules or
hypotheses; i.e., he must determine the appropriate part-of relations.1 For instance,
in understanding a visual scene, the viewer must identify the basic objects and their
components. Similarly, in language acquisition, one must first group utterances into
component sound-sequences (words). Thus, one may aggregate over either spatial or
temporal descriptions.

• Clustering - the learner must identify which objects or events should be grouped to
gether into a class; i.e., he must determine the appropriate instance-of relations, or gen
erate an extensional definition of the rule or hypothesis. For example, a concept learner
must divide objects into instances and non-instances of the concept being learned.

• Characterization - the learner must formulate some general description or hypothesis
that characterizes instances of the rule; i.e., he must generate an intensional definition
of the rule or hypothesis.2 For instance, the task of language acquisition requires one
to move beyond specific sentences, and to formulate general rules or gram.mars.

• Storage/Indexing - the characteriza:tion of the rule must be stored in some manner
that lets one retrieve it when appropriate. For example, one may store an acquired
problem solving heuristic in some form of discrimination network.

1 Some readers will prefer:the term segmentation to the term aggregation, but this is simply a
matter of perspective. One can view part-of relations as being established in either a top-down or
a bottom-up manner.

2 This is often called the generalization problem. We will avoid this term because it has has
two distinct meanings within machine learning. The first sense includes the process of moving
from a specific hypothesis to a more general one, and is the opposite of discrimination learning.
The second sense includes any process for constructing a general rule from data, and encompasses
both discrimination and the first sense of generalization. We intend the term characterization
to replace this second (more general) sense.

2

As we proceed, we will see examples of these components in concept learning, in procedural
learning, and in grammar learning. All learning tasks include the components in one form
or another, and all learning systems must address them in some sense.

However, in many tasks one or more components have been idealized out; that is, the
solution to a subproblem is either provided by some outside source or can be effectively
ignored. For instance, the programmer may divide the learner's input into distinct ob
jects, thus solving the aggregation problem. Similarly, the learner may acquire only a few
characterizations, so that storage issues are not significant. We will see examples of these
and other simplifications shortly, but Table 1 summarizes the basic results of this analysis,
listing the relevant components of the five learning tasks we will consider.

TABLE 1

Relevant Components of Machine Learning Tasks

Learning task

Learning from examples
Learning search heuristics
Conceptual clustering
Learning macro-operators
Grammar learning

Learning from Examples

Relevant components

characterization
clustering, characterization
clustering, characterization, storage
aggregation
aggregation, clustering,

characterization, storage

The task of learning concepts from examples is the most widely studied problem in
machine learning. Research on this task addresses the question of how one forms concepts
from examples presented by a tutor. The general version of this task may be stated:

• Given: One or more classes or concepts, along with a set of instances or examples for
each class. E.g., one might be given instances and non-instances of the concept uncle.

• Find: Some description or rule that correctly predicts the class to which each in
stance should be assigned. In the uncle example, one would hypothesize some general
description of this concept.

In other words, given an extensional definition of one or more concepts, one must generate
intensional definitions for each of those concepts. These descriptions must satisfy two
constraints - each instance of a class must be covered by the description of that class, and
no instance of a class may be covered by the description of any other class. Michalski
(1983) has called the first of these the completeness condition and the second of these the
consistency condition. In general, the description is expected to correctly classify instances
that were not in the training set, so the learner must move beyond simple summaries of
the original data.

3

The simplest version of learning from examples involves formulating a description for
a single concept. In this case, we use the term positive instances for all examples of the
concept and the term negative instances for all non-examples. Let us consider a simple
task in which objects can be described in terms of only two attributes - size and shape.
The learner might be told that a large circle and a large square are positive instances
of the concept to be learned, while a small circle is a negative instance. One hypothesis
that accounts for these data (though not the only one) is that the concept is simply
large; this description covers the positive instances but not the negative instance. Concept
learning tasks of this type were widely studied in psychology (e.g., Bruner, Goodnow, &
Austin, 1956) before they were adopted by the machine learning community.

The task of learning multiple concepts from examples can be reduced to the simpler
problem of learning a single concept, repeated a number of times. Focusing on one of the
classes, we label all objects associated with this class as positive instances, and label all
objects associated with other classes as negative instances. The task of learning this single
concept involves formulating some description which covers all positive instances but none
of the negative instances. Suppose we repeat this process for each of the other cl&{lses,
in each case producing a set of positive and negative instances, and generating a concept
description for that class. The result of this scheme is a set of concept descriptions, each
complete and consistent with respect to the others.3 Since the multiple concept learning
task can be subdivided in this manner, most researchers have focused on the task of
learning single concepts, and we will do so here as well.

Learning from examples can be viewed as an idealized version of the general task of
learning from experience. Since the tutor provides the basic objects upon which rules or
descriptions are based, the aggregation subproblem is bypassed. Since the tutor assigns
instances to classes for the learner, the clustering subproblem is trivialized. Finally, since
only a few concepts are learned, the resulting descriptions can be stored in a simple list,
thus avoiding the subproblem of storage and indexing.

In other words, the task of learning from examples can be viewed as "distilled" char
acterization, and it is undoubtedly for this reason that it proved so popular in the early
days of machine learning research. Focusing on this simplified task let researchers deal
with characterization issues to the exclusion of complicating factors, much as the early
physicists ignored nuisances like air resistance. This strategy led to a variety of interesting
methods for formulating general descriptions from positive and negative instances (Win
ston, 1975; Hayes-Roth & McDermott, 1978; Mitchell, 1982; Anderson, 1983}, which later
proved invaluable in studying more complex learning tasks.

Since these characterization methods have been widely used in the work on more com
plex learning tasks, we should briefly review the set of methods that have been developed.
The vast majority of methods rely on the insight that the set of descriptions or hypotheses
considered during the characterization process can be partially ordered according to their
generality. However, since this is only a partial ordering, multiple paths exist through the

3 This approach assumes that classes must be disjoint; this assumption is not necessary, but is
very common among machine learning researchers.

4

space of hypotheses, and this leads to search. Even very simple spaces are only partially or
dered along the dimension of generality; e.g., Figure 1 shows the space for the size/shape
task described above. As a result, most characterization methods carry out a systematic
search through the hypothesis space, but they differ widely in the details of this search.

Figure 1. A partially ordered space of hypotheses.

For instance, one can start with very specific hypotheses and gradually make them
more general until an acceptable description is found (specific-to-general search), or one
can begin with very general hypotheses and gradually make them more specific (general
to-specific search). One can even search in both directions simultaneously (the version
space method). These approaches have different implications for the nature of the re
sulting description; for example, specific-to-general strategies will arrive at more specific
characterizations than general-to-specific methods. However, all will generate descriptions
that are both consistent and complete over the given instances, provided certain assump
tions are met, such as the absence of noise (misclassified instances). We will see examples
of both approaches in our review of grammar learning methods.

Characterization methods also vary in their processing of the instances they are given.
Some approaches incorporate data one instance at a time; these are usually called incre
mental learning methods. Other approaches examine all of the instances simultaneously,
often using statistical techniques to direct their search for useful hypotheses. These are
typically called nonincremental learning methods. Naturally, the former are more plausi
ble models of the human learning process, while the latter are more analogous to scientific

5

data analysis. Most of the grammar learning systems we examine later are incremental,
but we will see one example of the nonincremental approach.

Finally, characterization methods differ in the operators that they employ for moving
through the space of hypotheses. Some systems use operators that require only the current
hypothesis as input. These techniques use some knowledge of the domain to transform the
current description into one or more new hypotheses, and use the data only to test these
hypotheses. We will call these model-driven methods. Other systems employ operators
that require both the current hypothesis and a new instance as input; such techniques
use the new data to transform the current description into one or more new hypotheses.
We will call these data-driven methods. Historically, there has been a strong association
between data-driven and incremental approaches, and a similar correlation between model
driven and nonincremental approaches, though exceptions to this trend exist. All of the
grammar learning systems we will consider are data-driven in nature.

Within the data-driven approach, we find two quite different classes of operators. The
first of these finds common structure between instances and/or hypotheses, and is always
combined with specific-to-general methods. For instance, suppose one's current hypothesis
states that all members of some concept are large, red, and square, and that one
observes the new positive instance large, blue, and square. Since the hypothesis fails
to match the new example, we know it is overly specific and should be made more general.
In this case, the technique would generate the revised hypothesis that all examples of the
concept are large and square, since these features are held in common between the old
hypothesis and the new instance. Such methods are usually conservative, in that they
generalize only enough to cover the new instance and no more.

One interesting aspect of the "finding common structures" operators is that, given
a simple attribute-value representation involving a single object (like the one above), no
search is required through the hypothesis space. Given relational or structural representa
tions (in which predicates take two or more arguments), one description may be mapped
onto another in multiple ways, so that competing hypotheses must be considered anL search
carried out. However, to the extent that one can represent one's hypotheses entirely in
terms of attributes and their values, the characterization task will be greatly simplified. 4

In relational cases involving search, there must be some way to distinguish good hy
potheses from bad ones, and this is where negative instances come into play. If hypothesis
H covers any of the known negative instances, we know it is overly general; thus, we can
remove H from consideration and concentrate on the alternatives. Another important as
pect of these operators is that they generate hypotheses containing those features held
in common by all positive instances. This is desirable if the concept can be described as
a conjunction, but if a disjunction is required, the approach will lead to overly general
hypotheses that cover some negative instances. Note that if the concept can be expressed

4 A number of researchers, including MacWhinney (1978), Berwick (1979), and Wexler (this
volume), have applied this approach to grammar learning. Given the inherent relational nature of
language, this seems counterintuitive, but their success speaks for itself. Hedrick {1976) employed
a relational version of the common structures method in his grammar learning system.

6

in terms of an attribute-value scheme and if we know the concept is conjunctive in form,
then we can determine the correct concept description using only positive instances.

The second type of data-driven operator finds dijf erences between instances and/ or
hypotheses, and is always combined with general-to-specific characterization methods. For
instance, suppose one's current hypothesis is that all members of some concept must be
red, and that the last positive instance of this concept was small, red, and circle.
Further suppose that the next negative instance is small, red, and square. Since the
current hypothesis matches this counterexample, we know the hypothesis is overly general
and should be made more specific. In this case, a better hypothesis would be red and
circle.

We can generate more specific hypotheses by finding the differences between the posi
tive and negative instances, and using these differences to further constrain the hypothesis.
Thus, each difference leads to an alternative description, each more specific than the one we
started with. In this case, the only difference is that the positive instance is a circle while
the negative instance is a square. Winston (1975) has used the term near miss to refer to
such one-difference negative instances. They are important because they eliminate se'a.rch
for difference-based methods in the same way that attribute-value based representations
eliminate search for commonality-based methods. One can still make progress with far
misses, but alternative hypotheses must be considered.5 As with specific-to-general tech
niques, these methods are conservative in that they discriminate only enough to ensure
that the negative instance will not be covered.

The majority of research on learning from examples has employed empirical methods
like those we have just considered, which rely on many instances to induce an adequate
characterization. We will see that these methods have been widely used in other ma
chine learning tasks, including grammar learning. However, recently some researchers
have explored another approach that generates descriptions on the basis of a single posi
tive instance.

These have been called analytical methods, since they reason about why the instance
belongs to the specified class. They have also been called explanation-based methods, since
they construct justifications for the instance's classification. For example, one might be
given a functional specification of the concept cup - that it must contain liquids, that it
can be lifted, and so forth. If one is then given a specific coffee cup labeled as a positive
instance, one can prove that the physical features of this object satisfy the functional
definition of cup. Thus, the cup's handle lets it be lifted, its concavity lets it contain
liquid, etc. This proof identifies the relevant features of the instance, and these features
can be used to formulate a general structural description of the concept.

We do not have the space to describe such analytical approaches in detail, but later
we will see that some of the work on grammar acquisition fits into this framework, rather

5 Langley (1980, 1982) and Anderson (1981) have employed difference-based methods in their
models of first language acquisition. Unfortunately, since parents do not carefully plan their
presentation of sample sentences, we cannot assume that the first language learner relies on near
misses to eliminate search.

7

than the empirical one. We direct interested readers to Mitchell, Keller, & Kedar-Cabelli
(1986) for an excellent review of explanation-based learning methods.

Learning Search Heuristics

One of the central insights of AI is that intelligence requires the ability to search, and
another is that expertise involves the ability to direct search down useful paths. This
search occurs within the context of some problem space, which can be defined as a set of
problem states together with operators for moving between those states. Each operator
has an associated set of legal conditions that specify when it can be applied, but these are
not enough to let one discover the goal state without search. For this one needs additional
heuristic conditions on each operator that suggest the optimal move at each point in the
problem solving process.

Naturally, researchers in machine learning are concerned with how such heuristics
might be learned from experience. The task of learning search heuristics may be stated as
follows:

• Given: A problem space defined in terms of an initial state and set of legal operators;

• Given: A test to determine when the goal has been reached, and a search strategy for
selecting operators and states.

• Find: Heuristic conditions for each operator that will reduce or eliminate search.

For example, Mitchell, Utgoff, and Banerji (1983) have examined heuristics learning in the
domain of symbolic integration. In this case, problem states take the form of symbolic
expressions such as J 6x2dx and 2x3 , and the goal is to find some state in which no
integral sign occurs. Similarly, operators take the form of rules for transforming one state
into another, such as J a· bx"'dx ~ a J bx"'dx. Fifty such operators commonly occur in
solving simple integration problems, and the search space generated by these operators is
quite large.

As with learning from examples, researchers have explored a variety of different meth
ods for automatically generating heuristics. However, each such method must respond to
an issue that makes the heuristics learning task more difficult than the task of learning
from examples. This is known as the credit assignment problem.

Minsky (1963) was the first to identify the difficulty of assigning credit and blame in
procedural learning. This issue arises in situations where the learner receives feedback only
after it has taken a sequence of actions. In order to improve its performance, the learner
must assign credit to desirable actions and blame to undesirable ones. For instance, if one
loses a chess game, the final move is seldom responsible for checkmate. Usually, some other
(much earlier) move led to this undesirable state, but identifying this move may be very
difficult. .

Significant progress in heuristics learning occurred only when researchers identified
effective methods for assigning credit and blame. The most obvious of these methods
involves waiting until one finds the goal state through search, and then using the complete

8

solution path to distinguish desirable moves from undesirable ones. For the integration
problem J 6:z:2d:z:, the optimal solution path would be J 6z2dz => 2 J 3:z:2d:z: => 2z3• Any
move lying directly along this path to the goal state is marked as desirable, while any
move leading one step off the solution path is marked as undesirable. Sleeman, Langley,
& Mitchell (1982) have called this method learning from solution paths. Later, we will see
that Berwick (1979) has employed a very similar approach to learn grammar rules.

An alternative method involves assigning credit and blame during the search process
itself. Rather than waiting until a complete solution has been found, one may note regu
larities in the search tree as it is generated. For instance, one might notice that an existing
state has been revisited. This may result from a loop or from a longer path to that state,
but in either case the move that led to the state is undesirable. (In integration, loops can
easily occur when integration by parts is attempted.) Similarly, moves that lead to dead
ends should be avoided if possible. Anzai & Simon (1979) and Langley (1985) have called
this approach learning while doing, since it lets one assign credit and blame while search
is being carried out.

Once a credit assignment technique has been used to label moves as desirable or uR.de
sirable, one can easily identify positive and negative instances of each operator. These can
be passed to a characterization method, which in turn generates general descriptions of the
conditions under which each operator should be applied. When the heuristic conditions
associated with an operator are used to determine when that operator should be applied,
search is reduced or even eliminated. Langley & Ohlsson (1984) have called this basic
method the problem reduction approach to heuristics learning, since it involves separately
identifying the heuristic conditions for each operator and then recombining them into a
system that requires little or no search. The vast majority of research on heuristics learning
has taken this approach, though there has been considerable variation in both the credit
assignment methods and characterization methods employed.

Like the task of learning from examples, the heuristics learning problem is an idealized
case of the general task of learning from experience.· Since the problem space is provided
by the programmer, the basic objects upon which rules are based (the problem states) are
given at the outset. As a result, there is no significant aggregation problem. Since the
problem spaces that have been examined seldom have more than a few operators (the fifty
that Mitchell et al. examined was very unusual), and since no more than a few heuristics
are learned for each operator, there is no significant storage or indexing problem.

However, the heuristics learning task differs from learning from examples in that the
programmer does not provide the clusters from which descriptions (in this case heuristics)
are generated. The learning system must of its own accord cluster instantiations of each
operator into groups of positive and negative instances, using complete solution paths
or some other credit assignment method. In fact, within the context of learning search
heuristics, the subproblem of clustering is identical to the problem of assigning credit
and blame. Once the system has determined the positive and negative instances for each
operator, it must still employ some characterization method to determine the heuristic
conditions for that operator. However, the same methods that have proven so useful in
learning from examples can also be applied in this situation. To summarize, the task of

9

heuristics learning involves less idealization than the task of learning from examples, since
the former requires one to address issues of both clustering and characterization.

Conceptual Clustering

We associate the notion of taxonomies with biology, but many (if not all) of the sciences
progressed through a stage of taxonomy formation before moving on to discovering laws
and theories. The task confronting scientists in this stage can be stated:

• .Given: A set of objects and their associated descriptions.

• Find: A hierarchical classification tree that covers all objects, and which places similar
objects in the same classes.

For instance, one might observe many different species or plants and animals, and then
attempt to formulate a taxonomy which places similar species in the same categories. The
most frequent examples come from biology, but taxonomies have also played an important
role in astronomy (classifying stars and galaxies) and chemistry (classifying substanc.es).

At first glance, this task appears quite similar to the problem of learning from examples.
However, it differs from the simpler task on three dimensions. First, objects are not
assigned to classes by a tutor, so that a distinction between positive and negative instances
is not inherent in the data. Second, the goal is to generate extensional definitions of each
class rather than general descriptions (intensional definitions). Finally, since a taxonomy
is hierarchical, one must discover concepts at multiple levels of abstraction, as contrasted
with the single level concepts that occur in learning from examples.

Despite the apparent complexity of the taxonomy formation task, statisticians and bi
ologists have developed computational methods for automating this process. These tech
niques share the general names of cluster analysis and numerical taxonomy, and a variety
of them have been proposed (Everitt, 1980). Most of the methods employ some measure
of the distance between objects or clusters in a N-dimensional feature space, attempting
to group together objects that are close to each other. Unlike most statistical methods,
cluster analysis and numerical taxonomy have little theoretical justification and are largely
heuristic in nature. Moreover, different methods tend to produce radically different tax
onomies unless the data are very regular, and the resulting hierarchies are often difficult
to interpret.

In response to these limitations, Michalski & Stepp (1983) have formulated a related
task they call conceptual _clustering. This task differs from the traditional taxonomy for
mation task in two respects:

• In addition to generating a hierarchy containing clusters of objects, one must also
characterize those clusters.

• In evaluating potential clusters, one should consider the characterizations of these
clusters as well as the objects they contain.

The authors argued that by including characterizations in the evaluation process, the
resulting clusters will be easier to understand than those generated by traditional methods.

10

Given this revised framework, it is not surprising that Michalski and Stepp used established
characterization methods as subroutines in their approach to taxonomy formation. Other
methods for conceptual clustering (Langley & Sage, 1984; Fisher, 1984) differ in various
respects, but all take advantage of standard characterization techniques in some manner.

Methods for conceptual clustering can be viewed in terms of three different levels of
search, each involving a different problem space. The first of these involves search for
clusterings or groupings of objects at a given level of the hierarchy. The second involves
search for descriptions or characterizations of object clusters; this is identical to the search
carried out by systems that learn from examples. The final search is through the space of
possible hierarchies within which the clusters and· their descriptions are contained.

Methods for dealing with each of these subproblems can vary along a number of di
mensions. We have already seen some varieties of characterization methods, and similar
variations exist in the search for clusterings and hierarchies. For instance, one may search
for clusterings exhaustively or using heuristic search techniques; in particular, Michalski
& Stepp employed a hill-climbing method to find useful clusterings. Similarly, one may
construct hierarchies from the top down or from the bottom up; Michalski & Stepp 1tsed
a top-down approach, while most numerical taxonomy methods operate in a bottom-up
fashion.6 The interested reader is directed to Fisher & Langley (1985) for a more detailed
discussion of conceptual clustering methods in these terms.

The conceptual clustering task can be viewed as another variant on the general problem
of learning from experience. Like the task of learning from examples, it ignores the problem
of aggregation, since the basic objects and their descriptions are given to the learner.
However, it differs from the simpler task in that it explicitly addresses the problem of
clustering objects into groups without aid from a tutor. Unlike traditional clustering
techniques, it also addresses the characterization problem, since one must form general
descriptions for each cluster. Finally, it begins to deal with the storage/indexing problem,
since objects and classes are stored in a hierarchy that can be used in classifying novel
objects.

In other words, conceptual clustering forces one to address three of the four components
of learning from experience, more than either learning from examples or heuristics learning.
Later in the paper, we will see that the clustering problem also arises in the grammar
learning task, and we will examine some responses to this problem by several grammar
learning systems.

Learning Macro-Operators

The .notion of chunks was originally proposed by Miller (1956) to explain short-term
memory phenomena. The term chunk denotes some familiar pattern that one can re
member or manipulate as a single entity. Chunks can be perceptual or action-oriented,
and can involve either spatial or sequential relations. In practice, machine learning re-

6 Researchers in numerical taxonomy (Everitt, 1980) use the term divisive for top-down methods
and agglomerative for bottom-up approaches.

11

searchers' interest in issues of procedural learning has led them to emphasize sequential
action structures.

Like the work on heuristics learning, the chunking research has focused on learning in
the context of search through some problem space. In this case, the goal is to discover
sequences of operators, or macro-operators, that achieve useful results in the problem space
(e.g., bringing one closer to the goal). Since relatively little work has been done on the
acquisition of spatial or perceptual chunks, we will focus on macro-operators here. 7

A number of mechanisms for generating macro-operators have been described in the
literature, though they have not always been cast in these terms. For example, Lewis
(1978) and Neves & Anderson (1981) discuss a process called composition that combines
two production rules into a single, more powerful rule whenever the original rules apply
in sequence. They have used this to explain the Einstellung effect, in which problem
solvers prefer a well-practiced solution to some problem even when more efficient solutions
are possible. More recently, Anderson (1983) has described a more selective version of
composition that combines only those rules used to achieve a common goal.

Korf (1982) has described a quite different method for generating macro-oper~tors
that involves the notion of decomposable subgoals, while Iba (1985) has employed a third
method that combines rules when it notes peaks in a numeric evaluation function. Finally,
Laird, Rosenbloom, & Newell (1986) have described a method called chunking that is
evoked only when a goal is achieved; however, this method differs from Anderson and Neves'
composition in that it constructs the resulting macro-operator from memory elements
involved in the goal, rather than from the rules used to reach the goal.

Despite the differences in these approaches to forming sequential chunks, some common
themes have emerged. First, most of the work has occurred within a heuristic search
framework, in which macro-operators are composed from primitive legal operators. Second,
goals play a central role in determining when most of the chunking methods are evoked. For
this reason, most of the methods are embedded within a means-ends analysis framework
like that used by Newell, Shaw, & Simon's GPS (1960), which allows intelligent generation
of subgoals.

The task of forming macro-operators can be viewed as another variant on the general
task of learning from experience. In this case, the structure to be learned is some configu
ration of actions or operators - a sequential chunk. Methods for learning macro-operators
directly address the aggregation issue, since they decide which components to include as
parts of the higher level structure. In most chunking methods, the characterization prob
lem is made trivial, since new rules are based directly on existing rules, for which the level
of generality is already known. Even in methods that address issues of characterization
(such as Laird, Rosenbloom, & Newell's approach), chunks are based on single instances, so
that the clustering problem is bypassed. Finally, none of the research in this area explicitly
addresses storage issues, though much of the work is embedded within production system

7 However, later we will see that sequential chunks also arise in the grammar learning task,
where they correspond to structures such as noun phrases and verb phras_es.

12

frameworks like Anderson's ACT (1983), which have implicatio11$ for how knowledge is
indexed in long term memory.

Grammar Learning

Now that we have considered a number of machine learning tasks, let us turn to the
problem of language acquisition. The overall task of language acquisition is very complex
and involves many levels, including: learning to recognize and generate words; learning the
meanings of words; learning grammatical knowledge; and learning pragmatic knowledge.
Each of these subproblems is interesting in its own right, but since the majority of AI work
on language acquisition has dealt with grammar learning, we will focus on this issue in the
current section.

Some of the earliest work in machine learning addressed the problem of grammar
acquisition, and this is still an active area of research in the field. The basic task may be
stated in the following manner:

• Given: A set of grammatical sentences from some language; ..

• Find: A procedure for recognizing and/or generating all grammatical sentences in that
language.

The learned procedure may take many different forms, such as a set of rewrite rules, an
augmented transition network, or a production system. Note that one is given only legal
sentences from the language to be learned, and that no "negative instances" are presented.
Solomonoff (1959) carried out some of the earliest AI work on this problem, followed by
Knowlton (1962), Garvin (1967), and Horning (1969). Wolff (1978, 1982) and Berwick
(1979) have described more recent grammar learning systems in this tradition.

However, we know from the child language data that the human learner does not hear
sentences in isolation; rather, the sentences usually describe some event or object in the
immediate environment. This observation leads to a different formulation of the grammar
learning task, which may be stated:

• Given: A set of grammatical sentences from some language, each with an associated
meaning;

• Find: A procedure for mapping sentences onto their meanings or vice versa.

This view of grammar acquisition differs significantly from the first one we examined.
Grammatical knowledge may again be represented in a variety of ways, but it must con
tain more than information about sentence structure - it must also relate this structure
to meaning. We will see that the second view of grammar learning leads to quite differ
ent models of the learning process. Kelley (1967), Sikl6ssy (1968), and Klein & Kuppin
(1970) carried out the earliest work in this "semantic" tradition. More recent systems
have been described by Hedrick (1976), Reeker (1976), Anderson (1977), Selfridge (1981),
Sembugamoorthy (1981), Langley (1982), Smith (1982), and Hill (1983).

Since we review some of the earlier work on grammar learning in detail in the following
section, we will not delve deeply into particular methods here. However, we should note

13

that both versions of the grammar learning task can be viewed as further variants on the
general problem of learning from experience. However, they differ from the other four tasks
in an important respect. Like the chunking task, they address the problem of aggregation,
since the grammar learner must form sequential chunks such as noun phrase and verb
phrase. Like the conceptual clustering task, they address the clustering problem, since
one must group words into disjunctive classes like noun and verb without the aid of a
tutor.

The opportunity for characterization also exists in the second (semantic) version of the
task, since semantic features can often be used to predict when a class like noun or verb is
appropriate. Finally, most representations of grammatical knowledge (such as ATNs and
production systems) have implications for the storage/indexing problem, and this carries
over into the work on grammar learning. In other words, the task of grammar learning is
the only task that forces one to address all four components of learning from experience,
making it (in principle, at least) the most challenging of the problems we have examined.

Machine Learning Research on Grammar Acquisition

Now that we have reviewed the types of tasks that machine learning researchers have
focused on, let us consider some examples of AI systems that address the grammar learning
process. Considerable work has been done in this area, and we will not have time to cover
it all here. Instead, we will examine four specific systems that we feel will clarify the nature
of this work and its relation to other problems in machine learning. The interested reader
is directed to reviews by McMaster, Sampson, & King (1976), Pinker (1979), and Langley
(1982).

We will examine four AI systems that implement quite different approaches to gram
mar learning: Wolff's SNPR (1978, 1982), Berwick's LPARSIFAL (1979, 1980), Anderson's
LAS (1977), and Langley's AMBER (1980, 1982). We will see that these systems differ
on a variety of dimensions, the most important involving whether they learn from iso
lated sentences or from sentence-meaning pairs. In each case, we describe the inputs and
outputs of the system, its representation of acquired grammatical knowledge, its learning
mechanisms, and the relation of these mechanisms to the four components of learning from
experience. We close with some comments on the role of negative instances in grammar
learning.

Wolff's SNPR System

Wolff (1978, 1982) has developed SNPR, a program that acquires grammatical knowl
edge in a very data-driven manner. The system begins with a sequence of letters, and
generates a phrase structure grammar (stated as rewrite rules) that summarizes the ob
served sequence. SNPR is not provided with any punctuation or with any pauses between
words or sentences; it must determine these boundaries on its own. The program pro
cesses the strings in a semi-incremental manner, first examining a subset of the data, then
processing another segment, and so forth.

14

One of SNPR's strategies is to look for common sequences of symbols, and to define
chun/cs in terms of these sequences. For example, given the sequence thedogchasedth
ecatthecatchasedthedog ... , the program might define chunks like the, dog, cat, and
chased. This example is somewhat misleading, since the system always builds chunks
from pairs of symbols, but it conveys the basic idea. Whenever a chunk is created, the
component symbols are replaced by the symbol for that chunk. In this case, the sequence
the-dog-chased-the-cat-the-cat-chased-the-dog would result. This process can be
applied recursively to generate hierarchical chunks.

In addition, when SNPR finds a number of different symbols (letters or chunks) that
precede or follow a common symbol, it may define a disjunctive class in terms of the first
set. For instance, in the above sequence we find the subsequences the-dog-chased and
the-cat-chased. Based on this regularity, Wolff's program might define the disjunctive
class noun= {dog, cat}. It would then substitute the symbol for this new class into the
letter sequence for the member symbols. In this case; the sequence the-noun-chased
the-noun-the-noun-chased-the-noun would be generated. Additional classes such as
'verb' and 'determiner' Would be defined and replaced in the same manner.

These two basic methods are applied recursively, so that chunks can be defined in
terms of disjunctive classes. This leads to constructs such as noun phrases, prepositional
phrases, verb phrases, and ultimately to sentences. Thus, the interleaving of chunks and
disjuncts leads SNPR to construct phrase structure grammars which summarize the letter
sequences it has observed.

From this description we see that Wolff's learning system employs two operators - one
for forming disjunctive classes such as noun, and another for defining chunks or conjunctive
structures, such as dog. SNPR also includes operators for generalization (by discarding
some data) and recursion, but we will not focus on them here. The system employs a
numeric evaluation function to determine which of its operators should be applied in a
given situation. This function measures two features of the grammar that would result -
the compression capacity or the degree to which a given grammar compresses the original
data, and the size of the grammar. At each point in its learning process, SNPR selects
that step which gives the greatest improvement in compression capacity per unit increase
in size. Thus, the system can be viewed as carrying out a hill-climbing search through the
space of possible phrase structure grammars.

Now that we have described Wolff's SNPR in process terms, let us reexamine the
system in terms of the four components of learning from experience. The first operator
is clearly responsible for generating sequential chunks, and thus addresses the aggregation
problem. Similarly, the second operator is responsible for forming disjunctive classes or
extensional definitions, and thus addresses the clustering component. The most interesting
feature of SNPR is that these operators both compete for attention through the evaluation
function, and interact in that chunks are later used in disjunctive classes, which are in
turn used in higher level chunks. Thus, the solution to both aggregation and clustering is
inherently intertwined, with both using co-occurrence statistics to determine which step to
take. Note that this data-intensive approach to chunking differs radically from the work
on macro-operators, in which chunks are determined on the basis of a single instance.

15

Wolff's system is also interesting in that it makes no explicit attempt to characterize
its disjunctive classes (e.g., noun and verb} after they have been extensionally defined.
However, the interaction between aggregation and clustering can lead to multiple chunks
which reference the same disjunctive class. For instance, the symbol noun may occur in
the rewrite rules for noun phrase and prepositional phrase. Taken together, one can
view the set of chunks that refer to noun as an intensional definition or characterization of
that class. Thus, SNPR arrives at characterizations of a sort, though it does so indirectly.

Similarly, Wolff does not explicitly address the details of the storage process, but the
notion of efficient storage is a major motivation behind his work. Rewrite rules are com
monly used within computer science to store grammars for compilers, and recent versions of
the AI programming language Prolog incorporate efficient implementations of such rewrite
rules. Moreover, although SNPR's heuristics are concerned with efficient storage rather
than efficient access and retrieval, the two measures are certainly correlated. Now that
we have considered SNPR's relation to the components of learning, let us turn to some
incremental approaches to grammar acquisition.

Berwick's LPARSIFAL System
. .

Berwick (1979, 1980} has described LPARSIFAL, a system that learns grammars from
a sequence of legal English sentences. The program incrementally modifies its grammar
after each input sentence, unless that sentence can already be parsed by the grammar.
The input sentences differ from Wolff's in that each one is composed of a sequence of
separate words, and the sentences themselves are separated from each other. No meanings
are associated with either words or sentences. Grammatical knowledge is represented as a
set of rules, but ones quite different from the rewrite rules used by Wolff's SNPR. In order
to understand the nature of these rules, we must review Marcus' (1980} PARSIFAL, the
natural language system upon which Berwick's work is based.

PARSIFAL differs from most AI natural language systems in that it employs a look
ahead method to avoid the need to backtrack on the vast majority of sentences. The
system employs two data structures - a buffer containing the words in the sentence (the
input} and a stack of nodes representing phrase structures (the output). The conditions
of rules can examine only the first three items in the buffer and the top item in the node
stack. There are four available actions:

(1} Create a node and push it onto the stack;

(2) Remove the top node_on the stack and put it in the buffer, pushing existing items to
the right;

(3) Attach the first buffer item to the top node on the stack, moving the remaining items
in the buffer to the left;

(4) Switch the first and second items in the buffer.

The first of these actions can be instantiated in different ways. For instance, one rule may
create a noun-phrase node, while another may create a verb-phrase node. However, the last
three actions are completely determined by the situation in which they apply. PARSIFAL

16

operates in cycles, applying the first rule that matches, altering the stack and buffer
accordingly, applying the next rule that matches, and so forth. This process continues
until the sentence has been completely analyzed and a parse tree has been constructed.

Now let us return to Berwick's LPARSIFAL, which operates within this framework.
The system begins with a knowledge of X theory and an interpreter for applying grammar
rules to parse sentences. Although the program can learn rules "from scratch" , our dis
cussion will be simplified if we assume that LPARSIFAL has already acquired a few rules
for parsing simple sentences, such as active statements like The boy bounced the ball.

When given a new sentence, LPARSIFAL attempts to parse it using the existing rules.
If it encounters some problem, the system attempts to create a new rule that will handle
the problem-causing situation. The program determines the action on this rule using a
generate and test strategy, first seeing if attach will let it continue parsing the sentence,
and if this fails, seeing if switch will suffice. Assuming one of these ultimately leads to a
successful parse, the program constructs a new rule containing that action.

The conditions of the new rule are based on the state of the parse when the iml?asse
was encountered. This includes the top of the stack and the contents of the input buffer,
including lexical features associated with the words in the buffer. Upon adding the new
rule to memory, the system checks to see if any existing rules have identical actions. If
there are none, the rule is inserted at the beginning of the rule list.

However, if a rule with the same action and the same X context is found, LPARSIFAL
compares the two condition sides to determine what they hold in common. The resulting
mapping is used to construct a more general rule with the same action. Differing conditions
are dropped from the resulting general rule or, in some cases, lead to the creation of
syntactic classes like nouns and verbs. In the latter case, the words that differ in the two
conditions are replaced by the name of the class, and the words are stored as members of
that class. If the old rule contains a class where the new rule contains a word, the word is
added to that class.

The reader will note that LPARSifAL's method for combining rules is identical to
one of the data-driven characterization operators we considered in the context of learning
from examples. This is the "finding common structures" operator, which is often used in
conjunction with specific-to-general strategies for learning concepts from examples. There
are three interesting aspects to Berwick's use of this method.

First, the system decides for itself into which of the existing rules it should incorporate
the new "instance" (a given buffer-node combination). LPARSIFAL determines this by
examining the action and the X context associated with existing rules and the new situ
ation, much as a system that learns from examples uses the name of the class associated
with an instance. Second, the system represents instances and condition sides purely in
terms of attribute-value pairs. As a result, there is never more than one way to incorporate
a new instance into an existing rule, so that absolutely no search through the rule space
is required. This leads directly to the third point. Since no search problem exists, the

17

program does not require negative instances to prune the search tree, and LPARSIFAL
can learn grammars without computing such negative instances. 8

However, recall that the "finding common structures" approach relied on an important
assumption - that there exists a conjunctive characterization of the data. H an adequate
description requires a disjunct of some form, then this approach will lead to an overly gen
eral characterization, and only negative instances will reveal the difficulty. Thus, Berwick's
approach relies on the assumption that each action/X context combination has at most
one associated set of conditions. H this assumption were violated, his system would acquire
overly general grammatical rules, though it would never realize this fact.

Now let us reconsider LPARSIFAL's approach to grammar acquisition as it relates to
the four components of learning from experience. We have seen that the system addresses
the issue of clustering, since it decides which instances (combinations of buffer items and
nodes) to compare to one another. We have also seen that it attempts to characterize
the resulting clusters by finding common features. The system's response to the storage
problem is to create rules that are indexed for easy retrieval, a common approach that
we have seen in other contexts. However, the program does not form any new sequeRtial
chunks beyond those it starts with, so that it bypasses the aggregation problem.

Upon reflection, LPARSIFAL feels quite different not only from Wolff's SNPR, but
from every other grammar learning system that has been proposed. The reason for its
distinctiveness becomes apparent when we recall another class of learning problems that
addresses clustering and characterization but not aggregation - the task of heuristics learn
ing. We would argue that Berwick has successfully transformed the grammar learning task
into the task of learning search heuristics, a counterintuitive (but apparently useful) ap
proach.

The relation will become apparent if we consider a conservative approach to the heuris
tics learning task. Suppose one begins with a set of heuristic rules that are overly specific,
and which thus lead to a state in which no move is proposed. At this point, one fa.Us back
on those operators whose legal (but not heuristic) conditions are met. If applying one
of these operators eventually leads to the goal state, then a new heuristic rule is created
based on the successful move. This specific rule may then be combined with other rules
that involve the same operator. The operators correspond to Berwick's four actions, and
the learned heuristics correspond to his acquired grammar rules. This analogy is not as
forced as it appears at first glance. Ohlsson (1983) has described UPL, a heuristics learn
ing system that uses a nearly identical strategy to learn rules for puzzles like the Tower of
Hanoi.9

Although Berwick's approach is an elegant one, it clearly addresses different issues in
grammar learning than other systems. For instance, Wolff's SNPR generates sequential

8 Berwick's system could identify negative instances of each action using the learning from
solution paths method described earlier. Later, we will see another approach to "constructing"
negative instances from grammatical sentences.

9 We should note that Berwick reported the first version of LPARSIFAL in 1979, when very few
results had been achieved in heuristics learning.

18

chunks like noun phrase and verb phrase, while LPARSIFAL does not. Similarly, Berwick's
program learns the conditions under which to apply specific "parsing" operators, while
other systems do not. The main overlap lies in the formation of syntactic classes like nouns
and verbs, which both SNPR and LPARSIFAL (and many other systems) define. What is
interesting about the latter system is that it clusters objects at two entirely different levels
- the level of instances of each operator, and the level of words that should be grouped
into one syntactic class.

"

The big dog chased the red ball

Figure 2. Inferred parse tree for a simple sentence.

Anderson's LAS System

Anderson (1977) has developed LAS, a program that learns to understand and gener
ate sentences in both English and French. The system accepts legal sentences and their
associated meanings as input, with meaning represented in terms of a semantic network.
The goal is to acquire a mapping from sentences onto their meanings and vice versa, rather
than simply learning to recognize grammatical utterances. LAS represents grammatical
knowledge as an augmented transition network (ATN), with both semantic and syntactic
information stored on each link.

In addition to this basic information, LAS is provided with additional knowledge that
constrained the learning process. This information included:

• Connections between -concepts and their associated words;

• The main topic of each sentence;

• Knowledge that some concepts (like shapes) were more significant than others; the
words for these concepts eventually developed into the class of nouns;

• The graph deformation condition, which roughly states that if two words occur near
each other in a sentence, the concepts associated with those words must occur near
each other in the meaning of that sentence.

19

These sources of information are sufficient to enable LAS to determine a unique parse tree
for any given sentence-meaning pair. For instance, suppose the system is given the sentence
The big dog chased the red ball and its associated meaning. We can represent this
meaning using node-link-node triples, with each triple specifying a connection in a semantic
network: (event-1 action chase), (event-1 agent agent-1), Cagent-1 type dog),
(agent-1 size big), Cevent-1 object object-1), (object-1 type ball), (object-
1 color red) .10 Given this information, LAS would generate the parse ((The (big)
dog) chased (the (red) ball)), where parentheses indicated the level of the tree. Fig
ure 2 presents a graphic version of this parse tree.

The big ball chased the red dog

Figure 3. A sentence that violates the graph deformation condition.

. .

Let us consider the graph deformation condition in somewhat more detail. Stated
more formally, this says that the parse tree for a sentence must be a graph deformation of
the network representing that sentence's meaning, and that the branches in this parse tree
must not cross each other. This assumption constrains the space of grammars that LAS
considers, but it does not eliminate search by itself. Given the same meaning representation
as above, a variety of associated sentences would satisfy the constraint. These include The
dog big chased the ball red, The red ball chased the dog big, and Chased the
big dog the red ball. If LAS observed any of these sentences paired with the same
meaning, it would find them acceptable and generate their parse trees. Since the parses
would be different, the system would acquire a different ATN in each case.

However, the sentence- The big ball chased the red dog violates the graph defor
mation condition. When one orders the words in this fashion, there is no way to redraw
the tree from Figure 2 so that the lines do not cross. As Figure 3 shows, the agent dog is
too far from the agent node and the object ball is too far from the object node for this to
be possible. As a result, LAS would reject this sentence as unacceptable, and would never
consider learning a grammar which generated such sentences.

lO LAS actually used a different set of links in its network representation, but we have used
mnemonic ones for the sake of clarity.

20

Given the parse tree for a sentence, it is a simple matter to generate an augmented
transition network that will parse that sentence. For instance, suppose LAS is given the
parse tree ((The (big) dog) chased (the (red) ball)), shown graphically in Figure
2. Using the knowledge it has been given (including the graph deformation condition), the
program can transform this structure directly into the (initial) ATN shown in Figure 4.

Since the parse tree has three branches at the top level, LAS would generate a top
level ATN with three links - one for the first structure {The (big) dog), one for the
second structure chased, and one for the third {the (red) ball). Since the first and
third components themselves contain internal structure, LAS would build a sub-ATN for
both of these, each with three links. For example, the first sub-ATN (call it NPl) would
have links for The, (big), and dog. Similarly, since the second element for each of the
sub-ATNs has internal structure, LAS would create even lower level ATNs for these, each
having one link (in one case for big and in the other for red).

start NPl

NPl

ADJl e Al

NP2

ADJ2 e A2

V = {chased}
ARTl ={the}
Al= {big}

sl

s3

stop

sS

stop

eV

Nl ={dog}
ART2 ={the}
A2 ={red}

s2

s4

s6

NP2 stop

e Nl stop

stop

N2 = {ball}

Figure 4. Initial ATN based on a single sentence.

·.

In other words, there is a direct mapping from a parse tree to an ATN for generating
that parse tree. Note from Figure 4 that specific words are never used as tests on the ATN's
links. Instead, LAS defines a word class that initially has a single member, and uses this
class in the test. Also note that the initial grammar employs different subnetworks for

21

constructs that we view as equivalent, such as the two networks for noun phrases. As the
system progresses, such distinctions gradually disappear.

After it has constructed an initial ATN, LAS attempts to incorporate new parse trees
with as little modification as possible. For instance, given the new sentence The small
cat chased the long string, the system would note that its ATN would parse this quite
well, if only the certain classes were expanded. In this case, the class ADJ1 = {big} must
be extended to ADJ1 = {big. small}, the class NOUN1 = {dog} must be extended to
NOUN1 = {dog. cat}, and so forth. However, LAS is cautious about taking such steps,
carrying them to completion only when the concepts associated with the words play the
same semantic role as in earlier sentence meanings.

In addition to expanding word classes, LAS employs two other mechanisms for pro
ducing more general grammars. First, when the system finds two word classes that share a
significant number of elements, it combines them into a single class. Second, if LAS finds
two sub-ATNs to be sufficiently similar, it combines them into a single subnetwork. A
special case of this process actually leads to recursive networks for parsing noun phrases,
so that arbitrarily deep embeddings can be handled. These steps occasionally lead. the
system to learn overly general ATNs, which generate constructions such as foots instead
of feet, and it has no mechanisms for recovering from such errors.

Figure 5 presents a revised ATN that LAS might construct after hearing the second
sentence A tall man followed the big dog. In this case, the word followed has been
added to the syntactic class V. Moreover, the two classes N1 and N2 have been combined
into the single class N with members dog, ball, and man.11 Similarly, the classes ART1 and
ART2 have been collapsed, as have the classes A1 and A2. More important, the two noun
phrase ATNs have been combined into the single ATN NP, based on their similar structure
and components. An analogous combination has occurred for the ADJ1 and ADJ2 networks,
generating a much simpler grammar than we had after the first example.

Now let us reconsider Anderson's LAS in terms of the four components of learning
from experience. First, we see that the system employs the meanings of sentences, their
main topic, and the graph deformation condition to determine a unique parse tree. This in
turn determines an augmented transition network, which can be viewed as a hierarchically
organized set of sequential chunks. In other words, LAS used the above information to
solve the aggregation problem for each sentence it is given. Note that this approach is
quite different from chunking methods that have been used for building macro-operators,
employing knowledge about language to determine the chunks.

Anderson's approach to the clustering problem also differs from methods used for con
ceptual clustering. LAS uses a bottom up (agglomerative) approach to form disjunctive
word classes, but this process operates in two stages. In the first stage, the system extends
its word classes incrementally, expanding them whenever required to parse new sentences.
In the second stage, it combines classes (nonincrementally) if they have enough common

11 This combination could occur after dog had been added to N2, causing the two sets to have a
50% overlap. Actually, we doubt that LAS would collapse word classes on the basis of such slim
evidence, but we have assumed that it would for the sake of simplicity.

22

members. Moreover, both mechanisms are limited by semantic constraints. Thus, LAS's
clustering method is evoked by syntactic regularities, but is filtered by semantic informa
tion. Syntax is used to generate possible clusters, while semantics is used to test whether
they are appropriate.

LAS determines the semantic constraints on its ATN's links from a single sentence
meaning pair, assuming that all portions of the semantic network relating concepts at
the same level in the ATN are relevant. For instance, given the parse tree ((The (big)
dog) chased (the (red) ball)), LAS would assume that only the agent, action, and
object relations would be relevant to the top-level ATN. Thus, Anderson's response to the
characterization problem also differs from the traditional approaches, producing a general
rule from a single instance. In this sense, it is similar to the explanation-based learning
methods that have recently been formulated by Mitchell, Keller, & Kedar-Cabelli (1986)
and others.

start NP sl

NP E ART s3

ADJ stop

V = {chased, followed}
ART= {the, a}

s2

ADJ s4

N = {dog, ball, man}
A = {big, red, tall}

NP

Figure 5. Initial ATN based on a single sentence.

stop

stop

Finally, Anderson's decision to use augmented transition networks constitutes a re
sponse to the storage issue. The use of ATNs have implications for retrieval, since the con
necting arcs act as direct pointers to successor states, giving them a top-down, expectation
driven flavor. Assuming the system has parsed the first part of a sentence, the most likely
steps to follow can be easily retrieved. In addition, LAS combined sub-ATNs whenever
possible. Although this was primarily intended as an induction technique, it also led to an
efficient storage of grammatical knowledge. This is another dimension on which Anderson's
work differs from other machine learning efforts, but this is not surprising, considering that
ATNs were designed to handle linguistic phenomena.

23

Langley's AMBER System

Langley (1980, 1982) has described AMBER, a cognitive simulation of the early stages
of child grammar acquisition. Like LAS, the system accepts sentence/meaning pairs as in
put, using a semantic network to represent meaning. Again, the goal is to learn a mapping,
in this case from meanings to sentences. AMBER represents this grammatical knowledge
as production rules for generating sentences, including both semantic constraints and in
formation about what has already been said in the conditions of rules.

AMBER is also similar to LAS in that it requires knowledge of the meanings of content
words (like small, ball, and bounce), as well as information about the main topic of
each sentence. In addition, the system assumes that utterances having no associated
meaning (like the and ing) are function words, and that these play a quite different role
than content words. Although AMBER does not assume Anderson's graph deformation
condition, we will see that something analogous arises from the system's strategy for
generating sentences.

The reader will recall that LAS used each sample sentence-meaning pair to gene1ate
a parse tree, which formed the basis for its ATN. Instead, AMBER employs information
about the main topic of the sentence to transform the semantic network representation of
meaning into a tree, in which the top node corresponds to the main topic. Consider the
following sentences:

The big dog chased the red ball.
The red ball was chased by the big dog.
The dog that chased the red ball was big.

Although these sentences describe the same event, they differ in their main topic. In the
first construction, the chasing action is emphasized; in the second, the ball is highlighted;
and in the final sentence, the dog is emphasized. In each case, AMBER transforms the
network representation of the meaning into a different tree structure.

Based on the resulting tree, AMBER proceeds to generate an utterance to describe
the structure. In doing so, it employs the notion of goals and subgoals. The system's top
level goal is to describe the entire tree. In order to achieve this high level goal, it creates
subgoals to describe nodes lower in the tree. At the outset, AMBER can handle only
one subgoal at a time, leading the system to generate one-word "sentences". Much of the
system's learning consists of acquiring rules that let it deal with multiple subgoals, and
then identifying the relative order in which those subgoals should be achieved.

However, even in its early stages AMBER places two important constraints on this
process. First, it never creates a goal at level L while another goal at the same level is
still active. Second, once it has deactivated a given goal, it cannot reactivate it for the
current utterance. Thus, in describing an event in which a big dog chased a red ball,
AMBER might not mention all aspects of the event; for instance, it might fail to mention
that the dog was big or that the action involved cha.sing. However, it would never say
dog, followed by chase, and then return to big, since the concepts big and dog occur in
the same subtree. As a result of this goal-processing strategy, AMBER is guaranteed to

24

generate only utterances which obey Anderson's graph deformation condition, even though
this constraint is not explicitly included in the system.

AMBER begins with the ability to say one content word at a time. Based on differences
between these utterances and the sample sentences it is given, the system generates new
rules that let it generate combinations of words and phrases in the correct order. For
instance, upon describing the shape of an object (say ball) without mentioning its color
(say red), AMBER would acquire a rule stating that it should only describe shape after
it had described color. Such rules must be constructed a number of times before gaining
enough "strength" to take control from the default rules. Similarly, if the agent was
omitted entirely from the system-generated sentence while the object was described, the
system would construct a rule stating that the object should only be described once the
agent had been mentioned. This last situation leads AMBER to constructions like Daddy
ball in which the action is omitted. Of course, such omissions eventually disappear as the
system progresses.

Whenever AMBER successfully predicts all of the content words in an adult sentence,
it turns its attention to function words like is, the, and ing. In the early stages;.the
system simply omits these terms and creates rules to produce them in the future. How
ever, these initial rules include only limited conditions based on the semantic role played
by the associated content word. For instance, ing would only be produced following an
action word, but no additional constraints are included. Once such rules gain sufficient
strength, they begin to generate errors of commission by applying in inappropriate situ
ations. In these cases, AMBER invokes a discrimination learning mechanism to identify

. differences between positive and negative instances of the overly general rule. This creates
more conservative rules with additional conditions, which (after gaining sufficient strength)
eliminate the errors of commission.

Now let us reconsider Langley's system in light of our four components of learning.
First, we see that AMBER uses the meaning of a sentence, together with the main topic,
to determine a tree structure that is very similar to a parse tree. In fact, this tree contains
all of the information in a parse tree except the word order, which is available from the
sentence itself. As in LAS, this tree structure tells AMBER which basic chunks it should
form, solving the aggregation problem. ·

Although their basic response to this problem is the same, the two system differ in
their implementation details. In particular, Langley's system does not require an explicit
statement of the graph deformation condition, since this falls out of the model's mecha
nisms for processing goals.12 In this sense, AMBER 's approach to chunking is similar to
Anderson's (1983) composition learning method, which creates chunks based on goal trees.

Unlike the other language acquisition systems we have discussed, AMBER does not
formulate explicit syntactic word classes. Rather, the system states its "grammar" entirely
in terms of semantic roles like agent, action, color, and shape. This corresponds to

12 Anderson's (1981) ALAS employs a very similar response to the chunking problem, and to
modeling first language acquisition in general. The two systems employ quite similar representa
tions and learning mechanisms, though AMBER accounts for somewhat earlier stages than ALAS.

25

children's early utterances, though eventually they move beyond the semantic stage to
more abstract syntactic classes like nouns and verbs. In any case, this means that AMBER
has no explicit response to the clustering problem for content words. The system does have
to group sentences into positive and negative instances for each function word, but this is
easily done by seeing whether each word occurs in the expected position.

Langley's model has two distinct responses to the characterization problem. Once
it has identified positive and negative instances for the various function words, AMBER
invokes a discrimination mechanism to determine the semantic conditions for each word.
We discussed this method earlier in the context of learning from examples. Basically,
it is a data-intensive technique that begins with ·general hypotheses and generates more
specific ones as errors of commission occur, using a differencing technique to determine
new conditions. Anderson (1983) and Langley (1985) have used similar methods for other
domains, including learning from examples and heuristics learning. AMBER combines the
discrimination process with a strengthening mechanism that serves to direct search through
the space of hypotheses, as well as modeling the gradual nature of children's mastery of
function words. . .

. In contrast, AMBER employs a quite different strategy to identify conditions on rules
for content word order. In this case the system learns from a single instance, rather than
relying upon a method that requires multiple observations. Learning occurs when the
system correctly generates one content word but omit another content word it should have
produced. To determine the relevant conditions, the system finds the path through the
semantic network that connects the two content words, and includes all links along this
path as conditions in the new production rule. Although the details differ, this strategy
is similar to that used by LAS, in that the system reasons about the meaning of a sample
sentence to decide which conditions are relevant. Although AMBER must relearn the
resulting rules many times before they affect behavior, the same conditions would be
determined in each case. Thus, Langley's system uses a simple form of explanation-based
learning to acquire rules for content words, rather than the empirical method it 11ses for
function words.

Although it makes no explicit response to storage issues, AMBER is implemented as a
production system model. Newell and Simon (1972) have argued that production systems
are a viable model of human long term memory, accounting for a variety of robust phe
nomena exhibited in human cognition. Moreover, Forgy (1979) has proposed a method for
efficiently storing large numbers of production rules that takes advantage of shared features,
and for efficiently matchh1g against these rules by retaining partial matches. AMBER is
implemented in PRISM (Langley & Neches, 1981), a production system architecture that
employs Forgy's storage and matching methods to provide reasonable performance even
when large numbers of rules are involved. Thus, the system provides a plausible response
to issues of the storage and retrieval of grammatical knowledge.

26

Negative Instances in Grammar Learning

Before concluding our review, we should add a few words about the role of negative
instances in grammar learning. In an earlier section, we saw that many learning methods
rely on negative instances to direct their search through the space of hypotheses. Charac
terization methods that find common structure employ such instances to determine when
a description is overly general, and thus should be eliminated. Characterization methods
that find differences use negative instances to determine how overly general descriptions
should be made more specific. We found that negative instances are heavily used in learn
ing from examples, where they are provided by. the tutor. However, they are also used
in heuristics learning and conceptual clustering, where they must be generated by the
learning system itself.

Only one of the grammar learning systems we discussed (Langley's AMBER) actually
employs negative instances, but a number of other systems have also used this type of
information, including Reeker's PST (1976) and Anderson's ALAS (1981). At first glance,
the use of negative instances may seem odd, since these models are given only examples
of legal sentences. However, AMBER and its relatives are not dealing with positive

0

'and
negative instances at the level of the entire sentence. Rather, they are learning the condi
tions on rules or networks that deal with only parts of sentences.13 Moreover, they are not
acquiring the ability to judge grammaticality, but to map sentences onto their meanings
and vice versa.

The presence of sentence meanings makes a major difference. Since a particular word
or phrase may fail to occur in the presence of a particular meaning, negative instances
become possible. As a result, one can use difference-based characterization methods such
as discrimination (Langley, 1985) that require comparisons between positive and negative
instances. Let us consider a brief example of how this can occur. Suppose the learner
knows that ed may occur after a verb or action word, but not exactly when. Each case
in which the ending does occur is marked as a positive instance of ed, while e<i.ch case
in which it fails to occur is marked as a negative instance. Based on this clustering,
one can systematically search the space· of characterizations to determine which semantic
conditions best predict the occurrence of the ending. Similar methods could be used for
content words or larger structures, such as phrases.

Let us repeat that we do not mean that children receive negative evidence in the form of
ungrammatical sentences. However, we do mean that one can generate negative instances
from sentences paired with their meanings, and use this information in the grammar learn
ing process. The ability to do this relies on an important assumption that has not been
clearly stated in earlier papers taking this approach: there must be a one-to-one mapping
between sentences and meanings.14 If this uniqueness assumption does not hold, then

13 Berwick (1979) could also have employed negative instances at the rule level by noting which
actions failed to allow a successful parse. However, LPARSIFAL did not employ this information,
since its search for rules was already sufficiently constrained.

14 We direct the reader to other chapters in this volume for a fuller treatment of the uniqueness
assumption. In particular, the chapters by Clark, by Pinker, and by MacWhinney and Sokolov all

27

one cannot infer that a missing word or phrase implies a negative instance; the construct
might be perfectly acceptable, but the speaker has simply decided to describe the meaning
another way.

Thus, the uniqueness assumption guarantees that a. missing construct constitutes a
negative instance of that construct. This considerably simplifies the learning task, since
one can then use the inferred negative instances to eliminate overly general rules or to
formulate more specific ones. Of course, learning mechanisms that can handle noise (such
as strength-based methods) might still learn if this assumption is not met, and in this case,
more frequent constructs would come to be preferred. Still, the greater the degree to which
the assumption is violated, the more difficult the grammar learning task will become.

A Research Proposal

Our review of computational approaches to language acquisition would not be complete
without some evaluation of this work, and some suggestions for future efforts. For instance,
we might evaluate various systems in terms of the psychological and linguistic validity, but
this would not really be fair. Of the four grammar learning systems we have examined,
only Langley's AMBER (1980, 1982) is intended as a psychological model of first language
acquisition, and thus made a serious attempt to account for child language data.. Other
models have been proposed by Kelley (1967), Reeker (1976), MacWhinney (1978a, 1983), j

Selfridge (1979), and Hill (1983), but the majority of AI research on language learning has
not attempted to explain the observed phenomena.. We would like to encourage more work
of this sort, but even ignoring this issue, the existing systems suffer on other dimensions.
In this section, we consider their limitations and outline an alternative approach that we
are using in our own work.

Limitations of Previous Research

One problem with the existing work is its focus on grammar learning to the e.xclusion
of other aspects of language acquisition. A few systems, such as Sikl6ssy's ZBIE (1968) and
Selfridge's CHILD (1979), learn to associate words with concepts, but the majority assume
that these connections are present at the outset. Wolff's SNPR (1978, 1982) acquires words
themselves as well as grammars, and MacWhinney (1983) has modeled the development
of morphophonology, but these are distinct exceptions to the rule. In addition, all existing
systems focus on generating or understanding correct sentences rather than interesting
ones. We know of no system that acquires pragmatic knowledge for determining what one
should talk about in a given context. Ultimately, we would like an integrated theory of
language acquisition that incorporates all of the above components.

The previous work has also ignored interactions between the process of languag~ ac
quisition and other aspects of cognition, such as concept formation. Thus, it fits well with
the traditional machine learning focus on isolated tasks like those we reviewed earlier in

make use of this assumption, though not always by the same name. For example, Clark calls it
the principle of contrast.

28

the
acq1
mal

sent
of g
rep1
roOJ
but
whi~

acq1

beiIJ
witl
ing
ortli
feat'
focu
of le
the

An

idea
care
atte
nat1
the
ma~

focu
lit SI

Ho~

oft]
proi
red1

fro11
oft:
Sue:
mOI

of p

:onstruct
meaning

titutes a
sk, since
les or to
tse (such
his case,
to which
>me.

omplete
nstance,
iity, but
a.milled,
a.nguage
.. Other
~, 1983)'
riing has
>re work
.ensions.
that we

eel us ion
68) and
assume
:swords
opment
~xis ting
eresting
hat one
.eory of

ag~ ac
~ll with
rlier in

calls it

the paper. However, it is clear that concept learning has major implications for language
acquisition, and a. complete model would take their interaction into account. One can
make similar arguments for other components of intelligence.

A more subtle criticism concerns only those systems that learn mappings between
sentences and their meanings. However, this assumption holds for all psychological models
of grammar learning, an important class of learning systems. The problem is that the
representation of meaning is provided by the programmer, and this leaves considerable
room for hand-crafting the input. Similar problems a.rise for other machine learning tasks,
but the nature of the grammar learning task emphasizes the issue. There are two ways in
which such "cheating" can be embedded in the meanings presented to a model of language
acquisition.

First, one may employ concepts and features that are well-suited to the language
being learned. For instance, some systems allow a progressive feature to be associated
with the action of an event. This considerably simplifies the acquisition of the English
ing construct, while the progressive concept is useless for other languages that make
orthogonal distinctions. Second, one may include in the meaning representation only tkose
features that are relevant to the learning task. This lets one avoid modeling the process of
focusing attention on important aspects of the environment. All existing cognitive models
of language acquisition suffer from such hand-crafting; the "kludges" have moved out of
the models (which are often quite general) and into the inputs.

An Alternative Approach to Modeling Language Acquisition

We have been somewhat unfair in criticizing machine learning's emphasis on isolated,
idealized tasks, and equally unfair in criticizing models of grammar learning for their
carefully crafted inputs. Simplifying assumptions a.re always helpful when one is first
attempting to understand a problem area, and the simplifications that occurred were
natural ones. However, the history of artificial intelligence reveals a recurring trend - after
the components of a problem are reasonably well understood, more "complex" problems
may become easier to solve than the original "simple" ones.

An example from vision research should clarify the trend. Early work in this area
focused on the idealized problem of constructing three-dimensional models from very well
lit scenes. Methods for solving this problem involved considerable computation and search.
However, when the "harder" task of working with shadowed scenes was attempted, many
of the difficulties disappeared. In retrospect, the reason is obvious; the presence of shadows
provided constraints that -were absent in the original, idealized task, and this significantly
reduced the space of possible interpretations.

We believe that research on computational models of language acquisition would benefit
from similar strategy. Since this work is still in its early stages, we will spend the remainder
of the paper on the constraints we have set ourselves, rather than on solutions to them.
Such constraints can occur at two distinct levels. First, one can make the modeling problem
more difficult for oneself, using the resulting constraints to direct search through the space
of possible models. Second, one can make the language acquisition task more difficult for

29

the learning system, providing additional constraints for the system to use itself. We plan
to use both of these strategies in our work on language acquisition.

One way to constrain our search for mechanisms of language acquisition is to model
human behavior in this domain. In addition to the intrinsic interest of this endeavor,
human children are still our best examples of language learning systems, making them
obvious objects of study. MacWhinney (1978b) has proposed nine criteria that should be
satisfied by computational models of human language acquisition. Here we will list only
four broad classes of constraints that our model should meet, but each of these is sufficient
to rule out many of the approaches that have been previously explored.

First, it is clear that children acquire language in an incremental fashion, so our learn
ing mechanisms must have this characteristic as well. Second, it is clear that humans
learn not only to judge the grammaticality of sentences, but to map sentences onto their
meanings, and our model must do the same. Third, the model should be consistent with
our knowledge of the human cognitive architecture. For instance, Newell and Simon (1972)
and Anderson (1983) have argued that production systems are central to human cogni
tion; this makes production systems an obvious framework to consider, though certarinly
not the only one. Finally, children progress through clearly identifiable stages during their
acquisition of language, and our model should account for these stages. Thus, the model
should progress from the one word stage, through a telegraphic stage, and eventually pro
duce complete adult sentences. We have not decided the level of detail we should strive to
explain, but even the highest levels significantly limit the space of models.

Towards an Integrated Model of Learning

In addition to developing a psychologically plausible model of first language acquisi
tion, we hope to develop a more complete model that moves beyond grammar learning in
isolation. The planned system must learn to recognize and generate words like bounce and
ball, and it must also associate these words with particular concepts. The model will have
to learn the mapping between combinations of words (sentences) and their meanings, and
to acquire heuristics for generating usefol sentences. Moreover, these different components
must be integrated into a single model of the language acquisition process.

The advantage of this approach is that the various learning tasks should feed into each
other, reducing the learner's reliance on carefully crafted inputs. For instance, the model
will initially learn the meanings of words based on repeated situations in which a given
word and concept cooccur. This knowledge can then be used to aid the grammar learning
process, much as existing grammar learning systems use word meanings. However, once an
initial grammar has been acquired, this can be used in turn to learn new word meanings
from context (Granger, 1977). Such positive feedback would let the system move away
from its initial reliance on sentence-meaning pairs.

We also hope to integrate the language acquisition process with a model of both concept
formation and problem solving. It is clear that children have many concepts in memory
before they associate words with them, and the concept formation process must account
for their origin. Presumably, some concepts will be acquired later than others, and this

30

may account for the fact that certain words are learned relatively late. Thus, the model of
concept formation may contribute to explaining phenomena that appear entirely linguistic
at first glance. The causal arrow may point in the other direction as well, since language
may be used to communicate new concepts once it has advanced sufficiently.

We believe the problem solving process is also important to language acquisition, since
it is responsible for the generation of goals, and for the creation of plans to achieve these
goals. Many of children's early utterances seem to revolve around goals such as easing
hunger and getting attention. H we hope to explain these utterances, we must account
for the origin of these goals, and thus the need for a model of problem solving. Also, it
seems quite likely that an explanation of pragmatic rules and their acquisition will revolve
around goals, and a full account must explain how these goals originate.

Learning in a Reactive Environment

Machine learning researchers have traditionally focused on abstract, symbolic tasks like
learning from examples and heuristics learning. Not surprisingly, they have attempted to
cast the task of language acquisition in the same mold, providing well-defined inputs ~uch
as sentence-meaning pairs, and expecting clean categorical rules or grammars as outputs.
However, humans learn language in the context of a complex physical world, and our model
of the acquisition process should reflect this fact.

In the World Modelers Project, we have implemented a complex simulated environment
in which our learner will perceive and act, much as a human child does in the real world.
There are three central motivations for using this simulated environment: (1) to provide our
learning model with (qualitatively) the same class of inputs as a human learner might find
in the real world, rather than some mathematical abstraction of preselected information
with no surrounding context; (2) to investigate reactive learning, in which the learner can
experiment with different ways of generating language or action, and directly observe the
behavioral consequences of its linguistic or physical acts; and (3) to provide situations in
which learning can be guided by the pursuit of goals, rather than being an end in itself.

The simulated environment supports three-dimensional objects (such as furniture and
toys), and these objects obey standard physical laws involving gravity, friction, and torque.
The learner itself has a (simplified) physical body that lets it move around and affect its
surroundings, as well as senses that let it observe these surroundings. Carbonell & Hood
(1985) describe the simulated environment in more detail, but the important point is that it
has much the same flavor as the environment in which a child learns language. To date, we
have constructed only very simple agents, but our long-term goal is to develop an integrated
model of learning (including the acquisition of language) within this environment.

The planned agent will perceive its surroundings through various senses (sight and
hearing), and store the resulting descriptions in memory. This has important implications
for the language acquisition task, since it means that the programmer need no longer spoon
feed the meanings of sentences to the model. In fact, such direct transfer of information
is explicitly forbidden; the learner will have access only to what it can see and hear.

31

This will force us to deal explicitly with two issues we raised earlier: giving the model
hand-crafted features like progressive to ease the learning task; and limiting the agent's
attention by presenting only relevant aspects of an event. Let us consider some responses
to these issues that we plan to explore in our model of learning in a reactive environment.

Rather than provide the system with arbitrary high-level features, we must show how
these concepts arise naturally out of an integrated cognitive architecture. For instance, any
system that interacts with a physical world must have some representation for time and be
able to use this in describing events. The system must be able to distinguish between events
that are currently occurring and those which are not. Thus, such a system will already
have one of the features needed to state progressive rules (like the English ing), which
are used only in describing ongoing events. However, this feature arises naturally from
the architecture itself and has many uses, rather than being given by the programmer
specifically for the grammar learning task. We believe that most other features can be
handled in an analogous manner.

Similarly, we should not simplify the grammar learning task by providing only the
relevant features of an event. Instead, we must model the process by which the learner
focuses on relevant information and ignores other features, and this requires a model of
attention. We believe that existing concepts and schemas generate goals and expectations,
and that humans use these expectations to filter the overwhelming information provided
by their senses. Attention is initially focused by specific object and procedural concepts
such as ball and bounce, since the child's early interactions with the world lead to such
concepts. This bias helps account for the dominance of content words in early speech.
Only later, after he has mastered content words, does the child turn to function words. If
the learner is unable to account for these with existing schemas, he must "loosen up" his
filter and examine other features that he previously ignored. Different features will prove
useful in different languages, and this is the point at which grammar can influence the
learner's knowledge structures in significant ways.

In addition, placing the learner in a physical world should lead naturally to a variety of
goals, such as easing hunger. If the agent has only limited manipulation capabilities (e.g.,
an object may be out of reach), then it will have significant motivation to communicate its
goals, in the hope that another agent (e.g., a parent) will satisfy them. Thus, goals will
play a central role not only in our model of problem solving and concept formation, but
in our model of language use as well. In general, the agent will talk about what it wants,
rather than describing random objects and events. Such goal-driven focus of attention
should constrain the otherwise combinatorially intractable problem of correlating linguistic
utterances with physical objects or actions. Moreover, these goals will arise naturally from
the learner's interaction with the world, rather than being provided by the programmer.

This opens the way to modeling the development of discourse strategies. We expect
that the learner will usually be accompanied by an "adult" who has both sophisticated
language skills and a repertoire of actions available to it. (This agent will be directly
controlled by the programmer, so we can "put words into its mouth".) Thus, the learner
will be able to make demands, ask questions, and exhibit a variety of linguistic behaviors

32

beyond simple declarative sentences. Different types of sentences can be used to satisfy
different goals, and the model must acquire the proper distinctions from experience.

Also, the presence of world knowledge provides an explanation for why understanding
often appears to precede production (generation). Although the process of concept forma
tion leads to knowledge of the world without need for language, this does not mean that
the knowledge cannot be used in linguistic contexts. Upon hearing a sentence that it only
partly understands, the agent may well take the appropriate action based on its previous
experience.

For example, suppose the child hears Go to the door, but only knows the meaning
of door. Since moving towards an object is a common strategy used to explore one's
surroundings, the child may perform the desired action, even with no knowledge of syntax
and little knowledge of semantics. Selfridge (1981) has used a similar approach in his
model of first language acquisition. However, he provided the learner with the necessary
knowledge structures, rather than modeling the process through which this knowledge is
acquired, as we plan. .

Of course, to the extent that such non-linguistic strategies are useful, the child will Ii.ave
little reason to learn word meanings and grammar. But in many cases, this approach will
lead to behaviors that the adult does not desire, and the learner will observe his displeased
response. For example, the above strategy would produce the same response to Close the
door (the child would go to the door), but in this case it would be incorrect. At this point,
the parent might demonstrate his intention by closing the door and repeating the word
close. Only in a reactive environment can such interaction be modeled and exploited for
learning.

This approach to language learning should work in the opposite direction as well.
Suppose the child says ball to request that an adult bounce the ball to him, and then sees
the adult place the ball in his pocket. This is a violated expectation, and as we described
earlier, such failures can be used to generate the negative instances that are so useful to
learning mechanisms. Experiences of this type will encourage the child to use complete
sentences to achieve his goals, rather than isolated words or telegraphic sentences.

We can say little more about the model at this point, since it exists only in the most
abstract terms. In fact, we have said more about the task we have set ourselves than the
model. However, we feel the nature of this task is central, since it will force us to deal
with issues that have been ignored (or at least postponed) in previous work on language
acquisition. We feel that the goals of modeling human behavior, developing an integrated
model of learning, and examining learning in a reactive environment will lead us down
paths that have never been traversed, but which are essential if we hope to understand the
full nature of language acquisition

33

Summary

In closing, let us briefly review the main points of the paper. We have seen that
the field of machine learning has addressed a number of distinct tasks, including learning
from examples, heuristics learning, conceptual clustering, and learning macro-operators.
Significant work has also been carried out on the problem of learning grammars from sample
sentences. We described each of these tasks in terms of four components or subproblems
- aggregation, clustering, characterization, and storage. We found that only the grammar
learning task forces one to address all four of the components, making it the most complex
of the learning problems we examined.

We also saw that in the area of language acquisition, machine learning researchers have
focused almost exclusively on grammatical knowledge, and we reviewed four systems that
acquire such knowledge. These systems differed along a number of dimensions, including
their representation of grammars, their reliance on sentence meanings, and the actual
learning mechanisms they employed. Each system also had its own response to the four
components of learning given above. Finally, we discussed some problems with existing
computational approaches to language acquisition, and outlined an alternative app~oach
in which we plan to integrate different aspects of the learning process, and in which we
plan to model learning in a complex, reactive environment.

We have no illusions that developing an integrated model of language learning will be
easy. Nor do we believe that we will succeed in any absolute sense. However, we do believe
that the attempt to construct such an integrated model will lead to questions that have
never before been asked, and to some tentative answers that future researchers will expand
and improve upon. In the long run, w~ expect that this strategy will lead to our common
goal - a fuller understanding of the mechanisms that underly language acquisition.

34

References

Anderson, J. R. (1977). Induction of augmented transition networks. Cognitive Science,
1, 125-157.

Anderson, J. R. (1981). A theory of language acquisition based on general learning prin
ciples. Proceedings of the Seventh International Joint Conference on Artificial Intelli
gence (pp. 165-170). Vancouver, B.C., Canada.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, Mass.: Harvard Uni
versity Press.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review,
86, 124-140.

Berwick, R. (1979). Learning structural descriptions of grammar rules from examples.
Proceedings of the Sixth International Conference on Artificial Intelligence (pp. 56-
58). Tokyo, Japan.

Berwick, R. (1980). Computational analogues of constraints on grammars: A model of
syntactic acquisition. Proceedings of the 18th Annual Conference of the Association
for Computational Linguistics (pp. 49-53). Toronto, Ontario, Canada.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York:
Wiley.

Carbonell, J. G., & Hood, G. (1985). The world modelers project: Objectives and simulator
architecture. Proceedings of the Third International Machine Learning Workshop (pp.
14-16). Skytop, PA.

Clark, E. (1986). The principle of contrast: A constraint on language acquisition. In B.
MacWhinney (Ed.), Mechanisms of language acquisition. Hillsdale, N.J.: Lawrence
Erlbaum.

Everitt, B. (1980). Cluster Analysis. Heinemann Educational Books, Ltd.

Fisher, D. (1984). A hierarchical conceptual clustering algorithm. (Technical Report)
Department of Information and Computer Science, University of California;.Irvine.

Fisher, D., & Langley, P. (1985). Approaches to conceptual clustering. Proceedings of
the Ninth International Joint Conference on Artificial Intelligence (pp. 691-697). Los
Angeles, CA.

Forgy, C. L. (1979). On the efficient implementation of production systems. Dissertation,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

Garvin, P. I. (1967). The automation of discovery procedure in linguistics. Language, 49,
172-178.

Granger, R. H. (1977). Foul-Up: A program that figures out words from context. Pro
ceedings of the Fifth International Joint Conference on Artificial Intelligence (pp. 172-
178). Cambridge, MA.

35

Hayes-Roth, F., & McDermott, J. (1978). An interference matching technique for inducing
abstractions. Communications of the ACM, 21, 401-410.

Hedrick, C. (1976). Learning production systems from examples. Artificial Intelligence,
1, 21-49.

Hill, J. A. C. (1983). A computational model of language acquisition in the two-year-old.
Dissertation, Department of Computer Science, University of Massachusetts, Amherst.

Horning, J. J. (1969). A study of grammatical inference. (Technical Report No. CS 139)
Computer Science Department, Stanford University, Stanford, CA.

Iba, G. Learning by discovering macros in puzzie solving. Proceedings of the Ninth In
ternational Joint Conference on Artificial Intelligence (pp. 64D-642). Los Angeles,
CA.

Kelley, K. L. (1967). Early syntactic acquisition. (Technical Report P-3719) The Rand
Corporation, Santa Monica, CA.

Klein, S., & Kuppin, M; A. (1970). An interactive, heuristic program for learning tr~ns
formational grammars. (Technical Report No. 97) Computer Sciences Department,
University of Wisconsin, Madison.

Knowlton, K. (1962). Sentence parsing with a self-organizing heuristic program. Disserta
tion, Massachusetts Institute of Technology, Cambridge, MA.

Korf, R. E. (1982). A program that learns to solve Rubik's cube. Proceedings of National
Conference on Artificial Intelligence (pp. 164-167). Pittsburgh, PA.

Laird, J. E., P. S. Rosenbloom, & A. Newell. (1986). SOAR: The anatomy of a general
learning mechanism. To appear in Machine Learning, 1.

Langley, P. (1980). A production system model of first language acquisition. Proceedings
of the Eighth International Conference on Computational Linguistics (pp. 183-189).
Tokyo, Japan.

Langley, P. (1982). Language acquisition through error recovery. Cognition and Brain
Theory, 5, 211-255.

Langley, P. (1985). Learning to search: From weak methods to domain-specific heuristics.
Cognitive Science, 9, 217-260.

Langley, P., & Neches, R. T. (1981). PRISM User's Manual. (Technical Report) Computer
Science Department, _Carnegie-Mellon University, Pittsburgh, PA.

Langley, P., & Ohlsson, S. (1984). Automated cognitive modeling. Proceedings of the
National Conference on Artificial Intelligence (pp. 193-197). Austin, TX.

Langley, P., & Sage, S. (1984). Conceptual clustering as discrimination learning. Pro
ceedings of the Fifth Biennial Conference of the Canadian Society for Computational
Studies of Intelligence (pp. 95-98). London, Ontario, Canada.

Lewis, C. H. (1978). Production system models of practice effects. Dissertation, Depart
ment of Psychology, University of Michigan, Ann Arbor.

36

Mac Whinney, B. (1978a). The acquisition of morphophonology. Monographs of the Society
for Research in Child Development, 49.

MacWhinney, B. (1978b}. Conditions on acquisitional models. Proceedings of the Annual
Conference of the Association for Computing Machinery. New York, NY.

MacWhinney, B. (1983). Hungarian language acquisition as an exemplification of a general
model of grammatical development. In D. I. Slobin (Ed.), The cross-linguistic study
of language acquisition. Hillsdale, N.J.: Lawrence Erlbaum.

MacWhinney, B., & Sokolov, J. (1986). Acquiring syntax lexically. In B. MacWhinney
(Ed.), Mechanisms of language acquisition. Hillsdale, N.J.: Lawrence Erlbaum.

Marcus, M. (1980). A theory of syntactic recognition for natural language. Cambridge,
MA: MIT Press.

McMaster, I., Sampson, J. R., & King, J. E. (1976). Computer acquisition of natural
language: A review and prospectus. International Journal of Man-Machine Studies,
8, 367-396.

Michalski, R. S. (1983}. A theory and methodology of inductive learning. In R. S. Michal
ski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelli
gence approach. Palo Alto, Ca: Tioga Press.

Michalski, R. S., & Stepp, R. (1983). Learning from observation: Conceptual clustering.
In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. Palo Alto, Ca: Tioga Press.

Miller, G. A. (1956). The magical number seven, plus or minus two. Psychological Review,
69, 81-97.

Minsky, M. (1963). Steps toward artificial intelligence. In E. A. Feigenbaum & J. Feldman
(Eds.), Computers and Thought. New York: McGraw-Hill, Inc.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203-~26.

Mitchell, T. M., Keller, R. M., & Kedar .. Cabelli, S. (1986}. Explanation-based generaliza
tion: A unifying view. Machine Learning, 1.

Mitchell, T. M., Utgoff, P., & Banerji, R. B. (1983). Learning problem solving heuristics by
experimentation. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine
learning: An artificial intelligence approach. Palo Alto, CA: Tioga Publishing Co.

Newell, A., Shaw, J. C., ~& Simon, H. A. {1960). Report on a general problem-solving
program for a computer. Information Processing: Proceedings of the International
Conference on Information Processing (pp. 256-264).

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, N.J.:
Prentice-Hall, Inc.

Neves, D. M., & Anderson, J. R. (1981}. Knowledge compilation: Mechanisms for the
automatization of cognitive skills. In J. R. Anderson (Ed.), Cognitive skills and their
acquisition Hillsdale, N. J.: Lawrence Erlbaum Associates.

37

DEC 1 6 1986

Library U.se Only
Ohlsson, S. (1983). A constrained mechanism for procedural learning. Procuclings of

the Eighth International Joint Conference on Artificial Intelligence (pp. 426-428).
Karlsruhe, West Germany.

Pinker, S. (1979). Formal models of language learning. Cognition, 7, 217-283.

Pinker, S. (1986). The bootstrapping problem in language acquisition. In B. MacWhinney
(Ed.), Mechanisms of language acquisition. Hillsdale, N.J.: Lawrence Erlbaum.

Reeker, L. H. (1976). The computational study of language acquisition. In M. Yovits &
M. Rubinoff (Eds.), Advances in Computers, Volume 15. New York: Academic Press.

Selfridge~ M. (1981). A computer model of child language acquisition. Proceedings of the
Seventh International Joint Conference on Artificial Intelligence (pp. 92-96). Vancou
ver, B.C., Canada.

Sembugamoorthy, V. (1981). A paradigmatic language acquisition system. Proceedings of
the Seventh International Joint Conference on Artificial Intelligence (pp. 106-108).
Vancouver, B.C., Canada. .

Sikl6ssy, L. (1972). Natural language learning by computer. In H. A. Simon & L. SiklcSssy
(Eds.), Representation and meaning: Experiments with information processing systems.
Englewood Cliffs, NJ: Prentice-Hall.

Sleeman, D., Langley, P., & Mitchell, T. (1982). Learning from solution paths: An ap
proach to the credit assignment problem. AI Magazine, 9, 48-52.

Smith, D. E. (1982). Focuser: A strategic interaction paradigm for language acquisition.
Dissertation, Department of Computer Science, Rutgers University, New Brunswick,
NJ.

Solomonoff, R. (1959). A new method for discovering the grammars of phrase structure
languages. Proceedings of the International Conference on Information Processing.

Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. \v'inston
(Ed.), The psychology of computer vision. New York: McGraw-Hill.

Wolff, J. G. (1978). Grammar discovery as data compression. Proceedings of the AISB/GI
Conference on Artificial Intelligence (pp. 375-379). Hamburg, West Germany.

Wolff, J. G. (1982). Language acquisition, data compression, and generalization. Language
and Communication, 2, 57-89.

38

