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Abstract

Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to 

provide new, major ways of imparting therapy to patients.1,2 Fire et al. first demonstrated that 

long, double stranded RNAs mediate RNAi in Caenorhabditis elegans,3 and Elbashir et al. opened 

the pathway to the use of RNAi for human therapy by showing that small interfering RNAs 

(siRNAs: ca. 21 base pair double stranded RNA) can elicit RNAi in mammalian cells without 

producing an interferon response.4 We are currently conducting the first-in-human Phase I clinical 

trial involving the systemic administration of siRNA to patients with solid cancers using a 

targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi 

mechanism of action in a human from the delivered siRNA. Tumor biopsies from melanoma 

patients obtained after treatment reveal: (i) the presence of intracellularly-localized nanoparticles 
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in amounts that correlate with dose levels of the nanoparticles administered (this is a first for 

systemically delivered nanoparticles of any kind), and (ii) reduction in both the specific mRNA 

(M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) when compared to pre-

dosing tissue. Most importantly, we detect the presence of an mRNA fragment that demonstrates 

siRNA mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism 

from a patient who received the highest dose of the nanoparticles. These data when taken in total 

demonstrate that siRNA administered systemically to a human can produce a specific gene 

inhibition (reduction in mRNA and protein) by an RNAi mechanism of action.

A major challenge with the use of siRNAs in mammals is their intracellular delivery to 

specific tissues and organs that express the target gene. The first demonstrations of siRNA-

mediated gene silencing in mammals through systemic administration were accomplished 

using naked siRNA and methods of administration not compatible with clinical application.

5–7 Since then, several delivery vehicles have been combined with siRNAs to improve their 

delivery in animal models.1,2 Soutschek et al. were the first to provide direct evidence for 

the siRNA mechanism of action by using a modified 5’-RACE (rapid amplification of 

cDNA ends) PCR technique providing positive identification of the specific mRNA 

cleavage product.8 Human clinical trials with synthetic siRNAs began in 2004, utilizing 

direct intraocular siRNA injections for patients with blinding choroidal neovascularization 

(CNV). Subsequently, other clinical trials have initiated2 and early clinical data are 

beginning to appear.9,10 While there are animal studies that do support the possibility of an 

RNAi mechanism of action from administered siRNA,11 other animal data from siRNAs 

injected into the eyes of mice for the treatment of CNV suggest non-RNAi mechanisms of 

action for CNV suppression.12 At this time, no direct evidence for an RNAi mechanism of 

action in humans from siRNA administered either locally or systemically has been reported.

We are currently conducting the first siRNA clinical trial that utilizes a targeted nanoparticle 

delivery system (clinical trial registration number NCT00689065).13 Patients with solid 

cancers refractory to standard-of-care therapies are administered doses of targeted, 

nanoparticles on days 1, 3, 8 and 10 of a 21-day cycle via a 30-minute i.v. infusion. The 

nanoparticles consist of a synthetic delivery system containing (Fig. 1a): (i) a linear, 

cyclodextrin-based polymer (CDP), (ii) a human transferrin protein (hTf) targeting ligand 

displayed on the exterior of the nanoparticle to engage Tf receptors (hTfR) on the surface of 

the cancer cells, (iii) a hydrophilic polymer (polyethylene glycol (PEG) used to promote 

nanoparticle stability in biological fluids), and (iv) siRNA designed to reduce the expression 

of the M2 subunit of ribonucleotide reductase (RRM2: sequence used in the clinic was 

previously denoted siR2B+5).14 The TfR has long been known to be up-regulated in 

malignant cells,15 and RRM2 is an established anti-cancer target.16 These nanoparticles 

(clinical version denoted as CALAA-01) have been shown to be well tolerated in multi-

dosing studies in non-human primates.17 While a single patient with chronic myeloid 

leukemia has been administered siRNA via liposomal delivery,18 our clinical trial is the 

initial human trial to systemically deliver siRNA with a targeted delivery system and to treat 

patients with solid cancer.13
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In order to ascertain whether the targeted delivery system can provide effective delivery of 

functional siRNA to human tumors, we investigated biopsies from three patients from three 

different dosing cohorts; patients A, B and C, all of whom had metastatic melanoma and 

received doses of CALAA-01 of 18, 24 and 30 mg-siRNA/m2, respectively. Given the 

highly experimental nature of this protocol, the regulatory process at both the local and 

federal levels explicitly precluded a provision for mandatory biopsies in all patients. 

Therefore, biopsies were obtained on a voluntary basis. Biopsies in these three patients were 

collected after the final dose of cycle 1 (denoted Apost, Bpost and C1post) and compared to 

archived tissue (denoted Apre, Bpre and C1pre). Patient C continued on therapy beyond one 

cycle and provided another set of biopsy materials (C2pre that was obtained approximately 

one month after the final dose of cycle 1 and C2post that was collected on the day of the final 

dose of cycle 2). Because of limited sample amount, only immunohistochemistry (IHC) and 

staining for the nanoparticles could be performed on the C1pre and C1post samples, and 

protein (for Western blot analyses) was only available from the C2pre and C2post samples. 

Details of this clinical trial will be reported elsewhere when completed.

The targeted nanoparticles (ca. 70 nm diameter) were administered i.v., as they are designed 

to circulate and then to accumulate and permeate in solid tumors.13 Within the tumor, the 

hTf targeting ligand assists in directing the nanoparticles into tumor cells overexpressing 

hTfR.19 To detect the nanoparticles in tumor cells, sections of the tumor tissue were stained 

for the presence of the nanoparticles using a 5 nm gold particle that is capped with thiolated 

PEG containing adamantane (AD) at the end distal to the thiol (AD-PEG-Au) to allow for 

multivalent binding to the cyclodextrins (Supplementary Scheme SI 2). The function of the 

stain has been previously confirmed using other cyclodextrin-containing particles,20 and is 

demonstrated here for the targeted nanoparticles carrying siRNA in vitro (Supplementary 

Fig. 1) and in vivo (Supplementary Figs. 2 and 3). Transmission electron microscopy (TEM) 

images of the nanoparticles confirm that in mice, the nanoparticles are intracellular 

(Supplementary Fig. 2). Samples A, B and C1, analyzed in a blinded fashion, demonstrated 

a heterogeneous distribution of nanoparticles only in post-dosing tumor tissue (Fig. 1 for 

post-dosing and Supplementary Fig. 4 for pre-dosing). The nanoparticles can localize 

intracellularly in tumor tissue and are not found in the adjacent epidermis (Fig. 1). In these 

biopsies TEM images were dominated by melanosomes21 inhibiting the identification of the 

nanoparticles (data not shown). Samples C1post and C2post reveal the highest number and 

intensity of stained regions, Bpost exhibits a decreased amount of staining relative to samples 

C1post and C2post (Fig. 1b), Apost does not reveal the presence of the stain (Fig. 1b), and all 

the pre-dosing samples are completely negative for the stain (Supplementary Fig. 4). This is 

the first example of a dose-dependent accumulation of targeted nanoparticles in tumors of 

humans from systemic injections for nanoparticles of any type.

Tumor RRM2 mRNA levels were measured by quantitative real time polymerase chain 

reaction (qRT-PCR) and were performed in a blinded fashion.22 Reduction in RRM2 

mRNA is observed in the post-treatment samples (Fig. 2). Since samples Apre and Bpre are 

from tissues collected many months before the initiation of siRNA treatment, the fraction of 

the overall reduction in mRNA observed in Apost and Bpost attributable to the nanoparticle 

treatment cannot be directly ascertained. Unfortunately, we were not able to perform PCR 
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on the C1 samples. However, the PCR data from the C2pre vs. C2post samples (collected 10 

days apart) provide direct evidence for RRM2 mRNA reduction via the treatment of the 

patient with the nanoparticles.

To ascertain whether the RRM2 protein level is reduced in the tumor because of the siRNA 

treatment, IHC and Western blotting were employed as previously described in mice.23 

Since RRM2 protein expression is largely restricted to the late G1/early S phase of cell 

cycle, not all of the tumor cells will be expressing RRM2. Figure 3 shows IHC data for 

RRM2 and TfR proteins in C1pre and C1post samples (IHC analyses were performed in a 

blinded fashion and 10 random regions of each sample were analyzed). Significant reduction 

in RRM2 is observed (mean scoring of RRM2 from the 10 sections was reduced 5-fold) 

after treatment while TfR levels are somewhat elevated (mean scoring of TfR from the 10 

sections was increased 1.2-fold) in the C1pre and C1post samples. The low level of RRM2 

that is observed by IHC in the C1post sample is maintained in the C2pre and C2post samples 

(by IHC). Western blot analyses of the C2pre and C2post samples reveal a reduction in the 

level of the RRM2 protein that is due to the siRNA treatment (RRM2 mRNA reductions 

exceeded the reduction levels obtained from protein but this could be due to post-

transcriptional mechanisms that have been observed previously24). The decreases in the 

RRM2 mRNA and protein observed after treatment (Fig. 2b) suggest the siRNA treatment 

remains effective after several cycles of dosing. The IHC data from patient A do not reveal 

changes in RRM2 expression after dosing, while results from patient B are indicative of 

reductions in maximal RRM2 expression (IHC scoring of the regions of maximal expression 

showed a 1.5-fold decrease) but the overall mean expression levels remained relatively 

constant (IHC scoring of the 10 sections).

To demonstrate that the siRNA delivered via the targeted nanoparticles can engage the 

RNAi machinery, the mRNA cleavage products were characterized using a modified 5’-

RNA ligand-mediated rapid amplification of cDNA ends (5’-RLM-RACE) PCR technique 

(Fig. 4). A RRM2 mRNA fragment, whose 5’ end matches the predicted cleavage site (10 

base pairs from the 5’ end of the antisense strand), was detected in the C2pre and C2post 

samples, but not from Bpost, and Apost or their corresponding pre-treatment samples. RACE 

does not provide a quantitative measure of the amount of the fragments so the intensities of 

the bands cannot be correlated with amounts in the tissue samples. The presence of this 

RRM2 mRNA fragment from patient C indicates siRNA delivered via targeted nanoparticles 

can engage the RNAi machinery in a solid tumor of a human and induce the desired mRNA 

cleavage. Furthermore, this result suggests that at least a portion of the RRM2 mRNA and 

protein reductions observed from the C2 samples are due to a bona fide RNAi mechanism. 

The presence of the RRM2 mRNA fragment in the C2pre sample suggests that siRNA can 

provide an RNAi mechanism for several weeks (mRNA cleavage in the C2pre sample must 

originate from cycle one dosing) as the RRM2 protein levels remained relatively constant 

when compared to the C1post sample (IHC). We have shown that the length of the RNAi 

effects of delivered siRNA in both cells and animals (mice) is dependent on the doubling 

time of the cells being analyzed (longer inhibition times with longer cell doubling times).25 

Gene silencing by siRNA can occur on the timescale observed here, ca. one month, provided 

the cell doubling times are long.25 Patient C had stable disease between these biopsies, and 

these mostly quiescent tumors have very slow growth kinetics that would be suitable to 
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experience lengthy RNAi effects.25 Additionally, we do not know how long the 

nanoparticles reside within the cells and release siRNA. Since the nanoparticles are observed 

in the sample C1post and not the sample C2pre, they must disassemble within one month. 

Thus, the pharmacodynamics of the RNAi effects could be due to the combination of the 

nanoparticle disassembly time and the time that the siRNA resides within the RNAi 

machinery.

The data presented here when taken together provide the first mechanistic evidence of RNAi 

in a human from an administered siRNA. Moreover, these data demonstrate the first 

example of dose dependent accumulation of targeted nanoparticles in human tumors. The 

reduction of the RRM2 mRNA and protein by the RRM2-specific siRNA is observed, and 

the results from 5’-RLM-RACE analyses reveal that the delivered siRNA engages the RNAi 

machinery. These data demonstrate that RNAi can occur in a human from a systemically 

delivered siRNA, and that siRNA can be used as a gene-specific therapeutic.

Methods Summary

Detection of targeted nanoparticles in biopsy samples

Snap-frozen patient biopsy samples were embedded in Tissue-Tek O.C.T. compound 

(Sakura) for the generation of 6 µm-thick cryosections. Upon immersion in PBS at 37 °C for 

1 h to remove any surface O.C.T., and subsequent fixation with acetone at −20 °C for 20 

minutes to permeabilize the cell membrane, sections received staining of PEGylated, AD-

modified gold nanoparticles (Au-PEG-AD; see Supplementary Information for a description 

of their preparation) in the dark for 2 hours. Brief rinses with PBS were used to remove any 

nonspecifically bound Au-PEG-AD before mounting with ProLong Gold antifade reagent 

and staining with DAPI (Invitrogen, Carlsbad, CA). A Zeiss LSM 510 confocal scanning 

microscope used to collect the images (DAPI-excitation: 370 nm, emission: 440 nm; Au-

PEG-AD-excitation: 488 nm, emission: 507 nm).

5’ RNA ligand mediated-RACE

5’-RLM-RACE was performed according to the Invitrogen GeneRacer manual with 

modifications. 2–8 µg of total RNA was ligated directly to 250ng GeneRacer RNA adaptor 

using T4 RNA ligase. Following phenol extraction and ethanol precipitation the purified 

ligation products were reverse transcribed using SuperScriptIII (Invitrogen) and a RRM2 

gene specific reverse transcription primer (5’-CTCTCTCCTCCGATGGTTTG-3’). 5’RLM 

RACE PCR was performed using the GeneRacer 5’ and a RRM2 gene specific reverse 

primer (5’-GGCCAGGCATCAGTCCTCGTTTCTTG-3’). PCR was performed using a Bio-

Rad MJ Mini personal thermocycler using PCR conditions of 95°C for 3 minutes (1 cycle), 

95°C for 30 seconds, 60°C for 30 seconds, 72°C for 1 minutes (40 cycles), 72°C for 10 

minutes (1 cycle). A second round of nested PCR was then performed using the GeneRacer 

5’ nested primer and an RRM2 gene-specific nested primer (5’-

GGCCCAGTCTGCCTTCTTCTTGAC-3’). PCR products were run on a 2% agarose gel 

and stained with 1µg/µL ethidium bromide. PCR products were excised from gel and 

sequenced directly to confirm RACE band identities.
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Methods

Detection of targeted nanoparticles in biopsy samples

Snap-frozen patient biopsy samples were embedded in Tissue-Tek O.C.T. compound 

(Sakura) to generate 6 µm-thick cryosections. Upon immersion in PBS at 37 °C for 1 h to 

remove any surface O.C.T., and in acetone at −20 °C for 20 min to permeabilize the cell 

membrane, sections received staining of PEGylated, adamantane-modified gold 

nanoparticles (Au-PEG-AD; see Supplementary Information for their preparation) in the 

dark for 2 h. Brief rinses with PBS were used to remove any nonspecifically bound Au-

PEG-AD before mounting with ProLong Gold antifade reagent and staining with DAPI 

(Invitrogen, Carlsbad, CA). A Zeiss LSM 510 confocal scanning microscope (with a Plan-

Neofluar 40X/0.75 objective and up to 2× digital zoom) was used to collect the images 

(DAPIexcitation: 740 nm (two-photon laser), emission filter: 390–490 nm; Au-PEG-AD-

excitation: 488 nm (argon laser), emission filter: BP 500–550 nm IR). The measured 

resolution at which images were acquired is 512 × 512 pixels, and the image bit-depth is 8-

bit. The Zeiss LSM Image Browser Software allows the extraction of images.

RNA Extraction

Patient samples preserved in RNALater (Ambion, Austin, TX) were suspended in TRIzol 

reagent (Invitrogen) and homogenized in a FastPrep-24 Tissue Homogenizer (MP 

Biomedicals, Solon, OH). Total RNA was purified from the aqueous phase of TRIzol extract 

using the PureLink RNA Mini Kit (Invitrogen) following manufacturer recommendations. 

RNA was extracted from archived patient samples using RecoverAll total nucleic acid 

isolation kit (Ambion) following manufacturer instructions.

5’ RNA ligand mediated-RACE

5-RLM-RACE was performed according to the Invitrogen GeneRacer manual with 

modifications. 2–8 µg of total RNA was ligated directly to 250ng GeneRacer RNA adaptor 

(5’-CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA-3’) using 

T4 RNA ligase (5 units) for 1 h at 37°C. Following phenol extraction and ethanol 

precipitation the purified ligation products were reverse transcribed using SuperScriptIII 

(Invitrogen) and a RRM2 gene specific reverse transcription primer (5’-

CTCTCTCCTCCGATGGTTTG-3’) at 55°C for 45 min followed by inactivation at 70°C. 

5’RLM-RACE-PCR was performed using the GeneRacer 5’ primer (5’-

CGACTGGAGCACGAGGACACTGA-3’) and a RRM2 gene specific reverse primer (5’-

GGCCAGGCATCAGTCCTCGTTTCTTG-3’). PCR was performed using a Bio-Rad MJ 

Mini personal thermocycler using PCR conditions of 95°C for 3 min (1 cycle), 95°C for 30 

s, 60°C for 30 s, 72°C for 1 min (40 cycles), 72°C for 10 min (1 cycle). A second round of 

nested PCR was then performed using the GeneRacer 5’ nested primer (5-

GGACACTGACATGGACTGAAGGAGTA-3’) and a RRM2 gene-specific nested primer 

(5’-GGCCCAGTCTGCCTTCTTCTTGAC-3’). PCR products were run on a 2% agarose gel 

and stained with 1µg/µl ethidium bromide. PCR products were excised from gel and 

sequenced directly to confirm RACE band identities. For the cell culture RACE 

experiments, 500,000 HT-144 melanoma cells were transfected with 20 nM RRM2 siRNA 
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using Lipofectamine RNAiMax (Invitrogen). RNA was extracted for the RLM-RACE as 

describe above 48 h after transfection.

qRT-PCR

Patient RNA samples were reversed transcribed using SuperScriptIII reverse transcriptase. 

0.4–200ng of white blood cell (WBC) cDNA was used as PCR template for standard curves 

of RRM2 and Tata Binding Protein (TBP). 2 µl of prepared sample cDNA/standard cDNA 

was used for triplicate Taqman Real time-PCR as described elsewhere.25 Concentrations of 

RRM2 and TBP in samples were calculated from the WBC cDNA standard curve, and 

RRM2 levels were normalized to TBP levels within the same sample.

Western blots

Total protein was recovered from the phenol/chloroform phase of TRIzol extraction (see 

description of the RNA extraction above). Samples were diluted to equivalent protein 

concentration and denatured via addition of beta-mercaptoethanol-containing Laimmli 

sample buffer. The primary antibodies were goat polyclonal anti-RRM2 antibody (Santa 

Cruz Biotechnology, Santa Cruz, CA), mouse polyclonal anti-actin antibody (BD 

Biosciences, San Jose, CA). The secondary antibodies were horseradish peroxidase-

conjugated donkey anti-goat antibody and rabbit anti-mouse antibody (Santa Cruz 

Biotechnology). Development was done using SuperSignal West Dura Extended Duration 

Substrate (Thermo-Fisher, Waltham, MA). Blot images were captured using a Molecular 

Imager VersaDoc 3000 system (Bio-Rad, Hercules, CA). Band quantification was 

performed using Image-Quant TL software (GE/Amersham Biosciences, Piscataway, NJ).

Tissues and immunohistochemical assay

Formalin-fixed, paraffin-embedded (FFPE) human tissue samples from patient–matched 

pre- and post-treatment cases were obtained under UCLA IRB approval. 

Immunohistochemical (IHC) assays were performed using a Dako Autostainer Plus (Dako, 

Carpinteria, CA) with fresh sections of pre- and post-treatment cases stained at the same 

time. Tissue sections 4 µm thick were deparaffinized in xylene and rehydrated in graded 

alcohols. The sections were then placed in a pressure cooker (17.5 PSI, 122 °C; Biocare 

Decloaking Chamber, Biocare Medical LLC., Concord, CA) in 0.01M sodium citrate buffer 

(pH 6.0) or 0.1M Tris-HCl buffer (pH 9.0) for 10 min for heat antigen retrieval of RRM2 

and TfR antigens, respectively. Endogenous peroxidase was quenched with 3% hydrogen 

peroxide at room temperature. Primary goat anti-human R2 polyclonal antibody, (catalog # 

sc-10846; Santa Cruz Biotechnology, Inc., Santa Cruz, CA), was applied for 30 min at room 

temperature at a final concentration of 1.0 µg/ml (1:200). Mouse anti-human TfR 

monoclonal IgG1 antibody (clone H68.4, catalog number 13–6800; Invitrogen, Camarillo, 

CA) was applied for 30 min at room temperature at a final concentration of 0.5 µg/ml 

(1:1000). Antigen detection was accomplished using the Vectastain ABC Elite Goat HRP kit 

(catalog number PK-6105, Vector Labs, Burlingame, CA, USA) or the Dako Envision goat 

anti-mouse IgG secondary antibody with attached HRP-labeled dextran polymer (catalog 

number K4001; Dako, Carpinteria, CA), for RRM2 and TfR, respectively. All tissues were 

either amelanotic or only lightly melanized, therefore bleaching was not performed and 

Nova Red (catalog number SK-4800; Vector Labs, Burlingame, CA) was used as the 
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chromagen to easily discern staining from any endogenous pigment. The sections were then 

counterstained with Meyer’s hematoxylin, followed by dehydration in graded alcohols, 

xylene, and cover-slipping. Human tonsil and colon cancer served as positive assay controls. 

Negative controls consisted of duplicate tissue sections stained with either non-immune 

pooled goat IgG (catalog number I-5000, Vector Labs, Burlingame, CA) or monoclonal 

mouse IgG1 (catalog number 02–6100; Invitrogen, Camarillo, CA) applied at identical final 

concentrations as used for RRM2 and TfR primary antibodies, respectively. For each 

sample, 10 random tumor regions were scored for maximal expression and mean expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Detection of targeted nanoparticles in human tumors. (a). Schematic representation of the 

targeted nanoparticles. The polyethyleneglycol (PEG) molecules are terminated with 

adamantane (AD) that form inclusion complexes with surface cyclodextrins in order to 

decorate the surface of the nanoparticle with PEG for steric stabilization and PEG-hTf for 

targeting. (b). Confocal images of post-treatment biopsy sections from patients A, B and C: 

Au-PEG-AD stain (left), DAPI stain (middle), merged images of the left and right panels 

with the bright field (right). Image labels: epi = epidermis, t = tumor side, s = skin side, m = 

melanophage.
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Figure 2. 
RRM2 mRNA and protein expression in tumor tissue. (a). qRT-PCR analysis of RRM2 

mRNA levels in samples from patients A and B before and after dosing. RRM2 mRNA 

levels are normalized to TBP mRNA levels. Results are presented as percentage of the pre-

dosing RRM2/TBP mRNA levels for each patient. (b). qRT-PCR and Western blot analysis 

of RRM2 protein expression from patient samples C2pre and C2post. Bar graph is average 

volume of Western blot bands from two independent experiments; one representative blot is 

pictured. Archived samples are indicated by (*); samples obtained during the trial are 

indicated by (¶).
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Figure 3. 
Ribonucleotide reductase (RRM2) and tranferrin receptor (TfR) protein expression in C1pre 

and C1post samples. Photomicrographs of malignant melanoma belonging to a, b, c, pre-

treatment and d, e, f post-treatment samples. Protein expression is represented as brick-red 

(Nova Red) chromagen staining in immunohistochemically-treated slides (a, d: RRM2; b, 

e:TfR). c, f, The same tissues are stained with Hematoxylin and Eosin (H&E). d, e, f, 

Brown, diffuse, finely granular color seen in these images is the endogenous pigment of this 

lightly melanized tumor. Photomicrographs were captured using a 40× objective.
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Figure 4. 
5’-RLM-RACE detection of siRNA induced mRNA cleavage fragment. (a) Schematic 

depicting the location of the predicted anti-RRM2 siRNA cleavage site and the primers used 

for PCR amplification of the cleavage fragment. (b) Agarose gel of 5’-RLM-RACE PCR 

amplification products from post treatment samples (A post, B post, C2post) and in vitro 

positive control (cell culture). (c) The RRM2 mRNA sequence and siRNA antisense strand 

are illustrated to show where the cleavage occurs with an RNAi mechanism. The sequence 

chromatographs obtained from an in vitro cell culture experiment with HT-144 melanoma 

cells and the patient C2post sample are illustrated.
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