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Abstract

We present a comprehensive study of two single-reference approaches to singlet

biradicaloids. These two approaches are based on the recently developed regularized

orbital-optimized Møller-Plesset method (κ-OOMP2). The first approach is to com-

bine the Yamaguchi’s approximate projection (AP) scheme and κ-OOMP2 with unre-

stricted (U) orbitals (κ-UOOMP2). By capturing only essential symmetry breaking,

κ-UOOMP2 can serve as a suitable basis for AP. The second approach is κ-OOMP2

with complex, restricted (cR) orbitals (κ-cROOMP2). Though its applicability is more

limited due to the comparative rarity of cR solutions, κ-cROOMP2 offers a simple

framework for describing singlet biradicaloids with complex polarization while remov-

ing artificial spatial symmetry breaking. We compare the scope of these two methods

with numerical studies. We show that AP+κ-UOOMP2 and κ-cROOMP2 can perform

similarly well in the TS12 set, a data set that includes 12 data points for triplet-singlet

gaps of several atoms and diatomic molecules with a triplet ground state. This was also

found to be true for the barrier height of a reaction involving attack on a cysteine ion

by a singlet oxygen molecule. However, we also demonstrate that in highly symmetric

systems like C30 (D5h) κ-cROOMP2 is more suitable as it conserves spatial symmetry.

Lastly, we present an organic biradicaloid that does not have a κ-cROOMP2 solution

in which case only AP+κ-UOOMP2 is applicable. We recommend κ-cROOMP2 when-

ever complex polarization is essential and AP+κ-UOOMP2 for biradicaloids without

esssential complex polarization but with essential spin-polarization.
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1 Introduction

Strong correlation is usually associated with multiple open-shell electrons that are antiferro-

magnetically coupled into a low-spin state.1–3 For instance, molecular magnets with multiple

metal centers,4–8 non-innocent ligands,9,10 metalloenzymes,11–13 and oligoacenes14–17 exhibit

strong correlation. Of such cases, singlet biradicaloids exhibit the simplest form of strong

correlation.18–24 As this is usually outside the scope of single-reference electronic structure

methods, it is common to employ multiconfigurational methods.25–27 A brute-force approach

to treat this strong correlation is complete active space self-consistent field (CASSCF) with

an active space of two electrons in two orbitals (2e, 2o). However, CASSCF does not in-

corporate electron correlation outside the active space so subsequent dynamic correlation

treatments28–30 are necessary for quantitatively correct answers. A related single reference

approach is to start from the triplet single determinant (i.e., MS = 1) and flip a spin to ac-

cess the MS = 0 manifold, either using configuration interaction (CI)5,31–34 or coupled-cluster

(CC) via the equation of motion approach.19,35,36

Alternatively, one could try to treat such systems using single-reference methods with the

help of essential symmetry breaking. It is essential in the sense that the qualitative charac-

ter of a single-determinant wavefunction is fundamentally wrong without essential breaking.

A majority of essential symmetry breaking is spin-restricted (R) to spin-unrestricted (U)

symmetry breaking, namely spin-polarization. In the case of singet biradicaloids, such es-

sential symmetry breaking can be combined with Yamaguchi’s approximate spin-projection

(AP) to produce spin-pure energies.37–44 The applicability of AP is dependent on whether

the underlying wavefunction contains only one contaminant. It is an exact projection only

if there is one single contaminant. This sets a limit to 〈Ŝ2〉 of broken-symmetry MS = 0

solutions to be effective for AP: 0.0 ≤ 〈Ŝ2〉 ≤ 2.0.

UHF is heavily spin-contaminated for most biradicaloids. For instance, this was observed

by us in the heptazethrene dimer (HZD) where broken-symmetry UHF yields 〈Ŝ2〉 = 6.3 in

the cc-pVDZ basis set.45 The subsequent correlation treatment based on these UHF solutions

3



via second-order Møller-Plesset perturbation theory (MP2) is not effective in removing such

heavy spin contamination. It is possible to employ orbital optimized MP2 (OOMP2) as

an attempt to produce a reference determinant with only essential symmetry breaking (i.e.,

〈Ŝ2〉 ≈ 1.0). However, it is likely that OOMP2 produces a divergent solution or a restricted

solution that is unphysically low in energy if not divergent.46,47 As a solution to this problem,

we employed regularized OOMP2 (κ-OOMP2) to treat HZD.45 In contrast to our previous

δ-OOMP2 (regularized with a constant level-shift), κ-OOMP2 determines the strength of

regularization of individual correlation energy contributions depending on the orbital energy

gap associated with them. κ-OOMP2, in turn, achieves both the recovery of Coulson-Fischer

points48 and favorable thermochemistry performance, which was found to be challenging

for δ-OOMP2 to achieve.47 Returning to the HZD example, κ-OOMP2 with unrestricted

orbitals (κ-UOOMP2) produces 〈Ŝ2〉 = 1.2 which is well-suited for subsequent AP treatment.

Generally speaking, κ-UOOMP2 with AP (AP+κ-UOOMP2) is a simple and robust way to

treat biradicaloids which captures both static and dynamic correlation. We will further

highlight this particular combination of AP and κ-UOOMP2 later in this work.

A rather rarer class of essential symmetry breaking, which is another focus of this work, is

real, R to complex, R (cR) symmetry breaking. This is referred to as “complex-polarization”

in this work. Complex polarization was known for many years in the context of some

strongly correlated molecules such as O2 (1∆g).
49–57 Our group established its connection to

generalized valence bond perfect pairing (GVB-PP)58 using the complex pairing theorem.59

When such solutions exist, complex restricted Hartree-Fock (cRHF) can indeed capture

some aspects of GVB-PP and behaves qualitatively better than RHF. It was shown that the

subsequent correlation treatment, cRMP2, yields quantitatively more accurate results than

RMP2 for systems examined in ref. 59. Moreover, cRMP2 outperformed UMP2 especially

when there is a strong mixing between singlet and triplet states.

Our recent work illustrated a way to obtain such essential symmetry breaking with κ-

OOMP2.60 Therein we discussed how to remove artificial spin-polarization using κ-OOMP2
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with complex, generalized (cG) orbitals. It is artificial because orbital optimization in the

presence of dynamic correlation such as MP2 (or other approaches for approximate Brückner

orbitals) may remove such symmetry breaking. Artificial symmetry breaking occurs at the

HF level not due to the lack of ability to describe strong correlation but because of the lack of

dynamic correlation treatment. In ref. 60, we show that it is possible to distinguish artificial

and essential symmetry breaking based on κ-OOMP2. Interested readers are referred to

ref. 60 and we will further review some aspects of this relevant to this work in Section

2.2. In addition to essential spin-symmetry breaking, it is also possible to explore essential

complex-polarization within the κ-OOMP2 method, which will combine the strengths of

cRMP2 and κ-OOMP2. Namely, κ-cROOMP2 is able to describe multireference systems

whenever complex-polarization is relevant.

For general biradicaloid systems, it is natural to consider AP and cR methods as simple

single-reference alternatives to multi-reference and spin-flip methods. In particular, these are

far simpler to implement than typical multi-reference second-order perturbation theory.28,30

Compared to AP, cR methods offer more straightforward formalisms for response theory.

For example, cRMP2 has the identical response theory formalism to that of usual MP2 and

there is no need to derive additional terms. The analytic nuclear derivatives of AP methods

have been derived and implemented at the mean-field level,38,39,42,43 but there has been no

study on response theory of correlated wavefunction methods with AP. While the formal

and practical simplicity of cR methods is very desirable, its limited applicability due to the

rareness of cR solutions makes it less appealing.

In this work we will explore several biradicaloid systems that exhibit cRHF solutions

and discuss the applicability of κ-cROOMP2 and AP+κ-UOOMP2. In particular, we will

compare κ-cROOMP2 and AP+κ-UOOMP2 in these systems and discuss the similarities

and differences between them. For simplicity, we will limit our discussion to HF, MP2 and

κ-OOMP2 although other variants of MP2 and OOMP2, such as spin-component scaled

methods,61,62 can also be combined with cR orbitals or AP.
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2 Theory

We will use i, j, k, l, · · · to index occupied orbitals, a, b, c, d, · · · to index virtual orbitals, and

p, q, r, s, · · · to index either of those two.

2.1 Review of cRHF and Complex Polarization

The complex restricted Hartree-Fock (cRHF) energy is given by

EHF = 2 tr (PH0) + 2 tr (PJ)− tr (PK) + Enuc (1)

where P is the one-particle reduced density matrix (1PDM), H0 is the one-electron Hamil-

tonian, J and K are the Coulomb and exchange matrices, and Enuc is the nuclear repulsion

energy. In cRHF, we allow the molecular orbital (MO) coefficient matrix C to be com-

plex and as a result P may become complex. As mentioned in ref. 59, a cRHF solution is

“fundamentally complex” if and only if the norm of the imaginary part of P is non-zero.

The use of complex restricted (cR) orbitals for multi-reference problems has been known

for many years in electronic structure theory49–57 but they have been rarely employed in

practice. The major reason for this underappreciation is due to the rareness of genuine cR

solutions. Small et al. established the connection between cRHF and GVB-PP and as a

result, we have a better understanding of why cR solutions are rare and when to expect

them.59

Within a single pair of electrons, the R to cR instability is driven by the energy lower-

ing due to a PP-like (or CAS(2,2)-like) configuration. However, a cRHF wavefunction also

necessarily contains an open-shell singlet (OSS)-like configuration which is usually energet-

ically high. The competition between the PP-like contribution (energy-lowering versus R)

and the OSS-like contribution (energy-raising versus R) determines the R to cR instability.

When the PP stabilization is greater than the OSS energetic cost, we observe the R to cR

instability. This is, however, not very common to observe and this explains the rareness of
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cRHF solutions. As we will see, some singlet biradicaloids exhibit complex-polarization and

therefore cRHF can serve as a faithful starting point for subsequent correlation treatments.

The relative energetics between PP-like terms and OSS-like terms change in the presence of

correlation treatment. Therefore, it is reasonable to expect that some cRHF solutions are

artificial and they would lead to cRMP2 energies that are much higher than RMP2. We will

encounter an example that demonstrates this later in the paper.

It is useful to run internal stability analysis to ensure the local stability of cRHF solutions.

We provide the electronic Hessian of the energy expression in Eq. (1) in Appendix.

2.2 Regularized OOMP2 with cR orbitals: κ-cROOMP2

The MP2 energy expression with cRHF orbitals reads

EcRMP2 = EHF +
∑
ijab

τabij (ia|jb) (2)

where i and j are occupied spatial orbitals, a and b are unoccupied spatial orbitals, (ia|jb)

represents the two-electron four-center integrals and the spin-adapted amplitudes τ are

τabij = −2 (ia|jb)∗ − (ib|ja)∗

∆ab
ij

. (3)

∆ab
ij is a positive energy denominator defined as

∆ab
ij = εa + εb − εi − εj, (4)

where εp denotes canonical orbital energies. Orbital optimization of Eq. (2) yields orbital-

optimized MP2 (OOMP2). As mentioned in Section 1, OOMP2 has two major issues that

limits its applicability. First, as we optimize orbitals in the presence of correlation energy,

∆ab
ij can become very small and the resulting energy can become non-variational and even

approach divergence.46 Second, as a result OOMP2 may unphysically prefer restricted so-
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lutions and remove the Coulson-Fischer point.47 Our group has developed a regularization

scheme which fixes these two major issues in OOMP2.45

The orbital-energy-dependent regularization introduced in ref. 45 modifies the two-electron

integrals in the correlation energy contribution in Eq. (2). The resulting κ-cRMP2 energy

expression reads

Eκ-cRMP2 = EHF +
∑
ijab

τ̃abij
∗

(ia|jb) (1− e−κ∆
ab
ij ) (5)

where the regularized amplitudes are

τ̃abij = τabij (1− e−κ∆
ab
ij ) (6)

Orbital optimizing Eq. (5) defines the κ-OOMP2 method (in this case κ-cROOMP2). It

is immediately obvious that the correlation energy can no longer diverge even when ∆ab
ij =

0. Based on carbon-carbon single, double, and triple bond breaking, we showed that the

Coulson-Fischer point is recovered. Combining recovery of Coulson-Fischer points with

reasonable performance for a thermochemistry benchmark, κ = 1.45 was recommended

for chemical applications.45 We also showed that κ ∈ [1.0, 2.0] (which comfortably includes

κ = 1.45 in the middle) yields only essential symmetry breaking and can remove artificial HF

symmetry breaking in fullerenes.60 This is because κ-OOMP2 describes dynamic correlation,

but regularization has removed the inaccurate description of static correlation present in

conventional MP2.

Distinguishing artificial and essential symmetry breaking based on κ-OOMP2 may seem

arbitrary. However, in ref. 60 we compared this diagnosis of strong correlation with other

approaches such as natural orbital occupation numbers and more sophisticated coupled-

cluster methods. All these three independent probes suggested that C60 is not strongly

correlated and C36 is strongly correlated. As such, κ-OOMP2 can reliably probe the un-

derlying symmetry breaking and answer whether it is artificial (not strongly correlated) or

essential (strongly correlated). κ-OOMP2 will be used to probe essential symmetry breaking

8



and strong correlation in another fullerene C30 below.

The implementation of κ-cROOMP2 was accomplished closely following the spin-orbital

implementation described in ref. 45. We apply the resolution-of-the-identity approximation

to (ia|jb),

(ia|jb) =
∑
PQ

(ia|P ) (P |Q)−1 (Q|jb) =
∑
P

(ia|P )CP
jb (7)

where P and Q are auxiliary basis indices and we define the expansion coefficients of an

occupied-virtual product |jb) as:

CP
jb =

∑
Q

(P |Q)−1 (Q|jb) (8)

The spin-adapted two-particle density matrix (2PDM) consists of two parts: one is the usual

MP2 2PDM contribution,

ΓPai = 2
∑
jb

CP
jbτ̃

ab
ij , (9)

and another is the modification due to the regularizer,

Γ̃Pai = 2
∑
jb

CP
jbτ̃

ab
ij e

−κ(εb−εj) (10)

Similarly, the spin-adapted 1PDM also consists of two parts: the first is the usual MP2

1PDM contributions,

P
(2)
ij = −2

∑
abk

(τ̃abik )∗
(ka|jb)∗

∆ab
ij

(11)

P (2)
ca = 2

∑
ijb

(τ̃abij )∗
(ic|jb)∗

∆cb
ij

(12)
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and the second is the modification from the regularizer,

P̃
(2)
ij = −κ

∫ 1

0

dτeτκεi(ω∗
ij + ωji)e

(1−τ)κεj = −(ω∗
ij + ωji)

(
eκεi − eκεj
εi − εj

)
(13)

P̃
(2)
ab = κ

∫ 1

0

dτe−τκεa(ωab + ω∗
ba)e

−(1−τ)κεb = (ωab + ω∗
ba)

(
e−κεa − e−κεb

εb − εa

)
(14)

where the definition of ωij and ωab follows:

ωij =
∑
aP

e−κεa(ia|P )Γ̃Paj (15)

and

ωab =
∑
iP

eκεiΓ̃Pai(ib|P ) (16)

These spin-adapted quantities can be used to produce appropriate orbital gradients for orbital

optimization. Interested readers are referred to ref. 45 for more technical details. In passing

we mention that Eq. (13) and Eq. (14) were computed via a one-dimensional Legendre

quadrature previously,45 but in the pseudocanonical basis, it can be done analytically as

shown above.

We apply the frozen-core approximation to the systems considered in this paper. This

adds orbital rotation parameters between frozen core and occupied orbitals to the orbital

optimization problem. We present the pertinent orbital gradient equations and explain

some numerical difficulties we encountered with this optimization problem in the Supporting

Information.

2.3 Yamaguchi’s Approximate Spin-Projection

The approximate spin-projection method proposed by Yamaguchi37 has been widely used in

a wide variety of strong correlation problems.37–44 Its working equation is very simple and

it usually takes at most two separate single point calculations for two different MS values to

perform the projection. When projecting a triplet state out of an MS = 0 broken symmetry
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solution, one can use the following equation which is derived using 〈S2〉:

ES=0 =
EBS − (1− α)ES=1

α
(17)

where the spin-coupling coefficient α is

α =
〈S2〉S=1 − 〈S2〉BS

〈S2〉S=1 − 〈S2〉S=0

(18)

There are multiple ways to obtain ES=1 and 〈S2〉S=1. The simplest way is to use a high spin

MS = 1 calculation to obtain ES=1 at the same level of theory as EBS. Therefore, we need

a total of two unrestricted calculations, MS = 0 and MS = 1. Evidently, if the singlet is

heavily spin-contaminated the above spin-coupling equation is no longer valid. Furthermore,

we need a nearly spin-pure value of 〈S2〉 for the MS = 1 state. As we shall see later,

κ-UOOMP2 can accomplish these objectives.

3 Applications

We will study multiple biradicaloid systems that have one pair of electrons that exhibit

essential complex-polarization or spin-polarization. In other words, the singlet ground state

of these systems involve a pair of open-shell electrons. Throughout the examples presented

below, we will see how κ-cROOMP2 and/or AP+κ-UOOMP2 can be used for these singlet

biradicaloids and also compare their strengths and weaknesses.

All calculations were performed with a development version of Q-Chem.63 For κ-OOMP2

methods, we took a stable HF solution as an initial set of orbitals unless mentioned otherwise.

All plots were generated with Matplotlib64 and all molecular figures were generated with

Chemcraft.65
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3.1 TS12 Set: Triplet-Singlet Gaps

We will consider triplet-singlet gaps (∆ET-S = ES − ET) of atoms and diatomics whose

ground state is triplet. Systems with a triplet ground state are likely to have a (near)

degeneracy between highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) so these are also likely to have near-degenerate OSS-like and

PP-like configurations. Therefore, for these molecules, there is a good chance for essential

complex polarization to occur.

We will compare HF, MP2, and κ-OOMP2 methods with different types of orbitals

for treating the singlet ground state of the following molecules: C, NF, NH, NO–, O2, O,

PF, PH, S2, S, Si, and SO. The reference triplet-singlet gaps as well as the equilibrium

bond length of diatomics for each electronic state were taken from the NIST Chemistry

WebBook.66 Individual references for these experimental values and geometries are given

in the Supporting Information. We validated the experimental gaps against near-exact full

configuration interaction calculations using the heat-bath algorithm developed by Holmes

and co-workers.67 The theoretical estimation lies within 1.0 kcal/mol of the experimental

values and we provide these data in the Supporting Information. This data set will be

referred to as the “TS12” set for the rest of this manuscript.

In benchmarking HF, MP2, and κ-OOMP2 methods, we employed the aug-cc-pVQZ

basis set68,69 along with its auxiliary basis set.70 The frozen core approximation was used for

all correlated wavefunction calculations. Unrestricted orbitals are used for the triplet state

(MS = 1).

For the molecules in the TS12 set, using real, restricted orbitals for the singlet ground

state is fundamentally incorrect as it cannot capture the biradicaloid character of the singlet

ground state. UHF orbitals are heavily spin-contaminated as the singlet ground state is a

strong biradicaloid. This is well illustrated in Table 1. The MS = 0 states exhibit 〈S2〉 = 1.0

which indicates nearly perfect singlet biradicals. The MS = 1 states are more or less spin-

pure which validates the use of UHF orbitals for MS = 1 states. Therefore, UHF and UMP2
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Table 1: The UHF 〈S2〉 values of the molecules in the test set considered in this work and
the term symbol for each electronic state considered in the TS12 set.

MS = 0 MS = 1 Triplet Singlet

C 1.018 2.010 3P 1D

NF 1.015 2.023 X3Σ− a1∆

NH 1.012 2.017 X3Σ− a1∆

NO– 1.031 2.052 X3Σ− a1∆

O2 1.023 2.049 X3Σ−
g a1∆g

O 1.009 2.009 3P 1D

PF 1.047 2.035 X3Σ− a1∆

PH 1.039 2.029 X3Σ− a1∆

S2 1.062 2.060 X3Σ−
g a1∆g

S 1.033 2.013 3P 1D

Si 1.047 2.015 3P 1D

SO 1.051 2.058 X3Σ− a1∆

are expected to perform very poorly on this test set. However, all these 〈S2〉 values are very

well-suited for the AP approach. Therefore, one may expect that AP+UMP2 and AP+κ-

UOOMP2 perform similarly well. We will see whether these predictions are indeed true in

the TS12 set.

First, we discuss HF and MP2 with real, restricted (R) and real, unrestricted orbitals

(U). The results of these methods are presented in Table 2. Based on the mean-signed-

deviation (MSD) of each method, it is evident that restricted orbitals overestimate the gap

whereas unrestricted orbitals underestimate the gap. This suggests that the singlet ground

state of these molecules is too high in energy when described by R orbitals and too low

in energy when described by U orbitals. This is expected for RHF because closed-shell

electronic structure produced by R orbitals should be less stable than an open-shell one.

It is also expected for UHF, as the triplet ground state is lower in energy than the singlet

ground state, triplet-singlet spin contamination lowers the energy of MS = 0 unrestricted

state. With the MP2 level of correlation, these failures of R and U orbitals do not disappear.

RMP2 has an RMSD of 11.60 kcal/mol and UMP2 has an RMSD of 12.42 kcal/mol.

How does κ-OOMP2 change this conclusion? As long as R or U orbitals are employed,
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Table 2: The experimental triplet-singlet gap ∆ET-S(= ES − ET ) (kcal/mol) of various
atoms and diatomics and the deviation (kcal/mol) in ∆ET-S obtained with HF and MP2
using restricted and unrestricted orbitals. RMSD stands for root-mean-square-deviation
and MSD stands for mean-signed-deviation.

Expt. RHF UHF RMP2 UMP2

C 29.14 26.59 -15.37 13.85 -13.58
NF 34.32 31.54 -14.80 10.99 -17.23
NH 35.93 30.59 -16.72 15.90 -17.29
NO– 17.30 29.60 -2.11 5.53 -7.74
O2 22.64 32.54 -5.45 6.15 2.72
O 45.37 34.72 -22.79 19.71 -22.10
PF 20.27 25.37 -11.89 10.80 -9.06
PH 21.90 24.35 -11.93 11.66 -10.17
S2 13.44 21.03 -5.70 4.48 -5.01
S 26.41 26.52 -15.75 14.21 -12.19
Si 18.01 20.13 -11.77 10.12 -7.76
SO 18.16 24.77 -6.94 3.94 -9.84

RMSD N/A 27.66 13.04 11.60 12.42
MSD N/A 27.31 -11.77 10.61 -10.77

Table 3: The deviation (kcal/mol) in ∆ET-S(= ES − ET ) obtained with different MP2 and
OOMP2 methods with complex, restricted (cR) orbitals. RMSD stands for root-mean-
square-deviation and MSD stands for mean-signed-deviation.

κ-ROOMP2 κ-UOOMP2

C 15.71 -13.97
NF 12.07 -17.31
NH 17.46 -17.04
NO– 10.59 -6.71
O2 11.18 -10.18
O 20.67 -22.02
PF 14.06 -9.85
PH 14.68 -10.53
S2 10.34 -5.25
S 16.19 -12.86
Si 12.91 -9.43
SO 10.09 -8.54

RMSD 14.18 12.85
MSD 13.83 -11.97

very similar behavior is observed. As it is typical for RMP2 to overestimate correlation

energies for singlet biradicaloids, we expect κ-ROOMP2 to produce larger triplet-singlet gaps
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than those of RMP2. This is mainly due to the regularization which is more effective on the

singlet states here. Since none of the systems exhibit artificial spin-symmetry breaking (as

presented in Table 1), it is expected that κ-UOOMP2 methods do not significantly change

the energetics of these systems.

In Table 3, we see that the κ-ROOMP2 gaps are all greater than the RMP2 gaps in Table

2, which confirms our prediction. For κ-UOOMP2, the gaps are all within 2 kcal/mol from

those of UMP2 except O2. In O2, the difference between these two methods is 12.90 kcal/mol.

This is due to the underlying artificial reflection spatial symmetry breaking in addition to

the essential spin symmetry breaking in the UHF MS = 0 solution. The artificial symmetry

breaking is removed with κ-UOOMP2 while the essential one still persists.

Table 4: The deviation (kcal/mol) in ∆ET-S(= ES − ET ) obtained with HF, MP2, and κ-
OOMP2 with approximate spin-projection (AP) and complex, restricted (cR) orbitals. Note
that the AP procedure was carried out using the first-order corrected spin expectation values
in the case of UMP2 and κ-UOOMP2. RMSD stands for root-mean-square-deviation and
MSD stands for mean-signed-deviation.

cRHF AP+UHF cRMP2 AP+UMP2 κ-cROOMP2 AP+κ-UOOMP2

C 9.83 -1.24 1.36 3.61 2.04 2.38
NF 12.71 4.86 -1.70 1.41 -1.28 0.93
NH 11.04 2.63 0.59 3.14 1.44 3.38
NO– 17.42 13.21 -0.72 2.50 2.74 4.41
O2 17.85 11.69 -2.26 29.34 1.50 3.02
O 10.44 -0.01 0.65 3.51 1.04 3.38
PF 12.62 -3.01 0.94 3.49 3.42 1.38
PH 11.41 -1.45 0.91 2.98 3.26 1.73
S2 12.59 2.53 -1.70 4.22 3.22 3.33
S 11.22 -4.53 1.43 3.79 2.73 1.81
Si 9.10 -5.03 1.45 3.86 3.27 -0.18
SO 13.89 4.76 -3.49 -0.79 1.50 1.63

RMSD 12.78 5.98 1.64 9.00 2.45 2.58
MSD 12.51 2.03 -0.21 5.09 2.07 2.27

We discuss whether these unrestricted states serve as reasonable bases to apply AP as

well as whether cR orbitals can improve these catastrophic failures of HF, MP2, and κ-

OOMP2 with R and U orbitals. The results of cR and AP methods are presented in Table
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4. Neither cRHF nor AP+UHF produces satisfying results due to the lack of dynamic

correlation. Moreover, cRHF and AP+UHF show significant differences in all molecules

(the smallest difference is 4.21 kcal/mol and the largest one is 15.75 kcal/mol!). With MP2,

cRMP2 is quite satisfying in that it has an RMSD of 1.64 kcal/mol with an MSD of -0.21

kcal/mol. The TS12 set can indeed be described properly with cR orbitals. On the other

hand, the performance of AP+UMP2 is somewhat disappointing as it is poorer than cRMP2.

In particular, an error of 29.34 kcal/mol in the case of O2 is a striking outlier. This is due

to spatial symmetry breaking in UHF MS = 0 which cannot be fixed by UMP2 but can be

fixed by κ-UOOMP2. Other than O2, we observe a non-negligible difference (5.92 kcal/mol)

in S2 which is also caused by spatial symmetry breaking in the UHF solution. All the other

molecules exhibit 2-3 kcal/mol differences between these two methods.

Orbital optimization in the presence of MP2 yields significantly better AP results but

κ-cROOMP2 produces slightly worse results than cRMP2. The slight degradation in perfor-

mance of cRMP2 in κ-cROOMP2 shows an interesting trend. All data points show larger

triplet-singlet gaps with κ-cROOMP2 than with cRMP2. This indicates that there may

be some overcorrelation problems with cRMP2 which is being regularized by κ-cROOMP2.

Given the substantially better performance of κ-cROOMP2 compared to its R and U ver-

sions, this result is still very encouraging. Moreover, we emphasize that it is only κ-OOMP2

orbitals that yield quantitatively similar results between cR and AP approaches by harness-

ing only essential symmetry breaking.

For the rest of this work, we will further numerically show the quantitative similarity

between AP+κ-UOOMP2 and κ-cROOMP2 beyond model systems.

3.2 Reactivity of Deprotonated Cysteine Ion with O2 (1∆g)

There are not so many chemical systems for which cR methods can be a useful alternative

to standard multi-reference methods. Any systems involving singlet oxygen (O2 (1∆g)) are

good candidates. In particular, singlet oxygen appears frequently in reactions in biological
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systems.71 An example that we will study here is the reaction between an amino acid, cysteine

(Cys) and singlet oxygen. Cys is one of the five amino acids that are susceptible to singlet

oxygen attack.72 Because of the multi-reference nature of singlet oxygen, studying reactivity

of Cys is challenging for single-reference methods. As shown in Section 3.1, O2 (1∆g) exhibits

essential complex polarization. Therefore, this is an interesting example for comparing AP

and cR approaches.

Lu et al. studied the reactivity of Cys ions with O2 (1∆g) using Yamaguchi’s AP.73 As

mentioned earlier, In the case of singlet oxygen, the only spin contaminant is the triplet

ground state. Therefore, AP is well-suited for this case. What Lu and co-workers found is

that the reactivity of Cys ions with singlet oxygen is much smaller than that of neutral Cys.

This was shown by a high activation barrier along a reactive pathway.

We will study a reaction between deprotonated Cys ([Cys-H]−) and singlet oxygen. Al-

though there are multiple local minima geometries available, we investigated the lowest

energy geometries from among those which Lu and co-workers reported. The molecular ge-

ometries of the precursor and transition state are shown in Figure 1. Lu and co-workers

optimized the geometries at the level of B3LYP with the 6-31+G(d) basis set with restricted

orbitals.

The precursor in Figure 1 has substantial open-shell character due to the presence of sin-

glet oxygen, but the transition state (TS) is a closed-shell molecule because of the formation

of a persulfoxide. It is possible that the geometry optimization of the precursor (Figure 1

(a)) may produce a qualitatively wrong geometry when performed with restricted orbitals.

We independently investigated this using unrestricted orbitals and could not find a local

minimum similar to Figure 1 (a). A precise determination of the precursor geometry would

be interesting to study in the future using cR orbitals or AP methods.

Nonetheless, for present purposes we studied this system using the RB3LYP geometries

from those of Lu and co-workers for single point cR and AP calculations. We employed the

cc-pVTZ basis set68 and the associated auxiliary basis set.70 For the computational efficiency,
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the frozen core approximation was used for correlated wavefunction calculations. The goal

of our study is to demonstrate the power of cR orbitals in comparison to AP methods (and

conventional R and U orbitals) for the open-shell singlet precursor geometry.

(a) [Cys-H]- Precursor (b) [Cys-H]- TS

Figure 1: Molecular geometries for (a) the precursor and (b) the transition state (TS) for
[Cys-H]− + O2. The Cartesian coordinates for each geometry were taken from ref. 73.

Table 5: The activation energy ∆E (kcal/mol) of [Cys-H]−+O2 from various types of HF.
The expectation values of 〈Ŝ2〉 for the MS = 0 state of the precursor are presented as well.

Method ∆E 〈Ŝ2〉MS=0

RHF 9.79 0.000
cRHF 16.93 0.000
UHF 45.17 1.023

AP+UHF 33.71

We first discuss how different types of HF methods perform in predicting the reaction

energy barrier (i.e., E(TS) - E(precursor)). We compare the use of R, U, and cR orbitals for

the precursor. The precursor RHF energy should be much higher than cRHF whereas the

UHF energy should be too low since the triplet contaminant is much more stable. Therefore,

a back-of-the-envelope estimation for the relative energy barrier ordering is RHF < cRHF

< UHF. This is indeed supported by numerical results presented in Table 5.

The relative activation energy ordering will change based on the subsequent correlation

treatment. For instance, UHF orbitals are heavily spin-contaminated so the subsequent

UMP2 correlation energy will be underestimated, which then leads to a substantially smaller
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energy barrier than for UHF. Similarly, RHF orbitals should also lead to somewhat high

energy when combined with MP2, which then yields a smaller energy barrier than that of

cRMP2. Therefore, it is expected that the relative energy barrier ordering of MP2 methods

is cR > R > U.

Table 6: The activation energy ∆E (kcal/mol) of [Cys-H]−+O2 from various types of HF.
The expectation values of 〈Ŝ2〉 for the MS = 0 state of the precursor are presented as well.

Method ∆E 〈Ŝ2〉MS=0

RMP2 19.89 0.000
cRMP2 19.47 0.000
UMP2 4.04 1.024

AP+UMP2 -18.32

In Table 6, we observe the following trend instead: cR ≈ R > U. It is perhaps surprising

that cR and R produce more or less the same energy barriers. There is quite strong complex

polarization within a pair of electrons which led to a substantial energy lowering at the HF

level. Evidently, despite the poor RHF reference, RMP2 recovers more correlation energy

than cRMP2, perhaps because of overcorrelating small gap contributions.

Lastly, we note that there is a significant energy difference between AP+UMP2 and

cRMP2 similar to the O2 triplet-singlet gap result observed in Section 3.1. However, this

is mainly due to the qualitative difference between cR and U solutions. Spin-contamination

often drives artifacts in the spin-density distribution which cannot be easily fixed by a pos-

teriori spin projection methods. However, this can potentially be fixed by orbital optimizing

in the presence of correlation as we shall see.

In Table 7, we present the activation barrier obtained using various types of κ-OOMP2

methods and two popular, combinatorially optimized density functional theory (DFT) meth-

ods (ωB97X-V74 and ωB97M-V75). First, we note that κ-cROOMP2 and AP+κ-UOOMP2

predict a barrier within 1 kcal/mol from each other. This is because the κ-UOOMP2 MS = 0

state no longer has any artificial symmetry breaking and produces a solution with only essen-

tial spin-symmetry breaking. κ-ROOMP2 is similar to κ-OOMP2 with cR or AP despite the
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Table 7: The activation energy ∆E (kcal/mol) of [Cys-H]−+O2 from various OOMP2 and
DFT methods. The expectation values of 〈Ŝ2〉 for the MS = 0 state of the precursor are
presented as well. Note that these values include correlation corrections to 〈Ŝ2〉 wherever
appropriate.

Method ∆E 〈Ŝ2〉MS=0

κ-ROOMP2 8.21 0.000
κ-cROOMP2 10.17 0.000
κ-UOOMP2 19.70 0.968

AP+κ-UOOMP2 9.30 0.000

UωB97X-V 24.72 0.970
AP+UωB97X-V 15.80

UωB97M-V 20.42 0.943
AP+UωB97M-V 11.03

lack of open-shell character in the wavefunction. The R to cR instability at the κ-OOMP2

level causes an energy lowering of only about 2 kcal/mol. κ-UOOMP2 overestimates the gap

by a factor of 2 compared to the corresponding AP results.

To see how well κ-cROOMP2 and AP+κ-UOOMP2 perform, we also compare this with

two DFT methods. Without AP, both DFT methods with U orbitals predict the barrier too

high. With AP, ωB97X-V predicts a barrier of 15.80 kcal/mol while ωB97M-V predicts a

barrier of 11.03 kcal/mol. There is a quite significant functional dependence on the barrier

height with the AP prescription (this may be related to the fact that 〈Ŝ2〉 cannot be rigorously

evaluated: the expectation value of the KS determinant is used). A barrier height of about

10 kcal/mol was obtained with κ-cROOMP2, AP+κ-cROOMP2, and AP+ωB97M-V and

an even higher height with AP+ωB97X-V. All of these suggest that the reactivity of [Cys-

H]− with O2 (1∆g) is moderate at room temperature. In passing, we note that a higher

level benchmark data would be desirable, using more sophisticated and computationally

demanding methods such as equation of motion spin-flip coupled-cluster with singles and

doubles (EOM-SF-CCSD).35 This will be interesting to study in the future.
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Figure 2: Molecular geometries of C30 (D5h). The Cartesian coordinates for this geometry
used in this work are provided in the Supporting Information.

3.3 Triplet-Singlet Gap of C30

Fullerenes are an interesting class of molecular clusters that are made solely of carbon atoms.

They all form intriguing cage structures and often are stable enough to be experimentally

synthesized. C30 is one of the smaller fullerenes and it has been quite challenging to isolate

C30 experimentally due to its instability. It was pointed out in several experimental76 and

theoretical77,78 studies that the highest symmetry structure, D5h, is highly reactive. This

particular molecular geometry is presented in Figure 2.

The molecular geometries used in this work are optimized with unrestricted B97M-V79

for each MS state, with D5h geometry within the cc-pVDZ basis set.68 As this system is

biradicaloid, the geometry of the MS = 0 state may require special care, but for simplicity

we employed unrestricted calculations. The 〈S2〉 values of each state with this particular

functional is 1.020 and 2.013, respectively. We provide the geometries of C30 used in this work

in the Supporting Information. Details about the geometries will not alter the qualitative

conclusion we are drawing in this section as long as the underlying point group symmetry is
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D5h.

Jiménez-Hoyos and co-workers reported the existence of complex generalized HF (cGHF)

solutions for C30 (D5h) and concluded that C30 is a polyradicaloid based on the cGHF

solution.80 Due to its pronounced strong correlation, it is not surprising to observe symmetry

breaking at the HF level. However, one may wonder if breaking every symmetry from RHF

to cGHF is essential since UHF is sufficient for most singlet biradicaloid systems.

We have developed a computational strategy which can identify artificial symmetry

breaking at the HF level using κ-OOMP2 with cG orbitals.60 We scan over a range of κ

values (i.e., the regularization strength) and compute the critical regularization strength, κc,

to break/restore a given symmetry. Symmetry breaking with κc ∈ [0.0, 1.0] is categorized as

artificial symmetry breaking, κc ∈ [1.0, 2.0] is essential symmetry breaking, and symmetry

restoration for κc > 2.0 may be considered to be artificial restoration (i.e., too little symme-

try breaking). The symmetry landscape of C30 will help to identify the character of essential

symmetry breaking in this system.

We obtained the symmetry breaking landscape of C30 within the 6-31G basis set81 along

with the cc-pVDZ auxiliary basis set.70 The frozen core approximation was used for compu-

tational efficiency. We focused on three symmetry breaking parameters: the spin expectation

value 〈Ŝ2〉, the non-collinearity order parameter µ,82 and the fundamental complexification

measure ξ.59,60

In Figure 3, we see that κc = 1.40 for µ, κc = 2.70 for 〈S2〉, and there is no obvious

symmetry restoration for ξ. Compared to our previous work on characterizing other fullerenes

such as C60 and C36, this landscape is more complex than the well-known biradicaloid C36.

Between κ = 1.40 and κ = 2.70, cU solutions are found. It is interesting that for κ > 2.70

cR solutions are most stable and there are no U or cU solutions. R solutions are commonly

observed in the weak regularization regime, κ > 2.0, but cR solutions are quite unusual

to observe. It turns out that this complex symmetry breaking in κ-cROOMP2 exists for

all κ values as shown with the purple dashed line in Figure 3. With κ-cGOOMP2 with
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Figure 3: Measures of symmetry breaking (〈S2〉, ξ, and µ) as a function of the regularization
strength κ for C30 (D5h). ξ̃ is the complex broken-symmetry parameter of κ-cROOMP2.
These quantities characterize symmetry-breaking/restoration in κ-OOMP2.

κ < 2.70, κ-cROOMP2 solutions are higher in energy than other spin symmetry broken

solutions. This is why these solutions are only observed with very weak regularization in the

landscape. Based on these results, we conclude that the symmetry breaking of 〈S2〉, ξ, and

µ is essential and this molecule is strongly correlated.

Table 8: The triplet-singlet gap ∆ET-S(= ES−ET ) (kcal/mol) of C30 from various methods.
The expectation values of 〈Ŝ2〉 for MS = 0 and MS = 1 states are presented as well. Note
that these values include correlation corrections to 〈Ŝ2〉.

Method ∆ET-S MS = 0 MS = 1

RHF 10.94 0.00 2.00
UHF -13.07 7.18 8.15
cRHF 10.86 0.00 2.00

RMP2 -25.62 0.00 2.00
UMP2 -8.39 6.34 7.33
cRMP2 -27.50 0.00 2.00

κ-ROOMP2 5.36 0.00 2.00
κ-UOOMP2 1.84 1.02 2.00
κ-cROOMP2 3.93 0.00 2.00

AP+κ-UOOMP2 3.75 2.00

We also computed the triplet-singlet gap of C30 using HF, MP2, and κ-OOMP2 methods
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with multiple types of orbitals. At κ = 1.45 with the cc-pVDZ basis set, we found a κ-

cUOOMP2 solution (with 〈S2〉 = 2.0) when started from a cGHF solution. This triplet

κ-cUOOMP2 solution was found to be almost exactly degenerate with a triplet κ-UOOMP2

solution. Therefore, for the remaining discussion we employed κ-UOOMP2 for the triplet

state.

The computed triplet-singlet gaps are presented in Table 8, which are obtained with the

cc-pVTZ basis set. Without correlation, RHF and cRHF predict very large gaps with a

triplet ground state whereas UHF predicts a large gap with a singlet ground state. The MP2

correction on top of these reference states all prefers the singlet state with a significant spin

gap. This is a qualitative failure of the MP2-level correlation treatment.

κ-OOMP2 provides a significant improvement over the MP2 results. κ-ROOMP2 predicts

the sign of the gap correctly with a gap of 5.36 kcal/mol. κ-cROOMP2 yields a slightly

smaller gap than κ-ROOMP2 and the energy lowering from complex polarization is only

about 1.43 kcal/mol. κ-UOOMP2 yields almost a perfect open-shell solution (i.e., 〈S2〉 ≈

1.0), so AP+κ-UOOMP2 is effective for this system. AP+κ-UOOMP2 predicts more or less

the same gap as κ-cROOMP2 and the difference between two is only 0.18 kcal/mol. In terms

of the triplet-singlet gap, all of the κ-OOMP2 approaches predict the biradicaloid character

of C30.

Although the triplet-singlet gap from the R methods is similar to the cR methods, the

use of R orbitals breaks the spatial symmetry (D5h) of C30. This is evident when looking

at the Mulliken population of individual carbon atoms. To illustrate this, we present the

Mulliken population of the five carbon atoms in the top pentagon of C30 in Figure 2. Obvi-

ously, they are all equivalent due to the D5h symmetry, but using restricted or unrestricted

orbitals breaks this symmetry as shown in Table 9. Thus geometry optimization with other

methods than cR methods will likely break this spatial symmetry. This is not because of the

Jahn-Teller distortion but because of the artificial spatial symmetry breaking present at the

electronic level. In passing we mention than orbital-optimizing the spin-projected energy in
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Eq. (17) could potentially yield qualitatively better density than κ-UOOMP2.41

Table 9: Mulliken population of the five carbon atoms in the top pentagon in C30 shown in
Figure 2.

RHF UHF cRHF κ-ROOMP2 κ-UOOMP2 κ-cROOMP2

0.0083 0.0001 0.0179 -0.0027 0.0111 0.0099
0.0105 0.0001 0.0179 0.0067 0.0109 0.0099
0.0290 -0.0034 0.0179 0.0187 0.0093 0.0099
0.0290 0.0056 0.0179 0.0187 0.0120 0.0099
0.0105 -0.0034 0.0179 0.0067 0.0092 0.0099

In summary, in this example we showed that κ-cROOMP2 is better suited than AP+κ-

UOOMP2 in the presence of high point group symmetry such as D5h. Although they both

yield similar energies, the underlying wavefunction breaks spatial symmetry if not treated

with cR orbitals. This highlights the unique utility of electronic structure methods with cR

orbitals whenever complex polarization is essential.

3.4 Stable Organic Triplet Biradical

Figure 4: Molecular geometries of the organic biradical studied here. The Cartesian coordi-
nates for this geometry used in this work are taken from ref. 83.

Although organic triplet biradicals are very rare to isolate due to their normally high
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reactivity, there have been some reports of synthesizing stable ones.24,84 Indeed, many stable

singlet biradicaloids are stable because of some closed shell character.22 Since triplet birad-

icals lack in any closed shell character, it is difficult to observe stable ones. Gallagher and

co-workers synthesized an organic biradical with a triplet ground state.83 This biradical has

quite robust stability compared to usual biradicals and survives at 140 ◦C without significant

decomposition. Experimentally the triplet-singlet gap of this molecule was measured to be

about 0.5 kcal/mol. However, such a small gap allows for a thermal mixture of singlet and

triplet states as temperature is raised to ambient conditions and above.

Gallagher and co-workers suggested a modification to this synthesized complex and hy-

pothesized a triplet ground state, aiming for a larger triplet-singlet gap than 0.5 kcal/mol.83

The structure of this proposed molecule is presented in Figure 4. They supported their

claim using UB3LYP/6-31G(d,p) calculations which yielded a gap of 3.5 kcal/mol for this

newly suggested complex. Our goal is to confirm whether this hypothesis is correct using

κ-cROOMP2 and/or AP+κ-UOOMP2. We studied this system within the cc-pVDZ basis

set68 and its auxiliary basis set70 with the frozen-core approximation and the geometries were

taken from ref. 83 which were optimized at the UB3LYP/6-31G(d,p) level. This proposed

system was recently synthesized and characterized with ∆ETS ≥ 1.7 kcal/mol.85

Unlike other examples presented above, there are no obvious symmetry constraints that

give rise to a R to cR instability in this system. This is why it is interesting that there is a

R to cR instability at the HF level (see Table 10). However, this complex polarization turns

out to be artificial and κ-OOMP2 with κ = 1.45 yields only a restricted solution. Therefore,

in this case κ-cROOMP2 is not applicable whereas AP+κ-UOOMP2 is well-suited.

In Table 10, the triplet-singlet gap of this system is presented. At the HF level, none of

the orbital types predict small enough gaps to be considered to be a biradical. RHF and

cRHF states are nearly degenerate and thus the complex polarization is not as strong as other

examples presented before. UHF exhibits striking spin-symmetry breaking and predicts a

much smaller spin gap than RHF and cRHF.
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Table 10: The triplet-singlet gap ∆ET-S(= ES − ET ) (kcal/mol) of the biradical system in
Figure 4 from various methods. The expectation values of 〈Ŝ2〉 for MS = 0 and MS = 1
states are presented as well. Note that these values include correlation corrections to 〈Ŝ2〉.

Method ∆ET-S MS = 0 MS = 1

RHF 63.56 0.00 2.00
UHF 12.44 6.25 7.69
cRHF 63.49 0.00 2.00

RMP2 29.88 0.00 2.00
UMP2 -8.64 2.56 3.86
cRMP2 48.97 0.00 2.00

κ-UOOMP2 1.48 1.02 2.03
AP+κ-UOOMP2 2.97 2.00

κ-cR/ROOMP2 36.23 0.00 2.00

The MP2 treatment on top of these reference HF determinants does not improve these

poor energetics. There is about a 20 kcal/mol energy difference between RMP2 and cRMP2

and RMP2 is lower in energy than cRMP2. This may indicate artificial complex polar-

ization which indeed turns out to be the case in this system (vide infra). UMP2 removes

a large portion of the spin contamination present at the HF level, but it still is heavily

spin-contaminated. As a result, it predicts the sign of the gap incorrectly.

κ-UOOMP2 predicts a reasonably small gap with satisfying spin contamination for the

singlet state (〈S2〉 ≈ 1.0) and almost no spin contamination for the triplet state. With the

AP scheme, the gap is predicted to be 2.97 kcal/mol. This supports the original hypothesis83

made by experimentalists that this system has a gap larger than 0.5 kcal/mol, with a triplet

ground state. This is also in agreement with the recent experiment which studied this

system.85 Lastly, we note that κ-cROOMP2 collapses to a real, restricted solution and yields

a substantially larger gap (36.23 kcal/mol), because this method does not adequately describe

the strongly correlated singlet.

In summary, in this example, AP+κ-UOOMP2 successfully describes the biradicaloid

character of the singlet state in the molecule whereas κ-cROOMP2 cannot describe such

character because there is no cR solution at the κ-OOMP2 level.
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4 Conclusions

In this work, we examined two single-reference approaches based on regularized orbital-

optimized Møller-Plesset perturbation theory (κ-OOMP2) that exploit essential symmetry

breaking to describe singlet biradicaloids. Combined with Yamaguchi’s approximate pro-

jection (AP), unrestricted κ-OOMP2 (κ-UOOMP2) offers a way to access almost spin-pure

singlet energies. Alternatively, complex, restricted κ-OOMP2 (κ-cROOMP2) can describe

biradicaloid character if there is complex polarization. We compared these two methods over

a variety of systems: a total of 12 triplet-singlet gaps in the TS12 set, the barrier height of a

reaction between a cysteine ion and a singlet oxygen molecule, the C30 (D5h) fullerene, and

lastly an organic biradical with a triplet ground state. We summarize the major conclusions

from these numerical experiments as follows:

1. Without orbital optimization at the MP2 level, Hartree-Fock (HF) orbitals tend to ex-

hibit artificial symmetry breaking in singlet biradicaloids. In the case of cRHF, this is

sometimes reflected in spurious charge distribution of molecules whereas it often man-

ifests as heavy spin contamination (and commonly also spurious charge distribution)

in UHF. In such cases, we recommend κ-OOMP2 which is an electronic structure tool

that removes most artificial symmetry breaking and yields orbitals with only essential

symmetry breaking.

2. κ-cROOMP2 is recommended whenever there is essential complex polarization. This

is due to the fact that κ-UOOMP2 manifests not only spin-symmetry breaking but

also spatial symmetry breaking which cannot be purified with the AP scheme.

3. When there is no essential complex polarization but only essential spin polarization,

AP+κ-UOOMP2 is recommended. cR solutions are rare in nature and it is difficult to

observe them with systems without point group symmetry. Therefore, the applicability

of AP+κ-UOOMP2 is broader than that of κ-cROOMP2.
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Strong correlation is a difficult problem to solve and there is no universal approach to it other

than brute-force approaches such as complete active space methods.27 However, at least

for two-electron strong correlation problems studied here, either κ-cROOMP2 or AP+κ-

UOOMP2 can be a single-reference electronic structure method that correctly describes

strong correlation character. It will be interesting to apply these tools to a broader range

of chemical systems along with more developments on their response theory such as excited

states and analytic nuclear gradients in the future. The presented approaches, which use cR

orbitals or AP, can be extended to higher order single-reference correlation methods such as

coupled-cluster with singles and doubles (CCSD) and third-order Møller-Plesset perturbation

theory (MP3).

5 Supplementary Material

The supplemental material of this work is available online which discusses the frozen core

and frozen virtual approximation in κ-OOMP2, the theoretical reference data of TS12 set

and the Cartesian coordinate of C30.
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